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Abstract

Many real-world systems are described not only
by data from a single source but via multiple data
views. In genomic medicine, for instance, pa-
tients can be characterized by data from different
molecular layers. Latent variable models with
structured sparsity are a commonly used tool for
disentangling variation within and across data
views. However, their interpretability is cumber-
some since it requires a direct inspection and in-
terpretation of each factor from domain experts.
Here, we propose MuVI, a novel multi-view la-
tent variable model based on a modified horse-
shoe prior for modeling structured sparsity. This
facilitates the incorporation of limited and noisy
domain knowledge, thereby allowing for an anal-
ysis of multi-view data in an inherently explain-
able manner. We demonstrate that our model (i)
outperforms state-of-the-art approaches for mod-
eling structured sparsity in terms of the recon-
struction error and the precision/recall, (ii) ro-
bustly integrates noisy domain expertise in the
form of feature sets, (iii) promotes the identi-
fiability of factors and (iv) infers interpretable
and biologically meaningful axes of variation in a
real-world multi-view dataset of cancer patients.

1 INTRODUCTION

In many real-world applications, complex systems are char-
acterized via multiple data views. That is, observations are
represented by multiple groups of distinct features. These
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Figure 1: Performance of our model against competitive
models. MuVI achieves a higher F1 score for recovering
true active features while maintaining a low reconstruction
error, even when using an uninformative prior (MuVIU ).

groups of features often describe different and complemen-
tary input sources that are required for a comprehensive
characterization of a sample. For example, in genomic
medicine, a single patient can be described by quantifying
different molecular layers such as the proteome, the micro-
biome and the transcriptome.
Latent variable models are powerful statistical tools that
uncover the axes of variation between samples and data
views, by inferring unobserved hidden states from the ob-
servable high-dimensional data. To disentangle the sources
of heterogeneity driving intra-view and inter-view varia-
tion in a meaningful manner, it is key that latent vari-
able models are expressive and interpretable. Modeling
approaches with high expressive power are based on au-
toencoders (Ainsworth et al., 2018) or Gaussian Process
Latent Variable models (Damianou et al., 2012). How-
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ever, the non-linearities introduced to model complex de-
pendencies hinder interpretability to the extent that linear
approaches remain the dominant tool for analyzing multi-
view data (Argelaguet et al., 2018). Recently proposed AE-
based approaches attempt to balance expressive power and
interpretability by combining non-linear encoders with lin-
ear decoders (Svensson et al., 2020; Lotfollahi et al., 2023).
Commonly used approaches that yield an interpretable de-
composition of multi-view data are factor analysis mod-
els with structured sparsity on the view, factor and feature
level. This modeling task is challenging since the priors
inducing the structured sparsity should (i) be amenable to
efficient inference strategies that scale to large datasets, (ii)
identify true active features and factors across views with a
high precision and recall, and (iii) faithfully model the data
with a low reconstruction error. Current state-of-the-art
methods typically achieve structured sparsity by incorpo-
rating a spike-and-slab prior (Argelaguet et al., 2018) or a
three-parameter beta (TPB) prior (Zhao et al., 2016). While
these models result in sparse solutions, a careful inspec-
tion of each latent factor is necessary to provide a mean-
ingful interpretation that is relevant to the domain of study.
This manual annotation is cumbersome, time consuming
and requires highly-specialized expertise. In addition, the
inferred latent representations cannot be directly compared
across several training instances as these approaches are
unidentifiable unless additional constraints are put on their
latent components (Anderson and Rubin, 1956). In brief,
non-identifiability in factor analysis states that multiple so-
lutions can produce identical likelihoods, e.g. by applying
orthogonal transformations on the latent components, or by
permuting the factor indices.
To automate a consistent annotation process, we propose to
leverage the partial knowledge on the structure of the latent
space that is readily available in many domains. For exam-
ple, in genomic medicine, disease states are often charac-
terized by sets of features (or pathways), comprising genes
that are known to act in a coordinated manner. These data,
collected over many years of scientific progress, are cu-
rated in dedicated pathway databases. Integrating this do-
main knowledge in a principled manner as sparsity priors
in multi-view models is challenging. Domain knowledge is
noisy (e.g. pathways contain many false positive and false
negative annotations) and domain knowledge is incomplete
and often only available for a subset of views (e.g. in ge-
nomic medicine pathway information is only readily avail-
able for the transcriptome and the genome).
In this work we propose a novel multi-view latent variable
model with domain-informed structured sparsity (MuVI)
for incorporating domain knowledge via structured sparse
priors, and analyzing multi-view data in an inherently ex-
plainable manner. We first introduce a modified horseshoe
prior for inducing structured sparsity that (i) maintains a
low reconstruction error while identifying true active fea-
tures more reliably than state-of-the-art sparse priors, and

(ii) thereby facilitates the integration of domain knowledge
from noisy feature sets. Our domain-informed priors ren-
der the inferred latent variables directly interpretable with-
out any further interaction with domain expert, by tagging
each latent variable with its corresponding feature set (or
pathway in genomic medicine). Briefly, the contributions
of our work are as follows:

• We demonstrate in a comprehensive evaluation that
our model outperforms state-of-the-art approaches in
terms of the reconstruction error and precision, recall
and F1 score.

• We show that our model utilizes prior information ef-
ficiently by recovering correct signals from noisy fea-
ture sets and is robust against poorly specified priors.

• We demonstrate the practical utility of our model on
a large multi-view dataset of cancer patients by infer-
ring interpretable and biologically meaningful axes of
variation.

2 RELATED WORK

Factor analysis (FA) is a fundamental approach for esti-
mating and understanding the correlation structure among
observed variables (Thurstone, 1931), which has inspired
the development of numerous latent variable models. Due
to its simplicity, however, standard FA is unable to model
observations from multiple sources. Extensions, such
as the canonical correlation analysis (CCA) (Hotelling,
1992; Klami et al., 2013), or the group factor analysis
(GFA) (Klami et al., 2014) model paired observations si-
multaneously by learning linear dependencies underlying
two or more data sources. A central assumption of the
GFA is that the multi-view observations are a manifestation
of a lower dimensional common latent space corrupted by
Gaussian noise. The main components that describe this
relationship are the factor-to-feature linear mappings or the
so-called factor loadings. Factor loadings encode the struc-
ture of each factor, and play an important role in the inter-
pretation of the model. Hence, factor loadings are suitable
for introducing statistical assumptions on their underlying
structure such as sparsity. For instance, GFA quantifies the
association between view and factor by extending the auto-
matic relevance determination (MacKay et al., 1994).

2.1 Sparsity Inducing Priors

In non-Bayesian approaches, sparsity is commonly handled
by introducing additional terms to the optimization objec-
tive posed on the model parameters. A canonical exam-
ple is the L1 penalty or lasso (Tibshirani, 1996). On the
other hand, Bayesian approaches achieve sparse solutions
via sparsity inducing priors. For instance, the double expo-
nential, or Laplace prior is the Bayesian counterpart of the
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lasso (Park and Casella, 2008). Another popular choice is
the discrete spike-and-slab prior (Mitchell and Beauchamp,
1988), a mixture of a Dirac delta distribution centered at
zero for pruning irrelevant signals, and a normal distribu-
tion for modeling larger signals. Recently, the spike-and-
slab lasso (SSL) (Ročková and George, 2018) has emerged
as a combination of two Laplace distributions that are pa-
rameterized to emulate both the spike and the slab compo-
nent. Other flavors of shrinkage priors (Polson and Scott,
2010) include the horseshoe prior (Carvalho et al., 2009),
which offers a continuous relaxation of the spike-and-slab
approach, thereby preserving sparse properties while pro-
viding computational benefits such as being differentiable.

2.2 Structured Sparsity in Multi-view LVMs

Several Bayesian approaches have successfully utilized
the synergy between latent variable models and sparsity
inducing priors (Bernardo et al., 2003; Engelhardt and
Stephens, 2010; Lan et al., 2014). In the multi-view set-
ting, (Zhao et al., 2016) propose a hierarchical Bayesian
GFA with structured sparsity, facilitated by a cascading
three parameter beta prior (Armagan et al., 2011). The
consequences of this addition are twofold, the column-
wise sparsity supports the inference of associations be-
tween views, while element-wise sparsity encourages fea-
ture selection within individual factors. Multi-omics fac-
tor analysis (MOFA) (Argelaguet et al., 2018) assumes a
similar structured sparsity in two levels, which is achieved
by combining an automatic relevance determination (ARD)
prior (MacKay et al., 1994) with a spike-and-slab prior. Be-
yond linear models, there is an array of non-linear model-
ing approaches that generalize the ideas of linear LVMs and
sparse priors to more complex data settings. These include
approaches based on variational autoencoder (Ainsworth
et al., 2018) or Gaussian Process Latent Variable Mod-
els (Damianou et al., 2012). Such approaches, however,
are difficult to interpret in practice and have therefore not
received widespread application. For example, in the lat-
ter GP-based approach, loading matrices are marginalized
out, and cannot be used to identify any physical or bio-
logical processes captured by individual factors. Recent
hybrid approaches (Svensson et al., 2020; Lotfollahi et al.,
2023) combine non-linear encoders with linear decoders to
maintain the expressive power of autoencoders while pre-
serving the interpretability of linear models. While these
approaches were proposed for single data views, extension
to the multi-view setting is straightforward.

2.3 Integration of Domain Knowledge in LVMs

Typically, before training sparse latent variable models, the
prior is set to be relatively uninformative, allowing only
the observations to mold the posterior. An alternative ap-
proach is introducing an informed structured sparsity into
the model based on external expertise in the domain of in-

terest. The factorial single-cell latent variable model (Buet-
tner et al., 2017) attempts to bridge this gap by explicitly in-
tegrating, and jointly modeling a collection of domain rel-
evant feature sets such as gene set annotations. The model
extends the spike-and-slab to be informed by the presence
or absence of a feature, and infers pre-labeled latent axes of
variation. However, this method can only handle a single
data view and the proposed inference scheme does not scale
to large sample sizes. An orthogonal approach for identify-
ing latent variables corresponding to pathways is the single
sample gene set enrichment analysis (ssGSEA) (Subrama-
nian et al., 2005; Barbie et al., 2009), which computes a
sample-wise enrichment of a pathway. However, this ap-
proach does not account for noisy annotations, treats path-
ways as independent and can only be applied to a single
data view. A multi-view approach with structured sparsity
that admits prior information in terms of feature sets, and
handles partial and potentially noisy priors has not yet been
explored.

3 DOMAIN-INFORMED MULTI-VIEW
MODELING

3.1 Background and Notation

Let yi ∈ RD denote a D-dimensional observation for
i ∈ {1, . . . , N}, and Gm ⊆ {1, . . . , D} describe a mu-
tually disjoint grouping of the features into M data views,
where Gp ∩ Gq = ∅ for p ̸= q ∈ {1, . . . ,M}. For sim-
plicity, we assume a permutation of the features D such
that the first D1 features belong to G1, the second D2 fea-
tures to G2 and so on. As a result, we may rewrite the
collection of the observations as a matrix Y ∈ RN×D com-
prising M coupled views

[
Y(1),Y(2), . . . ,Y(M)

]
, where

Y(m) ∈ RN×Dm . The main goal is to then represent each
observation yi in terms of a low-dimensional set of latent
factors xi ∈ RK ,K ≪ D. The relationship between the
observations and the latent factors is described by a set of
view-specific factor loadings W(m) ∈ RDm×K . Then, the
recipe for the group factor analysis framework posits the
following generative process to the observed data,

y
(m)
i ∼ N

(
W(m)xi,Ψ

(m)
)

(1)

where each latent variable typically follows an isotropic
standard normal distribution

xi ∼ N (0, I) . (2)

The residuals are denoted by Ψ(m) = diag(σ2(m)), a di-
agonal matrix storing the marginal variances σ2(m)

j of each
variable j in view m. Due to conjugacy properties, setting

σ
2(m)
j ∼ Γ−1(ασ, βσ) (3)

is a common choice, where Γ−1(α, β) describes the
inverse-Gamma with shape and scale parameters α and β.
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Finally, an important component of GFA is the collection
of the factor loadings W(m) which applies a linear projec-
tion of the latent variable xi to y

(m)
i . In order to facilitate

the interpretability of the factor-to-feature mapping, (Klami
et al., 2014) propose a structured sparsity for the columns
of W(m), such that each factor falls into two distinct cat-
egories. A non-zero factor loading vector w(m)

k indicates
an active factor k, while w

(m)
k = 0 indicates an inactive

factor k in view m. Hence, a factor is either shared across
an arbitrary subset of views, or private to a specific view.

3.2 MuVI

We follow a similar approach, inspired by the success of the
horseshoe prior (Carvalho et al., 2009, 2010), and introduce
a view-factor-local shrinkage prior on the factor loadings to
enable both column-wise and element-wise shrinkage:

w
(m)
j,k ∼ N

(
0,
(
τ (m)δ

(m)
k λ

(m)
j,k

)2)
, (4)

where each scale in the hierarchy follows a positive Cauchy
distribution,

τ (m) ∼ C+(0, 1) (5)

δ
(m)
k ∼ C+(0, 1) (6)

λ
(m)
j,k ∼ C+(0, 1). (7)

Each level in the hierarchy contributes to the overall struc-
tured sparsity of the factor loadings. In particular, δ(m)

k

serves as an automatic relevance determination (ARD)
mechanism (MacKay et al., 1994) for factor k in view m,
effectively decoupling this factor from the rest of the views.
At the same time, λ(m)

j,k acts as a regulator on each individ-
ual loading, encouraging the model to seek simpler solu-
tions that describe each factor in terms of fewer features.
However, due to the heavy tails of the Cauchy distribu-
tion, weakly identified loadings under the horseshoe prior
can easily escape the regularization. To counteract this
behavior, the regularized horseshoe guarantees a non-zero
penalty even for large weights (Piironen and Vehtari, 2017).
Concurrently, the regularized parameterization helps inte-
grate prior information about the structure of the latent fac-
tors into the model. We update Equation 4 as follows. To
simplify notation, we sometimes drop the view-specific su-
perscript m, which can also be implicitly encoded in j. Let
γj,k = τδkλj,k, then

wj,k ∼ N

(
0,

(cj,kγj,k)
2

c2j,k + γ2
j,k

)
(8)

Note that in Equation 8 the c2j,k parameter relates to a spe-
cific factor loading rather than being a global parameter
as originally defined in the regularized horseshoe. For a
relatively large c2j,k ≫ γ2

j,k, wj,k is scaled by a factor of

nearly γj,k, rendering the effect of the additional penalty
insignificant, and reinstating the original horseshoe prior.
On the other hand, when c2j,k ≪ γ2

j,k, wj,k is scaled by a
factor of nearly cj,k, thus setting an upper bound on cor-
responding factor loadings. Equivalently, the regularized
horseshoe can be seen as a continuous alternative to the dis-
crete spike-and-slab prior (Mitchell and Beauchamp, 1988)
with a finite slab width. Piironen and Vehtari (2017) sug-
gest assigning an inverse-Gamma distribution as a weakly
informative prior to

c2j,k ∼ Γ−1(αc, βc). (9)

For all our experiments we opt for αc = βc = 0.5, as this
encourages sparsity while still allowing strong signals to
escape the regularization due to the heavy right tail.

3.3 Integrating Prior Knowledge from Noisy Feature
Sets

Next, we attempt to integrate prior knowledge in terms of
noisy feature sets into our model.

Feature sets A feature set ID is a collection of binary
variables Ij ∈ {0, 1}, j ∈ {1, . . . , D}, where Ij = 1 in-
dicates the presence of feature j, and Ij = 0 its absence.
Assume we have substantial knowledge about the underly-
ing structure of the factor loadings in terms of feature sets.
That is, for every latent dimension k and a set of features
D we are given a corresponding feature set IDk , such that
|wj,k| > 0 if Ij,k = 1, and wj,k = 0 otherwise. Each
latent factor can be seen as a factor-to-feature mapping of
the present features determined by the feature set. In terms
of Equation 8, this can also be achieved by setting the cor-
responding slab width cj,k ≈ 0, i.e. applying an infinitely
large weight decay penalty to wj,k.

Noisy feature sets In practice, we rarely have access to
such pristine ground truth. However, in some cases, we
may exploit existing domain knowledge to develop a prior
belief about a plausible structure of the factor loadings by
accommodating noisy feature sets into our modeling ap-
proach. Let ĨD be a noisy version of a feature set ID, where
a subset of the binary variables IQ, Q ⊂ {1, . . . , D} has
been flipped to generate ĨD, inserting a non-zero fraction
of false positives and false negatives. To integrate noisy
feature sets into MuVI, we relax the hard regularization
penalty induced by a pre-defined cj,k, allowing the adapta-
tion of incorrect signals, given sufficient evidence from the
data. In our approach, we opt for an auxiliary hyperparam-
eter 0 < αj,k ≤ 1 which scales cj,k. A value of αj,k = 1.0
poses no prior penalty to wj,k, while αj,k < 1.0 leads to
a smaller slab width a priori. Consequently, a smaller αj,k

translates to a stronger prior belief. Experiments show that
values around 0.01 ≤ αj,k ≤ 0.05 for absent features in a
prior collection of feature sets consistently provide the best
results across different datasets and training scenarios.
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Pure variables Present features that depend on only one
latent factor are also referred to as pure variables (Bing
et al., 2020). Work on the identifiability of factor analy-
sis (Bing et al., 2020; Anderson and Rubin, 1956) proves
that the existence of at least two pure variables is a suffi-
cient condition for yielding identifiable solutions. That is,
for every factor k ∈ {1, . . . ,K}, there exist at least two
features j, j′ ∈ {1, . . . , D} such that Ij,k = 1, Ij′,k = 1
for all j ̸= j′. Under the assumption of known pure vari-
ables, MuVI results in provably identifiable factors. How-
ever, since we are only given a noisy feature set, we cannot
know whether pure variables really are present for all fac-
tors. We therefore investigate empirically to what extent
our model preserves the identifiability properties when in-
creasing the amount of noise in the prior annotations.

3.4 Inference

The joint model can be written as

p (Y,Θ) = p (Y,X,W,Λ,∆, τ,C,Ψ)

= p (Y | X,W,Ψ) p (Ψ)

× p (X) p (W | Λ,∆, τ,C)

× p (Λ) p (∆) p (τ) p (C) , (10)

where Θ = X,W,Λ,∆, τ,C,Ψ, and

Y=
{
y
(m)
i,j

}
,Ψ=

{
σ
(m)
j

}
,X={xi,k} ,W=

{
w

(m)
j,k

}
,

Λ=
{
λ
(m)
j,k

}
,∆=

{
δ
(m)
k

}
, τ=

{
τ (m)

}
,C=

{
c
(m)
j,k

}
.

Inference is performed by introducing a fully factor-
ized family of parameterized distributions qϕ (Θ) =∏

θ∈Θ qϕ (θ) to approximate the intractable posterior
p (Θ | Y). We maximize the evidence lower bound with
respect to the variational parameters ϕ, which, in return re-
duces the gap between the true and the approximate poste-
rior in terms of the KL divergence. The family of normal
distributions is a natural choice for approximating X and
W, whereas, for the rest of the parameters we assert the
log-Normal distribution to ensure positive samples (Ghosh
et al., 2018). The resulting optimization objective

L(ϕ) = Eqϕ [log p(Y,Θ)− log qϕ (Θ)] (11)

is amenable to automated stochastic variational infer-
ence (Ranganath et al., 2014; Hoffman et al., 2013),
which involves sampling from the variational distribution,
and taking unbiased but noisy Monte Carlo estimates of
the gradient ∇ϕL. In addition, the reparameterization
trick (Kingma and Welling, 2013) further stabilizes the op-
timization procedure, in which the random variables are ex-
pressed as a combination of deterministic variables and ex-
ternal random noise, thereby greatly reducing the variance
of the MC estimates. We provide an implementation of
MuVI using Pyro (Bingham et al., 2019) on GitHub1.

1https://github.com/MLO-lab/MuVI

4 EXPERIMENTS

We first evaluate different aspects of MuVI empirically on
a wide range of simulated settings. Ideally, the model per-
forms well in the following general tasks:

• Learning a meaningful latent representation with low
reconstruction loss - both in the presence and absence
of prior information.

• Utilizing prior information efficiently to recover cor-
rect signals from noisy feature sets, and being robust
against poorly specified or entirely incorrect priors.

• Promoting an implicit flow of the prior information
from the informed to the uninformed views via the
shared factors.

We compare our model against four baselines that ad-
mit observations across multiple views, and learn a
sparse representation of the common latent space: the
Bayesian group factor analysis with structured sparsity
(BASS) (Zhao et al., 2016), multi-omics factor analysis
(MOFA) (Argelaguet et al., 2018) and a multi-view autoen-
coder (AE), as a naive multi-view extension of the inter-
pretable autoencoder (Svensson et al., 2020). We also in-
clude the group factor analysis (GFA) (Klami et al., 2014)
for the synthetic evaluation, while keeping in mind that
GFA does not infer sparse solutions regarding the factor
loadings. Finally, we demonstrate the practical utility of
MuVI on a real-world dataset from The Cancer Genome
Atlas (TCGA) (Tomczak et al., 2015).

4.1 Synthetic Experiments

4.1.1 Data Generation

We adopt the data generation process from (Zhao et al.,
2016), and compile a synthetic dataset of N = 200 sam-
ples across four views, each comprising D1 = D2 = D3 =
D4 = 400 features. The latent space consists of K = 15
factors, that are linearly transformed by a set of sparse fac-
tor loadings. Each weight is sampled independently from
a standard normal distribution, where loadings with an ab-
solute value of less than 0.1 are set to zero, to emphasize
the gap between active and inactive signals. In addition, we
randomly set 85%-95% of the loadings to zero. The rela-
tionship between the data views is explained by the struc-
tured sparsity of the loadings. In particular, we generate all
possible combinations of four binary variables, resulting in
15 distinct relationship configurations for each factor as de-
picted in the top heatmap of Figure 2. A dark entry means
the factor does not contribute to the corresponding view,
and decouples it from the rest of the views. For instance,
the factor with index 0 is fully shared across all views,
whereas the factors 7, 11, 13 and 14 explain variability per-
taining to each view individually. The rest of the factors

https://github.com/MLO-lab/MuVI
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Figure 2: Depiction of cross-view relationships in the syn-
thetic data. True relationship (top) versus inferred relation-
ship based on the factor scales learned by MuVI (bottom).

exhibit a mixture of partially shared configurations. We
extract the true feature sets, indicating active and inactive
features for each latent dimension, and generate potentially
noisy feature sets which serve as prior information during
training. We perturb the feature sets by swapping a fraction
of the true positives with true negatives. The severity of
the noise translates to a poorly specified prior belief, where
100% noise means that the prior belief is entirely incorrect,
up to the number of the expected active features. Also, we
introduce additional false positive features for factors that
are completely inactive, as to further disguise any true un-
derlying relationship within and between views.

4.1.2 Evaluation

We evaluate all models on five randomly generated datasets
as described above, and report average metric scores across
all views. We assess the quality of the representation in
terms of the RMSE between the true observations and the
reconstructed views from the common latent space. We
quantify the concordance between the inferred factor load-
ings and the true underlying structure by reporting the pre-
cision, recall and the F1 score. As a prerequisite to calcu-
lating the binary scores we extract a binary representation
of active and inactive features based on a threshold. For
our model and MOFA, the threshold of 0.1 matches the true
cutoff between active and inactive signals when generating
the sparse loadings. For BASS and AE, the optimal thresh-
olds were 0.05 and 0.01, respectively. In addition, we show
the precision and recall curves summarizing results across
all possible thresholds in the Appendix A. Finally, we per-
form factor matching or label switching in a post hoc man-
ner, following (Zhao et al., 2016), where we reorder the
factors to match the true order for a direct comparison with
the ground truth.

Table 1: Performance comparison on the synthetic data.
Average metric scores across five independent runs ± stan-
dard deviation.

RMSE Precision Recall F1

GFA 0.324± 0.00 0.256± 0.05 0.916± 0.05 0.402± 0.06

BASS 0.543± 0.02 0.944± 0.05 0.899± 0.03 0.920± 0.04

MOFA 0.331± 0.00 0.541± 0.14 0.914± 0.02 0.672± 0.11

AE 0.325± 0.01 0.692± 0.06 0.964± 0.01 0.805± 0.04

MuVIU (uninformed) 0.323± 0.00 0.933± 0.05 0.995± 0.00 0.962± 0.03

MuVI0.5 (1 inf. view) 0.322± 0.00 0.966± 0.01 0.996± 0.00 0.981± 0.00

MuVI0.1 (1 inf. view) 0.322± 0.00 0.965± 0.01 0.997± 0.00 0.982± 0.00

MuVI0.1 (3 inf. views) 0.322± 0.00 0.974± 0.01 0.998± 0.00 0.986± 0.01

4.1.3 Training

The parameter and training settings for the baselines are
summarized in the Appendix A. We perform a simple
search on the single hyperparameter of MuVI, the auxil-
iary constant αj,k for the factor loadings that are not part
of the prior feature sets. Among {0.01, 0.03, 0.05, 0.1},
αj,k = 0.03 reliably performs the best. A complete sen-
sitivity analysis provided in the Appendix B shows that our
approach is robust against the choice of α. We train several
models with different noise configuration and prior infor-
mation availability. We start with an uninformed model
and iteratively increase the amount of the prior information
by informing a single view, two views and eventually three
views. An important consideration when injecting prior in-
formation for a subset of views is assuming that the features
of the rest of the views are not present in the prior feature
sets, and informing them accordingly. In other words, we
choose the same αj,k for all the factor loadings for the un-
informed views that we choose for the factor loadings of
the informed views that are absent in the prior feature sets.
The main rationale behind this decision is encouraging the
informed views to learn first, and gradually inform the rest
of the uninformed views implicitly via the structure of the
shared factors. Also, we observed empirically that the un-
informed views are unrestricted in terms of learning and
typically converge very early during training and are unable
to “unlearn” a suboptimal structure of the factor loadings.

4.1.4 Results

Overall performance against baselines We provide a
visual summary of the experiments in Figure 1, and a de-
tailed overview of the results in Table 1. In terms of
the quality of the latent representation, measured by the
RMSE, most models perform comparably well. It is worth
noting that the hybrid AE, combining a non-linear encoder
with a linear decoder, does not yield a better latent rep-
resentation. Recent theoretical work on posterior collapse
in linear VAEs (Lucas et al., 2019) investigates and proves
that there is no benefit in using a non-linear encoder when
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Figure 3: Performance across multiple prior noise configurations when informing only a single view (view 0). Informing a
factor in one view is sufficient to promote identifiability in uninformed views even for medium-to-high noise (left). Factor
matching is required only for noise levels greater than 70% (right). Each boxplot comprises five independent runs of the
same noise fraction.

the decoder is linear. On the other hand, BASS appears to
sacrifice reconstruction quality in favor of additional spar-
sity, which is supported by a high precision and relatively
lower recall. As expected, group factor analysis (GFA) is
unable to provide sparse solutions. Our modeling approach
strikes a better balance between learning a good latent rep-
resentation with low reconstruction error and pruning away
the majority of superfluous connections between the latent
factors and the observed features. In addition, the high re-
call indicates a better capability of MuVIU to retrieve vir-
tually all positive signals, which results in the highest F1

score, even in the absence of an informative prior. In ad-
dition to the uninformed version of our model (MuVIU ),
we report the results for the informed models. For the first
model (MuVI0.5), we simulate a realistic scenario where
the available information is very limited and noisy. Specif-
ically, we inform only the first view with highly perturbed
feature sets with a noise fraction of 50% (MuVI0.5). Com-
pared to the uninformed model, we notice an increase in
the precision, while the recall remains intact, thereby fur-
ther improving the F1 score. In the next two models, we
first reduce the amount of noise to 10% (MuVI0.1), then in-
crease the number of informed views from one to three. We
observe additional improvements in all three binary scores,
which further emphasizes the benefit of increasing the qual-
ity and the quantity of the prior information.

Learning from noisy priors Next, we assess the robust-
ness of MuVI against severe noise, and its capability of uti-
lizing and transferring useful prior information across all
views. Figure 3 depicts a comprehensive overview of the
results when informing only a single view, while increas-
ing the amount of prior noise. We first assess the extent to
which MuVI is able to infer identifiable factors for increas-
ing levels of noise. Fig. 3 (left) shows that up to a noise
fraction of around 70%, MuVI exhibits no difficulties in

learning a good representation, and identifies the true un-
derlying structure of the latent factors with a median F1

score of almost 1.0, not only for the informed view, but
also for the uninformed views. This indicates that MuVI is
able to promote identifiability across views. Recovering the
true structure of the latent factors first becomes challenging
when increasing the noise fraction beyond 80%, with a me-
dian F1 score of 0.62 for 80% noise. As expected, a severe
perturbation of at least 90% significantly reduces the abil-
ity of our model to find the proper ordering of the factors.
However, the plot on the right shows that the model merely
loses its ability to identify the correct order of the latent
dimensions, as the corrected permutation of the inferred
factors corresponds to the true structure across all factors
and data views. In the Appendix B we provide additional
results by considering the noise fraction as a proxy for the
number of pure variables available in the prior information.
Furthermore, the quality of the representation remains vir-
tually intact. For comparison, the mean RMSE for the
trained MuVI models with a noise fraction of 80% or less
is 0.322 for each noise level, and for a noise fraction of
90% and 100% we observe only a marginal increase of the
RMSE to 0.326 and 0.328, respectively (see Appendix B).
These results still outperform the baselines, and further
assert that any amount of prior information benefits our
model highly, while a (fully) incorrect prior information
does not harm its performance.

Learning cross-view relationships Finally, we look at
the ability of MuVI to communicate the underlying rela-
tionship between the views. The bottom heatmap in Fig-
ure 2 corresponds to the MAP estimates of the factor scales
δ
(m)
k learned during inference. The model successfully

learns to turn off irrelevant factors and highlights cross-
view relationships by assigning large positive values to ac-
tive and shared factors.
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4.2 The Cancer Genome Atlas (TCGA)

We investigate a large dataset of comprehensive multi-
omic profiling of over 11 thousand samples from 33 can-
cer types (Tomczak et al., 2015). Each sample comprises
sets of features of various sizes across four biologically dis-
tinct views: DNA methylation (6,000), mRNA expression
(6,000), microRNA expression (728) and reverse phase
protein array or RPPA (312). We include a preprocess-
ing step of centering the data and standardizing each view
globally due to the large differences in value ranges across
views. In addition, samples exhibit partial or complete
missingness in individual views, which we accommodate in
our probabilistic modeling approach. Prior to training, we
derive gene set annotations from curated public databases
such as MSigDB (Liberzon et al., 2015), Reactome (Fabre-
gat et al., 2018) and KEGG (Kanehisa and Goto, 2000). A
gene set consists of a group of genes that are biologically
meaningful when co-expressed under certain conditions, or
describe functionally distinct pathways in biological sys-
tems. Since the observed features are genes, each gene set
acts as a prior feature set for the factor loadings, thereby
encoding a well-defined biological pathway into the corre-
sponding latent factor. As informative prior we consider
gene set annotations where at least 15 genes were present
in the data, resulting in 360 annotations with a median size
of 30. Since gene sets encompass only genomic and tran-
scriptomic features, we are limited to informing only the
first two views, namely the DNA and the mRNA. We take
advantage of the stochastic variational inference algorithm
and propagate batches of 1,000 samples during training.
The algorithm terminates when the optimization objective
no longer improves significantly in consecutive iterations,
after a certain number of patience steps. The training con-
verges in less than 12 minutes on a single NVIDIA Quadro
RTX 5000 GPU with 16 GB memory.

Global structure First, we assess the quality of the la-
tent space inferred by our model. We systematically eval-
uate and compare the performance of MuVI and the other
baselines in terms of explaining the underlying structure
of the data introduced by the different cancer types. For
each model, we first infer and extract the latent represen-
tation of each observation. Next, we apply a t-distributed
stochastic neighbor embedding (t-SNE) approach to further
compress the latent space into two dimensions for better vi-
sualization (Van der Maaten and Hinton, 2008). In the left-
most plot of Figure 4 we display the new embeddings. Our
model is able to learn a meaningful structure by grouping
samples of a similar type closer together. Subsequently, we
apply a K-Means algorithm by fixing the number of clus-
ters to the number of known cancer types (33). Finally,
we compare the learned clusters by the K-Means with the
true underlying cancer types and compute the cluster purity
and the adjusted Rand index (ARI) to measure the similar-
ity between both clusterings. We perform the same proce-

dure several times and report the average scores in the first
two columns of Table 2. The scores reiterate the results
obtained in the synthetic evaluation. Overall, MOFA, AE
and MuVI perform comparably well by capturing known
cancer types. On the other hand, BASS infers a less in-
formative latent space as indicated by the multiple cluster
overlaps (see Appendix C), and the lower clustering scores.
Importantly, MuVI is inherently interpretable with each
learned factor being directly labeled by a biological path-
way: our model intrinsically accommodates prior informa-
tion in terms of feature sets, thereby guiding the inference
of pre-tagged axes of variation from domain expertise. In
contrast, rendering the baseline methods interpretable re-
quires a cumbersome manual inspection of the loadings of
each factor, with subsequent enrichment analysis searching
for pathways in which large loadings are over-represented.

Relevant factors Next, we apply a one-vs-rest Wilcoxon
rank test to identify the main pathways that drive the het-
erogeneity of patients with respect to their cancer types.
A complete overview of the test results is provided in the
Appendix C. In particular, the results hint at melanogene-
sis (KEGG) and the androgen response (Hallmark) as rel-
evant pathways for melanoma patients and prostate ade-
nocarcinoma patients, respectively. Melanogenesis and
the androgen response describe general biological pro-
cesses. Melanogenesis describes the process of producing
the melanin pigments from melanocytes, commonly found
in the epidermis and hair follicles. Androgen response or-
chestrates the activation of male hormone receptors, and
plays an important role in the development and progres-
sion of prostate cancer (Fujita and Nonomura, 2019). In the
middle of Figure 4 we illustrate a scatter plot by mapping
our samples onto the latent space spanned by the two axes
informed and described by androgen response and melano-
genesis. We highlight three cancer types with the same
coloring as the previous t-SNE plot, while fading the re-
maining 30 cancer types to gray. As anticipated, melano-
genesis helps identify the only two groups of samples from
tissues with skin cutaneous melanoma (SKCM) and uveal
melanoma (UVM). Likewise, androgen response assigns
significantly higher scores to patients with prostate adeno-
carcinoma (PRAD). We assess how predictive each latent
factor is to its corresponding cancer type by reporting the
average area under the ROC curve (AUC) computed for the
latent factors assigned to each cancer type in a one-vs-rest
fashion. We compare the obtained results with the base-
lines, by performing a gene set enrichment analysis (Sub-
ramanian et al., 2005) on the factor loadings inferred by
BASS, MOFA and AE, and match each latent factor to a
gene set. Then, we focus on the latent factors that model
androgen response and melanogenesis, and measure the
one-vs-rest AUC of the factor scores for PRAD and SKCM
+ UVM, respectively. Since the same pathway can be as-
signed to multiple latent factors for MOFA and AE, we se-
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Figure 4: Results of the TCGA dataset. A t-SNE embedding space learned from the latent representation of MuVI (left).
Inferred latent factors that are informed by androgen response and melanogenesis a priori (center). Top 15 features based
on the absolute value of their corresponding factor loadings for the shared androgen response factor among mRNA and
RPPA (right).

Table 2: Performance comparison on the TCGA dataset.
Summary of the cluster purity and the adjusted Rand in-
dex (ARI) for measuring the similarity between the known
cancer subtypes and the learned clusters by the K-Means
algorithm (first two columns). In addition, we report the
average AUC scores of individual factors modeling andro-
gen response and melanogenesis (last two columns). For
the baselines it is necessary to perform an additional gene
set enrichment analysis (GSEA) to label each factor.

ARI Purity
Androgen

Resp. (AUC)
Melanogenesis

(AUC)

BASS 0.609± 0.01 0.763± 0.01 0.553± 0.04 0.531± 0.01

MOFA 0.658± 0.01 0.822± 0.01 0.569± 0.04 0.528± 0.01

AE 0.662± 0.01 0.828± 0.01 0.821± 0.05 0.724± 0.02

MuVI 0.660± 0.01 0.825± 0.01 0.910± 0.03 0.872± 0.02

lect the best performing factor and report the AUC scores in
the last two columns of Table 2. MuVI achieves the high-
est AUC, while rendering each latent factor directly inter-
pretable due to the encoded pathway knowledge a priori.

Factor inspection Finally, we focus on the composition
of the inferred latent factors. In the rightmost plots, we
inspect the top 15 features of the androgen response fac-
tor, which is active and shared among the mRNA and the
RPPA view. We decide whether a factor is active in view
m if its corresponding factor scale is not virtually zero,
i.e. δ(m)

k > 0.01, as well as if the variance explained by
the factor exceeds a threshold of R2 > 0.5%. We reiter-
ate that we informed only mRNA among the two views.
Hence, we expect to see annotated genes weighted highly
based on the absolute value of their corresponding fac-

tor loadings. A powerful feature of MuVI is the refine-
ment of provided feature sets by adding or removing fea-
tures in a data-driven manner. Investigating inferred genes
for the androgen response factor, we discover several pre-
viously known biomarkers of clinical relevance such as
STEAP1 (Khanna et al., 2021), SLC45A3 (Perner et al.,
2013) and ACPP (Kong and Byun, 2013), which are over-
expressed in patients with prostate cancer. We now move
to the uninformed view, where we expect the androgen re-
sponse factor of mRNA to influence the structure of the
factor loadings in the RPPA, such that the inferred factor
reveals protein markers linked to prostate cancer. Indeed,
the inferred BCL2 is an oncoprotein that inhibits the pro-
cess of apoptosis (Lin et al., 2007), whereas targeting the
checkpoint kinase 1 (CHEK1) leads to favorable clinical
outcomes for prostate cancer patients (Drápela et al., 2020).

5 CONCLUSION

In this contribution, we have addressed the task of model-
ing multi-view data with interpretable latent variable mod-
els. We use a Bayesian approach with structured sparsity to
encode domain knowledge in the priors of a factor analysis
model. Our model is able to integrate noisy domain exper-
tise and results in factors that are inherently interpretable
via their pre-defined feature sets. In contrast to other sparse
multi-view models, our approach is able to recover correct
signals from noisy feature sets, while maintaining a low re-
construction error. We demonstrate in a real-world applica-
tion that our model is able to infer biologically meaningful
and clinically relevant subpopulations of cancer patients.
Moreover, the ability of MuVI to transfer prior knowledge
from informed to uninformed views via the shared factors
shows the potential of discovering novel feature sets in re-
lated domains.
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A APPENDIX A

Here, we provide additional details regarding the synthetic
experiments. In particular, we extend the description of the
baselines and their respective training settings. We then
specify the evaluation metrics such as the RMSE for mea-
suring the quality of the reconstruction, and additional bi-
nary metrics such as precision, recall and the F1 score for
assessing how well each model recovers the true underly-
ing structure of the latent factors. We briefly describe the
process of factor matching applied to all models in a post-
processing step. Finally, we report additional results such
as the precision and recall curves for the benchmark across
all possible thresholds, and the performance of MuVI when
dealing with significantly higher dimensional data.

A.1 Baselines

The parameter and training settings for the baselines are
provided here. We train MOFA combining the ARD and
the spike-and-slab prior on the weights for column-wise
and element-wise sparsity. We apply BASS with default
parameters and 20 parameter-expanded expectation maxi-
mization (PX-EM) iterations. The autoencoder consists of
an encoder-decoder pair for each observed view, connected
via a common latent space governed by a product of ex-
perts (PoE) approach (Lee and van der Schaar, 2021; Cao
and Fleet, 2014). Each encoder comprises two hidden lay-
ers of size 64 and 32, followed by a ReLU activation. Each
decoder then performs a linear mapping of the latent code
to the observed features of each view. To achieve sparsity in
the factor-to-feature mapping, we introduce an L1 penalty
term with λ = 0.01 in the respective decoder weights. All
models were trained until an early stopping condition was
met, that is, until the optimization objective no longer im-
proved in consecutive iterations, and after a certain number
of patience steps.

A.2 Evaluation

To simplify notation, we omit the view index m and rewrite
the collection of observations as a single matrix Y ∈
RN×D comprising N samples across M coupled views[
Y(1),Y(2), . . . ,Y(M)

]
, where Y(m) ∈ RN×Dm . Sim-

ilarly, we represent the collection of the factor loadings
W ∈ RD×K as

[
W(1),W(2), . . . ,W(M)

]
.

We assess the quality of each model by computing the re-
construction error measured by the RMSE,

RMSE(Y, Ŷ) =

√∑N
i=1 ∥yi − ŷi∥2

N
,

where ŷi ∈ RD denotes the reconstructed sample yi.
Next, we quantify the ability of each model to recover the
true underlying structure of the factor loadings by comput-
ing the precision, recall and the F1 score between the in-

Table 3: A confusion matrix between the inferred feature
sets and the true feature sets.

actual active
|wj,k| > t

actual inactive
|wj,k| ≤ t

predicted active
|ŵj,k| > t

TP FP

predicted inactive
|ŵj,k| ≤ t

FN TN

ferred feature sets and the true feature sets. Here, the in-
ferred feature sets refer to the binarized representation of
the factor loadings Ŵ in terms of active and inactive fea-
tures based on a threshold, where factor loadings with an
absolute value larger than the threshold are considered ac-
tive, and, otherwise inactive. With a slight abuse in nota-
tion, let Ik be the true feature set, and Îk the inferred feature
set for factor k, where Îj,k = 1 if |ŵj,k| > t, and Îj,k = 0
otherwise, for a given threshold t. Then, we may generate
the confusion matrix in Table 3 to compute the precision,
recall and the F1 score.

Pr =
TP

TP + FP
,Rc =

TP

TP + FN
,F1 =

2 · Pr ·Rc

Pr +Rc
.

Finally, we describe the process of factor matching to
overcome the issue of non-identifiability that is generally
present in factor analysis. We rely on the cosine simi-
larities between the inferred feature sets and the true fea-
ture sets to match the latent dimensions. Specifically, we
compute a cosine similarity matrix C ∈ RK×K , where
ck,l = cos(Îk, Il), for k, l ∈ {1, . . . ,K}, and compute
an optimal permutation matrix P ∈ RK×K , such that the
transformation CP has the largest values in the diagonal,
i.e. maximizes the trace Tr(CP). We then inspect the per-
mutation matrix P to match the factor dimensions between
the inferred and the actual latent space.

A.3 Precision and Recall Curves

In addition to the threshold-based F1 scores provided
in 4.1.2, we show the precision and recall curves across all
possible thresholds in Figure 5 for MuVI and the baseline
models: BASS, MOFA and AE.
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Figure 5: Threshold-agnostic precision and recall curves for MuVI0.5 and the baseline models: BASS, MOFA, AE.

Table 4: Performance evaluation when increasing the num-
ber of features Dm for each of the four views m, while
keeping the number of samples low, N = 200. Average
scores across five independent runs ± standard deviation.

RMSE Precision Recall F1

Dm = 1K 0.322± 0.00 0.937± 0.03 0.995± 0.00 0.965± 0.02

Dm = 5K 0.323± 0.00 0.943± 0.02 0.995± 0.00 0.968± 0.01

Dm = 10K 0.323± 0.00 0.948± 0.02 0.996± 0.00 0.971± 0.00

A.4 Performance in Higher Dimensions

We repeat the synthetic experiments by exacerbating the
gap between the number of samples and the number of fea-
tures (N ≪ D). For each of the four views m, we increase
the corresponding number of features Dm to one, five and
ten thousand features, while keeping the number of sam-
ples low, N = 200. The results reported in Table 4 for the
uninformed version of our model (MuVIU ) are consistent
with the results shown in 4.1.2.

B APPENDIX B

Here, we further investigate the interplay between the qual-
ity of the prior information, and the degree of the prior be-
lief encoded by the single hyperparameter α.

B.1 Sensitivity to the Prior Penalty

Figure 8 summarizes the ablation study for the choice of
α across different noise levels, in terms of the recall (left)
and precision (right) between the inferred and the true fea-
ture sets, when informing only a single view (view 0). A
larger α (top) translates to a weaker penalty to the features
not present in the (noisy) feature set, whereas a smaller
alpha (bottom) encodes a stronger prior belief, and there-
fore a larger penalty. As the prior belief increases, i.e. α

Table 5: Performance comparison across all noise levels
and penalties in the ablation study. Average RMSE across
five independent runs ± standard deviation.

α = 0.1 α = 0.05 α = 0.03 α = 0.01

MuVI0.0 0.321± 0.00 0.321± 0.00 0.322± 0.00 0.328± 0.02

MuVI0.1 0.321± 0.00 0.321± 0.00 0.322± 0.00 0.331± 0.03

MuVI0.2 0.321± 0.00 0.321± 0.00 0.322± 0.00 0.335± 0.02

MuVI0.5 0.321± 0.00 0.321± 0.00 0.322± 0.00 0.339± 0.03

MuVI0.9 0.321± 0.00 0.322± 0.00 0.326± 0.01 0.367± 0.03

MuVI1.0 0.321± 0.00 0.322± 0.00 0.328± 0.01 0.393± 0.03

decreases, we observe an increase in the amount of false
negatives as the noise level increases. This behavior is to
be expected, since the noisy prior incorrectly penalizes the
majority of the true signals. In the bottom row, in particu-
lar, the high penalty induced for the uninformed views, i.e.
view 1, 2 and 3, reduces their learning capacity relative to
the informed view, which exhibits no difficulties in infer-
ring the true signals. At the same time, the amount of false
positives decreases, resulting in a higher precision score
when having a higher degree of belief in the prior informa-
tion. In other words, a weaker belief may lead to additional
and redundant signals escaping the regularized horseshoe
penalty, and a stronger belief may restrict some of the true
signals, depending on the amount of noise in the prior infor-
mation. The ablation study indicates an α ≈ 0.03 performs
the best in terms of both precision and recall, and strikes a
better balance between recovering the true positive signals
while restricting the true negative signals. Nevertheless,
the quality of the latent representation is preserved across
all noise levels and penalties. In Table 5 we report the re-
construction error for all training configurations involved in
the ablation study. The RMSE obtained for the majority of
the models still outperforms the baselines, and only drops
slightly when combining highly perturbed prior feature sets
with a high penalty.
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B.2 Learning Identifiable Factors from Pure
Variables

In Section 4.1.4, in Figure 3 we assess to what extent our
model preserves the identifiability properties when increas-
ing the amount of noise in the prior annotations. The noise
level serves as a proxy for the number of pure variables in
the prior information, that is, a higher noise level results
in fewer pure variables a priori. A noise fraction of 100%,
for instance, results in zero pure variables, and therefore
makes the model unidentifiable. In Figure 6 we quantify
the number of known pure variables corresponding to each
noise fraction. The results are aggregated across all feature
sets generated for the synthetic datasets (see 4).
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Figure 6: Noise fraction as a proxy for the number of pure
variables. Each boxplot summarizes the distribution of the
pure variables across all factors for the feature sets gener-
ated in the synthetic experiments, for different noise levels.

Next, we investigate the minimal number of pure variables
required in a feature set to render the corresponding latent
factor identifiable. In Figure 7 we count the number of the
pure variables and compute the F1 score for each factor in-
dividually, without performing factor matching. In other
words, we compare the inferred feature set Îk with the true
feature set Ik for the same latent dimension k. Since sev-
eral factors may have the same number of pure variables,
we report the median scores and a 95% confidence inter-
val. The results strongly suggest that as few as two pure
variables are sufficient to guarantee identifiable factors, in
accordance with the theory on the identifiability of factor
analysis (Anderson and Rubin, 1956).

Figure 7: Inferring identifiable factors from pure variables.
The median F1 score when increasing the number of pure
variables available in the prior feature set, shaded by the
95% confidence interval. The inferred and true factors are
compared along the same dimension, without performing
factor matching.
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Figure 8: Sensitivity analysis for the choice of α across different noise levels, in terms of the recall (left) and precision
(right) between the inferred and the true feature sets. A larger α (top) translates to a weaker penalty to the features not
present in the (noisy) feature set, whereas a smaller alpha (bottom) encodes a stronger prior belief, and therefore a larger
penalty. Results when informing only the first view.
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C APPENDIX C

We complement the analysis on the real TCGA dataset
from Section 4.2 with additional results.

C.1 Availability of Pure Variables in the Gene Sets

In Figure 9, we provide a summary of the number of pure
variables available in each feature set (gene set) collection.
Due to being more specialized, Hallmark and KEGG in-
clude more pure variables than the more general collection
of Reactome. However, we may only pinpoint the pure
variables according to the definition of the gene sets. In
practice, we make no assumptions about the gene sets or
the number of pure variables available in each gene set, and
treat them as partially correct prior information, thereby al-
lowing the model to refine each pathway based on the train-
ing data.
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Figure 9: Number of pure variables in each gene set (fea-
ture set) collection integrated in the TCGA analysis.

In order to determine whether the inferred factor loadings
differ significantly from the features present in the prior
gene set annotation, we perform an adjusted parametric t-
test (Frost et al., 2015) based on the correlation between the
features that are present in the prior annotation.

C.2 Latent Space Inferred by the Baselines

For a visual comparison, we apply a t-SNE approach to
the latent representations inferred by each baseline model
and map the data onto the two dimensional embeddings as
shown in Figure 10.

C.3 Matching Relevant Factors to Cancer Types

Finally, we provide a summary of the relevant pathways for
each cancer subtype. We perform a one-vs-rest Wilcoxon
rank test to identify the main pathways that capture the dif-
ferences among patients of different cancer types. In Fig-
ure 11, we report the top 3 pathways corresponding to each
cancer subtype. The test results indicate that both the an-
drogen response and the melanogenesis pathway are highly
relevant for prostate cancer (PRAD) and melanoma related
cancer subtypes (SKCM and UVM). In addition, we apply
a standard hierarchical clustering on the factor scores to
group similar cluster subtypes together. Among others, we
observe biologically meaningful structures such as identi-
fying similarities across the only two groups of melanoma
samples such as the skin cutaneous melanoma (SKCM) and
uveal melanoma (UVM).
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Figure 10: Embedding space learned by the baselines: BASS, MOFA and the hybrid autoencoder (AE).
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Figure 11: Relevant pathways for each cancer subtype. A one-vs-rest Wilcoxon rank test identifies the main pathways
that drive the heterogeneity of patients with respect to their cancer types. Each group of the top 3 pathways corresponds
to a single cancer subtype on the right. The color intensity for each cell depicts the average factor score in each patient
subpopulation. Cluster subtypes ordered via a standard hierarchical clustering on their factor scores.
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