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Abstract

While generation of synthetic data under differ-
ential privacy (DP) has received a lot of attention
in the data privacy community, analysis of syn-
thetic data has received much less. Existing work
has shown that simply analysing DP synthetic
data as if it were real does not produce valid in-
ferences of population-level quantities. For ex-
ample, confidence intervals become too narrow,
which we demonstrate with a simple experiment.
We tackle this problem by combining synthetic
data analysis techniques from the field of multi-
ple imputation (MI), and synthetic data genera-
tion using noise-aware (NA) Bayesian modeling
into a pipeline NA+MI that allows computing ac-
curate uncertainty estimates for population-level
quantities from DP synthetic data. To imple-
ment NA+MI for discrete data generation us-
ing the values of marginal queries, we develop
a novel noise-aware synthetic data generation al-
gorithm NAPSU-MQ using the principle of max-
imum entropy. Our experiments demonstrate that
the pipeline is able to produce accurate confi-
dence intervals from DP synthetic data. The in-
tervals become wider with tighter privacy to ac-
curately capture the additional uncertainty stem-
ming from DP noise.

1 INTRODUCTION

Availability of data for research is constrained by the
dilemma between privacy preservation and potential gains
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obtained from sharing. As a result, many datasets are kept
confidential to mitigate the possibility of privacy violations,
with access only granted to researchers after a lengthy ap-
proval process, if at all, slowing down research.

One approach to solving the dilemma between free access
and confidentiality is releasing synthetic data, as proposed
by Rubin (1993). The idea is that the data holder releases
a synthetic dataset that is based on a real dataset. Data
analysts can use the synthetic dataset instead of the real
one for their downstream analysis.

The synthetic dataset should maintain population-level sta-
tistical properties of the original, which are of interest to
the analysts. Privacy-protection of the synthetic data can be
guaranteed by employing differential privacy (DP) (Dwork,
McSherry, et al. 2006), which offers provable protection,
unlike non-DP synthetic data generation methods.

The analysts of synthetic data should be able to draw valid
conclusions on the data generating process (DGP) of the
real data using the synthetic data. An important component
of the conclusion in any scientific research is estimation
of uncertainty, usually in the form of a confidence inter-
val or p-value. However, as Wilde et al. (2021) point out,
simply using synthetic data as if it were real data only al-
lows drawing conclusions about the synthetic data generat-
ing process, not the real DGP.

The issues of using synthetic data in place of real data
are especially apparent with DP, as DP requires adding
noise to the synthetic data generation process. We illus-
trate this with a simple toy data experiment. We gener-
ate 3-dimensional binary data, where one variable is gen-
erated from logistic regression on the other two, serving
as the original dataset. Then, we generate synthetic data
from the original data and compute confidence intervals
for the coefficients of the logistic regression from the syn-
thetic data. A more detailed description of the setup is

∗Work done while at Aalto University.
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Figure 1: Toy data experiment results of logistic regression on 3 binary variables, showing that PGM, PEP, RAP and
PrivBayes are overconfident, even with almost no privacy (ε = 100), PrivLCM is underconfident, while our algorithm is
well-calibrated. The first two panels from the left show the fraction of the 95% confidence intervals that contain the true
parameter value in 100 repeats, with the target confidence level of 95% highlighted by a black line. ε quantifies the strength
of the privacy guarantee, ranging from strong (ε = 0.1) to meaningless (ε = 100). The other privacy parameter is fixed at
δ = 2.5·10−7. The third panel shows the confidence intervals from synthetic data generated by our mechanism for ε = 0.5,
and the fourth panel shows the confidence intervals from PGM. The third and fourth panels show that the overconfidence
stems from intervals that are too narrow, a result of failing to account for all uncertainty.

given in Section 5.1. As shown by Figure 1, the existing
algorithms PGM (McKenna et al. 2019), PEP (T. Liu et
al. 2021), RAP (Aydore et al. 2021) and PrivBayes (Zhang
et al. 2017) do not provide valid confidence intervals, as
they treat the synthetic data as real data. Only our method
NA+MI and PrivLCM (Nixon et al. 2022) produce valid
confidence intervals. However, PrivLCM is too conser-
vative, producing much wider intervals, as shown by Fig-
ure 3a, and does not scale to complex datasets.

Our solution to overconfident uncertainty estimates builds
on Rubin’s original work on synthetic data generation (Ru-
bin 1993). He proposed generating multiple synthetic
datasets, running the analysis task on each of them, and
combining the results with simple combining rules called
Rubin’s rules (Raghunathan et al. 2003; Reiter 2002).
This workflow is modeled after multiple imputation (Rubin
1987), where it is used to deal with missing data. Generat-
ing multiple synthetic datasets allows the combining rules
to account for the additional uncertainty that comes from
the synthetic data generation process, which includes DP
noise when the synthetic data is generated using a Bayesian
model that accounts for the DP noise. We call the combined
pipeline of noise-aware (NA) private synthetic data genera-
tion and analysis with multiple imputation (MI) the NA+MI
pipeline. We give a more detailed description in Section 2.

To implement the NA step, we develop an algorithm
called Noise-Aware Private Synthetic data Using Marginal
Queries (NAPSU-MQ), that generates synthetic data from
discrete tabular datasets using the noisy values of prese-
lected marginal queries. We describe NAPSU-MQ in Sec-
tion 4. In Section 5 and Supplemental Section G, we eval-
uate NAPSU-MQ on the UCI Adult and UCI US Census
(1990) datasets, showing that it can produce accurate con-
fidence intervals.

1.1 Related Work

There is a sizable literature on DP synthetic data genera-
tion. Most recent work in the area either releases the val-
ues of a set of simple queries, such as counting queries,
under DP and uses them as the basis of synthetic data (Ay-
dore et al. 2021; Bernstein et al. 2017; Cai et al. 2021; R.
Chen et al. 2015; Hardt et al. 2012; T. Liu et al. 2021;
McKenna et al. 2018; McKenna et al. 2021; McKenna et
al. 2022; McKenna et al. 2019; Nixon et al. 2022; Vietri
et al. 2020; Zhang et al. 2017), or trains some kind of gen-
erative model, often a GAN, using the whole real dataset
under DP (D. Chen et al. 2020; Jälkö et al. 2021; Long et
al. 2021; Xie et al. 2018; Yoon et al. 2019). There are also
hybrid approaches that use sophisticated queries that can
capture all features of the dataset, and train a generative
model using those (Harder et al. 2021; Liew et al. 2022).
Of the existing DP synthetic data generation algorithms,
NAPSU-MQ is closest to the PGM algorithm (McKenna
et al. 2019), which does maximum likelihood estimation
with the same data model as NAPSU-MQ instead of noise-
aware Bayesian inference. We describe this connection in
more detail in Supplemental Section D.

Rubin’s rules were originally developed for analyses on
missing data, as part of an approach called multiple im-
putation (Rubin 1987), which was later applied to generate
and analyse synthetic data (Rubin 1993) without DP. The
variant of Rubin’s rules that we use, and describe in Supple-
mental Section B, was developed specifically for synthetic
data generation (Raghunathan et al. 2003; Reiter 2002).
Raab et al. (2018) have developed simpler alternatives to
Rubin’s rules under more restrictive assumptions, but these
assumptions rule out DP data synthesisers.

Rubin’s rules have not been widely used with DP synthetic
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data generation, and we are only aware of four existing
works studying the combination. Charest (2010) studied
Rubin’s rules with a very simple early synthetic data gen-
eration algorithm, and concluded that Rubin’s rules are not
appropriate for that algorithm. Zheng (2015) found that
some simple one-dimensional methods developed by the
multiple imputation community are in fact DP, but not with
practically useful privacy bounds. Nixon et al. (2022) pro-
pose using Rubin’s rules with the noise-aware synthetic
data generation algorithm PrivLCM, but they only consider
computing confidence intervals of query values on the real
dataset, not confidence intervals of population parameters
of arbitrary downstream analyses. F. Liu (2022) proposes
generating multiple synthetic datasets like we do, but their
pipeline requires splitting the privacy budget between each
synthetic dataset, severely limiting the number of datasets
that can be generated with acceptable utility, and their con-
vergence theory assumes weak privacy1.

Noise-aware uncertainty estimates have been developed for
specific DP analyses. Examples include frequentist linear
regression (Evans and King 2022) and general recipes for
DP analyses without synthetic data (Covington et al. 2021;
Ferrando et al. 2022). Bayesian examples include posterior
inference for simple exponential family models (Bernstein
and Sheldon 2018), linear regression (Bernstein and Shel-
don 2019), generalised linear models (Kulkarni et al. 2021),
and approximate Bayesian computation (Gong 2022). The
AIM algorithm for synthetic data generation (McKenna et
al. 2022) provides valid confidence intervals on the query
values of the real dataset, while NAPSU-MQ and the other
methods mentioned provide confidence intervals on popu-
lation values.

Several works study techniques for mitigating the effect of
DP noise. Wilde et al. (2021) point out the importance of
noise-aware synthetic data analysis with DP and use pub-
licly available data to augment the analysis and correct for
the DP noise in Bayesian inference. Other examples in-
clude bias reduction (Ghalebikesabi et al. 2021) and aver-
aging GANs (Neunhoeffer et al. 2021).

While some of the existing works address uncertainty es-
timates for specific analyses of synthetic data under DP,
there is no existing method for proper uncertainty estima-
tion for general downstream analyses of population-level
quantities. We fill this gap with the NA+MI pipeline, which
we implement for discrete tabular data with NAPSU-MQ.

2 THE NA+MI PIPELINE

The early work on synthetic data generation with multiple
imputation showed that computing accurate uncertainty es-
timates with synthetic data requires accounting for the ad-
ditional uncertainty that comes from generating the syn-

1The theory applies asymptotically when ε → ∞.

thetic data (Raghunathan et al. 2003; Rubin 1993). Ru-
bin (1993) proposed generating multiple synthetic datasets
XSyn
i from the posterior predictive distribution p(X∗|X),

where X∗ is a prediction of a future dataset, and X is the
observed real dataset. The downstream analysis is run on
eachXSyn

i as ifXSyn
i were the real dataset, and the results

are combined using specialised combining rules (Raghu-
nathan et al. 2003).

The generation of multiple datasets from p(X∗|X) is
necessary to give the combining rules a way to esti-
mate the variance of the synthetic data generation pro-
cess, which would not be possible if only a single dataset
was generated. For a parametric model, p(X∗|X) =∫

Θ
p(X∗|θ)p(θ|X)dθ, where θ ∈ Θ is the parameter,

p(X∗|θ) is the likelihood, and p(θ|X) is the posterior of
the parameter. XSyn

i is then generated in two steps: first
θi ∼ p(θ|X) is sampled, then XSyn

i ∼ p(X∗|θi).

The combining rules require including the posterior dis-
tribution p(θ|X) (Raghunathan et al. 2003) for sampling
XSyn
i , so a non-Bayesian model that samples XSyn

i ∼
p(X∗|θ̂) for some point-estimate θ̂ is not suitable for syn-
thetic data generation with Rubin’s rules.

Requiring the synthetic data generation to be DP com-
plicates the picture, as only a noisy observation s̃ of X
can be made, which means that we must use p(θ|s̃) in-
stead of p(θ|X). We call inference algorithms for p(θ|s̃)
that account for the noise added for DP noise-aware. The
combination of noise-aware inference and multiple impu-
tation is the NA+MI pipeline, which we summarise in Fig-
ure 2. First, the data holder runs inference on a noise-aware
Bayesian model using the private data, which we call the
NA step. Different implementations of the NA step may
set different requirements on the form of X , the type of DP
noise, and may provide different privacy guarantees.

After the inference, the data holder generates multiple syn-
thetic datasets. The data holder can also release the poste-
rior distribution in addition to the synthetic datasets, so that
the analyst can also generate synthetic datasets if needed.
Due to the post-processing immunity of DP (Theorem 3.7),
releasing multiple synthetic datasets, or the posterior distri-
bution, does not compromise privacy.

For each synthetic dataset, the analyst runs their anal-
ysis, and combines the results using multiple imputa-
tion (Raghunathan et al. 2003; Reiter 2002; Reiter 2005).
We call this the MI step. For frequentist downstream anal-
yses, we use Rubin’s rules, which require that each anal-
ysis produces a point estimate qi, and a variance estimate
vi for the point estimate. The point estimates q1, . . . , qm
and the variance estimates v1, . . . , vm are fed to Rubin’s
rules (Raghunathan et al. 2003), which give a t-distribution
for the estimated quantity that the analyst can use to com-
pute confidence intervals or hypothesis tests. We describe
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Figure 2: NA+MI pipeline for noise-aware DP synthetic data generation and statistical inference. The nodes shaded in
blue are computed by the data holder, and the nodes shaded in orange are computed by the data analyst. All nodes except
Data (with red border) can be released to the public. The synthetic datasets can be generated by either party because the
Generator is also released by the data holder.

Rubin’s rules in more detail in Supplemental Section B.

3 BACKGROUND FOR NAPSU-MQ

In this section we describe the datasets and queries
NAPSU-MQ uses, and briefly describe key concepts from
differential privacy, which we will use in Section 4.

Data and Marginal Queries NAPSU-MQ uses tabular
datasets of d discrete variables, where the domains of the
variables, and the number datapoints n are known. We de-
note the set of possible datapoints by X , and the set of pos-
sible datasets by Xn. For a set of variables I and x ∈ X ,
x(I) denotes the selection of the variables in I from x.

Definition 3.1. A marginal query of variables I and value
v is a function a : X → {0, 1} that takes a datapoint x as
input and returns 1 if x(I) = v and 0 otherwise. For a
dataset X ∈ Xn, we define a(X) =

∑n
i=1 a(xi), where xi

is the i:th datapoint in X .

When I has k variables, a is called a k-way marginal query.

When evaluating multiple marginal queries a1, . . . , anq ,
we concatenate their values to a vector-valued function
a : X → {0, 1}nq . We call the concatenation of marginal
queries for all possible values of variables I the full set of
marginals on I 2.

As a concrete example, take the 3-dimensional binary data
used in Figure 1. A single 2-way marginal query could, for
example, look at the first two variables of a datapoint, and
check that both are 0. The full set of marginal queries on
the first two variables checks which of the 4 possible val-
ues the first two variables of a datapoint have, and returns
a 4-component vector with a single 1 and 3 zeros, indicat-
ing the answer. As input to NAPSU-MQ, we could use the
concatenation of the 3 full sets of marginal queries for each

2 Some existing works (McKenna et al. 2019) use the term
marginal query for the full set of marginal queries. We chose this
terminology because we deal with individual marginal queries in
Supplemental Section C.

pair of variables3. Including these kinds of marginals with
more than one variable allows NAPSU-MQ to take the de-
pendencies between variables into account.

Differential Privacy Differential privacy (DP) (Dwork,
Kenthapadi, et al. 2006; Dwork, McSherry, et al. 2006) is a
definition aiming to quantify the privacy loss resulting from
releasing the results of some algorithm. DP algorithms are
also called mechanisms.

Definition 3.2. A mechanismM is (ε, δ)-differentially pri-
vate if for all neighbouring datasets X,X ′ and all measur-
able output sets S

P (M(X) ∈ S) ≤ eεP (M(X ′) ∈ S) + δ. (1)

The neighbourhood relation in the definition is domain spe-
cific. We use the substitute neighbourhood relation for tab-
ular datasets, where datasets are neighbouring if they differ
in at most one datapoint.

Together, ε and δ bound the tradeoff between false positive
and false negative rates for any hypothesis test (Kairouz
et al. 2015). Their choice is a matter of policy (Dwork
2008). δ ≈ 1

n permits mechanisms that clearly violate pri-
vacy (Dwork and Roth 2014), so one should choose δ � 1

n .

The mechanism we use to release marginal query values
under DP is the Gaussian mechanism (Balle and Wang
2018; Dwork, Kenthapadi, et al. 2006).

Definition 3.3. The Gaussian mechanism with noise vari-
ance σ2

DP adds Gaussian noise to the value of a func-
tion f : Xn → Rk for input data X: M(X) = f(X) +
N (0, σ2

DP I).

The privacy bounds of the Gaussian mechanism depend on
the sensitivity of the function f , which is an upper bound
on the change in the value of f for neighbouring datasets.
Larger sensitivities require a larger noise variance.

3 Our experiments for the toy dataset use the full set of 3-way
marginals that includes all 3 variables.
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Definition 3.4. TheL2-sensitivity of a function f is ∆2f =
supX∼X′ ||f(X)− f(X ′)||2. X ∼ X ′ denotes that X and
X ′ are neighbouring.

The sensitivity of a concatenation of full sets of marginal
queries has a simple form:

Theorem 3.5. Let a be the concatenation of ns full sets of
marginal queries. Then ∆2a ≤

√
2ns.

Proof. We defer the proof to Supplemental Section A.

Theorem 3.6 (Balle and Wang (2018)). The Gaussian
mechanism for a function f with L2-sensitivity ∆2 and
noise variance σ2

DP is (ε, δ)-DP with

δ ≥ Φ

(
∆2

2σDP
− εσDP

∆2

)
− eεΦ

(
−∆2

2σDP
− εσDP

∆2

)
(2)

where Φ is the cumulative distribution function of the stan-
dard Gaussian distribution.

If ε, δ and ∆2 are given, which is typical, σ2
DP can be

solved from Theorem 3.6 using standard numerical meth-
ods.

An important property of DP is post-processing immu-
nity: post-processing the result of a DP-algorithm does not
weaken the privacy bounds.

Theorem 3.7 (Dwork and Roth (2014)). Let M be an
(ε, δ)-DP mechanism, and let f be any algorithm. Then
the composition f ◦M is (ε, δ)-DP.

Because of post-processing immunity, we can release
marginal query values with the Gaussian mechanism to ob-
tain privacy bounds, and make arbitrary use of the noisy
query values without weakening the privacy bounds. This
allows releasing an arbitrary number of synthetic datasets
without compromising on privacy.

4 NOISE-AWARE SYNTHETIC DATA
GENERATION

In order to implement the NA step, the data holder needs to
generate synthetic data from the posterior of a noise-aware
Bayesian model. Bernstein and Sheldon (2018) develop
noise-aware Bayesian inference under DP for simple expo-
nential family models, with noise added to sufficient statis-
tics. However, their algorithm requires both computing un-
normalised densities for the model, and sampling from the
model’s conjugate prior. In our setting, neither of these is
trivial.

We implement the NA step by generalising their algorithm
to use arbitrary marginal queries as the sufficient statistics,
using the maximum entropy distribution of the marginal
queries as our exponential family model. We develop a

computationally feasible method to compute the unnor-
malised density of this model, and sidestep the conjugate
prior sampling by using standard posterior sampling meth-
ods, which also allows us to use a non-conjugate prior.

We start by considering an arbitrary set of marginal queries
a. We would like to find an exponential family distribution
that, in expectation, gives the same answers to a as the real
data X . We do not want to assume anything else about the
distribution besides these expected query values, so we use
the principle of maximum entropy (Jaynes 1957) to choose
the distribution.

The distribution with maximal entropy that satisfies the
constraint EX∗∼P (a(X∗)) = a(X) is

P (x) = exp(θTa(x)− θ0(θ)) (3)

for some parameters θ ∈ Rk (Wainwright and Jordan
2008), where k is the number of queries. θ0(θ) is the
normalising constant of the distribution, so it is given by
θ0(θ) = ln

(∑
x∈X exp(θTa(x))

)
. We denote this distri-

bution by MEDθ, and use MEDn
θ to denote the distribution

of n i.i.d. samples from MEDθ.

MEDθ is clearly an exponential family distribution, with
sufficient statistic a(x) and natural parameters θ. MEDθ is
also a Markov network (Koller and Friedman 2009), given
in log-linear form.

The Bayesian model we consider is derived from the gener-
ative process of the noisy query values, which are observed.
Assuming that the data generating process is MEDθ, and
knowing that the Gaussian mechanism adds noise with
variance σ2

DP , we get the probabilistic model

θ ∼ Prior, X ∼ MEDn
θ , (4)

s = a(X), s̃ ∼ N (s, σ2
DP I). (5)

In principle, we could now sample from the posterior p(θ |
s̃), with smarginalised out. In practice, the marginalisation
is not feasible, as s is a discrete variable with a very large
domain.

However, s is a sum of the query values for individual data-
points, so asymptotically s has a normal distribution by the
central limit theorem. We can substitute the normal ap-
proximation for s into the model, which allows us to easily
marginalise s out, resulting in

θ ∼ Prior, s̃ ∼ N (nµ(θ), nΣ(θ) + σ2
DP I), (6)

where µ(θ) and Σ(θ) denote the mean and covariance of
a(x) for a single sample x ∼ MEDθ.

To compute µ(θ) and Σ(θ), we use both the exponential
family and Markov network structure of MEDθ. Due to
the exponential family structure,

µ(θ) = ∇θ0(θ), Σ(θ) = Hθ0(θ), (7)
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where Hθ0 is the Hessian of θ0. Computing θ0 naively
requires summing over the exponentially large domain X ,
which is not tractable for complex domains. The Markov
network structure gives a solution: θ0 can be computed
with the variable elimination algorithm (Koller and Fried-
man 2009). We can then autodifferentiate variable elimi-
nation to compute µ(θ) and Σ(θ). Alternatively, µ(θ) can
be computed by belief propagation (Koller and Friedman
2009), and Σ(θ) can be autodifferentiated from it.

For the prior, we choose another Gaussian distribution with
mean 0 and standard deviation 10, which is a simple and
weak prior, but other priors could be used.

To sample the posterior, we use existing posterior inference
methods, namely the Laplace approximation (Gelman et al.
2014), which approximates the posterior with a Gaussian
distribution centered at the posterior mode, and the NUTS
algorithm (Hoffman and Gelman 2014), which is a Markov
chain Monte Carlo (MCMC) algorithm that samples the
posterior directly using the gradients of the posterior log-
density.

The time complexities of computing µ(θ) and Σ(θ) for
inference, as well as sampling MEDθ after inference,
depend on the sparsity4 of the Markov network graph
that the selected set of queries induces. Specifically, the
time complexities are exponential in the tree width of the
graph (Koller and Friedman 2009), which can be much
lower than the dimensionality for sparse graphs, making
inference and sampling tractable for sparse queries.

If we include all possible marginal queries from the se-
lected variable sets, the parametrisation of MEDθ is not
identifiable, as there are linear dependencies among the
queries (Koller and Friedman 2009). Nonidentifiablity
causes NUTS sampling to be very slow, so we prune the
queries to remove linear dependencies while preserving the
information in the queries using the canonical parametri-
sation for MEDθ (Koller and Friedman 2009). We give
a detailed description of the process in Supplemental Sec-
tion C.

4.1 NAPSU-MQ Properties

We summarise NAPSU-MQ in Algorithm 1. The privacy
bounds for NAPSU-MQ follow from the material of Sec-
tion 3:

Theorem 4.1. NAPSU-MQ (Algorithm 1) is (ε, δ)-DP with
regards to the real data X .

Proof. The returned values of Algorithm 1 only depend on
the real data X through s̃. Releasing s̃ is (ε, δ)-DP due to
the selection of σ2

DP with Theorem 3.6. Computing the re-
turned values from s̃ is post-processing, so by Theorem 3.7,

4In a sparse graph, the fraction of pairs of nodes with an edge
between them is small.

NAPSU-MQ is (ε, δ)-DP.

In Supplemental Section B, we list the conditions un-
der which Rubin’s rules are unbiased (Raghunathan et al.
2003). As is typical with statistical methods, these assump-
tions are asymptotic in nature. Our experiments in Sec-
tion 5 show that NAPSU-MQ is robust to these asymptotics
and works with large enough samples.

The most important of the assumptions behind Rubin’s
rules5 for synthetic data generation requires that the syn-
thetic data generation does not bias the downstream analy-
sis. This means that the marginal queries input to NAPSU-
MQ must contain the relevant information for the down-
stream analysis. For our experiments, we include a fixed
set of queries that gives enough information for the down-
stream task, and select other queries automatically with an
existing query selection algorithm (McKenna et al. 2021).
We leave further work on query selection for noise-aware
inference to future work.

Algorithm 1: NAPSU-MQ
Input: Real data X , marginal queries a, number of

synthetic datasets m, size of synthetic datasets
nSyn, privacy bounds ε, δ.

Output: Posterior distribution p(θ|s̃), synthetic datasets
XSyn

1 , . . . , XSyn
m .

a∗ ← Canonical queries for a (Section C);
s← a∗(X);
∆2 ← Sensitivity of s (Theorem 3.5);
σ2
DP ← Required noise variance for (ε, δ)-DP with
sensitivity ∆2 (Theorem 3.6);

Sample s̃ ∼ N (s, σ2
DP );

Run Bayesian inference algorithm to find p(θ|s̃)
(Section 4);

Sample θi ∼ p(θ|s̃) and XSyn
i ∼ MED

nSyn
θi

for
1 ≤ i ≤ m;

return p(θ|s̃), XSyn
1 , . . . , XSyn

m

5 EXPERIMENTS

In this section, we give detailed descriptions on our two
main experiments: a simple toy data experiment, and our
experiment with the UCI Adult dataset, which demonstrate
that NAPSU-MQ is able to compute accurate confidence
intervals. In Supplemental Section G, we describe an addi-
tional experiment with the UCI US Census (1990) dataset,
which confirms the results of the other experiments. Our
code is available under an open source license6.

5 Assumptions B.3 and B.4 in Supplemental SectionB.
6 A library implementation of NAPSU-MQ is available at

https://github.com/DPBayes/twinify, while code
to replicate our experiments is at https://github.com/
DPBayes/NAPSU-MQ-experiments.

https://github.com/DPBayes/twinify
https://github.com/DPBayes/NAPSU-MQ-experiments
https://github.com/DPBayes/NAPSU-MQ-experiments
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Figure 3: (a) Toy data confidence intervals widths. NA+MI produces slightly wider intervals than PGM or PEP for ε > 0.1,
which is necessary to account for DP noise. PrivLCM produces much wider intervals. (b) Ablation study on the toy data.
“-NA” refers to removing noise-awareness, and “-MI” refers to removing multiple imputation. Unless both are included,
NAPSU-MQ is overconfident like PGM except for ε ≥ 1 where noise-awareness is not necessary. δ = 2.5 · 10−7 in both
(a) and (b).

5.1 Toy Data

To demonstrate the necessity of noise-awareness in syn-
thetic data generation, we measure the coverage of con-
fidence intervals computed from DP synthetic data on a
generated toy dataset where the data generation process is
known. We test the existing algorithms PGM (McKenna
et al. 2019), PEP (T. Liu et al. 2021), RAP (Aydore et al.
2021), PrivLCM (Nixon et al. 2022), PrivBayes (Zhang et
al. 2017) and our pipeline NA+MI, where data generation is
implemented with NAPSU-MQ. The authors of PrivLCM
also propose using multiple imputation (Nixon et al. 2022),
so we use Rubin’s rules (Raghunathan et al. 2003) with
the output of PrivLCM. We also ran PGM, PEP, RAP and
PrivBayes with Rubin’s rules, which did not produce useful
results, as these algorithms do not meet the assumptions of
Rubin’s rules.

The original data consists of n = 2000 datapoints of 3 bi-
nary variables. The first two are sampled by independent
coin flips. The third is sampled from logistic regression on
the other two variables with coefficients (1, 0).

For all algorithms except PrivLCM and PrivBayes, we use
the full set of 3-way marginal queries released with the
Gaussian mechanism. PrivLCM doesn’t implement these,
and instead uses all full sets of 2-way marginals, and a dif-
ferent mechanism, which is (ε, 0)-DP (Nixon et al. 2022)
instead of (ε, δ)-DP like the other algorithms. PrivBayes
requires specifying a Bayesian network (Zhang et al. 2017),
which we set to match the data generating process, and
takes a single full set of 1-way marginals and a single full
set of 2-way marginals in addition to the full set of 3-way
marginals the other algorithms take. We use the Laplace
approximation for NAPSU-MQ inference, as it is much
faster than NUTS and works well for this simple setting.

DP algorithms are typically evaluated under changing pri-
vacy bounds by fixing δ ≤ 1

n , and varying ε, which is the
setting used by the authors of PGM (McKenna et al. 2019),

PEP (T. Liu et al. 2021) and RAP (Aydore et al. 2021). We
follow this setting, fixing δ = n−2 = 2.5 · 10−7.

We generate m = 100 synthetic datasets of size nSyn = n
for all algorithms except RAP, where the synthetic dataset
size is a function of two hyperparameters. We describe the
hyperparameters in detail in Supplemental Section E.

The downstream task is inferring the logistic regression co-
efficients from synthetic data. We repeated all steps 100
times to measure the probability of sampling a dataset giv-
ing a confidence interval that includes the true parameter
values.

Figure 1 shows the coverages, and Figure 3a shows the
widths for the resulting confidence intervals. All of the al-
gorithms apart from ours and PrivLCM are overconfident,
even with very loose privacy bounds. Examining the confi-
dence intervals shows the reason: PGM is unbiased, but it
produces too narrow confidence intervals, while NAPSU-
MQ produces wider confidence intervals. On the other
hand, for ε > 0.25, PrivLCM produces much wider and
too conservative confidence intervals.

Ablation Study We also conducted an ablation study on
the toy data to show that both multiple imputation and
noise-awareness are necessary for accurate confidence in-
tervals. The results are presented in Figure 3b. Without
both multiple imputation and noise-awareness, NA+MI is
overconfident like PGM, except for ε ≥ 1, where noise-
awareness is not required. We show the confidence inter-
vals produced by each method for ε = 0.5 in Figure S2 in
the Supplement.

5.2 Adult Dataset

Our main experiment evaluates the performance of
NAPSU-MQ on the UCI Adult dataset (Kohavi and Becker
1996). We include 10 of the original 15 columns to re-
move redundant columns and keep runtimes manageable,
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Figure 4: Top row: the fraction of downstream coefficients where the synthetic confidence interval contains the real data
coefficient, averaged over 20 repeated runs on the Adult dataset using regularisation. NAPSU-MQ is the only algorithm that
is consistently around the diagonal, showing good calibration. The error bands are bootstrap 95% confidence intervals of
the average over the 20 repeats. Bottom row: confidence intervals widths divided by real data confidence interval widths.
Each bar is a median over the different coefficients and repeats, and the black lines are 95% bootstrapped confidence
intervals. The dashed line is at y = 1, showing where synthetic confidence intervals have the same width as original
confidence intervals. δ ≈ 4.7 · 10−10 in all panels.

and discretise the continuous columns. After dropping
rows with missing values, there are n = 46 043 rows. The
discretised domain has 1 792 000 distinct values. We give a
detailed description of the dataset, query selection and the
downstream task in Supplemental Section F.

As our downstream task, we use logistic regression with in-
come as the dependent variable and a subset of the columns
as the independent variables, which allows us to include all
the relevant marginals for synthetic data generation. The
synthetic dataset was still generated with all 10 columns.

We compare NAPSU-MQ against PGM (McKenna et al.
2019), RAP (Aydore et al. 2021) and PEP (T. Liu et al.
2021). We used the published implementations of their
authors for all of them, with small modifications to en-
sure compatibility with new library versions and our exper-
iments. The published implementation of PrivLCM only
supports binary data, and does not scale to datasets of this
size, so it was not included in this experiment. PrivBayes
was also excluded, as it doesn’t support the set of queries
we use in this experiment. We also include a naive noise-
aware baseline that runs m completely independent repeats
of PGM, splitting the privacy budget appropriately, and
uses Rubin’s rules with the m generated synthetic datasets.

NAPSU-MQ and PGM-repeat sometimes generate syn-
thetic datasets with no people of some race with high in-
come. Logistic regression will produce an extremely wide
confidence intervals for the corresponding coefficients. Ru-
bin’s rules average over estimates, so even a single bad es-
timate makes the combined confidence interval extremely
wide. This can be fixed in two ways: a simple solution is

removing estimates with extremely large variances before
applying Rubin’s rules. A more principled way is to add
a very small regularisation term to the logistic regression,
which fixes the extremely wide confidence intervals, but
will require bootstrapping to get variance estimates, which
increases the computational cost of the downstream analy-
sis. We used an l2-regularisation term of 10−5, and used 50
bootstrap samples. Because of post-processing immunity,
neither of these fixes affects the privacy bounds.

As the input queries, we pick 2-way marginals that are rel-
evant for the downstream task, and select the rest of the
queries with the MST algorithm (McKenna et al. 2021).
This selection was kept constant throughout the experi-
ment. For the privacy budget, we use δ = n−2 ≈ 4.7 ·
10−10 for all runs, and vary ε.

Reiter (2002) discusses the choice of nSyn and n for non-
DP synthetic data generation in detail. Based on his results,
choosing nSyn = n is very safe, and we use it for all al-
gorithms except RAP, as in the toy data experiment (Sec-
tion 5.1). For NAPSU-MQ and PGM-repeat, we choose
the number of generated synthetic datasets with a prelim-
inary experiment, presented in Figures S4 and S3 in the
Supplement. For NAPSU-MQ, the theory of Reiter (2002),
suggests that a larger m is better, but has diminishing re-
turns. Our results in Figure S4 validate this, as all values of
m produce similar results. We describe the other hyperpa-
rameters in detail in Supplemental Section E.

The Laplace approximation for NAPSU-MQ does not work
well for this setting because many of the queries have small
values, so we use NUTS (Hoffman and Gelman 2014) for
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posterior inference. To speed up NUTS, we normalise the
posterior before running the inference using the mean and
covariance of the Laplace approximation

Results from 20 repeats of the experiment are shown in Fig-
ure 4. PGM, RAP and PEP produce overconfident confi-
dence intervals that do not meet the given confidence levels.
With the repeats, PGM becomes overly conservative, and
produces confidence intervals that are too wide. NAPSU-
MQ is the only algorithm that produces properly calibrated
intervals, although repeated PGM is able to produce nar-
rower intervals than NAPSU-MQ with ε = 0.1. With
the more realistic ε = 1, the confidence intervals from
NAPSU-MQ are not much wider than non-DP intervals,
while PGM-repeat produces much wider intervals. Fig-
ure S8 shows that NAPSU-MQ reproduces 1- and 2-way
marginals nearly as accurately as PGM.

The results in Figure 4 were obtained using the small regu-
larisation term. Figure S5 shows the results with the trick of
dropping large variances, which are very close to Figure 4.

Noise-awareness, especially with the increased accuracy
from NUTS, comes with a steep computational cost, as
PGM ran in 15s, while the Laplace approximation took
several minutes, and NUTS took up to ten hours. All of
the algorithms were run on 4 CPU cores of a cluster. The
complete set of runtimes for all algorithms and values of ε
are shown in Table S1 of the Supplement.

6 DISCUSSION

While our general pipeline NA+MI is applicable to all
kinds of datasets in principle, the data generation algorithm
NAPSU-MQ is currently only applicable to discrete tabu-
lar data due to the reliance on perturbing query values, and
only supports sparse marginal queries perturbed with the
Gaussian mechanism as input due to the techniques we use
to make the algorithm practical.

We aim to generalise NAPSU-MQ to more general query
classes, such as linear queries, in the future. Getting rid of
the dependency on queries completely is likely to be much
more challenging, as it will require developing noise-aware
Bayesian inference without perturbing sufficient statistics.
This may be possible by adding noise-awareness to other
types of DP Bayesian inference methods, like DP varia-
tional inference (Jälkö et al. 2017) or DP MCMC (Heikkilä
et al. 2019; Yildirim and Ermis 2019).

Only handling discrete data is not a major limitation, as the
combination of discretisation (Zhang et al. 2016) and syn-
thetic data generation with marginal-based algorithms like
PGM (McKenna et al. 2019) have been shown to perform
very well on tabular synthetic data generation tasks (Tao et
al. 2021).

The Gaussian mechanism adds noise uniformly to all

queries, making small queries relatively more noisy. This
may reduce the accuracy of query-based algorithms like
NAPSU-MQ and the others we examined for groups with
rare combinations of data values, such as minorities.

Although we left query selection outside the scope of this
paper, selecting the right queries to support downstream
analysis is important, as NA+MI cannot guarantee con-
fidence interval coverage if the selected queries do not
contain enough information for the downstream task. We
plan to study whether existing methods giving confidence
bounds on query accuracy (McKenna et al. 2022; Nixon
et al. 2022) can be adapted to give confidence intervals for
arbitrary downstream analyses.

The runtime is a significant limitation in the current imple-
mentation of NAPSU-MQ when using NUTS. As NAPSU-
MQ is compatible with any non-DP posterior sampling
method, recent (Hoffman et al. 2021) and future advances
in MCMC and other sampling techniques are likely able to
cut down on the runtime.

Conclusion The analysis of DP synthetic data has not
received much attention in existing research. Our work
patches a major hole in the current generation and anal-
ysis methods by developing the NA+MI pipeline that al-
lows computing accurate confidence intervals and p-values
from DP synthetic data. We develop the NAPSU-MQ algo-
rithm in order to implement NA+MI on nontrivial discrete
datasets. NA+MI only depends on noise-aware posterior
inference, not NAPSU-MQ specifically, and can thus be ex-
tended to other settings in the future. With the noise-aware
inference algorithm, NA+MI allows conducting valid sta-
tistical analyses that include uncertainty estimates with
DP synthetic data, potentially unlocking existing privacy-
sensitive datasets for widespread analysis.
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A PROOF OF THEOREM 3.5

Theorem 3.5. Let a be the concatenation of ns full sets of marginal queries. Then ∆2a ≤
√

2ns.

Proof. Let a1, . . . , ans be the full sets of marginal queries that form a. Because all of the queries of ai have the same set
of variables, the vector ai(x) has a single component of value 1, and the other components are 0 for any x ∈ X . Then, for
any neighbouring X,X ′ ∈ Xn, ||ai(X)− ai(X ′)||22 ≤ 2. Then

∆2a = sup
X∼X′

||a(X)− a(X ′)||2 = sup
X∼X′

√√√√ ns∑
i=1

||ai(X)− ai(X ′)||22 ≤ sup
X∼X′

√√√√ ns∑
i=1

2 =
√

2ns (8)

B MULTIPLE IMPUTATION

In order to compute uncertainty estimates for downstream analyses from the noise-aware posterior with NA+MI, we use
Rubin’s rules for synthetic data (Raghunathan et al. 2003; Reiter 2002).

After the synthetic datasets XSyn
i for 1 ≤ i ≤ m are released by the data holder, the data analyst runs their downstream

analysis on each XSyn
i . For each synthetic dataset, the analysis produces a point estimate qi and a variance estimate vi for

qi.

The estimates q1, . . . , qm and v1, . . . , vm are combined as follows (Raghunathan et al. 2003):

q̄ =
1

m

m∑
i=1

qi, v̄ =
1

m

m∑
i=1

vi, b =
1

m− 1

m∑
i=1

(qi − q̄)2. (9)

We use q̄ as the combined point estimate, and set

T =

(
1 +

1

m

)
b− v̄, T ∗ =

{
T if T ≥ 0
nSyn
n v̄ otherwise.

(10)

T is an estimate of the combined variance. T can be negative, which is corrected using T ∗ instead (Reiter 2002).

We compute confidence intervals and hypothesis tests using the t-distribution with mean q̄, variance T ∗, and degrees of
freedom

ν = (m− 1)(1− r−1)2, (11)

where r = (1 + 1
m ) bv̄ (Reiter 2002).

These combining rules apply when q is a univariate estimate. Reiter (2005) derives appropriate combining rules for
multivariate estimates, which can be applied with NA+MI.

Rubin’s rules make many assumptions on the different distributions that are involved (Raghunathan et al. 2003; Si and
Reiter 2011), such as the normality of the distribution of qi when sampling data from the population. These assumptions
may not hold for some types of estimates, such as probabilities (Marshall et al. 2009) or quantile estimates (Zhou and
Reiter 2010). Further work (Si and Reiter 2011) tries to reduce these assumptions, especially in the context of missing
data. Their results for synthetic data generation can be applied with our method.

Si and Reiter (2011) propose to remove some of these assumptions by approximating the integral that Rubin’s rules are
derived from by sampling instead of using the analytical approximations in (9) and (10). They find that their sampling-
based approximation can be effective, especially with a small number of datasets, but is computationally more expensive.

B.1 Unbiasedness of Rubin’s Rules

Rubin’s rules make several assumptions on the downstream analysis method, and several normal approximations when
deriving the rules. Raghunathan et al. (2003) derive conditions under which Rubin’s rules give an unbiased estimate.
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Rubin’s rules aim to estimate a quantity Q of the entire population P , of which X is a sample. Conceptually, the sampling
of the synthetic datasets is done in two stages: first, synthetic populations PSyni for 1 ≤ i ≤ m are sampled. Second,
a synthetic dataset XSyn

i is sampled i.i.d from PSyni . This is equivalent to the sampling process for XSyn
i described in

Section 2, and makes stating the assumptions of Rubin’s rules easier.

While the sampling process of synthetic data has to be i.i.d., this is not required for the original data. This means that
there are two versions of the downstream analysis: the one for i.i.d. data, and the one for the complex sampling method
of the real data. The latter method is not used at any point, so it is assumed to exist for the theory, but does not have to be
practically implementable.

We take advantage of this handling of complex sampling of real data by including the computation of s and adding noise
to get s̃ in the sampling scheme, so we are considering s̃ to be the original data from the point of view of the theory. The
fact that s̃ is a noisy summary statistic instead of a dataset is not an issue, as the theory only requires having a theoretical
method to estimate Q from s̃. If the chosen marginal queries contain the relevant information for the downstream task, so
s is a (approximate) sufficient statistic, this theoretical method will exist.

Let Qi denote the quantity of interest Q computed from the synthetic population PSyni instead of P . Let Vi denote the
sampling variance of qi from the synthetic population PSyni . Note that qi and it’s variance estimate vi are obtained using
the downstream analysis method for i.i.d. data. Let Q̂D and ÛD be the point and variance estimates of Q derived from s̃
when sampling the population P , which are obtained using the theoretical inference method for complex samples.

Now the assumptions of Raghunathan et al. (2003) are

Assumption B.1. For all 1 ≤ i ≤ m, qi is unbiased for Qi and asymptotically normal with respect to sampling from the
synthetic population PSyni , with sampling variance Vi.

Assumption B.2. For all 1 ≤ i ≤ m, vi is unbiased for Vi, and the sampling variability in vi is negligible. That is
vi | PSyni ≈ Vi. Additionally, the variation in Vi across the synthetic populations is negligible.

Assumptions B.1-B.2 ensure that the downstream analysis method used to estimate Q is accurate, for both point and
variance estimates, when applied to i.i.d. real data, regardless of the population.

Assumption B.3. Q̂D | P ∼ N (Q, ÛD)

Assumption B.3 ensures that the analysis for complex sampling is accurate for point and variance estimates when applied
to the real population.

Assumption B.4. Qi | s̃ ∼ N (Q̂D, ÛD)

Assumption B.4 requires that the generation of synthetic datasets does not bias the downstream analysis.

For query-based methods like NAPSU-MQ, Assumptions B.3 and B.4 may not hold when the queries do not contain the
relevant information for the downstream task.

With Assumptions B.1-B.4, Raghunathan et al. (2003) show that q̄ is an unbiased estimate ofQ, and T is an asymptotically
unbiased variance estimate.

Theorem B.5 (Raghunathan et al. (2003)). Assumptions B.1-B.4 imply that

1. E(q̄ | P ) = Q,

2. E(T | P ) = Var(q̄ | P ),

3. Asymptotically q̄−Q√
T
∼ N (0, 1),

4. For moderate m, q̄−Q√
T
∼ tν(0, 1) (Reiter 2002).

C FINDING AND IDENTIFIABLE PARAMETRISATION

In this section, we describe the process we use to ensure the parametrisation of the posterior in NAPSU-MQ is identifiable.
We ensure identifiability by dropping some of the selected queries, chosen using the the canonical parametrisation of
MEDθ to ensure no information is lost. First, we give some background on Markov networks, which is necessary to
understand the canonical parametrisation.
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Markov Networks A Markov network is a representation of a probability distribution that is factored according to an
undirected graph. Specifically, a Markov network distribution P is a product of factors. A factor is a function from a
subset of the variables to non-negative real numbers. The subset of variables is called the scope of the factor. The joint
distribution is given by

P (x) =
1

Z

∏
I⊂S

φI(xI) (12)

where S is the set of scopes for the factors. The undirected graph is formed by representing each variable as a node, and
adding edges such that the scope of each factor is a clique in the graph.

Canonical Parametrisation The canonical parametrisation is given in terms of canonical factors (Abbeel et al. 2006).
The canonical factors depend on an arbitrary assignment of variables x∗. We simply choose x∗ = (0, . . . , 0). In the
following, xU denotes the selection of components in the set U from the vector x, and x−U denotes the selection of all
components except those in U .
Definition C.1. A canonical factor φ∗D with scope D is defined as

φ∗D(x) = exp

∑
U⊆D

(−1)|D−U | lnP (xU , x
∗
−U )


The sum is over all subsets of D, including D itself and the empty set. |D−U | is the size of the set difference of D and U .
Theorem C.2 (Abbeel et al. (2006)(Theorem 3)). Let P be a Markov network with factor scopes S. Let S∗ =
∪D∈SP(D)− ∅. Then

P (x) = P (x∗)
∏

D∗∈S∗
φ∗D∗(xD∗)

There are more canonical factors than original factors, so it might seem that there are more parameters in the canonical
parametrisation than in the original parametrisation. However, many values in the canonical factors turn out to be ones. We
can select the queries corresponding to non-one canonical factor values to obtain a set of queries with the same information
as the original queries, but without linear dependencies (Koller and Friedman 2009). We call this set of queries the
canonical queries.

Many of the canonical factor scopes are subsets of the original factor scopes, so using the canonical queries as is would
introduce new marginal query sets and potentially increase the sensitivity of the queries. As all of the new queries are sums
of existing queries, we can replace each new query with the old queries that sum to the new query, and use the same θ value
for all of the added queries to preserve identifiability. After the replacements, the queries are a subset of the original non-
canonical queries, so their sensitivity is at most the original sensitivity. If one of the added queries was already included, it
does not need to be added again, because two instances of a single query can be collapsed into a single instance with it’s
own parameter value. Because of this, we did not need to fix the θ values of any queries to the same value in the settings
we studied.

D NAPSU-MQ VS. PGM

The PGM algorithm (McKenna et al. 2019) generates synthetic data based on the same marginal queries a and noise
addition as NAPSU-MQ. PGM also models the original data using the MEDθ distribution. Unlike NAPSU-MQ, PGM
finds the parameters θ by minimising the l2-distance ||s̃ − nµ(θ)||2 between the observed noisy query values s̃ and the
expected query values nµ(θ) = nEx∼MEDθ (a(x)) In the following, we’ll replace the query values s and s̃ that are summed
over datapoints with u = s

n and ũ = s̃
n that represent mean query values over datapoints. Then the PGM objective is

equivalent to ||ũ− µ(θ)||2.

We can view the PGM minimisation problem as a maximum likelihood estimation in the NAPSU-MQ probabilistic model

X ∼ MEDn
θ , s = a(X), s̃ ∼ N (s, σ2

DP I), (13)

where we replace normal approximation that NAPSU-MQ uses with a law of large numbers approximation. Specifically,
first replace s with u in (13):

X ∼ MEDn
θ , u =

a(X)

n
, ũ ∼ N (u, σ2

DP I/n
2). (14)
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Because u is a mean of sufficient statistics for individual datapoints, by the law of large numbers, asymptotically u ∼ δµ(θ).
With this approximation, the probabilistic model is

u ∼ δµ(θ), ũ ∼ N (u, σ2
DP I/n

2). (15)

u can be marginalised from the likelihood of this model:

p(ũ|θ) =

∫
p(ũ, u|θ)du (16)

=

∫
p(ũ|u)p(u|θ)du (17)

=

∫
N (ũ|u, σ2

DP I/n
2)δµ(θ)(u)du (18)

= N (ũ|µ(θ), σ2
DP I/n

2) (19)

The marginalised log-likelihood is then

ln p(ũ|θ) = − n2

σ2
DP

||ũ− µ(θ)||22 + constant, (20)

so maximising the log-likelihood is equivalent to minimising the PGM objective.

If we made a normal approximation instead of the law of large numbers approximation in (14), we would get

ũ ∼ N (µ(θ),Σ(θ)/n+ σ2
DP I/n

2), (21)

so maximising the likelihood is still possible. Unlike PGM, this maximum likelihood objective includes the covariance
Σ(θ). We leave any comparisons between maximising this objective and PGM to future work.

E HYPERPARAMETERS

NAPSU-MQ The hyperparameters of NAPSU-MQ are the choice of prior, choice of inference algorithm, and the param-
eters of that algorithm. For the toy data experiment, we used the Laplace approximation for inference, which approximates
the posterior with a Gaussian centered at the maximum aposteriori estimate (MAP). We find the MAP for the Laplace
approximation with the LBFGS optimisation algorithm, which we run until the loss improves by less than 10−5 in an
iteration, up to a maximum of 500 iterations. Sometimes LBFGS failed to converge, which we detect by checking if the
loss increased by over 1000 in one iteration, and fix by restarting optimisation from a different starting point. We also
restarted if the maximum number of iterations was reached without convergence. For the vast majority of runs, no restarts
were needed, and at most 3 were needed.

For the Adult experiment, we used NUTS (Hoffman and Gelman 2014). We ran 4 chains of 800 warmup samples and 2000
kept samples. We set the maximum tree depth of NUTS to 12. We normalised the posterior using the mean and covariance
from the Laplace approximation. For the Laplace approximation, we used the same hyperparameters as with the toy data
set, except we set the maximum number of iterations to 6000.

For the prior, we used a Gaussian distribution with mean 0 and standard deviation 10 for all components, without depen-
dencies between components, for both experiments.

PGM and Repeated PGM PGM finds the MEDθ parameters θ that minimise the L2-error between the expected query
values and the noisy query values. The PGM implementation offers several algorithms for this optimisation problem, but
we found that the default algorithm (mirror descent) and number of iterations works well for both experiments.

RAP RAP minimises the error on the selected queries of a continuous relaxation of the discrete synthetic dataset. After
the optimal relaxed synthetic dataset is found, a discrete synthetic dataset is constructed by sampling. This gives two
hyperparameters that control the size of the synthetic data: the size of the continuous dataset, and the number of samples
for each datapoint in the continuous relaxation. We set the size of the continuous dataset to 1000 for both experiments, as
recommended by the paper (Aydore et al. 2021). For the Adult data experiment, we set the number of samples per datapoint
to 46, so that the total size of the synthetic dataset is close to the size of the original dataset. For the toy data experiment,
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we set the number of samples per datapoint to 50. The RAP paper (Aydore et al. 2021) finds that much smaller values are
sufficient, but higher values should only increase accuracy.

In both cases, we weight the synthetic datapoints by n
nSyn

before the downstream logistic regression to ensure that the
logistic regression does not over- or underestimate variances because of a different sample size from the original data.

RAP also has two other hyperparameters that are relevant in our experiments: the number of iterations and the learning
rate for the query error minimisation. After preliminary runs, we set the learning rate at 0.1 for both experiments, and set
the number of iterations to 5000 for the toy data experiment, and 10000 for the Adult data experiment.

PEP PEP has two hyperparameters: the number of iterations used to find a distribution with maximum entropy that has
approximately correct query values, and the allowed bound on the difference of the query values. The PEP implementation
hardcodes the allowed difference to 0. We set the number of iterations to 1000 after preliminary runs for both experiments.

PrivLCM PrivLCM samples the posterior of a Bayesian latent class model, where the number of classes in limited to
make inference tractable. The model has hyperparameters for the prior, and the number of latent classes. We leave the
prior hyperparameters to their defaults, and set the number of latent classes to 10, which the PrivLCM authors used in a
5-dimensional binary data experiment (Nixon et al. 2022). The remaining hyperparameter of PrivLCM is the number of
posterior samples that are obtained. To keep the runtime of PrivLCM manageable, we set the number of samples to 500
after ensuring that the lower number of samples did not degrade the accuracy of the estimated probabilities for the joint
distribution compared to using the default of 5000 samples.

PrivBayes As we focus on synthetic data generation, we did not use the query selection features of PrivBayes in the toy
data experiment, and instead set the queries according to the Bayesian network of the data generating process. Denoting
the three components of the data as X = (X1, X2, X3), the queries are the full set of 1-way marginals on X1, the full set
of 2-way marginals on (X1, X2), and the full set of 3-way marginals on all three variables.

F ADULT EXPERIMENT DETAILS AND EXTRA RESULTS

We include the columns Age, Workclass, Education, Marital Status, Race, Gender, Capital gain, Capital loss, Hours per
week and Income of the Adult dataset, and discard the rest to remove redundant columns and keep computation times
manageable. We discretise Age and Hours per week to 5 buckets, and discretise Capital gain and Capital loss to binary
values indicating whether their value is positive. The Income column is binary from the start, and indicates whether a
person has an income > $50 000.

In the downstream logistic regression, we use income as the dependent variable, and Age, Race and Gender as independent
variables. Age is transformed back to a continuous value for the logistic regression by picking the middle value of each
discretisation bucket. We did not use all variables for the downstream task, as a smaller set of variables allows including
the relevant marginals for synthetic data generation. The regularisation for the logistic regression is l2 with a very small
multiplier of 10−5. When the regularisation is used, variances are estimated with bootstrapping using 50 bootstrap samples.

All of the Adult experiment figures, except Figures S5 and S6 use the small regularisation term. Figure S5 shows the results
with the trick of removing large variance estimates (≥ 103), and Figure S6 shows how many estimates were removed.

For the input queries, we include the 2-way marginals with Hours per week and each of the independent variables Age,
Race and Gender and income, as well as the 2-way marginal between Race and Gender. The rest of the queries were
selected with the MST algorithm (McKenna et al. 2021). For MST, we used ε = 0.5 and δ = 1

n2 ≈ 4.7 · 10−10, but we do
not include this in our figures, as we focus on the synthetic data generation, not query selection. The selected queries are
shown in Figure S1. The selection is very stable: in 100 repeats of query selection, these queries were selected 99 times.

We chose the number of generated synthetic datasets for NAPSU-MQ and the number of repeats for repeated PGM by
comparing the results of the Adult experiment for different choices. The results are shown in Figure S4 for NAPSU-MQ
and Figure S3 for repeated PGM. We chose m = 100 for NAPSU-MQ because it produces the narrowest confidence
intervals, and m = 5 repeats for repeated PGM because it had the best calibration overall.
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Table S1: Runtimes of each inference run for the Adult experiment. Does not include the time taken to generate synthetic
data, or run any downstream analysis. The LA rows record the runtime for obtaining the Laplace approximation for
NAPSU-MQ that is used in the NUTS inference, so the total runtime for a NAPSU-MQ run with NUTS is the sum of the
LA and NUTS rows. Experiments were run on 4 CPU cores of a cluster.

Mean Standard Deviation
Algorithm Epsilon

LA

0.1 2 min 53 s 18.5 s
0.3 3 min 53 s 29.4 s
0.5 3 min 38 s 35.0 s
1.0 3 min 25 s 25.5 s

NUTS

0.1 9 h 59 min 6 s 6506 s
0.3 7 h 33 min 28 s 2701 s
0.5 4 h 57 min 40 s 3185 s
1.0 3 h 51 min 34 s 1274 s

PEP

0.1 6 min 50 s 25.4 s
0.3 7 min 18 s 31.2 s
0.5 7 min 0 s 33.1 s
1.0 7 min 7 s 33.7 s

PGM

0.1 15 s 0.5 s
0.3 17 s 1.5 s
0.5 15 s 0.4 s
1.0 15 s 0.6 s

PGM-repeat-10

0.1 2 min 35 s 3.3 s
0.3 2 min 53 s 13.0 s
0.5 2 min 37 s 5.0 s
1.0 2 min 36 s 4.4 s

PGM-repeat-20

0.1 5 min 15 s 10.9 s
0.3 5 min 58 s 28.4 s
0.5 5 min 10 s 10.2 s
1.0 5 min 13 s 12.6 s

PGM-repeat-5

0.1 1 min 17 s 2.7 s
0.3 1 min 28 s 6.7 s
0.5 1 min 18 s 2.6 s
1.0 1 min 18 s 1.9 s

RAP

0.1 32 s 2.4 s
0.3 34 s 2.2 s
0.5 32 s 2.1 s
1.0 31 s 2.1 s
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race

income

gender age

workclass marital-status

hours-per-week capital-loss capital-gain education

Figure S1: Markov network of selected queries for the Adult experiment. Each edge in the graph represents a selected
2-way marginal.
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Figure S2: Ablation Study Confidence Intervals.

G US CENSUS DATA EXPERIMENT

We conducted an additional experiment on US Census data from the UCI repository (Meek et al. 2001). We limited the
data to individuals who have served in the US Military, and picked 9 columns7, most relating to military service. Even this
subset of the data is large, with n = 320 754. All columns are discrete, and have 10 800 possible values, much fewer than
the Adult experiment.

As the downstream task, we use logistic regression with dPoverty as the dependent variable and iSex, iKorean, iVietnam
and iMilitary as the independent variables. dPoverty has three categories, so we combine the two categories denoting
people below the powerty line to make the dependent variable binary for the logistic regression, but not synthetic data
generation.

As our queries we use 4 three-way marginals covering the independent and dependent variables, and 3 two-way marginals
that include the other variables that are synthesised, but not included in the regression. As the published implementation
of RAP (Aydore et al. 2021) does not support a mix of two- and three-way marginals, we replace the two-way marginals
with three-way marginals for RAP. As in the Adult experiment, we set δ = n−2 ≈ 9.7 · 10−12, and vary ε.

As in the adult experiment, we use nSyn = n for all algorithms except RAP. For PGM-repeat and NAPSU-MQ, we choose
m with a preliminary experiment. For NAPSU-MQ, we set m = 100, although the differences between the choices are
not large. For PGM-repeat, we set m = 10. We set the other hyperparameters for all algorithms after testing runs to the
same values used in the Adult experiment, except we increased the number of optimisation iterations for PGM to 10 000
from the default of 1000, the number of iterations for PEP to 10 000 from 1000, and increased the number of kept samples
in NUTS to 4000 for NAPSU-MQ. We did not use the trick of dropping estimates with very high variances, or using very
small regularisation in the logistic regression with the US Census data.

7 The columns are dYrsserv, iSex, iVietnam, iKorean, iMilitary, dPoverty, iMobillim, iEnglish and iMarital.
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Figure S3: Comparison of different numbers of repetitions for repeated PGM on the Adult dataset with regularisation. We
chose m = 5 repeats to represent repeated PGM in the main experiment, although the differences between the numbers of
repeats are small.
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Figure S4: Comparison of different numbers of generated synthetic datasets for NAPSU-MQ on the Adult dataset with
regularisation. The differences are small, but m = 100 synthetic datasets produces the narrowest intervals, so we chose it
for the main experiment.

The results are shown in Figure S9. While PGM is calibrated with ε ≥ 0.3, it is severely overconfident with ε = 0.1. This
is likely caused by the large size of the dataset: at larger values of ε, there is little noise compared to the large sample size,
while at ε = 0.1, the noise has a clear effect.

NAPSU-MQ and PGM-repeat are able to produce calibrated results at ε = 0.1. Of these, NAPSU-MQ produces clearly
narrower confidence intervals for all values of ε.

Figure S10 shows the accuracies of the produced synthetic datasets on all 1-way and 2-way marginal queries for the
algorithms. As with the Adult dataset, shown in Figure S8, NAPSU-MQ is almost as accurate as PGM, and is equally
accurate as PGM-repeat. For ε ≥ 0.5, all of the aforementioned algorithms are almost as accurate. RAP and PEP are
nowhere close to these algorithms in accuracy, having errors that are several times larger than the other algorithms.

For some reason, PEP fails completely with this dataset. We are not sure what causes this, as the algorithm should work in
this setting as well as it did with the Adult dataset, and the size of the dataset should not be an issue.

The runtimes for each algorithm are shown in Table S2. The difference between PGM-repeat and NAPSU-MQ is much
smaller than in the Adult data experiment, but is still large.
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Figure S5: Results from the Adult data experiment with the trick of dropping large variances in the logistic regression
instead of adding a small regularisation term. The results are almost identical to Figure 4, except for RAP, which suffers
from the regularisation.
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Figure S6: The fraction of coefficients dropped before Rubin’s rules because of very high estimated variances from the
downstream logistic regression in the Adult data experiment for NAPSU-MQ in (a) and PGM-repeat in (b).
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Figure S7: The tradeoff between the confidence level for DP confidence intervals and the width of the intervals on the
Adult dataset with regularisation. The width ratio on the y-axis is with regards to the original 95% confidence interval,
for all confidence levels, so the plot shows how much must the confidence level drop to obtain the same width from a DP
confidence interval as a non-DP one. The horizontal line at y = 1 shows this point. For ε = 1, the confidence level for
NAPSU-MQ must be dropped to about 75%, and for PGM-repeat, it must be dropped to about 50%.
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Figure S8: Comparison of marginal query accuracy for Adult data. NAPSU-MQ is almost as accurate as PGM for all
values of ε, and is on par with PGM-repeat. The panels show the average total variation distance of all 1-way marginal
distributions (left) or all 2-way marginal distributions (right) between the original discretised data and synthetic data,
averaged over 20 repeats. For NAPSU-MQ and PGM-repeat-m, the synthetic marginal distributions were estimated by
averaging over m synthetic datasets, with m = 100 for NAPSU-MQ.
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Figure S9: Results for the US Census experiment, showing that only NAPSU-MQ and PGM-repeat are calibrated for all
values of ε, and NAPSU-MQ produces significantly narrower confidence intervals than PGM-repeat. Like Figure 4, the
top row shows the mean coverage over all coefficients and 20 runs for different confidence levels. The bottom row shows
median confidence interval widths divided by real data confidence interval widths. δ ≈ 9.7 · 10−12 in all panels.
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Table S2: Runtimes of each inference run for the US Census experiment. Does not include the time taken to generate
synthetic data, or run any downstream analysis. The LA rows record the runtime for obtaining the Laplace approximation
for NAPSU-MQ that is used in the NUTS inference, so the total runtime for a NAPSU-MQ run with NUTS is the sum of
the LA and NUTS rows. Experiments were run on 4 CPU cores of a cluster.

Mean Standard Deviation
Algorithm Epsilon

LA

0.1 2 min 2 s 76.8 s
0.3 1 min 35 s 23.8 s
0.5 1 min 51 s 44.0 s
1.0 1 min 51 s 44.8 s

NUTS

0.1 3 h 32 min 25 s 2836 s
0.3 1 h 57 min 45 s 989 s
0.5 1 h 31 min 15 s 951 s
1.0 1 h 8 min 6 s 477 s

PEP

0.1 17 s 0.6 s
0.3 18 s 1.0 s
0.5 17 s 0.4 s
1.0 17 s 0.5 s

PGM

0.1 1 min 57 s 2.8 s
0.3 1 min 58 s 3.2 s
0.5 1 min 57 s 4.2 s
1.0 1 min 57 s 3.2 s

PGM-repeat-10

0.1 19 min 22 s 28.0 s
0.3 19 min 18 s 21.9 s
0.5 19 min 36 s 33.9 s
1.0 19 min 25 s 22.0 s

PGM-repeat-20

0.1 38 min 38 s 50.2 s
0.3 38 min 59 s 37.5 s
0.5 38 min 57 s 40.5 s
1.0 38 min 39 s 74.7 s

PGM-repeat-5

0.1 9 min 45 s 17.6 s
0.3 9 min 38 s 8.9 s
0.5 9 min 45 s 12.8 s
1.0 9 min 43 s 9.8 s

RAP

0.1 28 s 2.4 s
0.3 28 s 2.0 s
0.5 27 s 1.2 s
1.0 27 s 3.5 s
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Figure S10: Comparison of marginal query accuracy for US Census data. NAPSU-MQ is almost as accurate as PGM for
all values of ε, and is on par with PGM-repeat, as with the Adult data in Figure S8. The panels show the average total
variation distance of all 1-way marginal distributions (left) or all 2-way marginal distributions (right) between the original
discretised data and synthetic data, averaged over 20 repeats. For NAPSU-MQ and PGM-repeat-m, the synthetic marginal
distributions were estimated by averaging over m synthetic datasets, with m = 100 for NAPSU-MQ. RAP and PEP have
average total variation distances over 0.1 for both 1-way and 2-way marginals for all values of ε.
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