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Abstract

The “Propose-Test-Release” (PTR) framework
[Dwork and Lei, 2009] is a classic recipe for
designing differentially private (DP) algorithms
that are data-adaptive, i.e. those that add less
noise when the input dataset is “nice”. We ex-
tend PTR to a more general setting by privately
testing data-dependent privacy losses rather than
local sensitivity, hence making it applicable be-
yond the standard noise-adding mechanisms, e.g.
to queries with unbounded or undefined sensi-
tivity. We demonstrate the versatility of gener-
alized PTR using private linear regression as a
case study. Additionally, we apply our algorithm
to solve an open problem from “Private Aggre-
gation of Teacher Ensembles (PATE)” [Papernot
et al., 2017, 2018] — privately releasing the entire
model with a delicate data-dependent analysis.

1 Introduction

The guarantees of differential privacy (DP) [Dwork et al.,
2006] are based on worst-case outcomes across all possible
datasets. A common paradigm is therefore to add noise
scaled by the global sensitivity of a query f , which measures
the maximum change in f between any pair of neighboring
datasets.

A given dataset X might have a local sensitivity ∆LS(X)
that is much smaller than the global sensitivity ∆GS , in
which case we can hope to add a smaller amount of noise
(calibrated to the local rather than global sensitivity) while
achieving the same privacy guarantee. This must not be un-
dertaken naïvely; the local sensitivity is a dataset-dependent
function and so calibrating noise to the local sensitivity
could leak information about the dataset [Nissim et al.,
2007].
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The “Propose-Test-Release” (PTR) framework [Dwork and
Lei, 2009] resolves this issue by introducing a test to pri-
vately check whether a proposed bound on the local sensi-
tivity is valid. Only if the test “passes” is the output released
with noise calibrated to the proposed bound on the local
sensitivity.

PTR is a powerful tool for designing data-adaptive DP algo-
rithms, but it has several limitations. First, it applies only to
noise-adding mechanisms which calibrate noise according
to the sensitivity of a query. Second, the test in “Propose-
Test-Release” is computationally expensive for all but a few
simple queries such as privately releasing the median or
mode. Third, while some existing works [Decarolis et al.,
2020, Kasiviswanathan et al., 2013, Liu et al., 2021] follow
the adaptive approach of privately testing properties of an in-
put dataset for “niceness”1, there has not been a systematic
recipe for discovering which properties should be tested.

In this paper, we propose a generalization of PTR which
addresses these limitations. The centerpiece of our frame-
work is a differentially private test on the data-dependent
privacy loss. This test does not directly consider the local
sensitivity of a query and is therefore not limited to additive
noise mechanisms. Moreover, in many cases the test can
be efficiently implemented by privately releasing a high-
probability upper bound, thus avoiding the need to search
an exponentially large space of datasets. Furthermore, the
derivation of the test itself often spells out exactly what
properties of the input dataset need to be checked, which
streamlines the design of data-adaptive DP algorithms.

Our contributions are summarized as follows:

1. We propose a generalization of PTR which can handle
algorithms beyond noise-adding mechanisms. Gener-
alized PTR allows us to plug in any data-dependent
DP analysis to construct a high-probability DP test
that adapts to favorable properties of the input dataset,
without painstakingly designing each test from scratch.

2. We show that many existing examples of PTR and PTR-
like methods can be unified under the generalized PTR

1We refer to these as PTR-like algorithms.
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framework, sometimes resulting in a tighter analysis
(see an example of report-noisy-max in Section C.1).

3. We demonstrate that one can publish a DP model
through privately upper-bounding a one-dimensional
statistic — no matter how complex the output space
of the mechanism is. We apply this result to solve an
open problem from PATE [Papernot et al., 2017, 2018].

4. Our results broaden the applicability of private hy-
perparameter tuning [Liu and Talwar, 2019, Papernot
and Steinke, 2021] in enabling joint selection of DP-
specific parameters (e.g., noise level) and native param-
eters of the algorithm (e.g., regularization).

2 Related Work

Data-dependent DP algorithms. Privately calibrating
noise to the local sensitivity is a well-studied problem. One
approach is to add noise calibrated to the smooth sensitivity
[Nissim et al., 2007], an upper bound on the local sensitivity
which changes slowly between neighboring datasets. An
alternative to this — and the focus of our work — is Propose-
Test-Release (PTR) [Dwork and Lei, 2009], which works
by calculating the distance Dβ(X) to the nearest dataset
to X whose local sensitivity violates a proposed bound β.
The PTR algorithm then adds noise toDβ(X) before testing
whether this privately computed distance is large enough to
permit releasing the output with noise calibrated to β.

PTR spin-offs abound. Notable examples include stability-
based methods [Thakurta and Smith, 2013] (stable local
sensitivity of 0 near the input data) and privately releasing
upper bounds of local sensitivity [Kasiviswanathan et al.,
2013, Liu et al., 2021, Decarolis et al., 2020]. We refer read-
ers to Chapter 3 of Vadhan [2017] for a concise summary
of these classic results. More recently, Wang et al. [2022]
have provided Rényi DP bounds [Mironov, 2017] for PTR
and demonstrated its applications to robust DP-SGD. Our
work (Section 5.2) also considers applications of PTR in
data-adaptive private deep learning: Instead of testing the lo-
cal sensitivity of each gradient step as in Wang et al. [2022],
our PTR-based PATE algorithm tests the data-dependent
privacy loss as a whole.

Liu et al. [2021] proposed the High-dimensional Propose-
Test-Release (HPTR) framework. HPTR provides a sys-
tematic way of solving DP statistical estimation problems
by using the exponential mechanism (EM) with carefully
constructed scores based on certain one-dimensional ro-
bust statistics, which have stable local sensitivity bounds.
HPTR focuses on designing data-adaptive DP mechanisms
from scratch; our method, in contrast, converts existing
randomized algorithms (including EM and even some that
do not satisfy DP) into those with formal DP guarantees.
Interestingly, our proposed method also depends on a one-

dimensional statistic of direct interest: the data-dependent
privacy loss.

Data-dependent DP losses. The flip side of data-dependent
DP algorithms is the study of data-dependent DP losses
[Papernot et al., 2018, Soria-Comas et al., 2017, Wang,
2017], which fix the randomized algorithm but parameter-
ize the resulting privacy loss by the specific input dataset.
For example: In the simple mechanism that adds Laplace
noise with parameter b, data-dependent DP losses are
ϵ(X) = ∆LS(X)/b. The data-dependent DP losses ϵ(X)
are often much smaller than the DP loss ϵ, but they them-
selves depend on the data and thus may reveal sensitive
information; algorithms satisfying a data-dependent privacy
guarantee are not formally DP with guarantees any smaller
than that of the worst-case. Existing work has considered
privately publishing these data-dependent privacy losses
[Papernot et al., 2018, Redberg and Wang, 2021], but notice
that privately publishing these losses does not improve the
DP parameter of the given algorithm. Part of our contribu-
tion is to resolve this conundrum by showing that a simple
post-processing step of the privately released upper bound
of ϵ(X) gives a formal DP algorithm.

Private hyperparameter tuning. Our work has a nice con-
nection with private hyperparameter tuning. Prior work [Liu
and Talwar, 2019, Papernot and Steinke, 2021] requires each
candidate configuration to be released with the same DP (or
Rényi DP) parameter set. Another hidden assumption is that
the parameters must not be privacy-correlated (i.e., parame-
ter choice will not change the privacy guarantee). Otherwise
we need to use the largest DP bound across all candidates.
For example, Liu and Talwar [2019] show that if each mech-
anism (instantiated with one group of hyperparameters) is
(ϵ, 0)-DP, then running a random number of mechanisms
and reporting the best option satisfies (3ϵ, 0)-DP. Our work
directly generalizes the above results by (1) considering a
wide range of hyperparameters, either privacy-correlated or
not; and (2) requiring only that individual candidates have a
testable data-dependent DP.

3 Preliminaries

Datasets X,X ′ ∈ X are neighbors if they differ by no more
than one datapoint; we say X ≃ X ′ if d(X,X ′) ≤ 1.

We measure the distance d(·) between same-sized datasets
X = {xi}ni=1 and X̃ = {x̃i}ni=1 as the number of coordi-
nates that differ between them:

d(X, X̃) = #{i ∈ [n] : xi ̸= x̃i}.

We use || · || to denote the radius of the smallest Euclidean
ball that contains the input set, e.g. ||X || = supx∈X ||x||.

For mechanisms with continuous output space, the probabil-
ity density ofM(X) at y is denoted Pr[M(X) = y].
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Definition 3.1 (Differential privacy [Dwork et al., 2006]).
Fix ϵ, δ ≥ 0. A randomized algorithm M : X → R
satisfies (ϵ, δ)-DP if for all neighboring datasets X ≃ X ′

and for all measurable sets S ⊆ R,

Pr
[
M(X) ∈ S

]
≤ eϵPr

[
M(X ′) ∈ S

]
+ δ.

Definition 3.2 (Sensitivity). The global ℓ∗-sensitivity of a
function f is defined as

∆GS = max
X,X′:X≃X′

||f(X)− f(X ′)||∗

and its local sensitivity at dataset X is

∆LS(X) = max
X≃X′

||f(X)− f(X ′)||∗.

Theorem 3.3 (Noise-adding mechanisms [Dwork et al.,
2006, Balle and Wang, 2018]). Consider a real-valued func-
tion f : X → R with global ℓ1-sensitivity ∆1 and global
ℓ2-sensitivity ∆2.

The Laplace mechanism M(X) = f(X) + Lap (∆1/ϵ)
satisfies ϵ-differential privacy.

The Gaussian mechanism M(X) = f(X) + N (0, σ2)
satisfies (ϵ, δ(ϵ))-differential privacy for all ϵ ≥ 0 with
δ(ϵ) = Φ(∆2

2σ −
ϵσ
∆2

)− eϵΦ(−∆2

2σ + ϵσ
∆2

), where Φ is the cu-
mulative density function of a standard normal distribution.

3.1 Propose-Test-Release

Calibrating the noise level to the local sensitivity ∆LS(X)
of a function would allow us to add less noise and therefore
achieve higher utility for releasing private queries. However,
the local sensitivity is a data-dependent function and naïvely
calibrating the noise level to ∆LS(X) will not satisfy DP.

PTR resolves this issue in a three-step procedure: propose
a bound on the local sensitivity, privately test that the bound
is valid (with high probability), and if so calibrate noise
according to the bound and release the output.

PTR privately computes the distance Dβ(X) between the
input dataset X and the nearest dataset X ′′ whose local
sensitivity exceeds the proposed bound β:

Dβ(X) = min
X′′
{d(X,X ′′) : ∆LS(X

′′) > β}.

Algorithm 1 Propose-Test-Release [Dwork and Lei, 2009]
1: Input: Dataset X; privacy parameters ϵ, δ; proposed

bound β; query function f : X → R.
2: if Dβ(X) + Lap

(
1
ϵ

)
≤ log(1/δ)

ϵ then output ⊥,

3: else release f(X) + Lap
(

β
ϵ

)
.

Theorem 3.4 (PTR [Dwork and Lei, 2009]). Algorithm 1
satisfies (2ϵ, δ)-DP.

Rather than proposing an arbitrary bound β on ∆LS(X),
one can also privately release an upper bound of the lo-
cal sensitivity and calibrate noise according to this upper
bound. This was used for node DP in graph statistics [Ka-
siviswanathan et al., 2013], and for fitting topic models
using spectral methods [Decarolis et al., 2020].

4 Generalized PTR

This section introduces the generalized PTR framework.
We first formalize the notion of data-dependent differential
privacy that conditions on an input dataset X .

Definition 4.1 (Data-dependent privacy). Suppose we have
δ > 0 and a function ϵ : X → R+. We say that mechanism
M satisfies (ϵ(X), δ) data-dependent DP2 for dataset X if
for all possible output sets S and neighboring datasets X ′,

Pr
[
M(X) ∈ S

]
≤ eϵ(X)Pr

[
M(X ′) ∈ S

]
+ δ,

Pr
[
M(X ′) ∈ S

]
≤ eϵ(X)Pr

[
M(X) ∈ S

]
+ δ.

In generalized PTR, we propose a value (or set of values) ϕ
with which to parameterize mechanismMϕ. For instance,
in Example 4.5 we might propose ϕ = (γ, λ) as a parameter
set that includes the noise scale and regularization strength.
For a given δ, we then say that mechanism Mϕ satisfies
ϵϕ(X) data-dependent DP for dataset X .

The following example illustrates how to derive the data-
dependent DP for a familiar friend – the Laplace mecha-
nism.

Example 4.2. (Data-dependent DP of Laplace Mechanism.)
Given a function f : X → R, we will define

Mϕ(X) = f(X) + Lap (ϕ) .

We then have

log
Pr[Mϕ(X) = y]

Pr[Mϕ(X ′) = y]
≤ |f(X)− f(X ′)|

ϕ
.

Maximizing over all possible outputs y yields an equality
between the two expressions above. Using Definition 4.1,

ϵϕ(X) = max
X′:X≃X′

|f(X)− f(X ′)|
ϕ

=
∆LS(X)

ϕ
.

Maximizing ϵϕ(X) over X recovers the standard DP guar-
antee of runningM with parameter ϕ.

Algorithm 2 distills the generalized PTR framework into
a simple procedure: we run mechanismM with proposed
parameter ϕ only if the test T “passes”.

Let’s suppose that our privacy budget for mechanismMϕ

is (ϵ, δ); that our test T satisfies (ϵ̂, δ̂)-DP; and that T has
2We will sometimes write that M(X) satisfies ϵ(X) data-

dependent DP w.r.t. δ.
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a “false positive” rate δ′, meaning T passes an insufficient
proposal ϕ (where Mϕ exceeds its privacy budget) with
probability at most δ′. Theorem 4.3 states the privacy guar-
antee of generalized PTR under these assumptions.

Algorithm 2 Generalized Propose-Test-Release
1: Input: Dataset X; mechanismMϕ : X → R and its

privacy budget ϵ, δ; (ϵ̂, δ̂)-DP test T ; false positive rate
≤ δ′; data-dependent DP function ϵϕ(·) w.r.t. δ.

2: if not T (X) then output ⊥,
3: else release θ =Mϕ(X).

Theorem 4.3 (Privacy guarantee of generalized PTR). Con-
sider a proposal ϕ and a data-dependent DP function
ϵϕ(X) w.r.t. δ. Suppose that we have an (ϵ̂, δ̂)-DP test
T : X → {0, 1} such that when ϵϕ(X) > ϵ,

T (X) =

{
0 with probability 1− δ′,

1 with probability δ′.

Then Algorithm 2 satisfies (ϵ+ ϵ̂, δ + δ̂ + δ′)-DP.

Proof sketch. We can split the possible input datasets X
into two main cases based on the data-dependent DP for a
given δ: ϵϕ(X) > ϵ and ϵϕ(X) ≤ ϵ. At a high level, we
can analyze both cases using the composition property of
DP (that ϵ’s and δ’s “add up”) and then combine them by
taking an upper bound of the maximum value of the ϵ’s and
δ’s between the two cases.

By the “false positive” assumption on the test T , the first
case can be viewed as a composition of an (ϵ̂, δ̂)-DP mecha-
nism and a (0, δ′)-DP mechanism. The second case, when
the data-dependent DP is at most ϵ, is a composition of an
(ϵ̂, δ̂)-DP mechanism and an (ϵ, δ)-DP mechanism.

Full details of the proof are provided in the appendix.

Remark 4.4. The appendix (Section B.4) also includes
an RDP [Mironov, 2017] analysis of Algorithm 2, where
we demonstrate that by assuming a data-independent RDP
bound ofMϕ, it is possible to replace DP budgets and tests
from Algorithm 2 with their RDP counterparts. The overall
RDP guarantee can then be amplified by the false positive
rate δ′.

Generalized PTR is a strict generalization of Propose-Test-
Release. For some function f , defineMϕ and T as follows:

Mϕ(X) = f(X) + Lap(ϕ);

T (X) =

{
0 if Dβ(X) + Lap

(
1
ϵ

)
> log(1/δ)

ϵ ,

1 otherwise.

Notice that our choice of parameterization is now ϕ = β
ϵ ,

where ϕ is the scale of the Laplace noise. In other words,
we know from Example 4.2 that ϵϕ(X) > ϵ exactly when
∆LS(X) > β.

For noise-adding mechanisms such as the Laplace mecha-
nism, the sensitivity is proportional to the privacy loss in
both the global and local sense: ∆GS ∝ ϵ and ∆LS(X) ∝
ϵ(X). Therefore for these mechanisms the only difference
between privately testing the local sensitivity (Algorithm 1)
and privately testing the data-dependent DP (Theorem 4.3)
is a change of parameterization.

4.1 Limitations of local sensitivity

Why do we want to generalize PTR beyond noise-adding
mechanisms? Compared to classic PTR, the generalized
PTR framework allows us to be more flexible in both the
type of test conducted and also the type of mechanism whose
output we wish to release. For many mechanisms, the local
sensitivity either does not exist or is only defined for spe-
cific data-dependent quantities (e.g., the sensitivity of the
score function in the exponential mechanism) rather than
the mechanism’s output.

The following example illustrates this issue.
Example 4.5 (Private posterior sampling). LetM : X ×
Y → Θ be a private posterior sampling mechanism [Mi-
nami et al., 2016, Wang et al., 2015, Gopi et al., 2022] for
approximately minimizing FX(θ).

M samples θ ∼ P (θ) ∝ e−γ(FX(θ)+λ/2||θ||22) with parame-
ters γ, λ. Note that γ, λ cannot be appropriately chosen for
this mechanism to satisfy DP without calculating the sensi-
tivity of argminFX(θ), which in many cases (e.g., logistic
regression) lacks a closed-form solution. In fact, the global
and local sensitivity of the minimizer is unbounded even in
linear regression problems, i.e when FX(θ) = 1

2 ||y−Xθ||22.

Output perturbation algorithms do work for the above prob-
lem when we regularize, but they are known to be subopti-
mal in theory and in practice [Chaudhuri et al., 2011]. In
Section 5.1 we demonstrate how to apply generalized PTR
to achieve a data-adaptive posterior sampling mechanism.

Even in the cases of noise-adding mechanisms where PTR
seems to be applicable, it does not lead to a tight privacy
guarantee. Specifically, by an example of privacy amplifi-
cation by post-processing (Example C.1 in the appendix),
we demonstrate that the local sensitivity does not capture
all sufficient statistics for data-dependent privacy analysis
and thus is loose.

4.2 Which ϕ to propose

A limitation of generalized PTR (inherited from its pre-
decessor) is that one needs to “propose” a good guess of
parameter ϕ. Take the example of ϕ being the noise level in
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a noise-adding mechanism. Choosing too small a ϕ will re-
sult in a useless output ⊥, while choosing too large a ϕ will
add more noise than necessary. Finding this ‘Goldilocks’ ϕ
might require trying out many different possibilities – each
of which will consume privacy budget.

This section introduces a method to jointly tune privacy
parameters (e.g., noise scale) along with parameters related
only to the utility of an algorithm (e.g., learning rate or batch
size in stochastic gradient descent) — while avoiding the ⊥
output.

Algorithm 3 takes a list of parameters as input, runs general-
ized PTR with each of the parameters, and returns the output
with the best utility. We show that the privacy guarantee
with respect to ϵ is independent of the number of ϕ that we
try.

Formally, let ϕ1, ..., ϕk be a set of hyperparameters and
θ̃i ∈ {⊥,Range(M)} the output of running generalized
PTR with ϕi on dataset X . Let Xval be a public validation
set and q(θ̃i) be the score of evaluating θ̃i with Xval (e.g.,
validation accuracy). The goal is to select a pair (θ̃i, ϕi)
such that DP model θ̃i maximizes the validation score.

The generalized PTR framework with privacy calibration
is described in Algorithm 3; its privacy guarantee is an
application of Liu and Talwar [2019].

Algorithm 3 PTR with hyperparameter selection
1: Input: Privacy budget per PTR algorithm (ϵ∗, δ∗), cut-

off T , parameters ϕ1:k, flipping probability τ and vali-
dation score function q(·).

2: Initialize the set S = ∅.
3: Draw G from a geometric distribution Dτ and let T̂ =

min(T,G).
4: for i = 1 ,..., T̂ do
5: pick a random ϕi from ϕ1:k.
6: evaluate ϕi: (θ̃i, q(θ̃i))← Algorithm 2(ϕi, (ϵ

∗, δ∗)).
7: S ← S ∪ {θ̃i, q(θ̃i)}.
8: Output the highest scored candidate from S.

Theorem 4.6 ( Theorem 3.4 [Liu and Talwar, 2019] ). Fix
any τ ∈ [0, 1], δ2 > 0 and let T = 1

τ log 1
δ2

. If each oracle
access to Algorithm 2 is (ϵ∗, δ∗)-DP, then Algorithm 3 is
(3ϵ∗ + 3

√
2δ∗,
√
2δ∗T + δ2)-DP.

The theorem implies that one can try a random number of ϕ
while paying a constant ϵ. In practice, we can roughly set
τ = 1

10k so that the algorithm is likely to test all k parame-
ters. We emphasize that the privacy and the utility guarantee
(stated in the appendix) is not our contribution. But the idea
of applying generalized PTR to enforce a uniform DP guar-
antee over all choices of parameters with a data-dependent
analysis is new.

In the appendix (Section B.3), we also show how to avoid
hyperparameter selection by directly tuning (rather than

proposing) ϕ using a uniform bound of ϵϕ(X). We use this
technique to tune γ in Example 5.2.

4.3 Construction of the DP test

Classic PTR uses the Laplace mechanism to construct a
differentially private upper bound of Dβ(X), the distance
from input dataset X to the closest dataset whose local
sensitivity exceeds the proposed bound β. The tail bound
of the Laplace distribution then ensures that if Dβ(X) = 0
(that is, if ∆LS(X) > β), then the output will be released
with only a small probability δ.

The following theorem shows that we could instead use a
differentially private upper bound of the data-dependent DP
ϵϕ(X) in order to test whether to run the mechanismMϕ.
Theorem 4.7 (Generalized PTR with private upper bound).
Suppose we have a differentially private upper bound of
ϵϕ(X) w.r.t. δ such that with probability at least 1 − δ′,
ϵPϕ (X) > ϵϕ(X). Further suppose we have an (ϵ̂, δ̂)-DP
test T such that

T (X) =

{
1 if ϵPϕ (X) < ϵ,

0 otherwise.

Then Algorithm 2 is (ϵ+ ϵ̂, δ + δ̂ + δ′)-DP.

In Section 5.2, we demonstrate how to upper-bound the
data-dependent DP through a modification of the smooth
sensitivity framework applied on ϵϕ(X). In Section 5.1 we
provide a direct application of Theorem 4.7 with private
linear regression by making use of the per-instance DP
technique [Wang, 2017].

The applications in Section 5 are illustrative of two distinct
approaches to constructing the DP test for generalized PTR:

1. Private sufficient statistics release (used in the private
linear regression example of Section 5.1) specifies the
data-dependent DP as a function of the dataset and
privately releases each data-dependent component.

2. The second approach (used in the PATE example of
Section 5.2) uses the smooth sensitivity framework to
privately release the data-dependent DP as a whole,
and then construct a high-confidence test using the
Gaussian mechanism.

These two flavors cover most of the scenarios arising in
data-adaptive analysis. For example, in the appendix we
demonstrate the merits of generalized PTR in handling data-
adaptive private generalized linear models (GLMs) using
private sufficient statistics release. Moreover, sufficient
statistics release together with our private hyperparameter
tuning (Algorithm 3) can be used to construct data-adaptive
extensions of DP-PCA and Sparse-DP-ERM (see details in
the future work section).
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5 Applications

In this section, we put into action our approaches to con-
struct the DP test and provide applications in private linear
regression and PATE.

5.1 Private Linear Regression

Theorem 5.1 ([Wang, 2017]). For input data X ∈ X and
Y ∈ Y , define the following:

• λmin(X) denotes the smallest eigenvalue of XTX;

• ||θ∗λ|| is the magnitude of the solution θ∗λ = (XTX +
λI)−1XTY ;

• and L(X,Y ) := ||X ||
(
||X || ||θ∗λ||+ ||Y||

)
is the local

Lipschitz constant, denoted L in brief.

For brevity, denote λ∗ = λ+ λmin(X). The algorithm used
in Example 4.5 with proposal ϕ = (λ, γ) obeys (ϵϕ(Z), δ)
data-dependent DP for each dataset Z = (X,Y ) with
ϵϕ(Z) equal to√

γL2 log(2/δ)

λ∗ +
γL2

2(λ∗ + ||X ||2)
+

1 + log(2/δ)||X ||2

2λ∗ .

Notice that ϵϕ(Z) is a function of the data-dependent quan-
tities λmin(X) and L (which is itself a function of ||θ∗λ||).
Could we privately release ϵϕ(Z) and tune the privacy pa-
rameters ϕ = (λ, γ) based on the sanitized data-dependent
DP? Unfortunately in this case, ||θ∗λ|| is a complicated func-
tion of λ and it is not clear how to choose an optimal λ.

The calibration of γ, however, is fairly straightforward from
the expression for ϵϕ(Z) given in Theorem 5.1. We can ap-
ply the generalized PTR framework to the private posterior
sampling problem described in Example 4.5 by proposing
ϕ = λ as the regularization parameter; releasing a high-
probability upper bound ϵPλ (Z) of the data-dependent DP,
as a function of γ; and tuning the noise scale γ to achieve
the desired utility under the constraint ϵPλ (Z) ≤ ϵ.

Example 5.2 (OPS for linear regression with PTR). Con-
sider the posterior sampling mechanism described in Ex-
ample 4.5 and the expression ϵϕ(Z) given in Theorem 5.1.
Suppose we have a quality score q(·) that measures the util-
ity of the input parameter, e.g. q(γ) = γ for the inverse
noise scale. We can apply generalized PTR as follows.

• Given a proposed value ϕ = λ, privately release
λmin(X) and L with combined privacy budget (ϵ̂, δ̂) in
order to obtain ϵPλ (Z) such that with probability 1−δ′,
ϵPλ (Z) ≤ ϵλ(Z).

• Calibrate γ∗ = supq(γ){γ | ϵPλ (Z) ≤ ϵ}.

• Output θ ∼ e−
γ∗

2 (||Y−Xθ||22+λ||θ||22) if γ∗ exists; else
output ⊥.

In the appendix, we provide full details of the above algo-
rithm and show that it satisfies (ϵ+ ϵ̂, δ + δ̂ + δ′)-DP.

The main idea of the above algorithm boils down to privately
releasing all data-dependent quantities in data-dependent DP,
constructing high-probability confidence intervals of these
quantities, and then deciding whether to run the mechanism
M with the proposed parameters. In Example 4.5, we need
only propose λ as we can tune γ directly based on ϵPλ (Z).

Remark 5.3. Tuning λ is even more troublesome for gener-
alized linear models (GLMs) beyond linear regression. The
data-dependent DP there involves a local strong-convexity
parameter that is a complex function of the regularizer λ and
for which we only have zeroth-order access. In the appendix,
we demonstrate how to apply generalized PTR to provide a
generic solution to a family of private GLMs where the link
function satisfies a self-concordance assumption.

We next apply Algorithm 3 for Example 5.2 with UCI re-
gression datasets. Standard z-scoring is applied and each
data point is normalized with a Euclidean norm of 1. We
consider (60%, 10%, 30%) splits for the train, validation
and test sets.

Baselines

• Output Perturbation (Outpert) [Chaudhuri et al., 2011]:
θ = (XTX+λI)−1XTy. Release θ̂ = θ+b with an
appropriate λ, where b is a Gaussian random vector.

• Posterior sampling (OPS). Sample θ̂ ∼ P (θ) ∝
e−γ(F (θ)+0.5λ||θ||2) with parameters γ, λ.

• Adaptive posterior sampling (AdaOPS) [Wang, 2018].
Run OPS with (λ, γ) chosen adaptively according to
the dataset.

Outpert and OPS serve as two non-adaptive baselines. In
particular, we consider OPS-Balanced [Wang, 2018], which
chooses λ to minimize a data-independent upper bound of
empirical risk and dominates other OPS variants. AdaOPS is
one state-of-the-art algorithm for adaptive private regression,
which automatically chooses λ by minimizing an upper
bound of the data-dependent empirical risk.

We implement OPS-PTR as follows: propose a list of λ
through grid search (we choose k = 30 and λ ranges from
[2.5, 2.510] on a logarithmic scale); instantiate Algorithm 3
with τ = 0.05/k, T = 1

τ log(1/δ2) and δ2 = 1/2δ; cali-
brate the per-PTR privacy budget (ϵ∗, δ∗) according to Theo-
rem 4.6; set ϵ = ϵ̂ = 0.5ϵ∗ and δ = 1/6δ∗, δ′ = 1/2δ∗, δ̂ =
1/3δ∗; calibrate γ to meet the privacy requirement for each
λ; sample θ̂ using (λ, γ) and return the one with the best
validation accuracy.
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Figure 1: Differentially private linear regression algorithms on UCI datasets. y-axis reports the MSE error with confidence
intervals. ϵ is evaluated with δ = 1e−6.

Figure 1 demonstrates how the MSE error of the linear
regression algorithms varies with the privacy budget ϵ. Out-
Pert suffers from the large global sensitivity of output θ.
OPS performs well but does not benefit from the data-
dependent quantities. AdaOPS is able to adaptively choose
(λ, γ) based on the dataset, but suffers from the estimation
error of the data-dependent empirical risk. On the other
hand, OPS-PTR selects a (λ, γ) pair that minimizes the em-
pirical error on the validation set directly, and the privacy
parameter γ adapts to the dataset thus achieving the best
result.

5.2 PATE

In this section, we apply generalized PTR to solve an open
problem from Private Aggregation of Teacher Ensembles
(PATE) [Papernot et al., 2017, 2018] — privately publishing
the entire model through sanitizing the data-dependent DP
losses. Our algorithm uses of smooth sensitivity [Nissim
et al., 2007] and the Gaussian mechanism to construct a high-
probability test of the data-dependent DP. Data-dependent
DP is one-dimensional, enabling efficient computation un-
der the smooth sensitivity framework. This approach is
thus generally applicable for private data-adaptive analyses
beyond PATE.

PATE is a knowledge transfer framework for model-agnostic
private learning. In this framework, an ensemble of teacher
models is trained on the disjoint private data and uses the
teachers’ aggregated consensus answers to supervise the
training of a “student” model agnostic to the underlying
machine-learning algorithms. By publishing only the ag-
gregated answers and by the careful analysis of the “con-
sensus”, PATE has become a practical technique in recent
private model training.

The tight privacy guarantee of PATE heavily relies on a

delicate data-dependent DP analysis, for which the authors
of PATE use the smooth sensitivity framework to privately
publish the data-dependent privacy cost. However, it re-
mains an open problem to show that the released model is
DP under data-dependent analysis. Our generalized PTR
resolves this gap by carefully testing a private upper bound
of the data-dependent privacy cost. Our algorithm is fully
described in Algorithm 4, where the modification over the
original PATE framework is highlighted in blue.

Algorithm 4 takes the input of privacy budget (ϵ′, ϵ̂, δ), unla-
beled public data x1:T and K teachers’ predictions on these
data. The parameter ϵ denotes the privacy cost of publishing
the data-dependent DP and ϵ′ is the predefined privacy bud-
get for testing. nj(xi) denotes the the number of teachers
that agree on label j for xi and C denotes the number of
classes. The goal is to privately release a list of plurality out-
comes — argmaxj∈[C]nj(xi) for i ∈ [T ] — and use these
outcomes to supervise the training of a “student” model in
the public domain. The parameter σ1 denotes the noise scale
for the vote count.

In their privacy analysis, Papernot et al. [2018] compute the
data-dependent RDPσ1(α,X) of labeling the entire group
of student queries. RDPσ1(α,X) can be orders of magni-
tude smaller than its data-independent version if there is a
strong agreement among teachers. Note that RDPσ1

(α,X)
is a function of the RDP order α and the dataset X , anal-
ogous to our Definition 4.1 but subject to RDP [Mironov,
2017].

Theorem 5.4 ([Papernot et al., 2018]). If the top three vote
counts of xi are n1 > n2 > n3 and n1−n2, n2−n3 ≫ σ1,
then the data-dependent RDP of releasing argmaxj{nj +

N (0, σ2
1)} satisfies (α, exp{−2α/σ2

1}/α)-RDP and the
data-independent RDP (using the Gaussian mechanism)
satisfies (α, α

σ2
1
)-RDP.
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Algorithm 4 PATE with generalized PTR
1: Input: Unlabeled public data x1:T , aggregated teachers

prediction n(·), privacy parameter ϵ̂, ϵ′, δ, noisy param-
eter σ1.

2: Set α = 2 log(2/δ)
ϵ̂ + 1, σs = σ2 =

√
3α+2

ϵ̂ , δ2 = δ/2,

smoothness parameter β = 0.2
α .

3: Compute noisy labels: yi
p ← argmaxj∈[C]{nj(xi) +

N (0, σ2
1)} for all i ∈ [1 : T ].

4: RDPσ1
(α,X) ← data-dependent RDP at the α-th or-

der.
5: SSβ(X)← the smooth sensitivity of RDPupper

σ1
(α,X).

6: Privately release µ := log(SSβ(X)) + β · N (0, σ2
2) +√

2 log(2/δ2) · σ2 · β
7: RDPupper

σ1
(α) ← an upper bound of data-dependent

RDP through Lemma 5.5.
8: ϵσ1

← DP guarantee converted from RDPupper
σ1

(α).
9: If ϵ′ ≥ ϵσ1

return a student model trained using
(x1:T ; y

p
1:T ).

10: Else return ⊥.

However, RDPσ1(α,X) is data-dependent and thus can-
not be revealed. The authors therefore privately pub-
lish the data-dependent RDP using the smooth sensitiv-
ity framework [Nissim et al., 2007]. The smooth sensi-
tivity calculates a smooth upper bound on the local sen-
sitivity of RDPσ1

(α,X), denoted as SSβ(X), such that
SSβ(X) ≤ eβSSβ(X

′) for any neighboring dataset X and
X ′. By adding Gaussian noise scaled by the smooth sensi-
tivity (i.e., releasing ϵσ1

(α,X) + SSβ(X) · N (0, σ2
s)), the

privacy cost can be safely published.

Unlike most noise-adding mechanisms, the standard de-
viation σs cannot be published since SSβ(X) is a data-
dependent quantity. Moreover, this approach fails to pro-
vide a valid privacy guarantee of the noisy labels obtained
through the PATE algorithm, as the published privacy cost
could be smaller than the real privacy cost. Our solution in
Algorithm 4 looks like the following:

• Privately release an upper bound of the smooth sensi-
tivity SSβ(X) with eµ.

• Conditioned on a high-probability event of eµ, publish
the data-dependent RDP with RDPupper

σ1
(α).

• Convert RDPupper
σ1

(α) back to the standard DP guaran-
tee using RDP to DP conversion at δ/2.

• Test if the converted DP is above the predefined budget
ϵ′.

The following lemma states that RDPupper
σ1

(α) is a valid
upper bound of the data-dependent RDP.

Lemma 5.5 (Private upper bound of data-dependent RDP).
We are given a RDP function RDP(α,X) and a β-smooth

sensitivity bound SS(·) of RDP(α,X). Let µ (defined in
Algorithm 4) denote the private release of log(SSβ(X)).
Let the (β, σs, σ2)-GNSS mechanism be

RDPupper(α):=RDP(α,X)+SSβ(X)·N (0,σ2
s)+σs

√
2 log( 2

δ2
)eµ

Then, the release of RDPupper(X) satisfies (α, 3α+2
2σ2

s
)-RDP

for all 1 < α < 1
2β ; w.p. at least 1− δ2, RDPupper(α) is an

upper bound of RDP(α,X).

The proof (deferred to the appendix) makes use of the facts
that: (1) the log of SSβ(X) has a bounded global sensitivity
β through the definition of smooth sensitivity; (2) releas-
ing RDPσ1(α,X) + SSβ(X) · N (0, σ2

s) is (α, α+1
σ2
s
)-RDP

(Theorem 23 from Papernot et al. [2018]).

Now we can state the privacy guarantee of Algorithm 4.

Theorem 5.6. Algorithm 4 satisfies (ϵ′ + ϵ̂, δ)-DP.

In the proof, the choice of α ensures that the cost of the δ/2
contribution (used in the RDP-to-DP conversion) is roughly

ϵ̂/2. Then the release of RDPupper
σ1

(α) with σs =
√

2+3α
ϵ̂

accounts for another cost of (ϵ/2, δ/2)-DP.

Empirical results. We next empirically evaluate Algo-
rithm 4 (PATE-PTR) on the MNIST dataset. Following the
experimental setup from Papernot et al. [2018], we consider
the training set to be the private domain, and the testing set is
used as the public domain. We first partition the training set
into 400 disjoint sets and 400 teacher models, each trained
individually. Then we select T = 200 unlabeled data from
the public domain, with the goal of privately labeling them.
To illustrate the behaviors of algorithms under various data
distributions, we consider two settings of unlabeled data,
high-consensus and low-consensus. In the low-consensus
setting, we choose T unlabeled data such that there is no
high agreement among teachers, so the advantage of data-
adaptive analysis is diminished. We provide further details
on the distribution of these two settings in the appendix.

Baselines. We consider the Gaussian mechanism as a data-
independent baseline, where the privacy guarantee is valid
but does not take advantage of the properties of the dataset.
The data-dependent DP ( Papernot et al. [2018]) serves as a
non-private baseline, which requires further sanitation. Note
that these two baselines provide different privacy analyses
of the same algorithm (see Theorem 5.4).

Figure 2 plots privacy-utility tradeoffs between the three
approaches by varying the noise scale σ1. The purple region
denotes a set of privacy budget choices (ϵ̂ + ϵ′ used in
Algorithm 4) such that the utility of the three algorithms is
aligned under the same σ1. In more detail, the purple region
is lower-bounded by ϵ̂+ϵσ1

. We first fix σs = σ2 = 15 such
that ϵ̂ is fixed. Then we empirically calculate the average of
ϵσ1 (the private upper bound of the data-dependent DP) over
10 trials. Running Algorithm 4 with any choice of ϵ̂ + ϵ′
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Figure 2: Privacy and utility tradeoffs with PATE. When σ1 is aligned, three algorithms provide the same utility. y-axis plots
the privacy cost of labeling T = 200 public data with δ = 10−5. The left figure considers the high-consensus case, where
the data-adaptive analysis is preferred.

chosen from the purple region implies ϵ′ > ϵσ1 . Therefore,
PATE-PTR will output the same noisy labels (with high
probability) as the two baselines.

Observation As σ1 increases, the privacy loss of the Gaus-
sian mechanism decreases, while the data-dependent DP
curve does not change much. This is because the data-
dependent DP of each query is a complex function of both
the noise scale and the data and does not monotonically de-
crease when σ1 increases (see more details in the appendix).
However, the data-dependent DP still dominates the Gaus-
sian mechanism for a wide range of σ1. Moreover, PATE-
PTR nicely interpolates between the data-independent DP
guarantee and the non-private data-adaptive DP guaran-
tee. In the low-consensus case, the gap between the data-
dependent DP and the DP guarantee of the Gaussian mecha-
nism unsurprisingly decreases. Meanwhile, PATE-PTR (the
purple region) performs well when the noise scale is small
but deteriorates when the data-independent approach proves
more advantageous. This example demonstrates that using
PTR as a post-processing step to convert the data-dependent
DP to standard DP is effective when the data-adaptive ap-
proach dominates others.

6 Limitations and Future Work

One weakness of generalized PTR is that it requires a case-
specific privacy analysis. Have we simply exchanged the
problem of designing a data-adaptive DP algorithm with
the problem of analyzing the data-dependent privacy loss?
We argue that this limitation is inherited from classic PTR.
In situations where classic PTR is not applicable, we’ve
outlined several approaches to constructing the DP test for
our framework (see Sections 4.3 and 5.2).

Furthermore, the data-dependent privacy loss is often more

straightforward to compute than local sensitivity, and often
exists in intermediate steps of classic DP analysis already.
Most DP analysis involves providing a high-probability tail
bound of the privacy loss random variable. If we stop before
taking the max over the input dataset, then we get a data-
dependent DP loss right away (as in Example 4.2).

There are several exciting directions for applying general-
ized PTR to more problems. Sufficient statistics release
with private hyperparameter tuning can be used to construct
data-adaptive extensions of DP-PCA [Dwork et al., 2014b]
and Sparse-DP-ERM [Kifer et al., 2012]. For DP-PCA we
could use Algorithm 3 to tune the variance of the noise
added to the spectral gap; for Sparse-DP-ERM we would
test the restricted strong convexity parameter (RSC) and not
add additional regularization if the RSC is already large.

7 Conclusion

Generalized PTR extends the classic “Propose-Test-Release”
framework to a more general setting by testing the data-
dependent privacy loss of an input dataset, rather than its
local sensitivity. In this paper we’ve provided several ex-
amples – private linear regression with hyperparameter se-
lection and PATE – to illustrate how generalized PTR can
enhance DP algorithm design via a data-adaptive approach.
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A Summary of PTR Variants

PTR Generalized PTR

Private Test Test ∆LS ≤ β for a proposed bound β, then add
noise ∝ β if the test passes [Vadhan, 2017, Sec
3.2].

Test ϵϕ ≤ ϵ for a proposed parameter ϕ, then
runMϕ if the test passes (Alg 2)

Private pointwise
bounds no analogous algorithm

Release ϵ̄ s.t. ϵϕ ≤ ϵ̄ for a fixed ϕ w.h.p. for
general randomized mechanismMϕ, then run
Mϕ if ϵ̄ ≤ ϵ (Alg 2).

Private uniform
bounds

Release ∆̄ s.t. ∆LS ≤ ∆̄ w.h.p for a noise-
adding mechanism with noise ∝ ∆̄ [Vadhan,
2017, Sec 3.4]. (Choose appropriate noise level
σ, no ⊥.)

Release ϵ̄ϕ s.t. ϵϕ ≤ ϵ̄ϕ for all ϕ w.h.p. for
general randomized mechanismMϕ (Choose
appropriate ϕ, no ⊥, as in Alg 5)

Stability-based Test ∆LS = 0 before releasing stable numerical
value deterministically [Vadhan, 2017, Sec 3.3].

Test ϵϕ = 0 before releasing stable general out-
put deterministically (special case of Alg 2).

What to propose? Select β ∈ {β1, ..., βM} s.t. ∆LS ≤ β passes
the test (using e.g. AboveThreshold)3

Select ϕ ∈ {ϕ1, ..., ϕM}, s.t. ϵϕ passes the test
(using private selection as in Alg 3).

Table 1: A summary of our generalization to the standard variants of PTR. The vanilla PTR, often implemented using a
distance test was proposed originally in Dwork and Lei [2009]. The stability-based argument was originally proposed by
Thakurta and Smith [2013]. We are citing the book of Vadhan [2017] for a clean treatment to these PTR-like mechanisms.
The corresponding generalized version are from this paper.

B Omitted algorithms and proofs in Section 4

B.1 Main privacy result of Theorem 4.3

Proof of Theorem 4.3. The proof of our main privacy result relies on two central properties of differential privacy: composi-
tion and immunity to post-processing. We review these below.

Theorem B.1 (Composition [Dwork et al., 2014a]). For i ∈ [k], letMi : Z → Ri be a randomized algorithm satisfying
(ϵi, δi)-DP. Define the mechanismM : Z →

∏k
i=1Ri asM(Z) = (M1(Z),M2(Z), . . . ,Mk(Z)). ThenM satisfies(∑k

i=1 ϵi,
∑k

i=1 δi

)
-DP.

Theorem B.2 (Closure under post-processing [Dwork et al., 2014a]). Consider a mechanismM : Z → R that satisfies
(ϵ, δ)-DP. Let f : R → R′ be a data-independent (randomized or deterministic) mapping. Then f ◦M satisfies (ϵ, δ)-DP.

LetM denote the mechanism described in Algorithm 2. We split the input space X into two cases.

Case I: ϵϕ(X) > ϵ

We restrict the input space to X̃ = {X ∈ X | ϵϕ(X) > ϵ}, forM : X̃ → R ∪ {⊥}. Let E be the event T (X) = 1 and
consider a possible output set S ⊆ R ∪ {⊥}. Recall that the test T satisfies (ϵ̂, δ̂)-DP.

When ⊥∈ S,

Pr
[
M(X) ∈ S ∩ EC

]
= Pr [T (X) = 0]

≤ eϵ̂Pr [T (X ′) = 0] + δ̂

= eϵ̂Pr
[
M(X ′) ∈ S ∩ EC

]
+ δ̂.

This inequality also holds true when ⊥/∈ S, in which event Pr
[
M(X) ∈ S ∩ EC

]
= Pr

[
M(X ′) ∈ S ∩ EC

]
= 0.

3This is probably folklore. We could not find the particular approach with AboveThreshold presented in the literature — the original
PTR work by Dwork and Lei [2009] uses composition, thus depends on poly(M), while using AboveThreshold (or our approach with
general DP selection) incurs only log(M).
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From the assumption of Theorem 4.3 on the test T , Pr [E] = Pr [T (X) = 1] ≤ δ′. So

Pr [M(X) ∈ S ∩ E] ≤ Pr [E] ≤ δ′.

Putting these together, we have

Pr [M(X) ∈ S] = Pr
[
M(X) ∈ S ∩ EC

]
+ Pr [M(X) ∈ S ∩ E]

≤ eϵ̂Pr
[
M(X ′) ∈ S ∩ EC

]
+ δ̂ + δ′

≤ eϵ̂Pr [M(X ′) ∈ S] + δ̂ + δ′.

Case II: ϵϕ(X) ≤ ϵ

ConsiderM : ˜̃X → R∪ {⊥}, with the input space restricted to ˜̃X = {X ∈ X | ϵϕ(X) ≤ ϵ}.

SinceMϕ satisfies (ϵϕ(X), δ) data-dependent DP for dataset X , for any neighboring dataset X ′ and output set Θ ⊆ R we
have

Pr [Mϕ(X) ∈ Θ] ≤ eϵϕ(X)Pr [Mϕ(X
′) ∈ Θ] + δ,

Pr [Mϕ(X
′) ∈ Θ] ≤ eϵϕ(X)Pr [Mϕ(X) ∈ Θ] + δ.

By the assumption ϵϕ(X) ≤ ϵ,

Pr [Mϕ(X) ∈ Θ] ≤ eϵPr [Mϕ(X
′) ∈ Θ] + δ,

Pr [Mϕ(X
′) ∈ Θ] ≤ eϵPr [Mϕ(X) ∈ Θ] + δ.

Therefore the mechanismMϕ : ˜̃X → R satisfies (ϵ, δ)-DP.

Now consider an “expanded” mechanism M∗(X) = (T (X),Mϕ(X)) that differs from M by releasing both the test
output and the parameterized mechanism output. Instead of post-processing the test output to determine whether to
run Mϕ, the mechanism M∗ runs Mϕ(X) regardless of the outcome of T (X). Define a post-processing function
P : {0, 1} ×R → R∪ {⊥} as follows:

P(T, θ) =

{
⊥ if T = 0,

θ if T = 1.

By composition (Theorem B.1), the expanded mechanismM∗ satisfies (ϵ̂+ ϵ, δ̂+ δ)-DP. WritingM = P ◦M∗, by closure
to post-processing (Theorem B.2) we see thatM also satisfies (ϵ̂+ ϵ, δ̂+ δ)-DP. △

To complete the proof, we recall that X = X̃ ∪ ˜̃X . So combining the two cases (and restoring the input space), the
mechanismM : X → R ∪ {⊥} satisfies (ϵ∗, δ∗)-DP for ϵ∗ = max(ϵ̂, ϵ + ϵ̂) = ϵ + ϵ̂ and δ∗ = max(δ̂ + δ′, δ + δ̂) =

δ̂ +max(δ′, δ) ≤ δ + δ̂ + δ′.

B.2 Utility guarantee of Algorithm 3

The utility of Algorithm 3 depends on how many rounds that Algorithm 2 is invoked. We next provide the utility guarantee
of Algorithm 3, which follows a simplification of the result in the Section A.2 of Papernot and Steinke [2021].

Theorem B.3. Suppose applying Algorithm 2 with each ϕi has an equal probability to achieve the highest validation score.
Let T̂ denotes the number of invocation of Algorithm 2, where T̂ follows a truncated geometric distribution. Then the

expected quantile of the highest score candidate is given by ET̂

[
1− 1

T̂+1

]
.

In practice, we can roughly set τ = 1
10k so that the algorithm is likely to test all k parameters.
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Proof. Suppose each oracle access to Q(X) has a probability 1/k of achiving the best validation accuracy. Let β denote the
probability that A (shorthand for Algorithm 3) outputs the best choice of ϕi.

β = 1− Pr[A(X)is not best]

= 1− ET̂

[
Pr[Q(X)is not best]T̂

]
= 1− ET̂

[
(1− 1

k
)T̂

]
.

Let f(x) = E[xT̂ ]. Applying a first-order approximation on f(1− 1
k ), we have f(1− 1

k ) ≈ f(1)− f ′(1) · 1k = 1−E[T̂ ]/k.
Then, if k is large and we choose τ = 0.1/k, A can roughly return the best ϕi.

B.3 Avoid hyperparameter selection with a uniform bound

The sufficient statistics of ϵϕ(X) are sometimes independent to ϕ. In this case, the resulting ϵPϕ (X) from Approach 1 above
is a valid upper bound of ϵϕ(X) for all ϕ simultaneously with high probability. In this case, we can directly choose a valid
ϕ using the uniform upper bound, rather than proposing one as Algorithm 2, while avoiding hyperparameter selection
all together as in Algorithm 3. The procedure is summarized in Algorithm 5. This subsumes the classical procedure for
privately releasing an upper bound of the local sensitivity [Vadhan, 2017, Section 3.4].

There are also cases where the bound is only partially uniform over some coordinates of ϕ. In these cases, Algorithm 5 can
be used to reduce the dimension of the search space in Algorithm 3 (e.g., Example 5.2).

Algorithm 5 Generalized PTR with Uniform bound

1: Input: Dataset X; mechanismMϕ : X → R and its privacy budget ϵ, δ; (ϵ̂, δ̂)-DP algorithm A that outputs ϵ̄(·) such
that ϵ̄(ϕ) ≥ ϵϕ(X)∀ϕ with probability 1− δ′, where ϵϕ(X) is the data-dependent DP w.r.t. δ.

2: Release ϵ̄(·) = A(X).
3: Choose ϕ such that ϵ̄(ϕ) ≤ ϵ
4: Release θ =Mϕ(X).

Theorem B.4. Algorithm 5 satisfies (ϵ+ ϵ̂, δ + δ̂ + δ′)-DP.

Proof. LetM : X → R denote the mechanism described in Algorithm 5.

We viewM as a composition of two parts: an (ϵ̂, δ̂)-DP algorithm A and the release of θ =Mϕ(X). First of all, note that
A outputs ϵ̄(·) such that for all ϕ, ϵ̄ ≥ ϵϕ(X) with probability at least 1− δ′. Let E denote the event that ϵϕ(X) ≤ ϵ̄, and
observe that Pr[EC ] ≤ δ′.

Then we have

Pr[Mϕ(X) ∈ S] = Pr[Mϕ(X) ∈ S | E] + Pr[Mϕ(X) ∈ S | Ec] (1)
≤ Pr[Mϕ(X) ∈ S | E] + δ′ (2)

≤ eϵ̄(ϕ)Pr[Mϕ(X
′) ∈ S | E] + δ′ + δ (3)

≤ eϵ̄(ϕ)Pr[Mϕ(X
′) ∈ S] + δ′ + δ (4)

≤ eϵPr[Mϕ(X
′) ∈ S] + δ′ + δ. (5)

The inequality holds for both directions (i.e., we can swap X and X ′).

The second inequality comes from the definition of ϵ̄(ϕ) and the last inequality is because we have conditioned on event E
which ensures that ϵ̄(ϕ) ≤ ϵ.

Finally, by the composition theorem over algorithm A andMϕ, we have thatM satisfies (ϵ+ ϵ̂, δ̂ + δ + δ′)-DP.
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B.4 RDP analysis of generalized PTR

Algorithm 6 Generalized Propose-Test-Release with RDP
1: Input: Dataset X; the RDP parameter α, mechanismMϕ : X → R that satisfies (α, ϵ̃(α))-RDP and its RDP budget

ϵ(α); An (α, ϵ̂(α))-RDP test T ; false positive rate ≤ δ′; data-dependent RDP function ϵϕ(α,X) w.r.t. α.
2: if not T (X) then output ⊥,
3: else release θ =Mϕ(X).

Theorem B.5 (Privacy guarantee of generalized PTR with RDP). Consider a proposal ϕ and a data-dependent RDP
function ϵϕ(α,X) w.r.t. α. Suppose thatMϕ satisfies (α, ϵ̃(α))-RDP for every dataset and we have an (α, ϵ̂(α))-RDP test
T : X → {0, 1} such that when ϵϕ(α,X) > ϵ(α),

T (X) =

{
0 with probability 1− δ′,

1 with probability δ′.

Then Algorithm 2 satisfies (α, ϵ̂(α) + 1
α−1 log

(
δ′e(α−1)ϵ̃(α) + (1− δ′)e(α−1)ϵ(α)

)
)-RDP.

Proof. We can view Algorithm 2 as a composition of two part: an (α, ϵ̂)-RDP test and a decision of whether or not running
θ =Mϕ(X) based on the output of the test. LetM : X → {R,⊥} denote the randomized algorithm of the second part,
where we use P,Q to denote the distribution ofM(X) andM(X ′) respectively. Let E denote the false positive event of
the test T : the test passes but ϵ(α,X) > ϵ(α).

We have

EQ[(dP/dQ)α] = EQ[(dP/dQ)α|E]PQ[E] + EQ[(dP/dQ)α|Ec]PQ(E
c)

≤ δ′e(α−1)ϵ̃(α) + (1− δ′)e(α−1)ϵ(α)

The inequality uses the fact thatMϕ(·) satisfies (α, ϵ̃(α))-RDP for all datasets and includes the event of E. Therefore,M

satisfies (α, 1
α−1 log

(
δ′e(α−1)ϵ̃(α) + (1− δ′)e(α−1)ϵ(α)

)
-RDP. Finally, we conclude the proof using the composition rule

of RDP over two parts.

C Omitted examples in the main body

In this section, we provide more examples to demonstrate the merits of generalized PTR. We focus on a simple example of
post-processed Laplace mechanism in Section C.1 and then an example on differentially private learning of generalized
linear models in Section 4. In both cases, we observe that generalized PTR provides data-adaptive algorithms with formal
DP guarantees that are simple, effective and not previously proposed in the literature (to the best of our knowledge).

C.1 Limits of the classic PTR in private binary voting

The following example demonstrates that classic PTR does not capture sufficient data-dependent quantities even when the
local sensitivity exists and can be efficiently tested.

Example C.1. Consider a binary class voting problem: n users vote for a binary class {0, 1} and the goal is to output
the class that is supported by the majority. Let ni denote the number of people who vote for the class i. We consider the
report-noisy-max mechanism:

M(X) : argmaxi∈[0,1]ni(X) + Lap(b),

where b = 1/ϵ denotes the scale of Laplace noise.
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In the example, we will (1) demonstrate the merit of data-dependent DP; and (2) empirically compare classic PTR with
generalized PTR.

We first explicitly state the data-dependent DP.

Theorem C.2. The data-dependent DP of the above example is

ϵ(X) := max
X′
{| log p

p′
|, | log 1− p

1− p′
|},

where p := Pr[n0(X) + Lap(1/ϵ) > n1(X) + Lap(1/ϵ)] and p′ := Pr[n0(X
′) + Lap(1/ϵ) > n1(X

′) + Lap(1/ϵ)].
There are four possible neighboring datasets X ′ : n0(X

′) = max(n0(X) ± 1, 0), n1(X
′) = n1(X) or n0(X

′) =
n0(X), n1(X

′) = max(n1(X)± 1, 0).

In Figure 3(a), we empirically compare the above data-dependent DP with the Laplace mechanism by varying the gap
between the two vote counts |n0(X)− n1(X)|. The noise scale is fixed to ϵ = 10. The data-dependent DP substantially
improves over the standard DP if the gap is large. However, the data-dependent DP is a function of the dataset. We next
demonstrate how to apply generalized PTR to exploit the data-dependent DP.

Notice that the probability n0(X) + Lap(1/ϵ) > n1(X) + Lap(1/ϵ) is equal to the probability that a random variable
Z := X − Y exceeds ϵ(n1(X)− n0(X)), where X,Y are two independent Lap(1) distributions. We can compute the pdf

of Z through the convolution of two Laplace distributions, which implies fX−Y (z) =
1 + |z|
4e|z|

. Let t denote the difference

between n1(X) and n0(X), i.e., t = n1(X)− n0(X). Then we have

p = Pr[Z > ϵ · t] = 2 + ϵ · t
4 exp(ϵ · t)

Similarly, p′ =
2 + ϵ · (t+ ℓ)

4 exp(ϵ · (t+ ℓ))
, where ℓ ∈ [−1, 1] denotes adding or removing one data point to construct the neighboring

dataset X ′. Therefore, we can upper bound log(p/p′) by

log
p

p′
=

2 + ϵ · t
4 exp(ϵ · t)

· 4 exp(ϵ(t+ ℓ))

2 + ϵ · (t+ ℓ)

≤ ϵ · log
(

2 + ϵt

2 + ϵ(t+ 1)

)
= ϵ log

(
1− ϵ

2 + ϵ(t+ 1)

)

Then we can apply generalized PTR by privately lower-bounding t.

On the other hand, the local sensitivity ∆LS(X) of this noise-adding mechanism is 0 if t > 1. Specifically, if the gap is
larger than one, adding or removing one user will not change the result. To apply classic PTR, we let γ(X) denote the
distance to the nearest dataset X

′′
such that ∆LS > 0 and test if γ(X) + Lap(1/ϵ) > log(1/δ)

ϵ . Notice in this example that
γ(X) = max(t− 1, 0) can be computed efficiently. We provide the detailed implementation of these approaches.

1. Gen PTR: lower bound t with tp = t− log(1/δ)
ϵ̃ + Lap(1/ϵ̃). Calculate an upper bound of data-dependent DP ϵp using

Theorem C.2 with tp. The algorithm then tests if ϵp is within an predefined privacy budget ϵ′. If the test passes, the
algorithm returns argmaxi∈[0,1]ni(X) + Lap(1/ϵ) satisfies (ϵ̃+ ϵ′, δ)-DP.

2. classic PTR: lower bound t with tp = t− log(1/δ)
ϵ̃ + Lap(1/ϵ̃). If tp > 1, classic PTR outputs the ground-truth result

else returns a random class. This algorithm satisfies (ϵ̃, δ)-DP.

3. Laplace mechanism.M(X) : argmaxi∈[0,1]ni(X) + Lap(1/ϵ).M is (ϵ, δ)-DP.

We argue that though the Gen-PTR and the classic PTR are similar in privately lower-bounding the data-dependent quantity
t, the latter does not capture sufficient information for data-adaptive analysis. That is to say, only testing the local sensitivity
restricts us from learning helpful information to amplify the privacy guarantee if the test fails. In contrast, our generalized
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Figure 3: In Figure 3(a), we compare the privacy guarantee by varying the gap. In Figure 3(b) We fix t = n0(X)−n1(X) =
100 and compare privacy cost when the accuracy is aligned. Gen-PTR with any choice of privacy budget (ϵ̃+ ϵ′) chosen
from the purple region would achieve the same utility as Laplace mechanism but with a smaller privacy cost. The curve of
Gen-PTR is always below than that of the classic PTR, which implies that Gen-PTR can result a tighter privacy analysis
when the utility is aligned.

PTR, where privacy parameters and the local sensitivity parameterize the data-dependent DP, can handle those failure cases
nicely.

To confirm this conjecture, Figure 3(b) plots a privacy-utility trade-off curve between these three approaches. We consider a
voting example with n0(X) = n1(X) + 100 and t = 100, chosen such that the data-adaptive analysis is favorable.

In Figure 3(b), we vary the noise scale b = 1/ϵ between [0, 0.5]. For each choice of b, we plot the privacy guarantee of three
algorithms when the error rate is aligned. For Gen-PTR, we set ϵ̃ = 1

2b and empirically calculate ϵp over 100000 trials.

In the plot, when ϵ ≪ log(1/δ)
t , the classic PTR is even worse than the Laplace mechanism. This is because the classic

PTR is likely to return ⊥ while the Laplace mechanism returns argmaxi∈[0,1]ni(X) + Lap(1/ϵ), which contains more
useful information. Compared to the Laplace mechanism, Gen-PTR requires an extra privacy allocation ϵ̃ to release the gap
t. However, it still achieves an overall smaller privacy cost when the error rate ≤ 10−5 (the purple region). Meanwhile,
Gen-PTR dominates the classic PTR (i.e., the dashed black curve is always below the blue curve). Note that the classic
PTR and the Gen-PTR utilize the gap information differently: the classic PTR outputs ⊥ if the gap is not sufficiently large,
while the Gen-PTR encodes the gap into the data-dependent DP function and tests the data-dependent DP in the end. This
empirical result suggests that testing the local sensitivity can be loosely compared to testing the data-dependent DP. Thus,
Gen-PTR could provide a better privacy-utility trade-off.

C.2 Self-concordant generalized linear model (GLM)

In this section, we demonstrate the effectiveness and flexibility of generalized PTR in handling a family of GLMs where the
link function satisfies a self-concordance assumption. This section is organized as follows:

• Introduce a family of GLMs with the self-concordance property.

• Introduce a general output perturbation algorithm for private GLMs.

• Analyze the data-dependent DP of GLMs with the self-concordance property.

• Provide an example of applying our generalized PTR framework to logistic regression.

Consider the empirical risk minimization problem of the generalized linear model

θ∗ = argminθ
∑
i=1n

li(θ) + r(θ),
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where l : R×R→ R belongs to a family of convex GLMs: li(θ) = l(y, xT
i θ). Let r : Rd → R be a regularization function.

We now define the self-concordance property.

Definition C.3 (Generalized self-concordance [Bach, 2010]). A convex and three-times differentiable function f : Θ→ R
is R-generalized-self-concordant on an open nonempty convex set Θ∗ ⊂ Θ with respect to norm ∥ · ∥ if for all u ∈ Θ∗ and
all v ∈ Rd,

∇3f(u)[v, v, v] ≤ 2R∥v∥(∇2f(u)[v, v]).

The closer R is to 0, the “nicer” — more self-concordant — the function is. A consequence of (generalized) self-concordance
is the spectral (multiplicative) stability of Hessian to small perturbations of parameters.

Lemma C.4 (Stability of Hessian[Nesterov and Nemirovskii, 1994, Theorem 2.1.1], [Bach, 2010, Proposition 1]). Let
Hθ := ∇2Fs(θ). If Fs is R-self-concordant at θ, then for any v such that R∥v∥Hθ

< 1, we have that

(1−R∥v∥Hθ
)2∇2Fs(θ) ≺ ∇2Fs(θ + v)

≺ 1

(1−R∥v∥Hθ
)2
∇2Fs(θ).

If instead we assume Fs is R-generalized-self-concordant at θ with respect to norm ∥ · ∥, then

e−R∥v∥∇2Fs(θ) ≺ ∇2Fs(θ + v) ≺ eR∥v∥∇2Fs(θ)

The two bounds are almost identical when R∥v∥ and R∥v∥θ are close to 0. In particular, for x ≤ 1/2, we have that
e−2x ≤ 1− x ≤ e−x.

In particular, the loss function of binary logistic regression is 1-generalized self-concordant.

Example C.5 (Binary logistic regression). Assume ∥x∥2 ≤ 1 for all x ∈ X and y ∈ {−1, 1}. Then binary logistic regression
with datasets in X ×Y has a log-likelihood of F (θ) =

∑n
i=1 log(1+e−yix

T
i θ). The univariate function l := log(1+exp(·))

satisfies

|l′′′| =
∣∣∣∣exp (·)(1− exp (·))

(1 + exp (·))3

∣∣∣∣ ≤ exp (·)
(1 + exp (·))2

:= l′′.

We next apply the modified output perturbation algorithm to privately release θ∗. The algorithm is simply:

1. Solve

θ∗ = argminθ

n∑
i=1

li(θ) + r(θ).

2. Release
θ̂ = θ∗ + Z,

where γ > 0 is a tuning parameter and Z ∼ N (0, γ−1(
∑n

i=1∇2li(θ) +∇2r(θ))−1).

The data-dependent DP of the above procedure is stated as follows.

Theorem C.6 (Data-dependent DP of GLM). Denote the smooth part of the loss function Fs =
∑n

i=1 l(yi, < xi, · >)+rs(·).
Assume the following:

1. The GLM loss function l is convex, three-times continuously differentiable and R-generalized-self-concordant w.r.t.
∥ · ∥2,

2. Fs is locally α-strongly convex w.r.t. ∥ · ∥2,

3. and in addition, denote L := supθ∈[θ∗,θ̃∗] |l′(y, xT θ)|, β := supθ∈[θ∗,θ̃∗] |l′′(y, xT θ)|. That is, ℓ(·) is L-Lipschitz and
β-smooth.

We then have the data-dependent DP

ϵ(Z) ≤ R(L+ β)

α
(1 + log(2/δ)) +

γL2

α
+

√
γL2

α
log(2/δ).
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The proof follows by taking an upper bound of the per-instance DP loss (Theorem E.1) ϵ(Z, z) over z = (x, y) ∈ (X ,Y).

Notice that the Hessians can be arbitrarily singular and α could be 0, which leads to an infinite privacy loss without additional
assumptions. Thus, we will impose an additional regularization of form λ

2 ||θ||
2, which ensures that for any dataset FS is

λ-strongly convex.

This is not yet DP because it is still about a fixed dataset. We also need a pre-specified privacy budget (ϵ, δ). We next
demonstrate how to apply the generalized PTR to provide a general solution to the above GLM, using logistic regression as
an example.

Remark C.7 (Logistic regression). For logistic regression, we know L ≤ 1, β ≤ 1/4 and if ∥x∥2 ≤ 1, it is 1-generalized
self-concordant. For any dataset Z = (X, y), the data-dependent DP ϵ(X) w.r.t. δ can be simplified to:

1.25

α
(1 + log(2/δ)) +

γ

α
+

√
γ

α
log(2/δ)

Now, the data-dependent DP is a function of α and γ, where α denotes the local strong convexity at θ∗λ and γ controls the
noise scale. We next show how to select these two parameters adapted to the dataset.

Example C.8. We demonstrate here how we apply generalized PTR to output perturbation of the logistic regression problem.

1. Take an exponential grid of parameters {λ} and propose each λ.

2. Solve for θ∗λ = argminθF (θ) + λ∥θ∥2/2

3. Calculate the smallest eigenvalue λmin(∇2F (θ∗λ)) (e.g., using power method).

4. Differentially privately release λmin with λp
min := max{λmin +

√
log(4/δ)

ϵ/2 · ∆GS · Z −
√

2 log(4/δ)·log(1/δ)∆GS

ϵ/2 , 0},
where ∆GS denote the global sensitivity of λmin using Theorem C.11.

5. Let ϵp(·) be instantiated with ϵ(X) w.r.t. δ from Remark C.7, where α = λp
min + λ. Then, conditioned on a high

probability event, ϵp(·) (a function of γ) is a valid DP bound that holds for all datasets and all parameters γ.

6. Calculate the maximum γ such that ϵpδ/2(γ) ≤ ϵ/2.

7. Release θ̂ ∼ N (θ∗λ, γ
−1∇2Fs(θ

∗
λ)

−1).

8. Evaluate the utility on the validation set and return the (λ, γ) pair that leads to the highest utility.

Theorem C.9. For each proposed λ, the algorithm that releases θ̂ ∼ N (θ∗λ, γ
−1∇2Fs(θ

∗
λ)

−1) is (ϵ, 2δ)-DP.

Proof. The proof follows the recipe of generalized PTR with private upper bound (Example 4.7). First, the release of
λmin(∇2F (θ∗λ)) is (ϵ/2, δ/2)-DP. Then, with probability at least 1− δ, ϵpδ(·) > ϵδ(X) holds for all X and γ. Finally, γ is
chosen such that the valid upper bound is (ϵ/2, δ/2)-DP.

For the hyperparameter tuning on λ (Steps 1 and 8), we can use Algorithm 3 to evaluate each λ.

Unlike Example 5.2, the λmin(∇2F (θ∗λ)) is a complicated data-dependent function of λ. Thus, we cannot privately release
the data-dependent quantity λmin(∇2F (θ∗λ)) without an input λ. The PTR approach allows us to test a number of different λ
and hence get a more favorable privacy-utility trade-off.

An interesting perspective of this algorithm for logistic regression is that increasing the regularization α is effectively
increasing the number of data points within the soft “margin”4 of separation, hence a larger contribution to the Hessian from
the loss function.

Remark C.10. The PTR solution for GLMs follows a similar recipe: propose a regularization strength λ; construct a lower
bound of the strong convexity α at the optimal solution θ∗λ; and test the validity of data-dependent DP using Theorem E.1.

Before moving on to other applications of generalized PTR, we will show how to differentially privately release λmin

according to the requirements of the logistic regression example.
4If we think of logistic regression as a smoothed version of SVM, then increasing α leads to more support vectors. The “margin” is

“softer” in logistic regression, but qualitatively the same.
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C.3 Differentially privately release λmin

(
∇2F (θ)

)
To privately release λmin∇2F (θ), we first need to compute its global sensitivity. Once we have that then we can release it
differentially privately using either the Laplace mechanism or the Gaussian mechanism.
Theorem C.11 (Global sensitivity of the minimum eigenvalue at the optimal solution). Let F (θ) =

∑n
i=1 fi(θ) + r(θ) and

F̃ (θ) = F (θ) + f(θ) where f1, ..., fn are loss functions corresponding to a particular datapoint x. Let θ∗ = argminθF (θ)
and θ̃∗ = argminθF̃ (θ). Assume f is L-Lipschitz and β-smooth, r(θ) is λ-strongly convex, and F and F̃ are R-self-
concordant. If in addition, λ ≥ RL, then we have

sup
X,x

(λmin(∇2F (θ∗λ))− λmin(∇2F̃ (θ̃∗λ))) ≤ 2RL+ β.

Proof.

λmin(∇2F (θ∗λ))− λmin(∇2F̃ (θ̃∗λ))

= (λmin(∇2F (θ∗λ))− λmin(∇2F̃ (θ∗λ)))

+ (λmin(∇2F̃ (θ∗λ))− λmin(∇2F̃ (θ̃∗λ))).

(6)

We first bound the part on the left. By applying Weyl’s lemma λ(X + E)− λ(X) ≤ ||E||2, we have

sup
x
||∇2F (θ∗λ)−∇2 ˜F (θ∗λ)||2 = ||∇2f(θ∗λ)||2 ≤ β (7)

In order to bound the part on the right, we apply the semidefinite ordering using self-concordance, which gives

e−R∥θ̃∗
λ−θ∗

λ∥∇2F̃ (θ̃∗λ) ≺ ∇
2F̃ (θ∗λ) ≺ eR∥θ̃∗

λ−θ∗
λ∥∇2F̃ (θ̃∗λ).

By the Courant-Fischer Theorem and the monotonicity theorem, we also have that for the smallest eigenvalue

e−R∥θ̃∗
λ−θ∗

λ∥λmin

(
∇2F̃ (θ̃∗λ)

)
≤ λmin

(
∇2F̃ (θ∗λ)

)
≤ eR∥θ̃∗

λ−θ∗
λ∥λmin

(
∇2F̃ (θ̃∗λ)

)
.

(8)

Moreover by Proposition E.2, we have that

∥θ̃∗λ − θ∗λ∥2 ≤
∥∇f(θ̃∗λ)∥

λmin

(
∇2F̃ (θ̃∗λ)

) ≤ L

λmin

(
∇2F̃ (θ̃∗λ)

) .
If λmin

(
∇2F̃ (θ̃∗λ)

)
≥ RL, then use that ex − 1 ≤ 2x for x ≤ 1. Substituting the above bound to (8) then to (6) together

with (7), we get a data-independent global sensitivity bound of

λmin(∇2F (θ∗λ))− λmin(∇2F̃ (θ̃∗λ)) ≤ 2RL+ β

as stated.

Proposition C.12. Let ∥ · ∥ be a norm and ∥ · ∥∗ be its dual norm. Let F (θ), f(θ) and F̃ (θ) = F (θ) + f(θ) be proper
convex functions and θ∗ and ˜theta

∗
be their minimizers, i.e., 0 ∈ ∂F (θ∗) and 0 ∈ ∂F̃ ( ˜theta

∗
). If in addition, F, F̃ is

α, α̃-strongly convex with respect to ∥ · ∥ within the restricted domain θ ∈ {tθ∗ + (1− t)θ̃∗ | t ∈ [0, 1]}. Then there exists
g ∈ ∂f(θ∗) and g̃ ∈ ∂f(θ̃∗) such that

∥θ∗ − θ̃∗∥ ≤ min

{
1

α
∥g̃∥∗,

1

α̃
∥g∥∗

}
.

Proof. Apply the first order condition to F restricted to the line segment between θ̃∗ and θ∗, we get

F (θ̃∗) ≥ F (θ∗) + ⟨∂F (θ∗), θ̃∗ − θ∗⟩+ α

2
∥θ̃∗ − θ∗∥2 (9)

F (θ∗) ≥ F (θ̃∗) + ⟨∂F (θ̃∗), θ∗ − θ̃∗⟩+ α

2
∥θ̃∗ − θ∗∥2 (10)
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Note by the convexity of F and f , ∂F̃ = ∂F + ∂f , where + is the Minkowski Sum. Therefore, 0 ∈ ∂F̃ (θ̃∗) implies that
there exists g̃ such that g̃ ∈ ∂f(θ̃∗) and −g̃ ∈ ∂F (θ̃∗). Take −g̃ ∈ ∂F (θ̃∗) in Equation 16 and 0 ∈ ∂F (θ∗) in Equation 15
and add the two inequalities, we obtain

0 ≥ ⟨−g̃, θ∗ − θ̃∗⟩+ α∥θ̃∗ − θ∗∥2

≥ −∥g̃∥∗∥θ∗ − θ̃∗∥+ α∥θ̃∗ − θ∗∥2.

For ∥θ̃∗ − θ∗∥ = 0 the claim is trivially true; otherwise, we can divide both sides of the above inequality by ∥θ̃∗ − θ∗∥ and
get ∥θ∗ − θ̃∗∥ ≤ 1

α∥g̃∥∗.

It remains to show that ∥θ∗ − θ̃∗∥ ≤ 1
α̃∥g∥∗. This can be obtained by exactly the same arguments above but applying strong

convexity to F̃ instead. Note that we can actually get something slightly stronger than the statement because the inequality
holds for all g ∈ ∂f(θ∗).

C.4 Other applications of generalized PTR

Besides one-posterior sampling for GLMs, there are plenty of examples that our generalized-PTR could be applied, e.g.,
DP-PCA [Dwork et al., 2014b] and Sparse-DP-ERM [Kifer et al., 2012] (when the designed matrix is well-behaved).

[Dwork et al., 2014b] provides a PTR style privacy-preserving principle component analysis (PCA). The key observation of
[Dwork et al., 2014b] is that the local sensitivity is quite “small” if there is a large eigengap between the k-th and the k+1-th
eigenvalues. Therefore, their approach (Algorithm 2) chooses to privately release a lower bound of the k-th eigengap (k is
fixed as an input) and use that to construct a high-confidence upper bound of the local sensitivity.

For noise-adding mechanisms, the local sensitivity is proportional to the data-dependent loss and generalized PTR is
applicable. We can formulate the data-dependent DP of DP-PCA as follows:

Theorem C.13. For a given matrix A ∈ Rm×n, assume each row of A has a bounded ℓ2 norm being 1. Let Vk denotes
the top k eigenvectors of ATA and dk denotes the gap between the k-th and the k + 1-th eigenvalue. Then releasing
VkV

T
k +E, where E ∈ Rn×n is a symmetric matrix with the upper triangle is i.i.d samples fromN (0, σ2) satisfies (ϵ(A), δ)

data-dependent DP and ϵ(A) =
2
√

log(1.25/δ)

σ(dk−2) .

The proof is based on the local sensitivity result from [Dwork et al., 2014b] and the noise calibration of Gaussian mechanism.

We can combine Theorem C.13 with our Algorithm 3 to instantiate the generalized PTR framework. The improvement over
Dwork et al. [2014b] will be to allow joint tuning of the parameter k and the noise variance (added to the spectral gap dk).
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Algorithm 8 OPS-PTR: One-Posterior Sample with propose-test-release (no-“perp” version)
1: Input: Data X,y. Private budget : ϵ, δ, proposed regularizer λ.
2: Calculate the minimum eigenvalue λmin(X

TX).

3: Sample Z ∼ N (0, 1) and privately release λ̃min = max
{
λmin +

√
log(6/δ)

ϵ/4 Z −
√

2 log(6/δ)·log(2/δ)
ϵ/4 , 0

}
4: Calculate θ̂ = (XTX + λI)−1XT y.
5: Sample Z ∼ N (0, 1) and privately release ∆ = log(||Y|| + ||X ||||θ̂||) + log(1+||X ||2/(λ+λ̃min))

ϵ/(4
√

6/δ)
Z +

log(1+||X ||2/(λ+λ̃min))

ϵ/(4
√

2 log(6/δ) log(2/δ))
.

6: Set the local Lipschitz L̃ := ||X||e∆.
7: Calibrate γ with Theorem 5.1(δ/3, ϵ/2.)
8: Output θ̃ ∼ p(θ|X,y) ∝ e−

γ
2 ||y−Xθ||2+λ||θ||2

D Experimental details

D.1 Experimental details in private linear regression

Algorithm 7 OPS-PTR for linear regression (an extended version of Example 5.2)
1: Input: Data Z = (X,Y ); proposed regularization strength λ; failure probabilities δ′, δ′1, δ

′
2 such that δ′1 + δ′2 = δ′;

privacy budgets (ϵ̂, δ̂) and (ϵ, δ); quality score q(·).
2: Calculate the minimum eigenvalue λmin(X) and the non-private solution θ∗λ = (XTX + λI)−1XTY .
3: Release λmin and ∆ := log(||Y||+ ||X || ||θ∗λ|| with privacy budget (ϵ̂, δ̂) such that

• λP
min ≥ λmin with probability 1− δ′1; and

• ∆P ≤ ∆ with probability 1− δ′2.

4: Construct the private upper bound of the local Lipschitz constant:

L̃ := ||X || e(∆
P ).

5: Construct the private upper bound of the data-dependent DP as a function of γ:

ϵ(γ) :=

√
γL̃2 log(2/δ)

λ+ λP
min

+
γL̃2

2(λ+ λP
min + ||X ||2)

+
1 + log(2/δ)||X ||2

2(λ+ λP
min)

.

6: Calibrate γ∗ = supq(γ){γ | ϵ(γ) ≤ ϵ}.
7: if γ∗ ≥ 0 then

8: Output θ ∼ e−
γ∗

2 (||Y−Xθ||22+λ||θ||22),
9: else

10: Output ⊥.

Algorithm 7 provides the detailed privacy calibration of the private linear regression problem.
Theorem D.1. Algorithm 7 is (ϵ+ ϵ̂, δ + δ̂ + δ′)-DP.

Proof. There are two data-dependent quantities in Theorem 5.1: λmin and L, which is a function of ||θ∗λ||.

First, we privately release λmin and log(||Y||+ ||X ||||θ̂||) using a combined privacy budget (ϵ̂, δ̂).

We apply Lemma D.2 from Wang [2018] to privately release log(||Y||+ ||X ||||θ̂||), and then construct its private upper
bound by post-processing of ∆. Specifically, the trick that we use is that log(||Y||+ ||X ||||θ̂||) has a bounded local sensitivity
for which we have an expression. Though Algorithm 7 leaves open-ended the question of how to release λmin and L, the idea
is that we could easily use the Gaussian mechanism to construct a high-probability upper bound of log(||Y||+ ||X ||||θ̂||).
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Notice that with probability at least 1− δ′1, λmin is a lower bound of λP
min. And with probability at least 1− δ′2, ∆ is an

upper bound of ∆P . A union bound over these events then ensures that with probability 1− δ′, ϵ(γ) ≤ ϵϕ(X). That is, the
expression given in Line 5 provides a valid upper bound of the data-dependent DP.

We then tune the parameter γ to satisfy the remaining privacy budget (ϵ, δ).

Lemma D.2 (Lemma 12 [Wang, 2018]). Let θ∗λ be the ridge regression estimate with parameter λ and the smallest
eigenvalue of XTX be λmin, then the function log(||Y + ||X ||||θ∗λ||) has a local sensitivity of log(1 + ||X ||2

λmin+λ
).

An idea on releasing λmin

We will state Weyl’s lemma, which we could use to calculate the global sensitivity of λmin. Notice that λmin has a global
sensitivity of ||X ||2 by Weyl’s lemma. This along with an assumption of ||X ||2 ≤ 1 could allow us to release λmin via the
Gaussian mechanism.

Lemma D.3 (Weyl’s theorem; Theorem 4.11, p. 204 in Stewart [1990]). . Let A,E be given m× n matrices with m ≥ n,
then

max
i∈[n]
|σi(A)− σi(A+ E)| ≤ ||E||2 (11)

D.2 Details of PATE case study

Definition D.4 (Renyi DP [Mironov, 2017]). We say a randomized algorithmM is (α, ϵM(α))-RDP with order α ≥ 1 if
for neighboring datasets X,X ′

Dα(M(X)||M(X ′)) :=

1

α− 1
logEo∼M(X′)

[(
Pr[M(X) = o]

Pr[M(X ′) = o]

)α]
≤ ϵM(α).

At the limit of α→∞, RDP reduces to (ϵ, 0)-DP. We now define the data-dependent Renyi DP that conditioned on an input
dataset X .

Definition D.5 (Data-dependent Renyi DP [Papernot et al., 2018]). We say a randomized algorithmM is (α, ϵM(α,X))-
RDP with order α ≥ 1 for dataset X if for neighboring datasets X ′

Dα(M(X)||M(X ′)) :=

1

α− 1
logEo∼M(X′)

[(
Pr[M(X) = o]

Pr[M(X ′) = o]

)α]
≤ ϵM(α,X).

RDP features two useful properties.

Lemma D.6 (Adaptive composition). ϵ(M1,M2) = ϵM1(·) + ϵM2(·).
Lemma D.7 (From RDP to DP). If a randomized algorithmM satisfies (α, ϵ(α))-RDP, thenM also satisfies (ϵ(α) +
log(1/δ)
α−1 , δ)-DP for any δ ∈ (0, 1).

Definition D.8 (Smooth Sensitivity). Given the smoothness parameter β, a β-smooth sensitivity of f(X) is defined as

SSβ(X) := max
d≥0

e−βd · max
X̃′:dist(X,X̃′)≤d

∆LS(X̃
′)

Lemma D.9 (Private upper bound of data-dependent RDP, Restatement of Theorem 5.5). ] Given a RDP function
RDP(α,X) and a β-smooth sensitivity bound SS(·) of RDP(α,X). Let µ (defined in Algorithm 4) denote the private
release of log(SSβ(X)). Let (β, σs, σ2)-GNSS mechanism be

RDPupper(α):=RDP(α,X)+SSβ(X)·N (0,σ2
s)+σs

√
2 log( 2

δ2
)eµ

Then, the release of RDPupper(X) satisfies (α, 3α+2
2σ2

s
)-RDP for all 1 < α < 1

2β ; w.p. at least 1 − δ2, RDPupper(α) is an
upper bound of RDP(α,X).
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Proof sketch. We first show that releasing the smooth sensitivity SSβ with eµ satisfies (α, α
2σ2

2
)-RDP. Notice that the log

of SSβ(X) has a bounded global sensitivity β (Definition D.8 implies that | logSSβ(X) − logSSβ(X
′)| ≤ β for any

neighboring dataset X,X ′). By Gaussian mechanism, scaling noise with βσ2 to logSSβ(X) is (α, α
2σ2

2
)-RDP. Therefore,

the release of RDP(α,X) is (α, ϵs(α) + α
2σ2

2
)-RDP. Since the release of f(X) + SSβ(X) · N (0, σ2

s) is (α, α+1
σ2
s
)-RDP

(Theorem 23 from Papernot et al. [2018]) for α < 1
2β , we have ϵs(α) +

α
2σ2

2
= 3α+2

2σ2
s

.

We next prove the second statement. First, notice that with probability at least 1− δ2/2, eµ ≥ SSβ(X) using the standard
Gaussian tail bound. Let E denote the event that eµ ≥ SSβ(X).

Pr

[
RDPupper(α) ≤ RDP(α,X)

]
= Pr

[
RDPupper(α) ≤ RDP(α,X)|E

]
+ Pr

[
RDPupper(α) ≤ RDP(α,X)|Ec

]
≤ Pr

[
RDPupper(α) ≤ RDP(α,X)|E

]
+ δ2/2

= Pr

[
N (0, σ2

s) · SSβ(X) ≥ σs ·
√

2 log(2/δ2)e
µ|E

]
︸ ︷︷ ︸

denoted by(∗)

+δ2/2

Condition on the event E, eµ is a valid upper bound of SSβ(X), which implies

(∗) ≤ Pr[N (0, σ2
s) · SSβ(X) ≥ σs ·

√
2 log(2/δ2)SSβ(X)|E] ≤ δ2/2

Therefore, with probability at least 1− δ2, RDPupper(α) ≥ RDP(α,X).

Theorem D.10 (Restatement of Theorem 5.6). Algorithm 4 satisfies (ϵ′ + ϵ̂, δ)-DP.

Proof. The privacy analysis consists of two components — the privacy cost of releasing an upper bound of data-dependent
RDP (ϵupper(α) := ϵs(α) +

α
2σ2

2
and the valid upper bound ϵpσ1

(α). First, set α = 2 log(2/δ)
ϵ + 1 and use RDP to DP

conversion with δ/2 ensures that the cost of δ/2 contribution to be roughly ϵ/2 (i.e., log(2/δ)
α−1 = ϵ/2). Second, choosing

σs =
√

2+3α
ϵ gives us another ϵ/2.

Experimental details K = 400 teacher models are trained individually on the disjoint set using AlexNet model. We set
σ2 = σs = 15.0. Our data-dependent RDP calculation and the smooth-sensitivity calculation follow Papernot et al. [2018].
Specifically, we use the following theorem (Theorem 6 from Papernot et al. [2018]) to compute the data-dependent RDP of
each unlabeled data x from the public domain.

Theorem D.11 (data-dependent RDP Papernot et al. [2018]). Let q̃ ≥ Pr[M(X) ̸= Argmaxj∈[C]nj(x)], i.e., an upper

bound of the probability that the noisy label does not match the majority label. Assume α ≤ µ1 and q̃ ≤ e(µ2−1)ϵ2/

(
µ1

µ1−1 ·

µ2

µ2−1

)µ2

, then we have:

ϵM(α,X) ≤ 1

α− 1
log

(
(1− q̃) ·A(q̃, µ2, ϵ2)

α−1 + q̃ ·B(q̃, µ1, ϵ1)
α−1

)

where A(q̃, µ2, ϵ2) := (1 − q̃)/

(
1 − (q̃eϵ2)

µ2−1
µ2

)
, B(q̃, µ1, ϵ1) = eϵ1/q̃

1
µ1−1 , µ2 = σ1 ·

√
log(1/q̃), µ1 = µ2 + 1, ϵ1 =

µ1/σ
2
1 and ϵ2 = µ2/σ

2
2 .
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In the experiments, the non-private data-dependent DP baseline is also based on the above theorem. Notice that the
data-dependent RDP of each query is a function of q̃, where q̃ denotes an upper bound of the probability where the plurality
output does not match the noisy output. q̃ is a complex function of both the noisy scale and data and is not monotonically
decreasing when σ1 is increasing.

Simulation of two distributions. The motivation of the experimental design is to compare three approaches under different
data distributions. Notice that there are K = 400 teachers, which implies the number of the vote count for each class will be
bounded by 400. In the simulation of high-consensus distribution, we choose T = 200 unlabeled public data such that the
majority vote count will be larger than 150 (i.e., maxj∈[C] nj(x) > 150). For the low-consensus distribution, we choose to
select T unlabeled data such that the majority vote count will be smaller than 150.

E Omitted proofs in private GLM

E.1 Per-instance DP of GLM

Theorem E.1 (Per-instance differential privacy guarantee). Consider two adjacent data sets Z and Z ′ = [Z, (x, y)], and
denote the smooth part of the loss function Fs =

∑n
i=1 l(yi, ⟨xi, ·⟩) + rs(·) (thus F̃s = Fs + l(y, ⟨x, ·⟩). Let the local

neighborhood be the line segment between θ∗ and θ̃∗. Assume

1. the GLM loss function l be convex, three-time continuous differentiable and R-generalized-self-concordant w.r.t. ∥ · ∥2,

2. Fs is locally α-strongly convex w.r.t. ∥ · ∥2,

3. and in addition, denote L := supθ∈[θ∗,θ̃∗] |l′(y, xT θ)|, β := supθ∈[θ∗,θ̃∗] |l′′(y, xT θ)|.

Then the algorithm obeys (ϵ, δ)-pDP for Z and z = (x, y) with any 0 < δ < 2/e and

ϵ ≤ ϵ0(1 + log(2/δ)) + e
RL∥x∥2

α

[
γL2∥x∥2H−1

2
+
√

γL2∥x∥2H−1 log(2/δ)

]
where ϵ0 ≤ e

RL∥x∥2
α − 1+2β∥x∥2

H−1
1

+2β∥x∥2
H̃−1

2

. If we instead assume that l is R-self concordant. Then the same results

hold, but with all e
RL∥x∥2

α replaced with (1−RL∥x∥H−1)2.

Under the stronger three-times continuous differentiable assumption, by mean value theorem, there exists ξ on the line-
segment between θ∗ and θ̃∗ such that

H =

[∫ 1

t=0

∇2Fs((1− t)θ∗ + tθ̃∗)dt

]
= ∇2Fs(ξ).

The two distributions of interests are N (θ∗, [γ∇2Fs(θ
∗)]−1) and N (θ̃∗, [γ∇2Fs(θ̃

∗) + ∇2l(y, xT θ̃∗)]−1). Denote
[∇2Fs(θ

∗)]−1 =: Σ and [∇2Fs(θ̃
∗) + ∇2l(y, xT θ̃∗)]−1 =: Σ̃. Both the means and the covariance matrices are dif-

ferent, so we cannot use multivariate Gaussian mechanism naively. Instead we will take the tail bound interpretation of
(ϵ, δ)-DP and make use of the per-instance DP framework as internal steps of the proof.

First, we can write down the privacy loss random variable in analytic form

log
|Σ|−1/2e−

γ
2 ∥θ−θ∗∥2

Σ−1

|Σ̃|−1/2e−
γ
2 ∥θ−θ̃∗∥2

Σ̃−1

=
1

2
log

(
|Σ−1|
|Σ̃−1|

)
︸ ︷︷ ︸

(∗)

+
γ

2

[
∥θ − θ∗∥2Σ−1 − ∥θ − θ̃∗∥2

Σ̃−1

]
︸ ︷︷ ︸

(∗∗)

The general idea of the proof is to simplify the expression above and upper bounding the two terms separately using
self-concordance and matrix inversion lemma, and ultimately show that the privacy loss random variable is dominated by
another random variable having an appropriately scaled shifted χ-distribution, therefore admits a Gaussian-like tail bound.

To ensure the presentation is readable, we define a few short hands. We will use H and H̃ to denote the Hessian of Fs and
Fs + f respectively and subscript 1 2 indicates whether the Hessian evaluated at at θ∗ or θ̃∗. H without any subscript or
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superscript represents the Hessian of Fs evaluated at ξ as previously used.

(∗) = 1

2
log
|H1|
|H|

|H|
|H2|

|H2|
|H̃2|

≤ 1

2

[
log
|H1|
|H|

+ log
|H|
|H2|

+ log
|H2|
|H̃2|

]
By the R-generalized self-concordance of Fs,

−∥θ∗ − ξ∥2R ≤ log
|H1|
|H|

≤ R∥θ∗ − ξ∥2, −R∥ξ − θ̃∗∥2 ≤ log
|H|
|H2|

≤ R∥ξ − θ̃∗∥2.

The generalized linear model ensures that the Hessian of f is rank-1:

∇2f(θ̃∗) = l′′(y, xT θ̃∗)xxT

and we can apply Lemma ?? in both ways (taking A = H2 and A = H̃2) and obtain

|H2|
|H̃2|

=
1

1 + l′′(y, xT θ̃∗)xTH−1
2 x

= 1− l′′(y, xT θ̃∗)xT H̃2x

Note that l′′(y, xT θ̃∗)xT H̃−1
2 x is the in-sample leverage-score and l′′(y, xT θ̃∗)xTH−1

2 x is the out-of-sample leverage-score
of the locally linearized problem at θ̃∗. We denote them by µ2 and µ′

2 respectively (similarly, for the consistency of notations,
we denote the in-sample and out of sample leverage score at θ∗ by µ1 and µ′

1 ).

Combine the above arguments we get

(∗) ≤R∥θ∗ − ξ∥2 +R∥ξ − θ̃∗∥2 + log(1− µ2) ≤ R∥θ∗ − θ̃∗∥2 + log(1− µ2) (12)

(∗) ≥−R∥θ∗ − θ̃∗∥2 − log(1− µ2). (13)

We now move on to deal with the second part, where we would like to express everything in terms of ∥θ− θ∗∥H1
, which we

know from the algorithm is χ-distributed.

(∗∗) = γ

2

[
∥θ − θ∗∥2H1

− ∥θ − θ∗∥2H2
+ ∥θ − θ∗∥2H2

− ∥θ − θ̃∗∥2H2
+ ∥θ − θ̃∗∥2H2

− ∥θ − θ̃∗∥2
H̃2

]
By the generalized self-concordance at θ∗

e−R∥θ∗−θ̃∗∥2∥ · ∥2H1
≤ ∥ · ∥2H2

≤ eR∥θ∗−θ̃∗∥2∥ · ∥2H1

This allows us to convert from ∥ · ∥H2 to ∥ · ∥H1 , and as a consequence:∣∣∥θ − θ∗∥2H1
− ∥θ − θ∗∥2H2

∣∣ ≤ [eR∥θ∗−θ̃∗∥2 − 1]∥θ − θ∗∥2H1
.

Also,

∥θ − θ∗∥2H2
− ∥θ − θ̃∗∥2H2

=
〈
θ̃∗ − θ∗, 2θ − 2θ∗ + θ∗ − θ̃∗

〉
H2

= 2⟨θ − θ∗, θ̃∗ − θ∗⟩H2
− ∥θ∗ − θ̃∗∥2H2

Therefore ∣∣∣∥θ − θ∗∥2H2
− ∥θ − θ̃∗∥2H2

∣∣∣ ≤ 2∥θ − θ∗∥H2∥θ∗ − θ̃∗∥H2
+ ∥θ∗ − θ̃∗∥2H2

≤ 2eR∥θ̃∗−θ∗∥2∥θ − θ∗∥H1
∥θ∗ − θ̃∗∥H + eR∥θ̃∗−θ∗∥2∥θ∗ − θ̃∗∥2H .

Then lastly we have

0 ≥ ∥θ − θ̃∗∥2H2
− ∥θ − θ̃∗∥2

H̃2
= −l′′(y, xT θ̃∗)

[
⟨x, θ − θ∗⟩+ ⟨x, θ∗ − θ̃∗⟩

]2
≥ −2β∥x∥2

H−1
1
∥θ − θ∗∥2H1

− 2β∥x∥2H−1∥θ∗ − θ̃∗∥2H∣∣∣∥θ − θ̃∗∥2H2
− ∥θ − θ̃∗∥2

H̃2

∣∣∣ ≤ 2β∥x∥2
H−1

1
∥θ − θ∗∥2H1

+ 2β∥x∥2H−1∥θ∗ − θ̃∗∥2H
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Combine the above derivations, we get

|(∗∗)| ≤ γ

2

[
a∥θ − θ∗∥2H1

+ b∥θ − θ∗∥H1 + c
]

(14)

where

a :=
[
eR∥θ∗−θ̃∗∥2 − 1 + 2β∥x∥2

H−1
1

]
b :=2eR∥θ∗−θ̃∗∥2∥θ∗ − θ̃∗∥H
c :=(eR∥θ∗−θ̃∗∥2 + 2β∥x∥2H−1)∥θ∗ − θ̃∗∥2H

Lastly, by (12) and (14), ∣∣∣∣log p(θ|Z)

p(θ|Z ′)

∣∣∣∣ ≤ R∥θ∗ − θ̃∗∥2 + log(1− µ2) +
γ

2
[aW 2 + bW + c].

where according to the algorithm W := ∥θ − θ∗∥H1
follows a half-normal distribution with σ = γ−1/2.

By standard Gaussian tail bound, we have for all δ < 2/e.

P(|W | ≤ γ−1/2
√
log(2/δ)) ≤ δ.

This implies that a high probability upper bound of the absolute value of the privacy loss random variable log p(θ|Z)
p(θ|Z′) under

p(θ|Z). By the tail bound to privacy conversion lemma (Lemma ??), we get that for any set S ⊂ Θ P(θ ∈ S|Z) ≤ eϵP(θ ∈
S|Z ′) + δ for any 0 < δ < 2/e and

ϵ = R∥θ∗ − θ̃∗∥2 + log(1− µ2) +
γc

2
+

a

2
log(2/δ) +

γ1/2b

2

√
log(2/δ).

Denote v := θ∗ − θ̃∗, by strong convexity

∥v∥2 ≤ ∥∇l(y, xT θ)[θ̃∗]∥2/α = |l′|∥x∥2/α ≤ L∥x∥2/α

and
∥v∥H ≤ ∥∇l(y, xT θ)[θ̃∗]∥H−1 = |l′|∥x∥H−1 ≤ L∥x∥H−1 .

Also use the fact that | log(1− µ2)| ≤ 2µ2 for µ2 < 0.5 and µ2 ≤ β∥x∥2
H̃−1

2

, we can then combine similar terms and have
a more compact representation.

ϵ ≤ ϵ0(1 + log(2/δ)) + e
RL∥x∥2

α

[
γL2∥x∥2H−1

2
+
√

γL2∥x∥2H−1 log(2/δ)

]
where

ϵ0 ≤ e
RL∥x∥2

α − 1 + 2β∥x∥2
H−1

1
+ 2β∥x∥2

H̃−1
2

is the part of the privacy loss that does not get smaller as γ decreases.

Proposition E.2. Let ∥ · ∥ be a norm and ∥ · ∥∗ be its dual norm. Let F (θ), f(θ) and F̃ (θ) = F (θ) + f(θ) be proper
convex functions and θ∗ and ˜theta

∗
be their minimizers, i.e., 0 ∈ ∂F (θ∗) and 0 ∈ ∂F̃ ( ˜theta

∗
). If in addition, F, F̃ is

α, α̃-strongly convex with respect to ∥ · ∥ within the restricted domain θ ∈ {tθ∗ + (1− t)θ̃∗ | t ∈ [0, 1]}. Then there exists
g ∈ ∂f(θ∗) and g̃ ∈ ∂f(θ̃∗) such that

∥θ∗ − θ̃∗∥ ≤ min

{
1

α
∥g̃∥∗,

1

α̃
∥g∥∗

}
.

Proof. Apply the first order condition to F restricted to the line segment between θ̃∗ and θ∗, there are we get

F (θ̃∗) ≥ F (θ∗) + ⟨∂F (θ∗), θ̃∗ − θ∗⟩+ α

2
∥θ̃∗ − θ∗∥2 (15)

F (θ∗) ≥ F (θ̃∗) + ⟨∂F (θ̃∗), θ∗ − θ̃∗⟩+ α

2
∥θ̃∗ − θ∗∥2 (16)
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Note by the convexity of F and f , ∂F̃ = ∂F + ∂f , where + is the Minkowski Sum. Therefore, 0 ∈ ∂F̃ (θ̃∗) implies that
there exists g̃ such that g̃ ∈ ∂f(θ̃∗) and −g̃ ∈ ∂F (θ̃∗). Take −g̃ ∈ ∂F (θ̃∗) in Equation 16 and 0 ∈ ∂F (θ∗) in Equation 15
and add the two inequalities, we obtain

0 ≥ ⟨−g̃, θ∗ − θ̃∗⟩+ α∥θ̃∗ − θ∗∥2 ≥ −∥g̃∥∗∥θ∗ − θ̃∗∥+ α∥θ̃∗ − θ∗∥2.

For ∥θ̃∗ − θ∗∥ = 0 the claim is trivially true, otherwise, we can divide the both sides of the above inequality by ∥θ̃∗ − θ∗∥
and get ∥θ∗ − θ̃∗∥ ≤ 1

α∥g̃∥∗.

It remains to show that ∥θ∗ − θ̃∗∥ ≤ 1
α̃∥g∥∗. This can be obtained by exactly the same arguments above but applying strong

convexity to F̃ instead. Note that we can actually get something slightly stronger than the statement because the inequality
holds for all g ∈ ∂f(θ∗).

A consequence of (generalized) self-concordance is the spectral (multiplicative) stability of Hessian to small perturbations
of parameters.

Lemma E.3 (Stability of Hessian[Nesterov and Nemirovskii, 1994, Theorem 2.1.1], [Bach, 2010, Proposition 1]). Let
Hθ := ∇2Fs(θ). If Fs is R-self-concordant at θ. Then for any v such that R∥v∥Hθ

< 1, we have that

(1−R∥v∥Hθ
)2∇2Fs(θ) ≺ ∇2Fs(θ + v) ≺ 1

(1−R∥v∥Hθ
)2
∇2Fs(θ).

If instead we assume Fs is R-generalized-self-concordant at θ with respect to norm ∥ · ∥, then

e−R∥v∥∇2Fs(θ) ≺ ∇2Fs(θ + v) ≺ eR∥v∥∇2Fs(θ)

The two bounds are almost identical when R∥v∥ and R∥v∥θ are close to 0, in particular, for x ≤ 1/2, e−2x ≤ 1−x ≤ e−x.
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