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Abstract

We consider the problem of preference-based
reinforcement learning (PbRL), where, unlike
traditional reinforcement learning (RL), an
agent receives feedback only in terms of 1
bit (0/1) preferences over a trajectory pair
instead of absolute rewards for it. The suc-
cess of the traditional reward-based RL frame-
work crucially depends on how accurately a
system designer can express an appropriate
reward function, which is often a non-trivial
task. The main novelty of the our framework
is the ability to learn from preference-based
trajectory feedback that eliminates the need
to hand-craft numeric reward models. This
paper sets up a formal framework for the
PbRL problem with non-Markovian rewards,
where the trajectory preferences are encoded
by a generalized linear model of dimension
d. Assuming the transition model is known,
we propose an algorithm with a regret guar-
antee of Õ

(
SHd log(T/δ)

√
T
)
. We further

extend the above algorithm to the case of
unknown transition dynamics and provide an
algorithm with regret Õ((

√
d+H2+|S|)

√
dT+√

|S||A|TH). To the best of our knowledge,
our work is one of the first to give tight regret
guarantees for preference-based RL problem
with trajectory preferences.
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1 INTRODUCTION

Classical reinforcement learning (RL) with absolute
reward feedback is a well-studied framework which
is a sequential experience-driven learning process to
optimize an accumulated long-term reward (Sutton and
Barto, 2018; Auer et al., 2009; Singh et al., 2002). Over
the years, several works have addressed RL in terms of
both the optimal sample complexity for finding the best
policy (Azar et al., 2013; Dann and Brunskill, 2015;
Dann et al., 2017; Domingues et al., 2020a; Lattimore
and Hutter, 2012) and minimizing regret via balancing
exploration and exploitation (Zhang and Ji, 2019; Azar
et al., 2017; Ortner, 2020; Talebi and Maillard, 2018;
Efroni et al., 2020; Domingues et al., 2020b).

However, a major limitation of the standard RL set-
ting is that its success crucially depends on the prior
knowledge encoded into the definition of the reward
function. The learned policy can often be sensitive to
small changes of the reward, possibly yielding very dif-
ferent behaviors depending on the relative values of the
rewards. The choice of reward function in applications
such as robotics consequently entails a high amount
of non-trivial effort in reward engineering, leading to
challenges such as reward shaping, reward hacking, in-
finite rewards, and multi-objective outcomes (Wirth
and Fürnkranz, 2013; Wirth et al., 2017).

The framework of Preference-based Reinforcement
Learning (PbRL) (Busa-Fekete et al., 2014; Wirth et al.,
2016, 2017) has been proposed as a fix to this prob-
lem, to enforce learning from non-numerical, relative
feedback which need not suffer from issues due to the
inaccuracy of reward modeling or engineering. This
framework widely applies to multiple areas including
robot training, stock-prediction, recommender systems,
clinical trials, etc. (Novoseller et al., 2019; Sadigh et al.,
2017; Christiano et al., 2017; Kupcsik et al., 2018; Jain
et al., 2013; Wirth et al., 2017).

While the problem of PbRL was introduced almost a
decade ago, most work in it has been primarily ap-
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plied or experimental in nature (Riad et al., 2012; Jain
et al., 2013; Busa-Fekete et al., 2014; Christiano et al.,
2017; Wirth and Fürnkranz, 2013; Wirth et al., 2016,
2017; Ibarz et al., 2018; Kupcsik et al., 2018). There
have also been attempts to design suitable algorithms
based on varying preference models and problem ob-
jectives (Novoseller et al., 2019; Xu et al.), but, to
the best of our knowledge, existing theoretical guaran-
tees on PbRL literature are sparse. The performance
guarantees of most of the proposed algorithms are not
well-understood (Wirth et al., 2017; Xu et al.) except
for some very recent attempts (Novoseller et al., 2019;
Xu et al.) as discussed below in the section on related
work. We consider the problem of provably finding
the best finite-horizon policy (i.e., one with highest
expected reward) for an unknown Markov decision pro-
cess (MDP), but with only relative preference feedback
on H-length trajectories.

Problem Setup (informal). Consider a T -round,
H-horizon MDP (P,S,A, H), with S and A being the
finite sets of states and actions, respectively, and P
representing the transition dynamics of the MDP. We
consider a real-valued score function s(τ), which is nei-
ther known nor queryable, that scores a given trajectory
τ . We assume preference of any two trajectories τ1 and
τ2 is determined by their underlying score difference,
i.e. P (τ1 � τ2) = σ

(
s(τ1)− s(τ2)

)
, σ : R 7→ [0, 1] being

a suitable link-function. In particular, we assume s(·) is
an (unknown) linear function of the trajectory-feature
φ(τ) ∈ Rd, and the link-function σ is the sigmoid Li
et al. (2017). The goal is to minimize the regret with
respect to the optimal policy.

An important thing to note is that in our setting the
trajectory features φ(τ) ∈ Rd are not necessarily sum-
decomposable (over individual state-action features of
the trajectory) and the underlying reward function
is non-Markovian. In this case, the optimal policy
may be history dependent. This is more general than
assuming the trajectory reward is a linear function of
the sum of per-state features, e.g. in Novoseller et al.
(2019). Under the latter more limiting assumption,
the traditional linear bandit techniques can be easily
used to derive regret guarantees. Since the number
of history dependent policies is super exponential, to
deal with this more general setting we first show the
log-covering number of the history dependent policies
that are an optimal policy of an MDP with a trajectory
score specified by our form of trajectory feedback is
upper bounded by a polynomial quantity. Our specific
contributions are as follows:

1. To the best of our knowledge, we are the first to
formulate and analyze the finite time regret guar-
antee for preference-based linear bandits problem

with non-Markovian reward models (Sec. 2).

2. We propose an algorithm for known transition dy-
namics which is shown to yield a regret guarantee
of Õ

(
SHd log(T/δ)

√
T
)
(Sec. 3). 1

3. We further generalize our algorithm to the case
of unknown models and propose an algorithm
with regret guarantee Õ((

√
d + H2 + |S|)

√
dT +√

|S||A|TH) (Sec. 4).

Related Work. Over the last two decades the prob-
lem of learning from preference feedback in bandits,
known as dueling bandits, has gained much attention
(Yue et al., 2012; Zoghi et al., 2014b, 2015). Dueling
bandits generalizes the standard multi-armed bandit
(MAB) (Auer et al., 2002). The goal is to identify a set
of ’good’ arms from a larger fixed set of arms by query-
ing preference feedback for pairs of actively chosen
arms. Yue and Joachims (2009, 2011); Saha and Krish-
namurthy (2022); Ghoshal and Saha (2022); Saha and
Gopalan (2018a) The setting is relevant in various real-
world systems which aim to collect information from
user preferences, including recommender systems, retail
management, search engine optimization, job schedul-
ing, etc. Towards these goals, several algorithms have
been proposed (Ailon et al., 2014; Zoghi et al., 2014a;
Komiyama et al., 2015; Gajane et al., 2015; Saha and
Gopalan, 2018b, 2019).

Though there has been a fair amount of research for
preference-based bandits (no state information), few
works consider incorporating preference feedback in the
reinforcement learning (RL) framework, which consid-
ers the problem of long-term objectives over a markov
decision process (Singh et al., 2002; Ng et al., 2006;
Talebi and Maillard, 2018; Ortner, 2020; Zhang and
Ji, 2019; Zanette and Brunskill, 2019). However the
classical RL setup assumes access to reward feedback
for each state-action pair which might be impracti-
cal in many real world scenarios. Few very recent
works considered training RL agents based on general
trajectory-based reward which are available only at the
end of each trajectory (Efroni et al., 2021; Chatterji
et al., 2021), but their setting still assumes access to
absolute reward feedback, unlike the case in PbRL.
Some initial works consider the applied PbRL problem
inspired by the problems of reward hacking, reward
shaping, difficulty to model infinite rewards or multi-
objective trade-offs (Busa-Fekete et al., 2014; Wirth
et al., 2016, 2017; Christiano et al., 2017) etc.

Novoseller et al. (2019) made the first attempt to ana-
lyze the finite T -round regret guarantee for the PbRL

1The notation Õ(·) hides logarithmic factors in
T,H, |A|, |S|.
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problem with trajectory preference feedback, where the
learner is allowed to run two independent trajectories in
parallel and receive 0/1 preference feedback after every
such h-length roll out. Assuming an underlying MDP
model, the preference between two h-length trajectories
is modeled as being proportional to the accumulated
reward of the corresponding trajectories. The authors
propose a Double Posterior Sampling (DPS) technique
with asymptotically sublinear regret.

Xu et al. models reward-free trajectory preferences and
analyses the sample complexity of finding the ε-best-
policy. Their proposed algorithm crucially depends on
an underlying dueling bandit black box whose perfor-
mance guarantee is restricted to preference structures
like Strong Stochastic Transitivity and Stochastic Tri-
angle Inequality. Furthermore, the algorithms proposed
in this work are not shown to enjoy provably optimal
sample complexity, and, moreover, the fundamental
performance limit of sample complexity is also not
explicitly analyzed.

The literature of multi-agent reinforcement learning
in Markov games closely relates to the setup of PbRL
which attempts the problem of reaching Nash equi-
librium of a simultaneous move markov game based
on per-state win-loss feedback of the two (or multi-
ple) players. Bai and Jin (2020); Bai et al. (2020);
Liu et al. (2021) address the problems from finite ac-
tion two player markov games, while Xie et al. (2020)
extended this setting to zero sum games with linear
function approximation. However, all these works ana-
lyzed the episodic sample complexity of the learning
algorithm towards finding an ε-approximate Nash equi-
librium which is fairly unrelated to the regret objective
of PbRL problem we considered in this paper.

Another closely related sub-field of RL, imitation learn-
ing, addresses the objective of learning optimal behavior
from trajectories suggested by an expert. In Ng et al.
(2000); Boularias et al. (2011); Neu and Szepesvári
(2012); Wulfmeier et al. (2015), inverse reinforcement
learning problems have been considered, where the ob-
jective is to extract (unknown) reward function from
the trajectories given by an oracle or expert. Once
the reward functions are computed, any RL algorithm
could, in principle, be applied to compute the optimal
policy. Ho and Ermon (2016) propose a generative
adversarial network based imitation learning algorithm
that computes the optimal policy directly from the
trajectories of expert. Our work is fundamentally dif-
ferent in the sense that we do not receive trajectories
or optimal actions from an expert. Instead, we get
preferences over sample trajectories that are posed as
queries to a system expert for preference feedback.

2 PROBLEM SETUP
Notation. Let [n] denote the set {1, 2, . . . n}. Given
a set A, for any two items x, y ∈ A, we denote that
i is preferred over j by x � y. By Br(d) we denote
the `2-norm ball of radius r in dimension d. Lower
case bold letters denote vectors, upper case bold letters
denote matrices.

RL Model. Consider a T -episode, H-horizon RL
setup (P,S,A, H, ρ), S is a finite set of states, A is a
set of actions, P(· | s, a) is the MDP transition dynamics
given a state and action pair (s; a), H ∈ N is the length
of an episode, ρ denotes the initial distribution over
states.

We denote a trajectory by concatenation of all
states and actions visited during H steps τ :=
(s1, a1, · · · , sH , aH). In general let τh:H :=
(sh, ah, · · · , sH , aH) denote the states and action from
step h until the end of the episode. We denote by τh
to be all the states and actions taken up to step h and
define τ0 = ∅. Let Γ be the set of all possible trajec-
tories of length H, similarly Γh denotes the set of all
sub-trajectories up to step h. We use the superscript
t as in τ t to denote a trajectory sampled during the
t−th episode. At the start of each episode, we assume
the initial state s1 is drawn from a fixed distribution ρ
known to the learner apriori (for example concentrated
on an initial state s0).

Trajectory embedding. For any trajectory τ we as-
sume the existence of a trajectory embedding function
φ : Γ→ Rd. We denote by φ(τ) to the d−dimensional
embedding of trajectory τ . The map φ is known to
the learner. One special case of such a trajectory-
dependent feature map is a decomposed embedding,
where φ(τ) =

∑H
h=1 φ(sh, ah) and φ : S ×A → Rd is a

mapping from state-actions pairs to Rd. Examples of
these trajectory embeddings can be borrowed from the
Behavior Guided class of algorithms for policy optimiza-
tion found in Pacchiano et al. (2020). Many practically
relevant trajectory or state-action embeddings can be
found defined in Pacchiano et al. (2020); Parker-Holder
et al. (2020). It is conceivable the preference model
may be based on one of these embedding maps.

Policy embedding. The above feature embedding
also leads to a natural mean embedding of any policy
π : S 7→ A given by φ(π) := Eτ∼π[φ(τ)].

Preference modeling. Assuming w∗ ∈ Rd to be an
unknown vector, we define the pairwise-preference of
trajectory τ1 over τ2 as:

P(τ1 � τ2) = σ(〈φ(τ1)− φ(τ2),w∗〉)

= exp(φ(τ1)>w∗)
exp(φ(τ1)>w∗) + exp(φ(τ2)>w∗) (1)
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where σ : R 7→ [0, 1] is the logistic link function, i.e.
σ(x) = (1 + e−x)−1. We can ‘lift’ the definition of a
comparison from trajectories to policies by setting,

P(π1 � π2) = σ(〈φ(π1)− φ(π2),w∗〉) (2)

Equation 1 says the probability of any trajectory τ1
being preferred over τ2 is essentially proportional to the
score difference of the individual trajectories, assuming
the score for any trajectory τ is defined as the function

s(τ) := 〈φ(τ),w∗〉.

The linear score of any policy π (expectation over
trajectories) can be similarly defined as s(π) :=
Eτ∼π[〈φ(τ),w∗〉] and therefore P(π1 � π2) = σ(s(π1)−
s(π2)).

Non markovian policy class. The performance of
all our algorithms will be measured against the pol-
icy that maximizes s(π). Since s(τ) may be a non-
markovian function of the trajectory, the policy op-
timizing this objective need not be markovian. We
therefore set Π as the set of all history dependent poli-
cies. In contrast with standard markovian RL works,
this is one of the main sources of technical complexity
of our setting.

Assumption 1. [Bounded parameter] We assume that
‖w∗‖ ≤W for some known W > 0.

Assumption 2. [Bounded feature maps] For all tra-
jectories τ we assume that ‖φ(τ)‖ ≤ B for some known
B > 0.2

Definition 1. The degree of non-linearity of the sig-
moid σ over the parameter space (denoting the first
derivative of σ by σ′) is given by

κ := sup
x∈BB(d),w∈BS(d)

1
σ′(w>x) .

Objective: Alternative: The objective of the learner
is to minimize regret by finding policies to maximize
the sum of their expected scores over T rounds. At each
round t, the learner proposes two policies, π1

t and π2
t ,

which are executed in the MDP generating trajectories
τ1
t and τ2

t . The learner then receives feedback in the
form of the Bernoulli variable ot ∈ {0, 1} which specifies
whether τ1

t is preferred (ot = 1) or τ2
t is preferred

(ot = 0). The preference feedback ot is distributed
according to P (τ1

t � τ2
t ). We measure the learner’s

performance via its pseudo-regret w.r.t. policy class Π,
which we define as:

2Note B could essentially depend on the trajectory-
length H.

Rscr
T := max

π∈Π

T∑
t=1

[
(2φ(π)− φ(π1

t )− φ(π2
t ))>w∗

]
2

=
T∑
t=1

2s(π∗)−
(
s(π1

t ) + s(π2
t )
)

2 , (3)

where π∗ := maxπ∈Π s(π). This essentially measures
the performance of the learner at round t in terms of
average score of the played policies π1

t , π
2
t w.r.t. the

score maximizing policy π∗.

Remark 1. An important thing to note is that rep-
resenting any trajectory pair (τ1, τ2) by the feature(
φ(τ1)− φ(τ2)

)
∈ Rd, our underlying preference model

is similar to reward model of Chatterji et al. (2021) (see
Assumption 2.1). The fundamental difference between
our setting and that of Chatterji et al. (2021) is the na-
ture of the dueling feedback. In our work, the only way
to gather any information when interacting with the
world is by comparing the trajectories of two different
policies. This adds a layer of complexity not present in
the per trajectory feedback model from Chatterji et al.
(2021), that makes their algorithms not immediately
applicable to our setting.

One may think of using our preference model (Equa-
tion 2) to define an alternative notion of regret:

Rpref
T := max

π∈Π

T∑
t=1

P(π � π1
t ) + P(π � π2

t )− 1
2 . (4)

Fortunately, these two notions of regret can be shown
to be ‘equivalent’ in the following sense,

Claim 1. Let π∗ ∈ arg maxπ∈Π s(π). Then π∗ also
achieves the max in Eqn. 4.

The logistic link function is increasing w.r.t. its ar-
gument, thus for any π, π′ we have P(π∗ � π′) =
σ(s(π∗) − s(π′)) ≥ σ(s(π) − s(π′)) = P(π � π′). It
follows that for all t and all π:

P(π∗ � π1
t ) + P(π∗ � π2

t ) ≥ P(π � π1
t ) + P(π � π2

t )

thus establishing the claim.

This argument can also be used to show Rscr
T and Rpref

T

are equivalent up to constant factors when B,W ≤ 1.
The proof is given in Appendix A.

Claim 2. Rscr
T

2(e+1) ≤ R
pref
T ≤ Rscr

T

2 .

We conclude that a strategy that attains sublinear Rscr
T

regret also has sublinear Rperf
T regret.
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3 KNOWN MODEL: ALGORITHM
AND ANALYSIS

In this section, we introduce and analyze an algorithm
for solving the preference-based RL problem when the
transition model, P, that governs the probability of
transitioning to a next state is known to the learner.
In this case, it becomes possible to directly compute
expected features induced by policies; however, the
difficulty of learning based only on preference feedback
as opposed to rewards remains. This is because we have
access to feedback only through relative preferences on
the trajectories rather than an assumed known reward
function. Before stating the algorithm, we first detail
a method of estimating the underlying parameter w∗
in the logistic model. This procedure serves as a basis
for the algorithm.

3.1 Maximum Likelihood Estimation

In the logistic model, a natural way of computing an
estimator wt of w∗ given trajectory pairs {(τ1

` , τ
2
` )}t−1

`=1
and preference feedback values {o`}t−1

`=1 is via maxi-
mum likelihood estimation. At time t the regularized
log-likelihood (or negative cross-entropy loss) of a pa-
rameter w can be written as:

Lλt (w) =
t=1∑
`=1

(
o` log(σ(〈φ(τ1

` )− φ(τ2
` )
)
,w〉))− λ

2 ‖w‖
2
2

+ (1− o`) log
(
1− µ(〈φ(τ1

` )− φ(τ2
` ),w〉)

)
,

where λ > 0 is a regularization parameter. The func-
tion Lλt is strictly concave for λ > 0. The maxi-
mum likelihood estimator ŵMLE

t can be written as
ŵMLE
t = arg maxw∈Rd Lλt (w). Unfortunately, ŵMLE

t

may not satisfy the boundedness Assumption 1, so we
instead make use of a projected version of ŵMLE

t . Fol-
lowing Faury et al. (2020), and recalling Assumption 1,
we define a data matrix and a transformation of ŵMLE

t

given by

Vt = κλId +
t−1∑
`=1

(
φ(τ1

` )− φ(τ2
` )
) (
φ(τ1

` )− φ(τ2
` )
)>

gt(w) =
t−1∑
`=1

σ(〈φ(τ1
` )− φ(τ2

` ),w〉)
(
φ(τ1

` )− φ(τ2
` )
)

+ λw

Then, the projected parameter, along with its confi-
dence set, is given by

wL
t = arg min

w s.t. ‖w‖≤W
‖gt(w)− gt(ŵMLE

t )‖V−1
t

(5)

Ct(δ) = {w s.t. ‖w−wL
t ‖Vt

≤ 2κβt(δ)} (6)

where βt(δ) =
√
λW +

√
log(1/δ) + 2d log

(
1 + tB

κλd

)
.

We restate a bound by Faury et al. (2020) that shows

the probability of w? being in Ct(δ) for all t ≥ 1 can
be lower bounded.
Lemma 1. [Lemma 1 from Faury et al. (2020)3] Let
δ ∈ (0, 1] and define the event that w? is in the confi-
dence interval Ct(δ) for all t ∈ N:

Eδ = {∀t ≥ 1,w? ∈ Ct(δ)}.

Then P(Eδ) ≥ 1− δ.

3.2 Algorithm and Analysis

We are now ready to state the Logistic Preference
based Reinforcement Learning (LPbRL) algorithm with
known model, shown in Algorithm 1. Before any inter-
action or feedback, we initialize identical data matrices
V1 = V1 = κλId, λ > 0 being a regularization pa-
rameter. Vt, as defined before, is designed to track
the exact covariates used in the maximum likelihood
estimation. Vt (Line 10) on the other hand tracks a
similar quantity, but instead uses the expected features
under a given policy.

At each round t, we then compute an estimate wL
t and

determine a set of candidate policies Πt for which no
other policy π significantly outperforms a member of
Πt. The threshold for what constitutes “significant” is
determined by the uncertainty in the estimate of wL

t .
We then search over this set to identify two policies,
π1
t and π2

t , with expected features that maximize the
uncertainty determined by Vt, precisely by choosing
(π1
t , π

2
t ) = arg maxπ1,π2∈Πt ‖φ(π1)− φ(π2)‖V−1

t
. Both

policies are deployed, inducing trajectories τ1
t and τ2

t

and feedback ot is received. We then update the data
matrices Vt and Vt with the trajectory features φ(τ1

t )−
φ(τ2

t ) and expected features φ(π1
t )−φ(π2

t ), respectively.
The procedure is repeated for each round t ∈ [T ].
Theorem 1. Let δ ≤ 1/e and λ ≥ B

κ . Then, with prob-
ability at least 1− δ, the expected regret of Algorithm 1
can be bounded by

Rt ≤ (4κβt(δ) + 2αd,T (δ))

√
2Td log

(
1 + TB

κd

)
.

Note there is no dependence on the size of the state or
action spaces on account of the model being known in
this setting. Furthermore, we note that any dependence
on the horizon H is effectively accounted for in the size

3A slight modification in the expression of βt(δ) is needed
to incorporate the fact that we assume ‖φ(τ)‖ ≤ B for any
τ (Assumption 2) while B = 1 in Faury et al. (2020). But
this can be easily incorporated using Thm. 1 and Lem. 10
of Abbasi-Yadkori et al. (2011) in the final step of the proof
of Lem. 12 of Faury et al. (2020)
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of the constant B that bounds the norm of the trajec-
tory features φ(τ). For example, if φ(τ) decomposes
in a per-timestep fashion as φ(τ) =

∑
h∈[H] φ(sh, ah)

where each h satisfies ‖φ(sh, ah)‖ ≤ B′, then a trivial
bound would give B ≤ B′H. However, Assumption 2
allows for greater generality.

Algorithm 1 LPbRL: Regret minimization
(Known Model)
1: input: Regularization parameter λ, Learning rate
ηt > 0, exploration length t0 > 0

2: Define αd,T (δ) = 20BW
√
d log(T (1 + 2T )/δ) and

γt(δ) = 2κβt(δ) + αd,T (δ).
3: Initialize Vt = κλId
4: for t = 1, 2, . . . T do
5: Compute wL

t (see Eqn. Eq. (5))
6: Set Πt = {π1|(φ(π1)− φ(π))>wL

t +

γt(δ)‖φ(π1)− φ(π)‖V−1
t
≥ 0 ∀π}

7: Compute

(π1
t , π

2
t ) = arg max

π1,π2∈Πt
‖φ(π1)− φ(π2)‖V−1

t
.

8: Sample τ1
t ∼ π1

t and τ2
t ∼ π2

t .
9: Play the duel (τ1

t , τ
2
t ) and receive ot =

1(τ1
t beats τ2

t )
10: Update

Vt+1 = Vt + (φ(π1
t )− φ(π2

t ))(φ(π1
t )− φ(π2

t ))>

11: end for

Remark 2. Theorem 1 shows that for a suffi-
ciently large choice of the regularization parameter
λ, the pseudo-regret of Algorithm 1 is at most Rt =
O
((
W
√
κB +WB

)
d log(TB/κδ)

√
T
)
. Importantly,

the regret scales nearly optimally with d
√
T dependency

given existing Ω(d
√
T ) lower bounds for linear bandits

(Lattimore and Szepesvári, 2020) and known reductions
between the standard and preference regret Saha (2021).
Assuming κ to be constant, we pay the additional fac-
tors in B and W due to non-Markovian rewards which
are only indirectly revealed to the learner in terms of
preferences.

3.3 Regret Analysis: Proof Sketch of Thm. 1

We now sketch the proof of Theorem 1. Details
and proofs of supporting results can be found in Ap-
pendix B.1. The main idea of the proof is to ensure that
Πt contains only candidate policies that are predicted
to be “sufficiently good” under the learned model wL

t

using the size of the confidence set Ct(δ). We must also
verify that Πt always contains the optimal policy π∗.

Thus, as long as the set Ct(δ) shrinks at a sufficiently
fast rate, our algorithm will have sublinear regret.

However, in order to judge the uncertainty in predic-
tions of the expected value φ(π)>wL

t of a policy π,
we must relate the data matrix Vt that controls the
accuracy of the learned parameter wL

t (see Lemma 1),
and its expected counterpart Vt (used to define Πt).
The set Πt is characterized via Vt because this way
it allows us to relate it to the algorithm’s regret, a
quantity that depends on the expected features of the
played policies. Corollary 1 establishes that distances
‖wL

t −w∗‖Vt
weighted by Vt are not too far from the

same distances ‖wL
t −w∗‖Vt

weighted by Vt. Let

Eprec =
{

VT � 2VT + 84B2d log((1 + 2T )/δ)Id
}
.

Corollary 1. Under Assumption 1, conditioned on
event Eδ ∩ Eprec, for any t ∈ [T ]

‖w∗ −wL
t ‖Vt

≤ 4κβt(δ) + αd,T (δ),

where αd,T (δ) = 20BW
√
d log(T (1 + 2T )/δ). Further-

more, if δ ≤ 1/e, then P(Eδ ∩ Eprec) ≥ 1− δ − δ log2 T .

The proof of above is given in Appendix B. Leveraging
this relationship, we can establish that the confidence
set of policies Πt defined in line 5 of Algorithm 1 will
contain the optimal policy.
Lemma 2. Conditioned on event Eδ ∩ Eprec, π∗ ∈ Πt,

The remainder of the proof now consists of showing
the instantaneous regret can be bounded in terms of
the size of the confidence sets and the uncertainty
values ‖φ(π1

t )− φ(π2
t )‖Vt

. We defer the final details to
Appendix B.3.

4 UNKNOWN MODEL:
ALGORITHM AND ANALYSIS

Algorithm description. The LPbRL algorithm for
unknown dynamics models works in a similar way to
Algorithm 1. The main differences lay in the definition
of the set Πt. Whereas in Algorithm 1 this set of
policies can be defined without taking into account the
model uncertainty, in this case the set of policies to
optimize over needs to be carefully constructed in such
a way that it can be shown to contain π? (see Lemma 4).
With this in mind we start by introducing the necessary
technical tools that will be used throughout this section
to deal with model uncertainty.

4.1 Analysis of instantaneous regret:

For any policy π and any MDP model P, we denote
by φP(π) to the mean feature of policy π in model P.
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We use the notation Nt(s, a) to denote the number of
samples of action a at state s the learner has collected
up to time t. We use the notation P̂t to denote the
empricial model at time t. We use an ’empirical’ version
of Vt defined using the average features computed using
the model available at time t:

Ṽt = κλId+
t−1∑
`=1

(
φ̂P`(π1

` )− φ̂P`(π2
` )
)(

φ̂P`(π1
` )− φ̂P`(π2

` )
)>

(7)
Our confidence intervals will use a Mahalanobis norm
defined by this covariance matrix. Throughout this
section we will make heavy use of some of the results
from Chatterji et al. (2021). With that in mind we
will define a variety of bonus terms. Given any η > 0
define,

ξ(t)
s,a(η, δ) = min

(
2η, 4η

√
U

Nt(s, a)

)

s.t. U = H log(|S||A|) + log
(

6 log(Nt(s, a))
δ

)
.

We define the following ‘bonus’ function corresponding
to the expectation of these bonus terms summed over
a trajectory sampled from a policy π in the model P̂t,

B̂t(π, η, δ) = E
s1∼ρ,τ∼P̂πt (·|s1)

[
H−1∑
h=1

ξ(t)
sh,ah

(η, δ)
]
.

Similar to the previous theorem, we must relate ‖w∗−
wL
t ‖Ṽt

and ‖w∗ −wL
t ‖Vt

. We do this via a series of
Lemmas.

Lemma 3. Let Ē0 be the event that for all t ∈ N,

‖wL
t −w∗‖Ṽt

≤
√

2‖wL
t −w∗‖Vt

+√√√√t−1∑
`=1

4
(
B̂t

(
π, 2WB,

δ′

8`3|A|S

))2
+ 1
t
.

where δ′ = δ

( 1+4W
ε )d and ε = 1

t2κλ+4B2t3 . Then

P
(
Ē0
)
≥ 1− δ.

The proof of Lemma 3 is in Appendix C.2. We now
proceed to define the set of plausible policies Πt. To do
so, it will be useful to introduce the following confidence
radius multiplier

γt =
√

2 (4κβt(δ) + αd,T (δ)) + 1
t

+

2

√√√√ t−1∑
`=1

B̂2
t

(
π1

` , 2WB,
δ′

8`3|A|S

)
+ B̂2

t

(
π2

` , 2WB,
δ′

8`3|A|S

)
.

Finally,

Πt =
{
π1
∣∣∣(φP̂t(π1)− φP̂t(π))>wL

t +

γt‖φP̂t(π1)− φP̂t(π)‖Ṽ−1
t

+ B̂t

(
π1, 2SB, δ

2|A|S

)
+ B̂t

(
π, 2SB, δ

2|A|S

)
≥ 0,∀π

}
.

Algorithm 2 LPbRL: Regret minimization (Un-
known Model)
1: input: Learning rate ηt > 0, exploration length
t0 > 0

2: Initialize empirical model P̂1.
3: for t = 1, 2, . . . T do
4: Compute wL

t and Πt.
5: Compute

(π1
t , π

2
t ) = arg max

π1,π2∈Πt
γt‖φP̂t(π1)− φP̂t(π2)‖Ṽ−1

t

+

2B̂t(π1, 2WB, δ) + 2B̂t(π2, 2WB, δ)

6: Sample τ1
t ∼ π1

t and τ2
t ∼ π2

t .
7: Play the duel (τ1

t , τ
2
t ) and receive ot =

1(τ1
t beats τ2

t )
8: Update

Ṽt+1 = Ṽt+
(
φ̂P`(π1

` )− φ̂P`(π2
` )
)(

φ̂P`(π1
` )− φ̂P`(π2

` )
)>

9: Update empirical model and build P̂t+1.
10: end for

Algorithm 2 shares the structure of Algorithm 1. The
main difference lies in the definition of Πt and in the
optimization problem to find (π1

t , π
2
t ). We can prove a

result similar to Lemma 2 and show that π∗ ∈ Πt.

Lemma 4. Let Ē−1 be the event that π∗ ∈ Πt for all
t ∈ N. Then P

(
Ē−1

)
≥ 1− 5δ.

The proof of Lemma 4 can be found in Appendix C.3.
The next step in the proof is to exhibit a bound on the
instantaneous regret,

Lemma 5. Let Ē2 be the event that for all t ∈ N,

2rt ≤ (φ̂Pt(π∗)− φ̂Pt(π1
t ))>w∗ + (φ̂Pt(π∗)− φ̂Pt(π2

t ))>w∗+

B̂t(π∗, 4WB, δ) + B̂t(π1
t , 2WB, δ) + B̂t(π2

t , 2WB, δ).

Then P
(
Ē2
)
≥ 1− 2δ.
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Proof. Note that we can write:

2rt = (φ(π∗)− φ(π1
t ))>w∗ + (φ(π∗)− φ(π2

t ))>w∗

= (φ̂Pt(π∗)− φ̂Pt(π1
t ))>w∗ + (φ̂Pt(π∗)− φ̂Pt(π2

t ))>w∗+
2(φ(π∗)− φPt(π∗))>w∗+
(φPt(π1

t )− φ(π1
t ))>w∗ + (φPt(π2

t )− φ(π2
t ))>w∗

By Lemma 12 (Lemma B.1 in Chatterji et al. (2021)),
we conclude that with probability at least 1− δ, for all
t ∈ N, setting η = 4WB,

2(φ(π∗)− φPt(π∗))>w∗ ≤ B̂t(π∗, 4WB, δ)

Similarly, as a consequence of Lemma 12 and a union
bound, setting η = 2WB, with probability at least
1− 2δ

(φPt(π1
t )− φ(π1

t ))>w∗ ≤ B̂t(π1
t , 2WB, δ)

(φPt(π2
t )− φ(π2

t ))>w∗ ≤ B̂t(π2
t , 2WB, δ)

The result follows.

Armed with the results of Lemma 4 we can show the
following bound for the regret.
Lemma 6. With probability at least 1− 15δ the regret
is bounded by,

RT ≤ 2γT

√
2Td log

(
1 + TB

d

)
+∑

t∈[T ]

4B̂t(π1
t , 4WB, δ) + 4B̂t(π2

t , 4WB, δ)

The proof of Lemma 6 can be found in Appendix C.4.
The derivation follows from a repeated use of the in-
stantaneous regret upper bound derived from Lemma 5.

The rest of the proof is dedicated to bound the B̂t(·)
terms. The general idea is to relate these bonus expec-
tations under the empirical model with an expected
sum of bonus terms under the true model and sampled
according to policies π1

t and π2
t . Once this is achieved

we have reduced the problem to bound a sum of vanish-
ing markovian errors under the sampling distribution
defined by the policies that were selected during op-
timization. This can be done via a similar argument
as many existing RL works. Finally, we also show
the γT term can be bounded by a term of the form
Õ(κβt(δ) + αd,T (δ) + poly(H, |S|, |A|)), hides logarith-
mic factors in δ, |S| and |A|. A detailed discussion of
these arguments can be found in Appendix C. Our final
main result (simplified) is thus,
Theorem 2. The regret of LPbRL satisfies,

RT ≤ Õ(κd
√
T +H3/2

√
|S||A|dTH +H|S|

√
|A|dTH).

For all T ∈ N simultaneously with probability at least
1 − 15δ. Where Õ hides logarithmic factors in δ, |S|
and |A|.

The complete version of Theorem 2 can be found in
Appendix C. Similar to Theorem 1, the leading term in
the regret scales as Õ(d

√
T ) due to estimation based

on the preferences. In addition to this, we now have
dependence on |S| and |A| unlike before. These arise
due to the tabular nature of the problem since the
transition dynamics are unknown in this case.

5 DISCUSSIONS AND FUTURE
SCOPES

In this work we addressed the problem of reinforce-
ment learning from relative preference feedback where
the agent does not get to see the absolute reward of
actions taken at each state but instead observes the
relative preferences between trajectories. We modeled
the preference feedback in terms of the underlying
non-Markovian linear reward model and proposed al-
gorithms for both known as well as unknown MDP
transition models. Precisely the regret guarantees of
our proposed algorithms are analyzed to be respec-
tively Õ

(
d log(T/δ)

√
T
)
and Õ((

√
d+H2 + |S|)

√
dT +√

|S||A|TH) for the case of known and unknown tran-
sition models.

As discussed in the introduction, preference-based re-
inforcement learning has applications in several fields
including training robots, stock market, recommender
systems, two player games, chatbot interactions, etc.
Thus there are plenty of scopes to extend the above
setup to incorporate the corresponding system require-
ments, e.g. generalizing dueling trajectory preferences
to subsets, considering alternative preference feedback
without assuming an underlying reward model, ex-
tending to infinite horizon settings with more complex
state-actions spaces, etc. Analyzing the fundamental
performance limits of the PbRL regret minimization
problem and designing algorithms with tighter perfor-
mance guarantees would also be another interesting
direction to investigate.
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pref
T ≤ Rscr
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2 .
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A.1 Proof of Claim 2

Proof. Recall by Eq. (3), Eq. (4) and Claim 1.

Rscr
T =

T∑
t=1

2s(π∗)−
(
s(π1

t ) + s(π2
t )
)

2 ,

Rpref
T :=

T∑
t=1

P (π∗ � π1
t ) + P (π∗ � π2

t )− 1
2 .

Now assume S,B < 1. Then for any two policies π1 and π2 ∈ Π, such that s(π1) ≥ s(π2), we have:

P (π1, π2)− 1/2 = es(π1) − es(π2)

2(es(π1) + es(π2))

= es(π1)−s(π2) − 1
2(es(π1)−s(π2) + 1)

>
s(π1)− s(π2)

2(e+ 1)

On the other hand denoting x = s(π1)− s(π2) ∈ (0, 1) we get:

P (π1, π2)− 1/2 = ex − 1
2(ex + 1) <

(x+ x2/2! + x3/3! + . . .)
4

<
x
(
1 + x/2 + x2/22 + . . .

)
4 < x/2

The claim now follows combining the above two inequalities and noting that by definition π∗ := arg maxπ∈Π s(π).

B Appendix for Section 3

By first-order optimality conditions, ŵMLE
t is the point in Rd satisfying:

∇wLλt (ŵMLE
t ) =

t−1∑
`=1

o`
(
φ(τ1

` )− φ(τ2
` )
)

−

(
t−1∑
`=1

σ(〈φ(τ1
` )− φ(τ2

` ),w〉
(
φ(τ1

` )− φ(τ2
` )
)

+ λw
)
.

B.1 Proof of Corollary 1

The primary mechanism behind Corollary 1 is the following lemma for matrix concentration.
Lemma 7. Let δ ≤ e−1. Then, with probability 1− δ log2 T , for all t ∈ [T ], it holds that

‖w∗ −wL
t ‖2Vt

≤ 2‖w∗ −wL
t ‖2Vt

+ 84B2d log(T (1 + 2T )/δ)‖w∗ −wL
t ‖22 (8)
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Proof. Fix v ∈ Rd such that ‖v‖2 = 1. For ` ∈ [T ], let X` = v>
(
φ(τ1

` )− φ(τ2
` )
) (
φ(τ1

` )− φ(τ2
` )
)> v. Furthermore

define X0 = κλ. Observe that X` −E`−1X` for ` = 0, . . . , T is an {F`}-adapted martingale difference sequence
where E`[·] denotes the conditional expectation E[· | F`].

Note that the conditional variance of the individual terms may be bounded above by

var (X`) = E`−1

[
X2
` −E`−1 [X`]2

]
(9)

≤ E`−1
[
X2
`

]
(10)

≤ 4B2E`−1 [X`] (11)

where we have used the fact that X` is non-negative and ‖φ(τ)‖2 ≤ B. Let V̂t = κλI +∑
s∈[t] E`−1

(
φ(τ1

` )− φ(τ2
` )
) (
φ(τ1

` )− φ(τ2
` )
)>.

By (Bartlett et al., 2008, Lemma 2), we have, with probability at least 1− δ log2 T ,

v>V̂Tv =
T∑
`=0

E`−1X` ≤
T∑
`=0

X` +

√√√√16 log(1/δ)
T∑
`=0

var`−1(X`) + 2B2 log(1/δ) (12)

≤
T∑
`=0

X` +

√√√√64B2 log(1/δ)
T∑
`=0

E`−1X` + 2B2 log(1/δ) (13)

≤
T∑
`=0

X` + 1
2

T∑
`=0

E`−1X` + 34B2 log(1/δ) (14)

= v>VTv + 1
2v>V̂Tv + 34B2 log(1/δ) (15)

where the third line applied the AM-GM inequality. Rearranging shows that

1
2v>V̂Tv ≤ v>VTv + 34B2 log(1/δ) (16)

This holds for a fixed v. We now show that it approximately holds for all v such that ‖v‖2 = 1 via a covering
argument.

Let C be a minimal ε-cover of Πd−1 = {v ∈ Rd : ‖v‖2 = 1}. A standard result states that |Cε| ≤ (1 + 2/ε)d.
Then, by the union bound, with probability 1− δ log2 T , for all v ∈ Cε,

1
2v>V̂Tv ≤ v>VTv + 34B2d log((1 + 2/ε)/δ) (17)

Let A = 1
2VT − V̂T . Note that ‖A‖ ≤ 4B2T by definition. Let v ∈ Πd−1 be arbitrary and let uv ∈ Cε be the

closest vector in the cover so that ‖v− u‖2 ≤ ε. Then,

v>Av = v>Av + u>Au− u>Au (18)
≤ u>Au + 8εB2T (19)
≤ 34B2d log((1 + 2T )/δ) + 8B2 (20)
≤ 42B2d log((1 + 2T )/δ) (21)

under the good event and choosing ε = 1/T . Since this holds for all v ∈ Πd−1, we conclude that

V̂T � 2VT + 84B2d log((1 + 2T )/δ)Id (22)

with probability at least 1 − δ log2 T . Finally, by Jensen’s inequality we have VT � V̂T . Then, we apply the
union bound over t ∈ [T ], which gives the result.

The proof of the corollary now follows immediately as a consequence.
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Corollary 1. Under Assumption 1, conditioned on event Eδ ∩ Eprec, for any t ∈ [T ]

‖w∗ −wL
t ‖Vt

≤ 4κβt(δ) + αd,T (δ),

where αd,T (δ) = 20BW
√
d log(T (1 + 2T )/δ). Furthermore, if δ ≤ 1/e, then P(Eδ ∩ Eprec) ≥ 1− δ − δ log2 T .

Proof of Corollary 1. Assuming that Eδ holds, we have that ‖w∗ −wL
t ‖Vt ≤ 2κβ(δ). Furthermore, Lemma 7

gives

‖w∗ −wL
t ‖Vt

≤
√

2‖w∗ −wL
t ‖Vt

+ 10B
√
d log(T (1 + 2T )/δ)‖w∗ −wL

t ‖2
≤ 4κβt(δ) + 20BS

√
d log(T (1 + 2T )/δ)

Also, P(Eδ ∩ E2) ≥ 1− δ − δ log2 T follows from above combined with the claim of Lemma 1.

B.2 Proof of Lemma 2

Lemma 2. Conditioned on event Eδ ∩ Eprec, π∗ ∈ Πt,

Proof. Condition on Eδ ∩ Eprec. By definition of π∗, we have (φ(π∗)− φ(π))>w∗ ≥ 0 for any arbitrary π. This
implies

0 ≤ (φ(π∗)− φ(π))>wL
t + ‖φ(π∗)− φ(π)‖V−1

t
· ‖w∗ −wL

t ‖Vt

≤ (φ(π∗)− φ(π))>wL
t + (4κβt(δ) + αd,T (δ)) · ‖φ(π∗)− φ(π)‖V−1

t

where the second line follows from Corollary 1.

B.3 Proof of Theorem 1

We require a standard determinant bound to complete the proof.
Lemma 8. Let λ ≥ B. Consider the sequence v1, . . . ,vT ∈ Rd such that ‖vi‖ ≤ B and define Vt = λI +∑
s∈[t−1] vsv>s . Then,

∑
t∈[T ]

‖vt‖2V −1
t

≤ 2d log
(

1 + TB

d

)

Proof. Since λ ≥ B, we have that ‖vt‖V −1
t
≤ 1. Therefore, from Lemma 19.4 of Lattimore and Szepesvári (2020)

∑
t∈[T ]

‖vt‖2V −1
t

≤
∑
t∈[T ]

log
(

1 + ‖vt‖2V −1
t

)
≤ 2d log

(
dλ+ TB2

dλ

)
= 2d log

(
1 + TB

d

)

Theorem 1. Let δ ≤ 1/e and λ ≥ B
κ . Then, with probability at least 1− δ, the expected regret of Algorithm 1

can be bounded by

Rt ≤ (4κβt(δ) + 2αd,T (δ))

√
2Td log

(
1 + TB

κd

)
.
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Proof of Theorem 1. Armed with the supporting results, we now focus on completing the proof of Theorem 1.
The result may be shown by bounding the instantaneous regret. Condition on the event Eδ. Then,

2rt := (φ(π∗)− φ(π1
t ))>w∗ + (φ(π∗)− φ(π2

t ))>w∗

= (φ(π∗)− φ(π1
t ))>wL

t + (φ(π∗)− φ(π1
t ))>(w∗ −wL

t ) + (φ(π∗)− φ(π2
t ))>wL

t

+ (φ(π∗)− φ(π2
t ))>(w∗ −wL

t )
≤ (φ(π∗)− φ(π1

t ))>wL
t + (φ(π∗)− φ(π2

t ))>wL
t

+ ‖w∗ −wL
t ‖Vt

· ‖φ(π∗)− φ(π1
t )‖V−1

t
+ ‖w∗ −wL

t ‖Vt
· ‖φ(π∗)− φ(π2

t )‖V−1
t

The last two terms in the above sum can be bounded using Corollary 1 as follows:

‖w∗ −wL
t ‖Vt

· ‖φ(π∗)− φ(π1
t )‖V−1

t
+ ‖w∗ −wL

t ‖Vt
· ‖φ(π∗)− φ(π2

t )‖V−1
t

≤ (2κβt(δ) + αT,d(δ)) ·
(
‖φ(π∗)− φ(π1

t )‖V−1
t

+ ‖φ(π∗)− φ(π2
t )‖V−1

t

)
The first two terms leverage the optimistic bonus, using the fact that π1

t , π
2
t ∈ St:

(φ(π∗)− φ(π1
t ))>wL

t + (φ(π∗)− φ(π2
t ))>wL

t ≤ (2κβt(δ) + αT,d(δ)) ·
(
‖φ(π∗)− φ(π1

t )‖V−1
t

+ ‖φ(π∗)− φ(π2
t )‖V−1

t

)
In summary, we have that the instantaneous regret is upper bounded as

2rt ≤ 2 (2κβt(δ) + αT,d(δ)) ·
(
‖φ(π∗)− φ(π1

t )‖V−1
t

+ ‖φ(π∗)− φ(π2
t )‖V−1

t

)
≤ 4 (2κβt(δ) + αT,d(δ)) · ‖φ(π1

t )− φ(π2
t )‖V−1

t

where the last inequality follows from the fact that π∗ ∈ St by Lemma 2 and since π1
t and π2

t were chosen the
maximizer of the weighted difference ‖φ(π1

t )− φ(π2
t )‖Vt

. The regret is therefore

RT =
∑
t∈[T ]

rt

≤ 2 (2κβT (δ) + αT,d(δ)) ·
∑
t∈[T ]

‖φ(π1
t )− φ(π2

t )‖V−1
t

≤ 2 (2κβT (δ) + αT,d(δ)) ·
√
T
∑
t∈[T ]

‖φ(π1
t )− φ(π2

t )‖2
V−1
t

≤ 2 (2κβT (δ) + αT,d(δ)) ·

√
2Td log

(
1 + TB

d

)
where the second inequality follows from Cauchy-Schwarz and the last inequality applies Lemma 8.

C Appendix for Section 4

In this section we will use the notation Nt(s, a) to denote the number of times action a was executed at state s
up to time t− 1. Recall the bonus terms,

Given any η > 0 define,

ξ(t)
s,a(η, δ) = min

(
2η, 4η

√
U

Nt(s, a)

)

s.t. U = H log(|S||A|) + log
(

6 log(Nt(s, a)
δ

)
.
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and the empirical average of ξ(t)
s,a(η, δ) bonuses,

B̂t(π, η, δ) = Es1∼ρ,τ∼P̂πt (·|s1)

[
H−1∑
h=1

ξ(t)
sh,ah

(η, δ)
]
.

Additionally we also define the error terms

ξ(t)
s,a(ε, η, δ) = min

(
2η, 4η

√
U

Nt(s, a)

)

s.t. U = H log(|S||A|H) + |S| log
(⌈

4ηH
ε

⌉)
+ log

(
6 log(Nt(s, a))

δ

)
.

In contrast with the definition of bonus ξ(t)
s,a(η, δ) this quantity depends on an extra parameter ε. These erorr

terms induce the the following ‘bonus’ function,

Bt(π, η, δ, ε) = Es1∼ρ,τ∼Pπ(·|s1)

[
H−1∑
h=1

ξ(t)
sh,ah

(ε, η, δ)
]
.

Here the expectation is under the true MDP dynamics.

Once we have established the validity of Lemma 6, and therefore that with probability at least 1− 15δ,

RT ≤ 2γT

√
2Td log

(
1 + TB

d

)
+
∑
t∈[T ]

4B̂t(π1
t , 4WB, δ) + 4B̂t(π2

t , 4WB, δ)

it remains to show the B̂t() terms are small. We’ll do so by showing that for any η > 0 and δ ∈ (0, 1) and for all
policies π simultaneously we can bound the empirical expected bonuses B̂t(π, η, δ) in terms of the population
quantities Bt(π, ηH, δ),
Lemma 9. Let η, ε > 0. For all π simultaneously and for all t ∈ N, with probability 1− δ,

B̂t(π, η, δ) ≤ 2Bt(π, 2Hη, δ, ε) + ε

Proof. Recall that,

B̂t(π, η, δ) = Es1∼ρ,τ∼P̂πt (·|s1)

[
H−1∑
h=1

ξ(t)
sh,ah

(η, δ)
]
.

Let f : Γ→ R be defined as,

f(τ) =
H−1∑
h=1

ξ(t)
sh,ah

(η).

It is easy to see that f(τ) ∈ (0, 2ηH] for all τ ∈ Γ. Therefore, a direct application of Lemma 13 implies that with
probability at least 1− δ and simultaneously for all π, and t ∈ N,

B̂t(π, η, δ) ≤ Es1∼ρ,τ∼Pπ(·|s1)

[
H−1∑
h=1

ξ(t)
sh,ah

(η, δ)
]

+Bt(π, 2Hη, δ, ε) + ε

Since ξ(t)
s,a(ε, η, δ) ≥ ξ(t)

s,a(η, δ) for all ε > 0, s, a ∈ S ×A and ξ(t)
s,a(ε, η, δ) is monotonic in η we conclude that,

Es1∼ρ,τ∼Pπ(·|s1)

[
H−1∑
h=1

ξ(t)
sh,ah

(η, δ)
]
≤ Es1∼ρ,τ∼Pπ(·|s1)

[
H−1∑
h=1

ξ(t)
sh,ah

(ε, η, δ)
]

≤ Es1∼ρ,τ∼Pπ(·|s1)

[
H−1∑
h=1

ξ(t)
sh,ah

(ε, 2Hη, δ)
]

= Bt(π, 2Hη, δ, ε)
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Combining these inequalities the result follows.

Let Ē3 such that for all T ∈ N be the event that,∑
t∈[T ]

4B̂t(π1
t , 4SB, δ) + 4B̂t(π2

t , 4SB, δ) ≤ εT +
∑
t∈[T ]

8Bt(π1
t , 8HSB, δ, ε) + 8Bt(π2

t , 8HSB, δ, ε)

Invoking Lemmas 6 and 9 we can show Ē3 occurs with probability at least 1 − 2δ. Let’s bound
the sum

∑
t∈[T ] 8Bt(π1

t , 8HSB, δ, ε) + 8Bt(π2
t , 8HSB, δ, ε). Consider the martingale difference sequences

{Bt(π1
t , 8HSB, δ, ε)−

∑H−1
h=1 ξ

(t)
s1
t,h
,a1
t,h

(ε, 8HSB, δ)}∞t=1 and {Bt(π2
t , 8HSB, δ, ε)−

∑H−1
h=1 ξ

(t)
s2
t,h
,a2
t,h

(ε, 8HSB, δ)}∞t=1

each with norm upper bound 32H2SB. By an anytime Hoeffding inequality (see Lemma 16 ) (since ξs,a(ε, η, δ) ≤ 2η
and therefore

∑
h ξsh,ah(ε, η, δ) ≤ 2Hη) applied to with probability at least 1− 2δ for all T ∈ N simultaneously

∑
t∈[T ]

8Bt(π1
t , 4SB, δ, ε) + 8Bt(π2

t , 4SB, δ, ε) ≤ 8
∑
t∈[T ]

(H−1∑
h=1

ξ
(t)
s1
t,h
,a1
t,h

(ε, 8HSB, δ) +
H−1∑
h=1

ξ
(t)
s2
t,h
,a2
t,h

(ε, 8HSB, δ)
)

+ I.

Where I = 128HSB
√
TH log

(
6 log(TH)

δ

)
. In order to bound the remaining empirical error terms, we to the

following standard result,
Lemma 10. For i ∈ {1, 2} the empirical sum of errors satisfies the following bound

∑
t∈[T ]

H−1∑
h=1

ξ
(t)
si
t,h
,ai
t,h

(ε, 8HSB, δ) ≤

64HSB

√(
H log(|S||A|H) + |S| log

(⌈
32H2SB

ε

⌉)
+ log

(
6 log(HTs)

δ

))
|S||A|TH.

Proof. Let’s rewrite this sum by instead summing over states and actions,

∑
t∈[T ]

H−1∑
h=1

ξ
(t)
si
t,h
,ai
t,h

(ε, 8HSB, δ) =

∑
s∈S

∑
a∈A

NT+1(s,a)∑
t=1

min

16HSB, 32HSB

√√√√H log(|S||A|H) + |S| log
(⌈ 32H2SB

ε

⌉)
+ log

(
6 log(t)
δ

)
t


≤ 32HSB

√
H log(|S||A|H) + |S| log

(⌈
32H2SB

ε

⌉)
+ log

(
6 log(HT )

δ

)∑
s∈S

∑
a∈A

NT+1(s,a)∑
t=1

1√
t

≤ 32HSB

√
H log(|S||A|H) + |S| log

(⌈
32H2SB

ε

⌉)
+ log

(
6 log(HT )

δ

)∑
s∈S

∑
a∈A

2
√
NT+1(s, a)

≤ 64HSB

√(
H log(|S||A|H) + |S| log

(⌈
32H2SB

ε

⌉)
+ log

(
6 log(HT )

δ

))
|S||A|TH.

The result follows.

We will use Lemma 10 with ε = 1/T . As a consequence of Lemma 10 and Lemma 6 we see that when
Eδ ∩ E2 ∩ Ē0 ∩ Ē−1 ∩ Ē2 ∩ Ē3 holds
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RT ≤ 2γT

√
2Td log

(
1 + TB

d

)
+ Õ

(
H3/2

√
|A||S|TH +H|S|

√
|A|TH +H

√
TH

)
.

Now it remains to bound term γT . From now on let’s set ε = min(1/T, 8HSB) and let Ē4 be the event that for
all t ∈ N and all i ∈ {1, 2},

B̂t

(
πi`, 2SB,

δ′

8`3AS

)
≤ 2Bt

(
πi`, 4HSB,

δ′

8`3AS , ε
)

+ ε

for all t ∈ N and all i ∈ {1, 2}. As a consequence of Lemma 9 we can bound P
(
Ē4
)
≥ 1− 2δ. Squaring both sides,(

B̂t(πi
`, 2SB, δ′`)

)2
≤
(
2Bt(πi

`, 4HSB, δ′`, ε) + ε
)2

(i)
≤ 4

(
Bt(πi

`, 4HSB, δ′`, ε)
)2 + 16εHSB + ε2

≤ 4
(
Bt(πi

`, 4HSB, δ′`, ε)
)2 + 24εHSB

Where δ′` = δ′

8`3AS . Inequality (i) used that B(π, η, δ, ε) ≤ 2Hη. The last inequality holds because ε ≤ 8HSB.
Therefore if Ē4 holds for all t ∈ N,

γt ≤
√

2 (4κβt(δ) + αd,T (δ)) + 1
t

+ 4

√√√√t−1∑
`=1

B2
t (π1

` , 4HSB, δ′`, ε) +B2
t (π2

` , 4HSB, δ′`) + I.

Where I = 96(t−1)εHSB. We are just left with bounding the sum of squares
∑t−1
`=1

(
Bt

(
π1
` , 4HSB, δ′

8`3AS , ε
))2

+(
Bt

(
π2
` , 4HSB, δ′

8`3AS

))2
.

Lemma 11. Let η, ε > 0 and δ, δ′ ∈ (0, 1) and define Ē5(δ′) be the event that for all t ∈ N and i ∈ {1, 2}∑
i∈{1,2}

t−1∑
`=1

(
B`(πi`, η, δ/`3)

)2 ≤ 12η2H2
(

1.4 ln ln
(
2
(
max

(
4η2Ht, 1

)))
+ ln 5.2

δ′
+ 1
)

+

64η2H

(
H log(|S||A|H) + |S| log

(⌈
4ηH
ε

⌉)
+ log

(
6 log(HT )

δ

))
|S||A| log(TH + |S||A|)

Then P(Ē5(δ′)) ≥ 1− 2δ′.

Proof. Observe that,(
B`(π1

t , η,
δ

`3
, ε)
)2

+
(
B`(π1

t , η,
δ

`3
, ε)
)2

=
(
E
s1

1∼ρ,τ∼P
π1
t (·|s1

1)

[
H−1∑
h=1

ξ
(t)
s1
h
,a1
h

(ε, η, δ
`3

)
])2

+

(
E
s2

1∼ρ,τ∼P
π2
t (·|s2

1)

[
H−1∑
h=1

ξ
(t)
s2
h
,a2
h

(ε, η, δ
`3

)
])2

(i)
≤ HE

s1
1∼ρ,τ∼P

π1
t (·|s1

1)

[
H−1∑
h=1

(
ξ

(t)
s1
h
,a1
h

(ε, η, δ
`3

)
)2
]

+

HE
s2

1∼ρ,τ∼P
π2
t (·|s2

1)

[
H−1∑
h=1

(
ξ

(t)
s2
h
,a2
h

(ε, η, δ
`3

)
)2
]

Where inequality (i) is a consequence of
(
E
[∑H

h=1 ah

])2
≤ HE

[∑H
h=1 a

2
h

]
. Define the martingale-difference

sequences for i ∈ {1, 2},

D
(i)
` = E

si1∼ρ,τ∼P
πi
` (·|si1)

[
H−1∑
h=1

(
ξ

(`)
si
h
,ai
h

(ε, η, δ)
)2
]
−
H−1∑
h=1

(
ξ

(`)
si
h
,ai
h

(ε, η, δ)
)2
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Since ξ(`)
s,a(ε, η, δ) ≤ 2η, we see that

∣∣∣D(i)
`

∣∣∣ ≤ 8η2H. Observe that for i ∈ {1, 2},

Var(i)
`

(
H−1∑
h=1

(
ξ

(`)
si
h
,ai
h

(ε, η, δ)
)2
)
≤ E

si1∼ρ,τ∼P
πi
` (·|si1)

{H−1∑
h=1

(
ξ

(`)
si
h
,ai
h

(ε, η, δ)
)2
}2

(i)
≤ 4η2HE

si1∼ρ,τ∼P
πi
` (·|si1)

[
H−1∑
h=1

(
ξ

(`)
si
h
,ai
h

(ε, η, δ)
)2
]

≤ 16η4H2

Where (i) follows follows because for ξ(`)
s,a(ε, η, δ) ≤ 2η.

Since the variance can be bounded by the mean, we can make use of a Uniform Empirical Bernstein Bound

from Lemma 17. Let S(i)
t =

∑t
`=1D

(i)
` for i ∈ {1, 2} and W

(i)
t =

∑t
`=1 Var(i)

`

(∑H−1
h=1

(
ξ

(`,i)
sh,ah(ε, η, δ)

)2
)
. Let

c = 8η2H and m = 4η2H. With probability 1− δ′ for all t ∈ N,

t−1∑
`=1

D
(i)
` ≤

√√√√max
(

4η2H

t−1∑
`=1

E
s1∼ρ,τ∼P

πi
` (·|s1)

[
H−1∑
h=1

(
ξ

(`,i)
sh,ah(ε, η, δ)

)2
]
, 4η2H

)(
1.4 ln ln (2 (max (4η2Ht, 1))) + ln 5.2

δ′

)

+ 3.28η2Hη

(
1.4 ln ln

(
2
(
max

(
4η2Ht, 1

)))
+ ln 5.2

δ′

)

≤

√√√√(4η2H

t−1∑
`=1

E
s1∼ρ,τ∼P

πi
` (·|s1)

[
H−1∑
h=1

(
ξ

(`,i)
sh,ah(ε, η, δ)

)2
]

+ 4η2H

)(
1.4 ln ln (2 (max (4η2Ht, 1))) + ln 5.2

δ′

)

+ 3.28η2H

(
1.4 ln ln

(
2
(
max

(
4η2Ht, 1

)))
+ ln 5.2

δ′

)

Since
√
ab ≤ a+b

2 ,

t−1∑
`=1

D
(i)
` ≤

1
2Es1∼ρ,τ∼P

πi
` (·|s1)

[
H−1∑
h=1

(
ξ(`,i)
sh,ah

(ε, η, δ)
)2
]

+

2η2H + (3.28η2H + 2η2H)︸ ︷︷ ︸
≤6η2H

(
1.4 ln ln

(
2
(
max

(
4η2Ht, 1

)))
+ ln 5.2

δ′

)
.

Therefore with high probability for i ∈ {1, 2},

E
s1∼ρ,τ∼P

πi
` (·|s1)

[
H−1∑
h=1

(
ξ(`,i)
sh,ah

(ε, η, δ)
)2
]
≤ 2

t−1∑
`=1

H−1∑
h=1

(
ξ(`,i)
sh,ah

(ε, η, δ)
)2

+ 4η2H+

6η2H

(
1.4 ln ln

(
2
(
max

(
4η2Ht, 1

)))
+ ln 5.2

δ′

)
.
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Therefore with probability 1− 2δ′,

∑
i∈{1,2}

t−1∑
`=1

(
B`(πi`, η, δ/`3)

)2 ≤ 2H
∑

i∈{1,2}

t−1∑
`=1

H−1∑
h=1

(
ξ(`,i)
sh,ah

(ε, η, δ)
)2

+

12η2H2
(

1.4 ln ln
(
2
(
max

(
4η2Ht, 1

)))
+ ln 5.2

δ′
+ 1
)
.

We are left with the task of bounding the terms
∑t−1
`=1
∑H−1
h=1

(
ξ

(`,i)
sh,ah(ε, η, δ)

)2
.

Let’s rewrite this sum by instead summing over states and actions,

∑
t∈[T ]

H−1∑
h=1

(
ξ

(t)
si
t,h
,ai
t,h

(ε, η, δ)
)2

=

∑
s∈S

∑
a∈A

NT+1(s,a)∑
t=1

min

4η2, 16η2
H log(|S||A|H) + |S| log

(⌈
4ηH
ε

⌉)
+ log

(
6 log(t)
δ

)
t


=
∑
s∈S

∑
a∈A

NT+1(s,a)∑
t=1

16η2
H log(|S||A|H) + |S| log

(⌈
4ηH
ε

⌉)
+ log

(
6 log(t)
δ

)
t

= 16η2
(
H log(|S||A|H) + |S| log

(⌈
4ηH
ε

⌉)
+ log

(
6 log(HT )

δ′

))∑
s∈S

∑
a∈A

NT+1(s,a)∑
t=1

1
t

32η2
(
H log(|S||A|H) + |S| log

(⌈
4ηH
ε

⌉)
+ log

(
6 log(HT )

δ′

))∑
s∈S

∑
a∈A

log (NT+1(s, a) + 1)

≤ 32η2
(
H log(|S||A|H) + |S| log

(⌈
4ηH
ε

⌉)
+ log

(
6 log(HT )

δ′

))
|S||A| log(TH + |S||A|)

Therefore with probability 1− 2δ′,

∑
i∈{1,2}

t−1∑
`=1

(
B`(πi`, η, δ/`3)

)2 ≤ 12η2H2
(

1.4 ln ln
(
2
(
max

(
4η2Ht, 1

)))
+ ln 5.2

δ′
+ 1
)

+

64η2H

(
H log(|S||A|H) + |S| log

(⌈
4ηH
ε

⌉)
+ log

(
6 log(HT )

δ′

))
|S||A| log(TH + |S||A|)

The result follows.

The main takeaway from this lemma is that the sum of the square errors grows only logarithmically in T . Applying
this bound to γT and setting ε = O(1/T ) we obtain,

γT ≤
√

2 (4κβT (δ) + αd,T (δ)) + 2
√
ωT (δ) + 1

T
= Õ

(
κ
√
d+H2

√
|S||A|+H3/2|S|

√
|A|
)

Where

ωT (δ) = 192H4S62B2
(

1.4 ln ln
(
2
(
max

(
64H3S2B2t, 1

)))
+ ln 5.2

δ′
+ 1
)

+

1024H3S2B2
(
H log(|S||A|H) + |S| log

(⌈
64H3S2B2

ε

⌉)
+ log

(
6 log(HT )

δ′

))
|S||A| log(TH + |S||A|)
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Applying this bound to γT and setting ε = 1/96T we obtain,

γT ≤
√

2 (4κβT (δ) + αd,T (δ)) + 2
√
ωT (δ) +HSB + 1

T

Combining these observations we can derive our main result,
Theorem 3 (Formal version of Theorem 2). If Eδ ∩ E2 ∩ Ē0 ∩ Ē−1 ∩ Ē2 ∩ Ē3 ∩ Ē4 ∩ Ē5( δ2 ) holds then the regret of
LPbRL satisfies,

RT ≤ 2
(

4κβt(δ) + αd,T (δ) + 2
√
ωT (δ) + 96(t− 1)εHSB + 1

T

)√
2Td log

(
1 + TB

d

)
+

128H3/2SB

√
TH log

(
6 log(T )

δ

)
+

1024HSB

√(
H log(|S||A|H) + |S| log

(⌈
32H2SB

ε

⌉)
+ log

(
6 log(HT )

δ

))
SATH.

For all T ∈ N simultaneously. Where P
(
Eδ ∩ E2 ∩ Ē0 ∩ Ē−1 ∩ Ē2 ∩ Ē3 ∩ Ē4 ∩ Ē5( δ2 )

)
≥ 1− 15δ.

C.1 Supporting Related Work Lemmas

We will make use of the following Lemma (see Lemma B.1 in Chatterji et al. (2021)),
Lemma 12. For any fixed policy π, and any function f : Γ→ R satisfying maxτ∈Γ |f(τ)| ≤ η, with probability
at least 1− δ for all t ∈ N,

Es1∼ρ,τ∼Pπ(·|s1) [f(τ)]− Es1∼ρ,τ∼P̂πt (·|s1) [f(τ)] ≤ B̂t(π, η, δ)

We will also make use of the following Lemma (see Lemma B.2 from Chatterji et al. (2021) ) corresponding to
the uniform version of lemma 12.
Lemma 13 (Uniform version of Lemma 12 ). Let ε > 0. For any function f : Γ→ R satisfying maxτ∈Γ |f(τ)| ≤ η,
for all policies π simultaneously and all t ∈ N,

E
s1∼ρ,τ∼P̂π(·|s1) [f(τ)]− Es1∼ρ,τ∼Pπt (·|s1) [f(τ)] ≤ Bt(π, η, δ, ε) + ε.

We will make use of the following standard bound on the covering number of the l2 ball.
Lemma 14. For any ε ∈ (0, 1] the ε−covering number of the Euclidean ball in Rd with radius r > 0 i.e..
{x ∈ Rd : ‖x‖2 ≤ r} is upper bounded by

( 1+2r
ε

)d.
C.2 Proof of Lemma 3

Lemma 3. Let Ē0 be the event that for all t ∈ N,

‖wL
t −w∗‖Ṽt

≤
√

2‖wL
t −w∗‖Vt

+√√√√t−1∑
`=1

4
(
B̂t

(
π, 2WB,

δ′

8`3|A|S

))2
+ 1
t
.

where δ′ = δ

( 1+4W
ε )d and ε = 1

t2κλ+4B2t3 . Then P
(
Ē0
)
≥ 1− δ.

Proof. Recall that as a result of assumption 1 and the definition of wL
t we can bound ‖wL

t −w∗‖ ≤ 2S. Let v be
such that ‖v‖ ≤ 2S.
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Let’s consider v>Ṽtv,

v>Ṽtv = κλ‖v‖2 +
t−1∑
`=1

(〈
v, φP̂`(π1

` )− φP̂`(π2
` )
〉)2

Let’s focus on a single summand
〈

v, φP̂`(π1
` )− φP̂`(π2

` )
〉2

with ` ∈ [t− 1].

By Lemma 12, with probability at least 1− δ′

4`3 for all π ∈ Π simultaneously,

〈φP̂`(π),v〉 ≤ 〈φ(π),v〉+ B̂`

(
π, 2SB, δ′

8`3AS

)
.

And
−〈φP̂`(π),v〉 ≤ −〈φ(π),v〉+ B̂`

(
π, 2SB, δ′

8`3AS

)
.

Then

∣∣∣〈φP̂`(π1
` )− φP̂`(π2

` ),v〉
∣∣∣ ≤ ∣∣〈φ(π1

` )− φ(π2
` ),v〉

∣∣+ B̂`

(
π1
` , 2SB,

δ′

8`3AS

)
+ B̂`

(
π2
` , 2SB,

δ′

8`3AS

)
.

And therefore,

〈φP̂`(π1
` )− φP̂`(π2

` ),v〉2 ≤ 2〈φ(π1
` )− φ(π2

` ),v〉2 + 4
(
B̂`

(
π1
` , 2SB,

δ′

8`3AS

))2
+ 4

(
B̂`

(
π2
` , 2SB,

δ′

8`3AS

))2
.

Therefore with probability at least 1− δ
2t2 , for all t ∈ N simultaneously,

v>Ṽtv = κλ‖v‖2 +
t−1∑
`=1

〈
v, φP̂`(π1

` )− φP̂`(π2
` )
〉2

≤ 2κλ‖v‖2 + 2
t−1∑
`=1

〈
v, φ(π1

` )− φ(π2
` )
〉2 + 4

(
B̂t

(
π1
` , 2SB,

δ′

8`3AS

))2
+ 4

(
B̂t

(
π2
` , 2SB,

δ′

8`3AS

))2

= 2v>V̄tv +
t−1∑
`=1

4
(
B̂t

(
π1
` , 2SB,

δ′

8`3AS

))2
+ 4

(
B̂t

(
π2
` , 2SB,

δ′

8`3AS

))2

Consider an ε−cover of the 2S ball in Rd and let’s see that for any other v in the 2S ball, the closest vector in
the covering ṽ satisfies, ‖v− ṽ‖ ≤ ε and therefore,

∣∣∣v>Ṽtv− ṽ>Ṽtṽ
∣∣∣ =

∣∣∣v>Ṽtv− v>Ṽtṽ + v>Ṽtṽ− ṽ>Ṽtṽ
∣∣∣

≤
∣∣∣v>Ṽtv− v>Ṽtṽ

∣∣∣+
∣∣∣v>Ṽtṽ− ṽ>Ṽtṽ

∣∣∣
≤ ‖Ṽtv‖‖v− ṽ‖+ ‖Ṽtṽ‖‖v− ṽ‖
≤ ε

(
κλ+ 4B2(t− 1)

)
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Similarly ∣∣v>V̄tv− ṽ>V̄tṽ
∣∣ ≤ ε (κλ+ 4B2(t− 1)

)
Invoking Lemma 14 and setting δ′ = δ

( 1+4S
ε )d applying it to wL

t −w∗

‖wL
t −w∗‖2Ṽt

≤ 2‖wL
t −w∗‖2V̄t

+
t−1∑
`=1

4
(
B̂t

(
π1
` , 2SB,

δ′

8`3AS

))2
+ 4

(
B̂t

(
π2
` , 2SB,

δ′

8`3AS

))2
+ 2ε

(
κλ+ 4B2(t− 1)

)
.

Setting ε = 1
t2κλ+4B2t3 and using the fact that all a, b, c ≥ 0 we have

√
a2 + b2 + c2 ≤ a+ b+ c,

‖wL
t −w∗‖Ṽt

≤
√

2‖wL
t −w∗‖V̄t

+

√√√√t−1∑
`=1

4
(
B̂t

(
π1
` , 2SB,

δ′

8`3AS

))2
+ 4

(
B̂t

(
π2
` , 2SB,

δ′

8`3AS

))2
+ 1
t
.

Since the inequality holds for any t ∈ N with probability at least 1 − δ
2t2 , by the union bound, the inequality

holds for all t ∈ N simultaneously with probability at least 1− δ.

C.3 Proof of Lemma 4

Lemma 4. Let Ē−1 be the event that π∗ ∈ Πt for all t ∈ N. Then P
(
Ē−1

)
≥ 1− 5δ.

Proof. Let’s start by conditioning on Eδ, Ē0 and E2 (see Corollary 1 for a definition of E2). By Lemmas 1 and 3,
P(Eδ ∩ Ē0 ∩ E2) ≥ 1− 4δ

By definition of π∗, (φ(π∗)− φ(π))>w∗ ≥ 0 for any arbitrary π. Therefore,

0 ≤ (φ(π∗)− φ(π))>w∗

By Lemma 12, with probability at least 1− δ for all π1, π2 ∈ Π simultaneously and all t ∈ N

(φ(π1)− φ(π2))>w∗ ≤ (φP̂t(π1)− φP̂t(π2))>w∗ + B̂t

(
π1, 2SB,

δ

2AS

)
+ B̂t

(
π2, 2SB,

δ

A2S

)
, (23)

In particular this implies that with probability at least 1− δ for π∗ and any π,

0 ≤ (φ(π∗)− φ(π))>w∗ ≤ (φP̂t(π∗)− φP̂t(π))>w∗ + B̂t

(
π∗, 2SB, δ

2AS

)
+ B̂t

(
π, 2SB, δ

A2S

)
, (24)

Let’s bound the term (φP̂t(π∗)− φP̂t(π))>w∗

(φP̂t(π∗)− φP̂t(π))>w∗ = (φP̂t(π∗)− φP̂t(π))>wL
t + (φP̂t(π∗)− φP̂t(π))>(w∗ −wL

t )

≤ (φP̂t(π∗)− φP̂t(π))>wL
t + ‖φP̂t(π∗)− φP̂t(π)‖Ṽ−1

t

‖w∗ −wL
t ‖Ṽt

(25)
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Since Ē0 holds, by Lemma 3

‖wL
t −w∗‖Ṽt

≤
√

2‖wL
t −w∗‖V̄t

+

√√√√t−1∑
`=1

4
(
B̂t

(
π, 2SB, δ′

8`3AS

))2
+ 1
t
.

Since Eδ ∩ E2 is assumed to hold Corollary 1 implies that ‖wL
t −w∗‖Ṽt

≤ 4κβt(δ) + αd,T (δ) and therefore,

‖wL
t −w∗‖Ṽt

≤
√

2 (4κβt(δ) + αd,T (δ)) +

√√√√t−1∑
`=1

4
(
B̂t

(
π, 2SB, δ′

8`3AS

))2
+ 1
t
.

Since γt =
√

2 (4κβt(δ) + αd,T (δ)) +
√∑t−1

`=1 4
(
B̂t
(
π, 2SB, δ′

8`3AS
))2

+ 1
t , combining these results with Equa-

tions 25 and 24 yields,

0 ≤ (φP̂t(π∗)− φP̂t(π))>wL
t + γt‖φP̂t(π∗)− φP̂t(π)‖Ṽ−1

t

+ B̂t

(
π∗, 2SB, δ

2AS

)
+ B̂t

(
π, 2SB, δ

A2S

)
,

Thus implying π∗ ∈ Πt. Taking a union bound between Eδ ∩ Ē0 ∩ E2 and the 1 − δ probability event from
Equation 25 yields the result.

C.4 Proof of Lemma 6

Full version of Lemma 6,
Lemma 15. If Eδ ∩ E2 ∩ Ē0 ∩ Ē−1 ∩ Ē2 the regret is bounded by,

RT ≤ 2γT

√
2Td log

(
1 + TB

d

)
+∑

t∈[T ]

4B̂t(π1
t , 4WB, δ) + 4B̂t(π2

t , 4WB, δ)

Proof. We first condition on Eδ ∩ E2 ∩ Ē0 ∩ Ē−1. Let’s start by showing the following bound on the instantaneous
regret,

2rt ≤ 2γt‖φP̂t(π1
t )− φP̂t(π2

t )‖Ṽ−1
t

+ 4B̂t(π1
t , 4SB, δ) + 4B̂t(π2

t , 4SB, δ)

Since we are conditioning on Ē2, by Lemma 5 follows that for all t,

2rt ≤ (φP̂t(π∗)− φP̂t(π1
t ))>w∗ + (φP̂t(π∗)− φP̂t(π2

t ))>w∗ + B̂t(π∗, 4SB, δ) + B̂t(π1
t , 2SB, δ) + B̂t(π2

t , 2SB, δ).

Let’s focus on bounding the term (φP̂t(π∗)− φP̂t(π1
t ))>w∗ + (φP̂t(π∗)− φP̂t(π2

t ))>w∗.

(φP̂t(π∗)− φP̂t(π1
t ))>w∗ + (φP̂t(π∗)− φP̂t(π2

t ))>w∗ = (φP̂t(π∗)− φP̂t(π1
t ))>wL

t + (φP̂t(π∗)− φP̂t(π1
t ))>(w∗ −wL

t )

+ (φP̂t(π∗)− φP̂t(π2
t ))>wL

t + (φP̂t(π∗)− φ(π2
t ))>(w∗ −wL

t )

≤ (φP̂t(π∗)− φP̂t(π1
t ))>wL

t + (φP̂t(π∗)− φP̂t(π2
t ))>wL

t

+ ‖w∗ −wL
t ‖Ṽt

· ‖φP̂t(π∗)− φP̂t(π1
t )‖Ṽ−1

t

+

‖w∗ −wL
t ‖Ṽt

· ‖φP̂t(π∗)− φP̂t(π2
t )‖Ṽ−1

t

(26)
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Since Eδ ∩ E2 ∩ Ē0 holds, the last two terms in the sum above can be bounded using Lemma 3 and Corollary 1 by

‖w∗ −wL
t ‖Ṽt

· ‖φP̂t(π∗)− φP̂t(π1
t )‖Ṽ−1

t

+ ‖w∗ −wL
t ‖Ṽt

· ‖φP̂t(π∗)− φP̂t(π2
t )‖Ṽ−1

t

≤ γt
(
‖φP̂t(π∗)− φP̂t(π1

t )‖Ṽ−1
t

+ ‖φP̂t(π∗)− φP̂t(π2
t )‖Ṽ−1

t

)
Where

γt =
√

2 (4κβt(δ) + αd,T (δ)) +

√√√√t−1∑
`=1

4
(
B̂t

(
π1
` , 2SB,

δ′

8`3AS

))2
+ 4

(
B̂t

(
π2
` , 2SB,

δ′

8`3AS

))2
+ 1
t
.

The first two terms on the right hand side of inequality 26 leverage the optimistic bonus, using the fact that
π1
t , π

2
t ∈ Πt and therefore,

(φP̂t(π∗)− φP̂t(π1
t ))>wL

t + (φP̂t(π∗)− φP̂t(π2
t ))>wL

t + B̂t(π∗, 4SB, δ) + B̂t(π1
t , 2SB, δ) + B̂t(π2

t , 2SB, δ)

≤ γt
(
‖φP̂t(π∗)− φP̂t(π1

t )‖Ṽ−1
t

+ ‖φP̂t(π∗)− φP̂t(π2
t )‖Ṽ−1

t

)
+ 3B̂t(π∗, 4SB, δ) + B̂t(π1

t , 4SB, δ) + B̂t(π2
t , 4SB, δ)

≤ γt
(
‖φP̂t(π∗)− φP̂t(π1

t )‖Ṽ−1
t

+ ‖φP̂t(π∗)− φP̂t(π2
t )‖Ṽ−1

t

)
+ 4B̂t(π∗, 4SB, δ) + 2B̂t(π1

t , 4SB, δ) + 2B̂t(π2
t , 4SB, δ)

Putting these together we can conclude that,

2rt ≤ 2γt
(
‖φP̂t(π∗)− φP̂t(π1

t )‖Ṽ−1
t

+ ‖φP̂t(π∗)− φP̂t(π2
t )‖Ṽ−1

t

)
+

4B̂t(π∗, 4SB, δ) + 2B̂t(π1
t , 4SB, δ) + 2B̂t(π2

t , 4SB, δ)

Recall that whenever Ē−1 holds, π∗ ∈ Πt and that as a result of how π1
t , π

2
t are chosen (see Algorithm 2)

2rt ≤ 2γt‖φP̂t(π1
t )− φP̂t(π2

t )‖Ṽ−1
t

+ 4B̂t(π1
t , 4SB, δ) + 4B̂t(π2

t , 4SB, δ)

The regret is therefore upper bounded by,

RT =
∑
t∈[T ]

2rt

≤
∑
t∈[T ]

2γt‖φP̂t(π1
t )− φP̂t(π2

t )‖Ṽ−1
t

+ 4B̂t(π1
t , 4SB, δ) + 4B̂t(π2

t , 4SB, δ)

≤ 2γT
√
T
∑
t∈[T ]

‖φP̂t(π1
t )− φP̂t(π2

t )‖2
Ṽ−1
t

+ 4B̂t(π1
t , 4SB, δ) + 4B̂t(π2

t , 4SB, δ)

≤ 2γT

√
2Td log

(
1 + TB

d

)
+
∑
t∈[T ]

4B̂t(π1
t , 4SB, δ) + 4B̂t(π2

t , 4SB, δ)

Where the last inequality follows from Lemma 8.

D Miscelaneous Technical Lemmas

We will make use of the following Lemmas
Lemma 16 (Hoeffding Inequality). Let {xt}∞t=1 be a martingale difference sequence with |xt| ≤ ζ and let δ ∈ (0, 1].
Then with probability 1− δ for all T ∈ N

T∑
t=1

xt ≤ 2ζ

√
T ln

(
6 lnT
δ

)
.
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Proof. Observe that |xt|ζ ≤ 1. By invoking a time-uniform Hoeffding-style concentration inequality (Howard et al.,
2020, Equation (11)) we find that

Pr
[
∀ t ∈ N :

T∑
t=1

xt
ζ
≤ 1.7

√
T

(
log log(T ) + 0.72 log

(
5.2
δ

))]
≥ 1− δ.

Rounding up the constants for the sake of simplicity we get

Pr
[
∀ t ∈ N :

T∑
t=1

xt ≤ 2ζ

√
T

(
log
(

6 log(T )
δ

))]
≥ 1− δ,

which establishes our claim.

Lemma 17 (Uniform empirical Bernstein bound). In the terminology of Howard et al. (2021), let St =
∑t
i=1 Yi

be a sub-ψP process with parameter c > 0 and variance process Wt. Then with probability at least 1− δ for all
t ∈ N

St ≤ 1.44

√
max(Wt,m)

(
1.4 ln ln

(
2
(

max
(
Wt

m
, 1
)))

+ ln 5.2
δ

)
+ 0.41c

(
1.4 ln ln

(
2
(

max
(
Wt

m
, 1
)))

+ ln 5.2
δ

)
where m > 0 is arbitrary but fixed.
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