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Abstract

Learning sketching matrices for fast and accu-
rate low-rank approximation (LRA) has gained in-
creasing attention. Recently, Bartlett, Indyk, and
Wagner (COLT 2022) presented a generalization
bound for the learning-based LRA. Specifically,
for rank-k approximation using an m× n learned
sketching matrix with s non-zeros in each column,
they proved an Õ(nsm) bound on the fat shatter-
ing dimension (Õ hides logarithmic factors). We
build on their work and make two contributions.

(1) We present a better Õ(nsk) bound (k ≤ m).
En route to obtaining this result, we give a low-
complexity Goldberg–Jerrum algorithm for com-
puting pseudo-inverse matrices, which would be
of independent interest.

(2) We alleviate an assumption of the previous
study that sketching matrices have a fixed sparsity
pattern. We prove that learning positions of non-
zeros increases the fat shattering dimension only
by O(ns log n). In addition, experiments confirm
the practical benefit of learning sparsity patterns.

1 INTRODUCTION

Low-rank approximation (LRA) has played a crucial role in
analyzing matrix data. Although the singular value decom-
position (SVD) provides an optimal LRA, it is too costly
when the data size is huge. To overcome this limitation,
researchers have developed fast LRA methods with sketch-
ing, whose basic form is as follows: given an input matrix
A ∈ Rn×d and a target low rank k, choose a sketching ma-
trix S ∈ Rm×n with k ≤ m ≤ min{n, d} and compute an
LRA matrix for SA ∈ Rm×d. If S is drawn from an appro-
priate distribution, the resulting matrix is a good LRA of A
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with high probability (Sarlos, 2006; Clarkson and Woodruff,
2009, 2017). This randomized sketching paradigm has led
to various time- and space-efficient algorithms in numeri-
cal linear algebra. We refer the reader to (Woodruff, 2014;
Martinsson and Tropp, 2020) for more details on this area.

While such LRA methods with randomized sketching enjoy
rigorous guarantees even for worst-case input matrices, a
recent line of work (Indyk et al., 2019; Liu et al., 2020; Indyk
et al., 2021) suggests that learning-based LRA methods can
attain significantly smaller approximation errors when we
can use past data to better handle future data. They have
achieved fast and more accurate LRA by learning sketching
matrices S to minimize approximation errors over past data.

As for the theoretical side of learning-based LRA, Bartlett
et al. (2022) recently presented generalization bounds for
learning sketching matrices. Specifically, they proved an
Õ(nsm)1 upper bound on the fat shattering dimension for
learning an m×n sketching matrix with s non-zeros at fixed
positions in each column. They also showed an Ω(ns) lower
bound. We give an overview of their work in Section 2.3.

Their study has raised some natural questions. For example,
can we narrow the Õ(m) gap between the upper and lower
bounds? Moreover, generalization bounds for learning-
based LRA with changeable sparsity patterns are awaited
since learning positions of non-zeros is considered to be a
promising direction (Indyk et al., 2021) and its effectiveness
has been partly confirmed (Liu et al., 2020).

1.1 Our Contribution

Building on (Bartlett et al., 2022), we address the aforemen-
tioned questions and make two contributions.

First, we improve the previous Õ(nsm) upper bound by
replacing the O(m) factor with O(logm), which leads to
a better Õ(nsk) bound (k ≤ m). Although the sketching
dimension, m, is often set to, for example, 4k in practice,
there is no such theoretical relation as m = O(k). Thus, our
bound indeed improves the previous one. We take the same
proof strategy as (Bartlett et al., 2022) and represent compu-
tational procedures of a loss function by a Goldberg–Jerrum

1We use Õ and Ω̃ to hide logarithmic factors.



Improved Generalization Bound and Learning of Sparsity Patterns for Data-Driven Low-Rank Approximation

(GJ) algorithm. Our technical contribution is to develop a
new GJ algorithm for computing pseudo-inverse matrices
with a smaller predicate complexity than the previous one,
which would be of independent interest. To demonstrate
its usefulness, we also give a generalization bound for a
learning-based Nyström method by using our GJ algorithm.

Second, we give a generalization bound for learning-based
LRA with changeable sparsity patterns. Supposing we can
learn both positions and values of ns non-zeros in a sketch-
ing matrix S, we prove that our Õ(nsk) upper bound on
the fat shattering dimension increases only by O(ns log n),
despite the presence of exponentially many possible sparsity
patterns in ns. Hence, the bound remains Õ(nsk) (ignoring
O(log n)) even when the sparsity pattern can change. Also,
experiments show that a recent efficient learning-based LRA
method (Indyk et al., 2021), which used fixed sparsity pat-
terns, can achieve higher accuracy with changeable sparsity
patterns, suggesting the practical benefit of our result.

1.2 Related Work

The most relevant study to ours is (Bartlett et al., 2022).
They proved generalization bounds for learning-based LRA
and other methods in numerical linear algebra. Other theo-
retical results related to learning-based LRA include safe-
guard guarantees (Indyk et al., 2019) and consistency (Indyk
et al., 2021), which are different from generalization guar-
antees, as mentioned in (Bartlett et al., 2022, Section 2.5).

Gupta and Roughgarden (2017) initiated the study of a PAC-
learning approach to algorithm configuration, which is also
called data-driven algorithm design (Balcan, 2021). Recent
studies have presented generalization bounds for various
learning-based algorithms, e.g., integer programming meth-
ods (Balcan et al., 2018, 2021b, 2022), clustering (Balcan
et al., 2020a), and heuristic search (Sakaue and Oki, 2022).
Balcan et al. (2021a) presented a general theory for deriv-
ing generalization bounds based on piecewise structures of
dual function classes. Their idea, however, does not lead to
strong guarantees in learning-based LRA, as discussed in
(Bartlett et al., 2022, Appendix E). As with (Bartlett et al.,
2022), we consider a class of proxy loss functions to obtain
a generalization bound. This idea has a slight connection to
(Balcan et al., 2020b), which approximates dual functions
with simpler ones, while the technical details are different.

2 BACKGROUND

For any positive integer n, let [n] = {1, . . . , n}. Let sign(·)
be the sign function that takes x ∈ R as input and returns
+1 if x > 0, −1 if x < 0, or 0 if x = 0. We define the
degree of a polynomial by its total degree. The degree of a
rational function refers to the maximum of its numerator’s
and denominator’s degrees, where the fraction is reduced to
the lowest terms.

Let rank, tr, and det denote the rank, trace, and determinant.
Let ∥A∥F =

√
tr(A⊤A) denote the Frobenius norm of a

matrix A. The Moore–Penrose pseudo-inverse of a matrix
A is denoted by A†. SVD refers to the compact singular
value decomposition, i.e., for A ∈ Rn×d with rank(A) = r,
SVD computes U ∈ Rn×r, Σ ∈ Rr×r, and V ∈ Rd×r with
A = UΣV ⊤. For any vector x ∈ Rn, let supp(x) ⊆ [n]
denote the set of indices of non-zeros. A sparsity pattern,
J ⊆ [n], of x indicates that xi is allowed to be non-zero if
and only if i ∈ J , hence supp(x) ⊆ J .

2.1 Learning Theory

Let X be a domain of inputs, D a distribution over X , and
L ⊆ [0, 1]X a class of loss functions. In our case, X is a
class of input matrices, and each L ∈ L measures the ap-
proximation error of LRA and is parametrized by a sketch-
ing matrix (see Section 2.3). For δ ∈ (0, 1) and ε > 0, we
say L admits (ε, δ)-uniform convergence with N samples if
for i.i.d. draws X̃ = {x1, . . . , xN} ∼ DN , it holds that

Pr
X̃

[
∀L ∈ L,

∣∣∣∣∣ 1N
N∑
i=1

L(xi)− E
x∼D

[L(x)]

∣∣∣∣∣ ≤ ε

]
≥ 1− δ.

If such a uniform bound over L holds, we can bound the gap
between the empirical and expected losses regardless of how
sketching matrices are learned (e.g., manual or automatic).

The following pseudo- and fat shattering dimensions are
fundamental notions of the complexity of function classes.

Definition 1 (Pseudo- and fat shattering dimensions). Let
L ⊆ [0, 1]X be a class of functions. We say an input set
{x1, . . . , xN} ⊆ X is (pseudo) shattered by L if there exist
threshold values, t1, . . . , tN ∈ R, satisfying the following
condition: for every I ⊆ [N ], there exists L ∈ L such that

i ∈ I ⇔ L(xi) > ti. (1)

For γ > 0, we say {x1, . . . , xN} ⊆ X is γ-fat shattered by
L if the above condition holds with replacement of (1) by

i ∈ I ⇒ L(xi) > ti + γ and i /∈ I ⇒ L(xi) < ti − γ.

The pseudo-dimension, pdim(L), and γ-fat shattering di-
mension, fatdimγ(L), are the maximum size of a set that is
pseudo and γ-fat shattered, respectively, by L.

It is well-known that N = Ω(ε−2 · (pdim(L) + log δ−1))
samples are sufficient for ensuring (ε, δ)-uniform conver-
gence, and a similar guarantee holds if fatdimγ(L) with
γ = Ω(ε) is bounded. We refer the reader to (Anthony and
Bartlett, 1999, Theorems 19.1 and 19.2) for details.

2.2 Low-Rank Approximation

Let A ∈ Rn×d be an input matrix with n ≥ d. We assume
rank(A) > 0 and ∥A∥2F = 1 by normalization. For k ∈ [d],
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Algorithm 1 SCWk(S,A)

1: Compute SA
2: if SA is a zero matrix :
3: return an n× d zero matrix
4: U , Σ, V ← SVD(SA) ▷ SA = UΣV ⊤

5: Compute AV
6: return [AV ]kV

⊤

we consider computing a rank-k approximation of A. Let
[A]k ∈ Rn×d denote an optimal rank-k approximation, i.e.,

[A]k ∈ argmin
{
∥A−X∥2F

∣∣ X ∈ Rn×d, rank(X) = k
}
.

Although we can compute [A]k with SVD in O(nd2) time
(Golub and Van Loan, 2013, Section 8.6.3), this approach is
time and space consuming when A is huge.

Algorithm 1 presents an efficient LRA algorithm with a
sketching matrix S ∈ Rm×n (Sarlos, 2006; Clarkson and
Woodruff, 2009, 2017), which is called the SCW algorithm
after the authors’ acronyms. Algorithm 1 is more efficient
than computing [A]k if we set the sketching dimension, m,
to a much smaller value than d, whereas we need m ≥ k to
get a rank-k approximation. Let SCWk(S,A) denote the
output of Algorithm 1 with a sketching matrix S and an in-
put matrix A. It is known that for α > 0, sketching matrices
with m = Ω̃(k/α) drawn from an appropriate distribution
satisfy ∥A− SCWk(S,A)∥F ≤ (1+α)∥A− [A]k∥F with
high probability (e.g., (Woodruff, 2014, Section 4.1)).

Indyk et al. (2019) showed that machine-learned sketching
matrices often enable more accurate LRA than random ones
in practice. Given a training dataset Atrain ⊆ Rn×d of input
matrices, they proposed to learn S by minimizing the empiri-
cal risk 1

|Atrain|
∑

A∈Atrain
∥A−SCWk(S,A)∥2F . Specifically,

they learned sparse S with the stochastic gradient descent
method (SGD) by regarding non-zeros in S at fixed posi-
tions as tunable parameters (where the sparsity of S makes
SCWk efficient). Later, researchers further studied learning-
based LRA methods (Liu et al., 2020; Ailon et al., 2021;
Indyk et al., 2021), which we will overview in Section 5.1.

2.3 Overview of (Bartlett et al., 2022)

Bartlett et al. (2022) formally studied learning-based LRA as
a statistical learning problem. Let A ⊆ Rn×d be a class of
input matrices and S ⊆ Rm×n a class of sketching matrices,
where every S ∈ S has up to s non-zeros in each column
and the sparsity pattern is identical for all S ∈ S. Define a
loss function L : S ×A → [0, 1]2 based on SCWk as

L(S,A) = ∥A− SCWk(S,A)∥2F . (2)

Let L = {L(S, ·)}S∈S ⊆ [0, 1]
A be the class of loss func-

tions, where each L(S, ·) ∈ L is specified by ns tunable pa-
rameters (non-zeros of S) and measures the approximation

2L(S,A) is at most ∥A∥2F = 1, as in (Bartlett et al., 2022).

error of SCWk(S, ·). The authors presented the following
Õ(nsm) bound on the ε-fat shattering dimension of L.
Theorem 1 (Bartlett et al. (2022, Theorem 2.2)). For suffi-
ciently small ε > 0, the ε-fat shattering dimension of L is
bounded as

fatdimε(L) = O(ns · (m+ k log(d/k) + log(1/ε))).

Intuitively, we can bound fatdimε(L) by assessing the com-
plexity of computational procedures for evaluating L(S,A).
In the LRA setting, however, directly bounding fatdimε(L)
is not easy since SCWk makes black-box use of SVD. The
authors have overcome this difficulty by considering a class
L̂ε of appropriate proxy loss functions, which we can eval-
uate with relatively simple computational procedures, and
by bounding its pseudo-dimension, pdim(L̂ε). As in the
following definition, each L̂ε(S, ·) ∈ L̂ε is evaluated with
a power-method-based procedure so that L̂ε(S,A) gives a
sufficiently accurate approximation of L(S,A).
Definition 2 (Proxy loss). For any A ∈ A, S ∈ S, and
ε > 0, the proxy loss L̂ε(S,A) is computed as follows:

1. Compute B = A(SA)
†
(SA).

2. For all possible Pi ∈ Rd×k (i = 1, . . . ,
(
d
k

)
) whose

columns are k distinct standard vectors in Rd, compute
Zi = (BB⊤)

q
BPi, where q = O(ε−1 log(d/ε)).

3. Choose Z = Zi that minimizes ∥B − ZiZ
†
iB∥2F .

4. L̂ε(S,A) = ∥A− ZZ†B∥2F .

Given the class S of sketching matrices, the class of proxy
loss functions is defined as L̂ε = {L̂ε(S, ·)}S∈S .

As discussed in (Bartlett et al., 2022, Section 5.3), it holds
that fatdimε(L) ≤ pdim(L̂ε). Therefore, an upper bound
on pdim(L̂ε) immediately implies that on fatdimε(L).
A benefit of considering L̂ε is that analyzing its complexity
is easier than L. The authors upper bounded pdim(L̂ε) by
modeling the computational procedure of L̂ε as a Goldberg–
Jerrum algorithm (Goldberg and Jerrum, 1995).3

Definition 3 (Goldberg–Jerrum algorithm). A GJ algorithm
Γ takes real values as input, and its procedure is represented
by a binary tree with the following two types of nodes:

• Computation node that executes an arithmetic opera-
tion v′′ = v ⊙ v′, where ⊙ ∈ {+,−,×,÷}.

• Branch node with an out-degree of 2, where branching
is specified by the evaluation of a condition of the form
v ≥ 0 (v ≤ 0) or v = 0.

3Such a notion is often called the algorithmic computation tree.
Still, we here call it a GJ algorithm to be consistent with (Bartlett
et al., 2022). Although their original definition does not contain
the equality condition in branch nodes, dealing with equalities is
easy due to (Goldberg and Jerrum, 1995, Corollary 2.1).
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In both cases, v and v′ are either inputs or values computed
at ancestor nodes. Once input values are given, Γ proceeds
along a root–leaf path on the tree and sequentially performs
operations specified by nodes on the path.

Then, they defined two notions, the degree and predicate
complexity, to measure the complexity of GJ algorithms.
Definition 4 (Degree and predicate complexity). The degree
of a GJ algorithm is the maximum degree of any rational
function of input variables it computes. The predicate com-
plexity of a GJ algorithm is the number of distinct rational
functions that appear at its branch nodes. If a GJ algorithm
has the degree and predicate complexity of at most ∆ and p,
respectively, we call it a (∆, p)-GJ algorithm.

The following theorem says that if we can check whether a
loss function value exceeds a threshold value or not using a
(∆, p)-GJ algorithm with small ∆ and p, the class of such
loss functions has a small pseudo-dimension.
Theorem 2 (Bartlett et al. (2022, Theorem 3.3)). Let X be
an input domain and L = {Lρ : X → R | ρ ∈ Rν } a class
of functions parameterized by ρ ∈ Rν . Assume that for
every x ∈ X and t ∈ R, there is a (∆, p)-GJ algorithm Γx,t

that takes ρ ∈ Rν as input and returns “true” if Lρ(x) > t
and “false” otherwise. Then, it holds that

pdim(L) = O(ν log(p∆)).

The authors proved that for any A ∈ A and t ∈ R, whether
L̂ε(S,A) > t or not can be checked by a (∆, p)-GJ algo-
rithm ΓA,t with ∆ = O(mkε−1 log(d/ε)) and

p = 2m · 2O(k) · (d/k)3k, (3)

where input variables are ns non-zeros of S, i.e., ν = ns.
Therefore, Theorem 2 implies

pdim(L̂ε) = O(ns · (m+ k log(d/k) + log(1/ε))). (4)

The same bound applies to fatdimε(L) (≤ pdim(L̂ε)), ob-
taining Theorem 1. They also gave an Ω(ns) lower bound
on fatdimε(L); hence it is tight up to an Õ(m) factor.

2.4 Warren’s Theorem

Warren’s theorem (Warren, 1968) is a useful tool to evaluate
the complexity of a class of polynomials. The following
extended version that allows the sign to be zero is presented
in (Goldberg and Jerrum, 1995, Corollary 2.1).
Theorem 3 (Warren’s theorem). Let {f1, . . . , fN} be a set
of N polynomials of degree at most ∆ in ν real variables
ρ ∈ Rν . If N ≥ ν, there are at most (8eN∆/ν)

ν distinct
tuples of (sign(f1(ρ)), . . . , sign(fN (ρ))) ∈ {−1, 0,+1}N .

This theorem is a key to proving Theorem 2, and we will
also use it in Section 4. To familiarize ourselves with the the-
orem, we give a proof sketch of Theorem 2. From the state-
ment assumption in Theorem 2, whether Lρ(x) > t is deter-
mined by sign patterns of p polynomials of degree at most

∆ in ρ ∈ Rν that appear at the branch nodes of the GJ algo-
rithm, Γx,t. Thus, when x1, . . . , xN ∈ X and t1, . . . , tN ∈
R are given, the number of distinct outcomes (or tuples of N
Booleans) of GJ algorithms Γx1,t1 , . . . ,ΓxN ,tN , which take
common ρ as input, is bounded by the number of all possible
sign patterns of Np polynomials of degree at most ∆ in ρ.
From Warren’s theorem, the number of such sign patterns is
at most (8eNp∆/ν)

ν , which must be at least 2N to shatter
x1, . . . , xN . The largest N with (8eNp∆/ν)

ν ≥ 2N gives
the O(ν log(p∆)) bound on pdim(L), as in Theorem 2.

3 IMPROVED UPPER BOUND

We obtain an Õ(nsk) bound on fatdimε(L) by replacing
the O(m) factor in (4) with O(logm). To this end, we
reduce the 2m factor in the predicate complexity (3) to m.

Note that, although concatenating random matrices with
m = Õ(k/α) rows guarantees the (1+α)-approximation as
mentioned in Section 2.2 (known as safeguard guarantees),
our improvement is not meaningless since m can be much
lager than k. For example, even if we admit errors of SCWk

relative to [A]k to the magnitude of α ≈ ε, m = Õ(k/α) ≃
Õ(k/ε) does not imply m = O(k log(d/k) + log(1/ε)),
hence Õ(nsk) can be significantly smaller than Õ(nsm).

3.1 Previous Approach

We first explain where the 2m factor comes from in (Bartlett
et al., 2022). By carefully expanding the proof of (Bartlett
et al., 2022, Lemma 5.6), one can confirm that it is caused
by Step 1 in Definition 2, where a GJ algorithm computes
A(SA)†(SA). For this step, they used an (O(m), 2m)-GJ
algorithm that computes Z†Z for an input matrix Z with m
rows (Bartlett et al., 2022, Lemma 5.2). We below describe
their GJ algorithm for later convenience. In what follows,
let Ir denote the r × r identity matrix for any r ∈ Z>0.

An essential tool for obtaining the GJ algorithm is the matrix
inversion formula by the Cayley–Hamilton theorem.4

Proposition 1. Let M be an r × r real matrix and

det(λIr −M) = λr + c1λ
r−1 + · · ·+ cr

the characteristic polynomial of M . If M is invertible, we
have cr = (−1)r det(M) ̸= 0 and

M−1 = − 1

cr
· (Mr−1 + c1 ·Mr−2 + · · ·+ cr−1 · Ir).

Let Z be an input matrix with m rows of rank r ≤ m.
Their GJ algorithm computes Z†Z as follows. It first finds
a matrix Y with r linearly independent rows selected from
the rows of Z. Since Y spans the row space of Z, it holds

4Bartlett et al. (2022) alternatively used a recursive formula of
(Csanky, 1976). This difference does not affect the conclusion.
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Z†Z = Y ⊤(Y Y ⊤)
−1

Y ; their algorithm computes this us-
ing Proposition 1 with M = Y Y ⊤. Note that we have

ci = (−1)i
∑

S:|S|=i

detM [S] for i = 1, . . . , r,

where M [S] is the principal minor of M with indices S ⊆
[r]; hence, if we take entries of M to be variables, c1, . . . , cr
are polynomials of degree at most r. Thus, regarding entries
of Z as variables, every rational function that appears in the
above procedure has a degree of O(m).

What remains to be discussed is how to find Y of full row
rank. To achieve this, their GJ algorithm goes over the rows
of Z and sequentially adds appropriate rows to Y in a greedy
fashion. Whenever adding a new row, it checks whether
the resulting Y has full row rank by examining whether
det(Y Y ⊤) ̸= 0 or not. This procedure involves polynomi-
als of degree O(m), and the number of branch nodes is up
to 2m depending on which rows of Z are selected, resulting
in the 2m predicate complexity.

3.2 Our Result

We present an (O(m),m)-GJ algorithm for computing Z†

(right-multiplying Z only increases the degree by one).
Lemma 1. Let Z be an input matrix with m rows. There is
an (O(m),m)-GJ algorithm that computes Z†.

Our key idea is to begin by determining r = rank(ZZ⊤)
with m branch nodes, instead of branching to determine the
choice of rows of Z. Once r is fixed, we can calculate Z†

without branching by the following formula.
Proposition 2 (Decell (1965, Theorem 3)). Let Z be a
matrix with m rows and c1, . . . , cm the coefficients of the
characteristic polynomial of M = ZZ⊤ ∈ Rm×m, i.e.,

det(λIm −M) = λm + c1λ
m−1 + · · ·+ cm.

If r ≥ 1 is the largest index with cr ̸= 0, we have

Z† = − 1

cr
· Z⊤(Mr−1 + c1 ·Mr−2 + · · ·+ cr−1 · Im

)
.

If c1 = · · · = cm = 0, Z† is a zero matrix.

By using this formula in lieu of Proposition 1, we can obtain
an (O(m),m)-GJ algorithm that computes Z†Z.

Proof of Lemma 1. We give a concrete GJ algorithm. Let
M = ZZ⊤. First, we compute the coefficients c1, . . . , cm
of det(λIm−M), which are polynomials of degree O(m) in
the entries of Z. Then, check whether ci ̸= 0 in decreasing
order of i. Once we find ci ̸= 0, set r = i as the largest index
r with cr ̸= 0. Note that this requires only m branch nodes.
If cm = · · · = c1 = 0, let Z† be a zero matrix. Otherwise,
we compute Z† as in Proposition 2. Every rational function
in the above calculation has a degree of O(m) in Z. Thus,
we obtain a desired (O(m),m)-GJ algorithm.

By performing Step 1 in Definition 2 with our GJ algorithm,
we can replace the O(m) factor in the upper bound (4) with
O(logm), thus improving Theorem 1 as follows.
Proposition 3. For sufficiently small ε > 0, the ε-fat shat-
tering dimension of L is bounded as

fatdimε(L) = O(ns · (logm+ k log(d/k) + log(1/ε))).

3.3 Application to the Nyström Method

We briefly digress to demonstrate the usefulness of our
GJ algorithm (Lemma 1). We here consider the classical
Nyström method (Nyström, 1930). The method takes a pos-
itive semidefinite matrix A ∈ Rn×n as input and computes
its rank-r approximation as AS(S⊤AS)

†
(AS)

⊤, where
S ∈ Rn×r is a sketching matrix. Unlike the SCW algo-
rithm (Algorithm 1), it does not involve SVD, hence more
efficient. Thus, it is a popular choice when handling large
Laplacian and kernel matrices (Gittens and Mahoney, 2016).

As with learning-based LRA methods discussed so far, we
can naturally combine the Nyström method with learning of
sketching matrices. Specifically, defining a loss function as

L(S,A) = ∥A−AS(S⊤AS)
†
(AS)

⊤∥2F , (5)

we can learn high-performing sketching matrices from past
data of A by minimizing the empirical risk. When it comes
to generalization guarantees, we are interested in the pseudo-
dimension of L = {L(S, ·)}S∈S with L defined as in (5),
where we let S ⊆ Rn×r be a class of sketching matrices
with ν non-zeros at fixed positions.

We analyze the pseudo-dimension of L by modeling the
computational procedure of L(S,A) defined in (5) as a GJ
algorithm. We first compute (S⊤AS)

† with our GJ algo-
rithm (Lemma 1), whose degree and predicate complexity
are O(r) and r, respectively, where entries of S are variables.
Other operations for computing L(S,A) require no branch
nodes, and the degree remains O(r). Consequently, we can
compute L(S,A) with an (O(r), r)-GJ algorithm, and thus
Theorem 2 implies the following bound on pdim(L).
Proposition 4. For the class of L of loss functions (5), each
of which is parameterized by an n × r sketching matrix
S ∈ S with ν non-zeros at fixed positions, it holds that

pdim(L) = O(ν log r).

We can also deal with changeable sparsity patterns by using
Theorem 4, which we will show in Section 4. In this case, it
will immediately follow that pdim(L) = O(ν log(nr)).

Note that if we compute (S⊤AS)
† with the previous GJ

algorithm described in Section 3.1, its predicate complex-
ity is 2r, resulting in pdim(L) = O(νr log r). Thus, this
example suggests that our GJ algorithm can yield much bet-
ter generalization bounds for classes of functions involving
pseudo-inverse computation.
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4 LEARNING SPARSITY PATTERNS

This section studies generalization bounds when sparsity
patterns of sketching matrices can change. We show that
even if the class S of sketching matrices contains all m× n
matrices with ns non-zeros, the fat shattering dimension of
L = {L(S, ·)}S∈S increases only by O(ns log n).

4.1 General Result

To deal with changeable sparsity patterns, we first present
an extended version of Theorem 2.

Theorem 4. Let X be an input domain and L ⊆ RX a class
of functions with ℓ parameters ρ ∈ Rℓ that is ν-sparse, i.e.,

L = {Lρ : X → R | ρ ∈ Rℓ, | supp(ρ)| ≤ ν }.

Assume that for every x ∈ X and t ∈ R, there is a (∆, p)-
GJ algorithm, Γx,t, that takes a ν-sparse variable vector
ρ ∈ Rℓ as input and returns “true” if Lρ(x) > t and “false”
otherwise. Then, we have

pdim(L) = O(ν log(ℓp∆)).

Compared with Theorem 2, there are ℓ (≥ ν) parameters,
which are restricted to be ν-sparse. If we naively use Theo-
rem 2 without taking the sparsity into account, the pseudo-
dimension bound turns out Õ(ℓ), even though every Lρ has
only ν tunable non-zero parameters. Our Theorem 4 pro-
vides a refined bound that grows only logarithmically with
ℓ and keeps the linear dependence on ν.

The following proof idea comes from a PAC approach to
one-bit compressed sensing (Ahsen and Vidyasagar, 2019),
but how to use the idea is significantly different; indeed, the
previous study does not combine it with Warren’s theorem.

Proof of Theorem 4. The proof proceeds similarly to that of
(Bartlett et al., 2022, Theorem 3.3) (sketched in Section 2.4),
but we must take changeable sparsity patterns into account.

We arbitrarily fix N pairs, (x1, t1), . . . , (xN , tN ), of an in-
put and a threshold value. We upper bound the number of
all possible tuples of N Booleans (or outcomes) returned
by the N GJ algorithms, Γx1,t1 , . . . ,ΓxN ,tN , whose input
variable ρ ∈ Rℓ is any ν-sparse vector. By the definition of
the pseudo-dimension (see Definition 1), we need at least
2N outcomes to shatter {x1, . . . , xN}, and thus the largest
such N gives an upper bound on pdim(L).
First, we fix a sparsity pattern J ⊆ [ℓ] with |J | = ν and let

LJ =
{
Lρ : X → R

∣∣ ρ ∈ Rℓ, supp(ρ) ⊆ J
}
.

Note that we have L =
⋃

J⊆[ℓ]:|J|=ν LJ . From the state-
ment assumption, there is a (∆, p)-GJ algorithm Γx,t that
can check whether Lρ(x) > t or not. That is, for any (x, t),

whether Lρ(x) > t or not is determined by sign patterns of
p polynomials of degree at most ∆ in ρ ∈ Rℓ. Moreover,
since supp(ρ) ⊆ J , Γx,t takes up to ν variables as input.
Thus, once J is fixed, outcomes of Γx1,t1 , . . . ,ΓxN ,tN are
determined by sign patterns of Np polynomials of degree at
most ∆ in ν variables. The number of such sign patterns is
at most (8eNp∆/ν)

ν by Warren’s theorem (Theorem 3).

Next, we consider changing sparsity patterns. As discussed
above, a fixed sparsity pattern J yields up to (8eNp∆/ν)

ν

outcomes of Γx1,t1 , . . . ,ΓxN ,tN . If we feed ρ ∈ Rℓ with
a new sparsity pattern J ′ of size ν to Γx1,t1 , . . . ,ΓxN ,tN ,
then Np polynomials that appear in the GJ algorithms may
exhibit up to (8eNp∆/ν)

ν new sign patterns, which lead to
at most that many new outcomes. Thus, when the sparsity
pattern of ρ can be any size-ν subset of [ℓ], the number of
all possible outcomes of Γx1,t1 , . . . ,ΓxN ,tN is at most

“the number of sparsity patterns”× (8eNp∆/ν)
ν
.

Since there are up to
(
ℓ
ν

)
≤ ℓν sparsity patterns, the number

of all possible outcomes of Γx1,t1 , . . . ,ΓxN ,tN is at most
(8eℓNp∆/ν)ν . In order for L to shatter {x1, . . . , xN},

2N ≤ (8eℓNp∆/ν)ν ⇔ N ≤ ν log2(8eℓNp∆/ν)

must hold. Since log2 y ≤ 2
3y for y > 0, the right-hand side

is bounded from above as

ν log2(8eℓp∆) + ν log2(N/ν) ≤ ν log2(8eℓp∆) +
2

3
N.

Rearranging the terms, we obtain N ≤ 3ν log2(8eℓp∆),
hence pdim(L) = O(ν log(ℓp∆)).

4.2 Result on Learning-Based LRA

We now return to the LRA setting and discuss the pseudo-
dimension bound for the case of changeable sparsity pat-
terns. In this setting, we have ℓ = mn and ν = ns since
every sketching matrix S is of size m× n and has up to ns
non-zeros. Furthermore, from the discussion in Sections 2.3
and 3, for any input A ∈ A and threshold value t ∈ R, we
can check whether the proxy loss value, L̂ε(S,A), exceeds
t or not by using a (∆, p)-GJ algorithm with

∆ = O(mkε−1 log(d/ε)) and p = m · 2O(k) · (d/k)3k.

Thus, from Theorem 4, for the class L̂ε = {L̂ε(S, ·)}S∈S of
proxy loss functions where S consists of sketching matrices
with ns non-zeros at any positions, it holds that

pdim(L̂ε) = O(ns · (log(mn)+ k log(d/k)+ log(1/ε))).

The right-hand side is larger than the bound in Proposition 3
only by O(ns log n). Note that narrowing the class S only
decreases pdim(L̂ε); hence, the bound remains true when
each S ∈ S is restricted to have s non-zeros in each column.
Since we have fatdimε(L) ≤ pdim(L̂ε) as discussed in
Section 2.3, we obtain the following result.



Shinsaku Sakaue, Taihei Oki

Proposition 5. Let L = {L(S, ·)}S∈S be the class of loss
functions defined by (2) where S contains sketching matrices
with any sparsity patterns of size ns. For sufficiently small
ε > 0, the ε-fat shattering dimension of L is bounded as

fatdimε(L) = O(ns·(log(mn)+k log(d/k)+log(1/ε))).

5 EXPERIMENTS

We confirm that learning sparsity patterns can improve the
empirical accuracy of learning-based LRA methods. Note
that the uniform bound discussed in Section 2.1 is agnostic
to learning methods; therefore, we can use Proposition 5
to obtain generalization bounds for any methods to learn
sparse sketching matrices.

5.1 Background and Learning Methods

Let us first overview existing methods for learning sketching
matrices. Indyk et al. (2019) initiated the study of learning-
based LRA, as mentioned in Section 2.2. Assuming fixed
sparsity patterns, they learned sketching matrices by ap-
plying SGD to the SCW-based loss (2), where gradients
are computed via backpropagation through differentiable
SVD. Liu et al. (2020) enhanced the previous method by
first learning sparsity patterns with a greedy algorithm and
then learning non-zeros via SGD. A drawback of those two
methods is that backpropagating through SVD is computa-
tionally expensive.5 Indyk et al. (2021) has overcome this
issue by developing an efficient learning method based on a
surrogate loss function. While their method again assumes
fixed sparsity patterns, we can naturally extend it to change-
able sparsity patterns, as detailed later. Another related work
is (Ailon et al., 2021), which proposed to represent linear
layers of neural networks as products of sparse matrices,
like the butterfly networks. Although their idea is applicable
to LRA, it requires sketching matrices with complicated
structures; thus, we below do not consider it for simplicity.

Given the above background, a natural next direction is to
extend the efficient method of (Indyk et al., 2021) to change-
able sparsity patterns. In (Indyk et al., 2021), two kinds of
methods are studied, one-shot and few-shot methods. We
focus on the latter and present how to modify it to learn
both positions and values of non-zeros. Their basic idea
is to minimize the following surrogate loss instead of the
SCW-based loss (2):

L̃(S,A) = ∥U⊤
k S⊤SU − I0∥2F , (6)

where U ∈ Rn×d is the column orthogonal matrix computed
by SVD of A (assuming rank(A) = d), Uk ∈ Rn×k is the
first k columns of U corresponding to the largest k singular
values, and I0 = [Ik,0k,d−k] ∈ Rk×d is a concatenation of

5Li et al. (2023) updated (Liu et al., 2020) and independently
addressed this drawback.

the k×k identity matrix and k×d−k zeros. Unlike the SCW-
loss, differentiating the surrogate loss, L̃(S,A), with respect
to S does not require backpropagation through SVD, hence
more efficient. Moreover, (Indyk et al., 2021, Theorem 2.2)
ensures the consistency of the surrogate loss, i.e., L̃(S,A) ≤
ε implies ∥A−SCWk(S,A)∥2F ≤ (1+O(ε))∥A− [A]k∥2F .
By minimizing the empirical surrogate loss via SGD, they
learned non-zeros of sketching matrices at fixed positions.

To learn both positions and values of non-zeros based on the
above idea, we use the projected gradient descent method,
or sometimes called iterative hard thresholding (IHT) in
non-convex sparse optimization (Jain and Kar, 2017). The
method works iteratively as with SGD. In each iteration,
given an input matrix A ∈ Atrain in a training dataset, we
update the sketching matrix as S ← Πs(S − η∇L̃(S,A)),
where η > 0 is a step size, ∇L̃(S,A) is the gradient with
respect to S, and Πs is a projection operator that preserves
the largest s elements in absolute value for each column
and set the others to zero. In the following experiments, we
refer to this method, which learns positions of non-zeros, as
Learn and compare it with two baselines: Fix and Dense.
Fix is the method studied in (Indyk et al., 2021), which
learns non-zeros at fixed positions via SGD. Dense learns
values of all entries via SGD. Note that although Dense
naturally attains the best accuracy among them, it results
in dense sketching matrices, which cannot benefit from the
efficiency of sparse matrix multiplication and cause longer
runtime of SCWk when deployed for future data.

5.2 Settings and Results

Experiments were conducted on a macOS machine with
Apple M2 CPU and 24 GB RAM. We implemented the
methods in Python 3.9.12 and used JAX 0.3.15 (Bradbury
et al., 2018) to compute gradients. When performing SVD,
we regarded singular values smaller than 10−8 as zero.

Let n = 100, d = 50, m = 10, and k = 5. We made
a rank-k matrix Atrue ∈ Rn×d by multiplying n × k and
k × d matrices whose entries were drawn from the uniform
distributions over [0, 1]. We then let A = Atrue+0.1×Anoise,
where entries of Anoise were drawn from the standard normal
distributions, and normalized A so that ∥A∥F = 1 holds.
By drawing 300 noise terms independently, we created a
dataset of 300 input matrices A. We split them into training
and test datasets of sizes 200 and 100, respectively. We
made 30 random training/test splits to calculate the average
and standard deviation over the 30 random trials.

We learn sketching matrices S ∈ Rm×n by minimizing the
empirical surrogate loss (6) on a training dataset. Fix and
Learn learn S with s = 1, 3, or 5 non-zeros in each column;
since m = 10, the s values mean that 10%, 30%, or 50%
of entries can be non-zero, respectively. Initial sketching
matrices were obtained by setting random s entries in each
column to −1 or +1 with probability 0.5, respectively, and
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Figure 1: Surrogate and SCW-based loss values on training datasets. The x-axis indicates the number of iterations of SGD
(for Fix and Dense) or stochastic IHT (for Learn). The error band indicates the standard deviation over the 30 random trials.
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Figure 2: SCW-based loss values on test datasets. The error
bar shows the standard deviation over the 30 random trials.

the others to zero; we then normalized it to satisfy ∥S∥F = 1
for numerical stability. We set the step size, η, to 0.1.

Figure 1 shows curves of surrogate (6) and SCW-based (2)
loss values in the training phase. As s increased, the perfor-
mances of Fix and Learn became closer to that of Dense.
Regarding the surrogate loss, Learn achieved smaller val-
ues than Fix, implying that Learn could go beyond local
optima into which Fix fell. As for the SCW-based loss,
Learn slightly outperformed Fix for s = 1 and 3, and both
achieved almost as small values as Dense when s = 5.

Figure 2 shows the SCW-based loss values on test datasets.
As with the training SCW-based loss values (Figure 1), the
gap between Fix and Learn was evident with s = 1 and 3,
while both achieved as small losses as Dense with s = 5.

To conclude, Learn achieved smaller SCW-based loss val-
ues than Fix particularly when s was small, suggesting that
learning sparsity patterns enables more accurate learning-
based LRA when we need to learn highly sparse sketching
matrices for the sake of the efficiency of SCWk.

As for training times, Learn took about 8% longer than Fix,
although our main focus is accuracy and the implementa-
tions are not intended to be fast.

6 CONCLUSION AND DISCUSSION

Building on (Bartlett et al., 2022), we have studied gen-
eralization bounds for learning-based LRA. We have im-
proved their Õ(nsm) bound on the fat shattering dimension
to Õ(nsk) by developing an (O(m),m)-GJ algorithm that
computes a pseudo-inverse of a matrix with m rows. We
have also demonstrated its usefulness by applying it to the
learning-based Nyström method. Then, we have shown that
learning both positions and values of non-zeros of sketch-
ing matrices increases the fat-shattering-dimension bound
only by O(ns log n). Experiments have confirmed that the
efficient learning method of (Indyk et al., 2021) can achieve
higher empirical accuracy with changeable sparsity patterns.

A notable open problem is to close the Õ(k) gap between
the Õ(nsk) upper and Ω(ns) lower bounds. Note that only
applying our GJ algorithm to Step 3 in Definition 2 does not
leave out the Õ(k) factor; a more essential problem lies in
Step 2, where we must avoid using exponentially many Pi

in k to remove the Õ(k) factor. When it comes to improving
the Ω(ns) lower bound, we need to shatter more instances
than Ω(ns), where ns is the number of tunable parameters.
Although obtaining a greater lower bound than the number
of tunable parameters is typically challenging, such lower
bounds have been obtained for neural networks using the
bit extraction technique (Bartlett et al., 1998). We expect
that a similar idea would help obtain a tighter lower bound.
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