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Abstract

The information bottleneck framework provides
a systematic approach to learning representations
that compress nuisance information in the in-
put and extract semantically meaningful infor-
mation about predictions. However, the choice
of a prior distribution that fixes the dimension-
ality across all the data can restrict the flexibil-
ity of this approach for learning robust repre-
sentations. We present a novel sparsity-inducing
spike-slab categorical prior that uses sparsity as
a mechanism to provide the flexibility that al-
lows each data point to learn its own dimension
distribution. In addition, it provides a mecha-
nism for learning a joint distribution of the la-
tent variable and the sparsity, and hence it can
account for the complete uncertainty in the latent
space. Through a series of experiments using in-
distribution and out-of-distribution learning sce-
narios on the MNIST, CIFAR-10, and ImageNet
data, we show that the proposed approach im-
proves accuracy and robustness compared to tra-
ditional fixed-dimensional priors, as well as other
sparsity induction mechanisms for latent variable
models proposed in the literature.

1 INTRODUCTION

Information bottleneck (IB) (Tishby et al. (2000)) is a deep
latent variable model that poses representation compres-
sion as a constrained optimization problem to find rep-
resentations Z that are maximally informative about the
outputs Y while being maximally compressive about the
inputs X , using a loss function expressed using a mu-
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Figure 1: Plot of latent dimension distribution learned
by SparC-IB aggregated for each of the MNIST data
classes. In the vertical axis, we have 10 digits classes and
in the horizontal axis we have their distribution of poste-
rior modes of latent dimension aggregated across the test-
set data points. It shows our SparC-IB prior provides
flexibility to learn the data-specific latent dimension distri-
bution, in contrast to fixing to a single value.

tual information (MI) metric and a Lagrangian formula-
tion of the constrained optimization: LIB = MI(X;Z) −
βMI(Z;Y ). Here, MI(X;Z) is the MI that reflects how
much the representation compresses X , and MI(Z;Y ) re-
flects how much information the representation has kept
from Y .

It is standard practice to use parametric priors, such as a
mean-field Gaussian prior for the latent variable Z, as seen
with most latent-variable models in the literature (Tomczak
(2022)). In general, however, a major limitation of these
priors is the requirement to preselect a latent space com-
plexity for all data, which can be very restrictive and lead
to models that are less robust. Sparsity, when used as a
mechanism to choose the complexity of the model in a flex-
ible and data-driven fashion, has the potential to improve
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the robustness of machine learning systems without loss of
accuracy, especially when dealing with high-dimensional
data (Ahuja et al. (2021)).

Sparsity has been considered in the context of latent vari-
able models in a handful of works. In linear latent variable
modeling, Lan et al. (2014) proposes a sparse factor model
in the context of learning analytics, Chun and Keleş (2010)
proposes a sparse partial least squares (sPLS) method to
resolve the inconsistency issue that arises in standard PLS
in a high-dimensional setting, and Yang et al. (2019) re-
views advances in sparse canonical correlation analysis.
Most of the work in sparse linear latent variable model-
ing fixes the latent dimensionality or treats it as a hyperpa-
rameter. In nonlinear latent variable modeling, sparsity was
proposed primarily in the context of unsupervised learning.
Notable works include sparse Dirichlet variational autoen-
coder (sDVAE) (Burkhardt and Kramer (2019)), epitome
VAE (eVAE) (Yeung et al. (2017)), variational sparse cod-
ing (VSC) (Tonolini et al. (2020)), and InteL-VAE (Miao
et al. (2021)). Most of these approaches do not take into ac-
count the uncertainty involved in introducing sparsity, and
treat this as a deterministic selection problem. Approaches
such as the Indian buffet process VAE (Singh et al. (2017))
relax this and allow learning a distribution over the selec-
tion parameters that induce sparsity, but only allow global
sparsity. Ignoring uncertainty in selection and the flexibil-
ity to learn a local data-driven dimensionality of the latent
space for each data point can lead to a loss of robustness in
inference and prediction.

We also note that the aforementioned approaches have been
proposed for unsupervised learning, and we are interested
in the supervised learning scenario introduced with the IB
approach, which poses a different set of challenges because
the sparsity has to accommodate accurate prediction of Y .
Only one recent work (Kim et al. (2021)) that we know
of has considered sparsity in the latent variables of the IB
model, but here the latent variable is assumed to be deter-
ministic, and the sparsity applied indirectly by weighting
each dimension using a Bernoulli distribution, where zero
weight is equivalent to sparsification.

To that end, we make the following contributions:

1. We introduce a novel sparsity-inducing Bayesian spike-
slab prior that is based on a beta-binomial formula-
tion, where the sparsity in the latent variables of the
IB model is modeled stochastically through a categor-
ical distribution, and thus the joint distribution of la-
tent variable and sparsity is learned with this categorical
prior IB (SparC-IB) model through Bayesian infer-
ence. Unlike traditional spike-and-slab priors that are
based on the beta-Bernoulli distribution (George and
McCulloch (1993),Ishwaran and Rao (2005)) and can
select dimensions randomly, SparC-IB imposes an or-
der in which the dimensions are selected/activated for

each data point. This helps to infer the distribution of
dimensionality more effectively.

2. We derive variational lower bounds for efficient infer-
ence of the proposed SparC-IB model.

3. Using in-distribution and out-of-distribution experi-
ments with MNIST, CIFAR-10, and ImageNet data, we
show an improvement in accuracy and robustness with
SparC-IB compared to vanilla VIB models and other
sparsity-inducing strategies.

4. Through extensive analysis of the latent space, we show
that learning the joint distribution provides the flexi-
bility to systematically learn parsimonious data-specific
(local) latent dimension complexity (as shown in Fig.
1), enabling them to learn robust representations.

2 RELATED WORKS

Previous works in the literature on latent-variable models
has looked at different sparsity-inducing mechanisms in
the latent space in supervised and unsupervised settings.
Burkhardt and Kramer (2019) propose a sparse Dirichlet
variational autoencoder (sDVAE) that assumes a degen-
erate Dirichlet distribution on the latent variable. They
introduce sparsity in the concentration parameter of the
Dirichlet distribution through a deterministic neural net-
work. Epitome VAE (eVAE) by Yeung et al. (2017) im-
poses sparsity through epitomes that select adjacent coordi-
nates of the mean-field Gaussian latent vector and mask the
others before feeding to the decoder. The authors propose
training a deterministic epitome selector to select from all
possible epitomes. Similar to eVAE, the variational sparse
coding (VSC) proposed in Tonolini et al. (2020) introduces
sparsity through a deterministic classifier.

Approach Latent Sparsity
Variable (global/local)

sDVAE S D (L)
eVAE S D (L)
VSC S D (L)

InteL-VAE S D (L)
Drop-B D S (G)

IBP S S (G)
SparC-IB S S (L)

Table 1: Latent-variable models with different spar-
sity induction strategies, where D=Deterministic and
S=Stochastic. The type of induced sparsity is in parenthe-
ses, where G is global sparsity and L the local sparsity.

In this case, the classifier outputs an index from a set of
pseudo-inputs that define the prior for the latent variable.
In a more recent work, InteL-VAE (Miao et al. (2021)) in-
troduces sparsity via a dimension selector (DS) network on
top of the Gaussian encoder layer in standard VAEs. The
output of DS is multiplied by the Gaussian encoder to in-
duce sparsity and then fed to the decoder. InteL-VAE has
empirically shown an improvement over VSC in unsuper-
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vised learning tasks, such as image generation. The Indian
buffet process (IBP) (Singh et al. (2017)) learns a distri-
bution on infinite-dimensional sparse matrices where each
element of the matrix is an independent Bernoulli random
variable, where the probabilities are global and come from
a Beta distribution. Therefore, the sparsity induced by IBP
is global and can make the coordinates of the latent variable
zero for all data points.

In the IB literature, we find the aspect of sparsity in the
latent space rarely explored. To the best of our knowl-
edge, Drop-Bottleneck (Drop-B) by Kim et al. (2021) is the
only work that attempts this problem. In Drop-B, a neural
network extracts features from the data; then, a Bernoulli
random variable stochastically drops certain features be-
fore passing them to the decoder. The probabilities of the
Bernoulli distribution, similar to IBP, are assumed as global
parameters and trained with other parameters of the model.

In this paper, with SparC-IB, we model stochasticity in
both latent variables and sparsity, and we relax the global
sparsity assumption by learning the distribution of (local)
sparsity for each data point. In this regard, we differ from
other latent-variable models. In Table 1 we summarize
these different approaches by the types, stochastic (S) or
deterministic (D), of the latent variable and the sparsity.
Furthermore, we characterize the sparsity induced by each
method by whether they impose global (G) or local (L)
sparsity. The table shows that very few works incorporate
stochasticity in both latent variable and sparsity-inducing
mechanism.

3 INFORMATION BOTTLENECK WITH
SPARSITY-INDUCING CATEGORICAL
PRIOR

3.1 INFORMATION BOTTLENECK:
PRELIMINARIES

Taking into account a joint distribution P (X,Y ) of the
input variable X and the corresponding target variable
Y , the information bottleneck principle aims to find a
(low-dimensional) latent encoding Z by maximizing pre-
diction accuracy, formulated in terms of mutual informa-
tion MI(Z;Y ), given a constraint on compressing the la-
tent encoding, formulated in terms of mutual information
MI(X;Z). This can be cast as a constrained optimization
problem:

maxZ MI(Z;Y )
S.T. MI(X;Z) ≤ C,

(1)

where C can be interpreted as the compression rate or
the minimum number of bits needed to describe the in-
put data. Mutual information is obtained through a mul-
tidimensional integral that depends on the joint distribution
and the marginal distribution of random variables given by∫
Z
∫
X Pθ(x, z) log

(
Pθ(x,z)

P (x)P (z)

)
dx dz, where Pθ(x, z) :=

Pθ(z|x)P (x); a similar expression for MI(Z;Y ) needs
Pθ(y, z) :=

∫
P (y|x)Pθ(z|x)P (x)dx . The integral pre-

sented to calculate MI is generally computationally in-
tractable for large data.

Thus, in practice, the Lagrangian relaxation of the con-
strained optimization problem is adopted Tishby and Za-
slavsky (2015):

LIB(Z) = MI(Z;Y )− β MI(X;Z) (2)

where β is a Lagrange multiplier that enforces the con-
straint MI(X;Z) ≤ C such that a latent encoding Z is
desired that is maximally expressive about Y while be-
ing maximally compressive about X . In other words,
MI(X;Z) is the mutual information that reflects how much
the representation (Z) compresses X , and MI(Z;Y ) re-
flects how much information the representation has been
kept from Y. Several approaches have been proposed in the
literature to approximate mutual information MI(X;Z),
ranging from parametric bounds defined by variational
lower bounds (Alemi et al. (2016)) to non-parametric
bounds (based on kernel density estimate) (Kolchinsky
et al. (2019)) and adversarial f-divergences Zhai and Zhang
(2021). In this research, we focus primarily on the vari-
ational lower bounds-based approximation. Furthermore,
we take a square transformation of the term MI(X;Z) fol-
lowing Kolchinsky et al. (2019). Taking a convex trans-
formation of the compression term makes the solution of
the IB Lagrangian identifiable w.r.t. β (Rodrı́guez Gálvez
et al. (2020)). However, for the sake of clarity, we drop
this transformation from the loss function derivation. From
the convexity property, all derivations with standard IB loss
carry over to the loss function with this transformation.

Role of Prior Distribution and Stochasticity of Latent
Variable: In the IB formulation presented above, the latent
variable is assumed to be stochastic, and hence the poste-
rior distribution of it is learned using Bayesian inference. In
Alemi et al. (2016), the variational lower bound of LIB(Z)
is given as

LV IB(Z) = EX,Y

[
EZ|X log q(Y |Z)− β DKL(q(Z|X)||q(Z))

]
(3)

In equation (3), the prior q(z) serves as a penalty to the
variational encoder q(z|x) and q(y|z) is the decoder that
is the variational approximation to p(y|z). Alemi et al.
(2016) choose the encoder family and the prior to be a fixed
K-dimensional isotropic multivariate Gaussian distribution
(N(0K , IK×K)). This choice is motivated by the simplic-
ity and efficiency of inference using differentiable reparam-
eterization of the Gaussian random variable Z in terms of
its mean and sigma. For complex datasets, however, this
can be restrictive since the same dimensionality is imposed
on all the data and hence can prohibit the latent space from
learning robust features (Miao et al. (2021)).
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Figure 2: Schematic of the categorical prior information
bottleneck (SparC-IB) model. The inputs are passed
through the encoder layer to estimate the feature allocation
vector A, while simultaneously using a categorical prior to
sample the number of active dimensions d of A for given
data that selects the complexity of latent variable Z. The
obtained Z is then fed to the decoder to predict the super-
vised learning responses.

We describe a new family of sparsity-inducing priors that
allow stochastic exploration of different dimensional latent
spaces. For the proposed variational family, we derive the
variational lower bound that consists of discrete and con-
tinuous variables, and show that simple reparameterization
steps can be taken to draw samples efficiently from the en-
coder for inference and prediction.

3.2 SPARSITY-INDUCING CATEGORICAL
PRIOR

A key aspect of the IB model and latent variable models in
general is the dimension of Z. Fixing a very low dimension
of Z can impose a limitation on the capacity of the model,
while a very large Z can lead to learning a lot more nui-
sance information that can be detrimental to model robust-
ness and generalizability. We formulate a data-driven ap-
proach to learn the distribution of dimensionality Z through
the design of the sparsity-inducing prior.

Let {Xn, Yn}Nn=1 be N data points with Xn ∈ R1×p and
let the latent variable Zn = (Zn,1, Zn,2, ..., Zn,K), where
K is the latent dimensionality. The idea is that we will
fix K to be large a priori and make the prior assumption
that the k < K columns of Zn are zero and therefore do
not contribute to the prediction of Yn. Therefore, the prior
distribution of Zn can be specified as follows.

Zn,k|γn,k ∼ (1− γn,k)1(Zn,k = 0) + γn,kN(µn,k, σ
2
n,k)

OR
Zn = An ◦ γn;An ∼ N (µn,Σn) (4)

γn,k|dn = 1(k ⩽ dn); dn ∼ Categorical(πn) (5)

This prior is a variation of the spike-slab family (George
and McCulloch (1993)) where the sparsity-inducing pa-
rameters follow a categorical distribution. The latent vari-

able Zn is an element-wise product between the feature al-
location vector An and a sparsity-inducing vector γn. The
K dimensional latent An is assumed to follow a K dimen-
sional Gaussian distribution with mean vector µn and di-
agonal covariance matrix Σn with the variance vector σ2

n.
Note that γn is a vector whose first dn coordinates are 1s
and the rest are 0s, and hence An ◦ γn, with the result that
the first dn coordinates of Zn are nonzero and the rest are
0. Therefore, as we sample dn, we consider the different
dimensionality of the latent space; dn follows a categori-
cal distribution over the K categories with πn as the vector
of categorical probabilities whose elements πn,k denote the
prior probability of the kth dimension for the data point n.
In Fig. 2 we present the flow of the model from the input
X to the output Y through the latent encoding layer.

3.3 VARIATIONAL BOUND DERIVATION

The variable dn augments Zn for latent space characteri-
zation. With a Markov chain assumption, Y ↔ X ↔ Z,
the latent variable distribution factorization as p(Z, d) =∏N

n=1 p(Zn|dn)p(dn), and the same family with the same
factorization of the variational posterior q(Zn, dn|X) as the
prior, we derive the variational lower bound of the IB La-
grangian as follows. In the following derivation, for sim-
plicity, we use X interchangeably for both the random vari-
able ∈ R1×p and the sample covariate matrix ∈ RN×p.

LIB(Z) = MI(Z;Y )− β MI(X;Z)

⩾ LV IB(Z)

= EX,Y

[
EZ|X log q(Y |Z)− β DKL(q(Z|X)||q(Z))

]
(from (3))

= EX,Y

[
EZ|X log q(Y |Z)− β DKL(q(Z, d|X)||q(Z, d))

]
= LSparC-IB(Z, d)

Note that we have introduced the random variable d along
with Z in the density function of the second KL term. This
is because the KL divergence between q(Z|X) and q(Z) is
intractable. The equality of the loss function is valid since
dn =

∑K
k=1 1(Zn,k ̸= 0) is a deterministic function of

Zn, and we can write the density q(z, d) = q(z)q(d|z) =
q(z)δdz (d), where δc(d) is the Dirac delta function at c.
Therefore, we have the following.

DKL(q(Z, d|X)||q(Z, d)) = EZ,d|X log
q(Z|X)δdZ(d)

q(Z)δdZ(d)

= EZ|XEd|Z log
q(Z|X)δdZ

(d)

q(Z)δdZ
(d)

= EZ|X log
q(Z|X)

q(Z)

= DKL(q(Z|X)||q(Z))

Note that δdZ
(d) = 1, given Z, almost everywhere since

δdZ
(d) = 0 ⇐⇒ d ̸= dz has measure 0 under q(d|z) =



Samaddar, Madireddy, Balaprakash, Maiti, de los Campos, Fischer

δdz (d). We now replace EX,Y with the empirical version.

LSparC-IB(Z, d)=̂
1

N

N∑
n=1

[
EZn|X [log q(Yn|Zn)]

− β DKL(q(Zn, dn|X)||q(Zn, dn))

]
=

1

N

N∑
n=1

[
Edn|XEZn|X,dn

[log q(Yn|Zn)]

− β
[
Edn|X [DKL(q(Zn|X, dn)||q(Zn|dn))]

+ DKL(q(dn|X)||q(dn))
]]

We analyze the three terms in the above decomposition as
follows.

(i) Edn|XEZn|X,dn
[log q(Yn|Zn)]

=

K∑
k=1

EZn|X,dn=k[log q(Yn|Zn, dn = k)]πn,k(X)

This term is a weighted average of the negative cross-
entropy losses from models with increasing dimension of
latent space, where the weights are the posterior probabil-
ities of the dimension encoder. Therefore, maximizing this
term implies putting large weights on the dimensions of the
latent space where log-likelihood is high. During training,
this term can be computed using the Monte Carlo approx-
imation, that is, (i)=̂ 1

J

∑J
j=1 log q(Yn|Zn = Z

(j)
n , dn =

d
(j)
n ), where we draw J randomly drawn samples from

q(Zn, dn|X). In our experiments, we fixed J = 10 ev-
erywhere during training.

(ii) Edn|X [DKL(q(Zn|X, dn)||q(Zn|dn))]

=

K∑
k=1

DKL(q(Zn|X, dn = k)||q(Zn|dn = k))πn,k(X)

Note that q(zn|dn) = q(zn|γn) = N (zn; µ̃n, Σ̃n), where
µ̃n = µn ◦ γn and Σ̃n are diagonal with the entries
σ̃2
n = σ2

n ◦ γn. When k < K, this density does not
exist w.r.t. the Lebesgue measure in RK . However,
we can still define a density w.r.t. the Lebesgue mea-
sure restricted to Rk (see Chapter 8 in Rao (1973)), and
it is the k-dimensional multivariate normal density with
mean µn,−K−k = (µn,1, ..., µn,k)

′ and diagonal covari-
ance matrix Σn,−K−k with diagonal entries σ2

n,−K−k
=

(σ2
1,n, ..., σ

2
n,k)

′. Denoting µn,−0 = µn, we have the fol-

lowing.

(ii)term =

K∑
k=1

DKL

(
N (µn,−K−k(X),Σn,−K−k(X))

||N (µn,−K−k,Σn,−K−k)

)
πn,k(X)

=

K∑
k=1

k∑
ℓ=1

DKL

(
N (µn,ℓ(X), σ2

n,ℓ(X))

||N (µn,ℓ, σ
2
n,ℓ)

)
πn,k(X)

=
1

2

K∑
k=1

k∑
ℓ=1

[σ2
n,ℓ(X)− 1− log(σ2

n,ℓ(X))

+ µ2
n,ℓ(X)]πn,k(X)

The second-last equality is due to the fact that the KL di-
vergence of multivariate Gaussian densities whose covari-
ances are diagonal can be written as a sum of coordinate-
wise KL divergences. Since KL-divergence is always non-
negative, minimizing the above expression implies putting
more probability to the smaller-dimensional latent space
models since the second summation term is expected to
grow with dimension k.

(iii) DKL(q(dn|X)||q(dn)) =
K∑

k=1

log
πn,k(X)

πn,k
πn,k(X)

Minimizing this term forces the learned probabilities to be
close to the prior. Note that we are learning these probabil-
ities for each data point (since πn,k(X) is indexed by n). In
this respect, we differ from most of the stochastic sparsity-
inducing approaches, such as Drop-B (Kim et al. (2021))
and IBP (Singh et al. (2017)). In these approaches, the spar-
sity is induced from a probability distribution with global
parameterization and is not learned for each data point.

Modeling Choices for the SparC-IB Components:
Since Zn = An ◦ γn, we are required to fix the priors for
(An, γn) or (An, dn). We chose K-dimensional spheri-
cal Gaussian N (0, IK) as the prior for the latent variable
An. For dn, we assume that the kth categorical prob-
ability comes from the compound distribution of a beta-
binomial model, also known as the Polya urn model Mah-
moud (2008). Therefore,

πn = P(dn = k) =

(
K − 1

k − 1

)
B(an + k − 1, bn +K − k)

B(an, bn)
.

(6)
For simplicity, we set the prior value to be constant across
the data points, that is, (an, bn) = (a, b). The key ad-
vantage of this choice is that we can write the probabil-
ity as a differentiable function of the two shape parame-
ters (an, bn). Therefore, we can assume the same cate-
gorical distribution for the encoder; and instead of learn-
ing K probabilities πn,k(X) we can learn (an(X), bn(X)),
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which significantly reduces the dimensionality of the pa-
rameter space. However, learning πn,k(X) provides more
flexibility because the shape of the distribution is not
constrained, while learning (an(X), bn(X)) constrains
πn,k(X) to follow according to the shape of the compound
distribution, which depends on an(X) and bn(X). In our
experiments, we tested both approaches and found that
learning (an(X), bn(X)) produces better results.

4 EXPERIMENTAL RESULTS

In this section, we present experimental results that com-
pare the performance of SparC-IB with the most recent
sparsity-inducing strategies proposed in the literature: the
Drop-B model (Kim et al. (2021)) and InteL-VAE (Miao
et al. (2021)). We could not find an open source imple-
mentation for either of the two approaches and therefore
we have coded our own implementation where we adapt
them in the context of information bottleneck (link to the
code base is provided in the Appendix A.5). In this section,
these two approaches are called Drop-VIB and Intel-VIB.
In addition, we compare our model with the baseline mean-
field Gaussian VIB approach, where the latent dimension is
fixed to a single value across all data. Note that we apply
the square transformation (Kolchinsky et al. (2019)) to the
estimator of MI(X;Z) for all the methods.

We evaluated the SparC-IBmodel for in-distribution pre-
diction accuracy in a supervised classification scenario us-
ing the MNIST and CIFAR-10 data, which have a small
number of classes, and also the ImageNet data, where the
number of classes is large. Furthermore, we evaluated the
robustness of SparC-IB trained on these three datasets
in out-of-distribution scenarios, specifically with rotation,
white-box attacks with noise corruptions, and black-box
adversarial attacks.

The selection of the Lagrange multiplier β controls the
amount of information learned from the input (that is,
MI(X;Z)) by the latent space. We have chosen a com-
mon β where (MI(X;Z),MI(Z;Y )) is close to the mini-
mum necessary information or MNI (suggested in Fischer
(2020)) for all models. MNI is a point in the information
plane where MI(X;Z) = MI(Z;Y ) = H(Y ), where the
entropy is indicated by H(Y ). We evaluated the robustness
of each model using a single value of β. The value of β
we chose to compare the models for MNIST is ∼ 0.08, for
CIFAR-10 it is ∼ 0.04, and for ImageNet it is ∼ 0.02. The
choice of β is discussed in more detail in the Appendix A.6.

We use the encoder-decoder architecture from
Rodrı́guez Gálvez et al. (2020) for MNIST, from Yu
et al. (2021) for CIFAR-10, and from Alemi et al. (2016)
for ImageNet. Note that we learn the parameters of the
dimension distribution in both compound and categorical
strategies by splitting the encoder network head into two
parts, as depicted in Fig. 2. Full details of the architectures

have been discussed in the Appendix A.1. Furthermore,
following Fischer and Alemi (2020), we pass the mean of
the encoder Z to the decoder at the test time to make a
prediction.

Prior probabilities act as regularizers in learning the dimen-
sion probabilities in both categorical and compound strate-
gies (the third term of LSparC-IB(Z, d)). They also model
the prior knowledge or inductive bias that one may have.
The prior probability distribution in this case (8) can be set
by the choice of hyperparameters (a, b). we evaluated two
different cases, (a, b) = (1, 3) and (2,2) for both the cat-
egorical and compound distribution strategies. The choice
(a, b) = (1, 3) puts more probability mass on the lower di-
mensions, and gradually decays with dimension, whereas
(a, b) = (2, 2) penalizes models of too high or too low di-
mensions. The appendix A.7 shows the prior probabilities
of the dimensions for both choices.

4.1 IN-DISTRIBUTION DATA

In this section, we compare the performance of
SparC-IB with Intel-VIB, Drop-VIB, and the vanilla
fixed-dimensional VIB approach on the MNIST, CIFAR-
10 test set, and ImageNet validation set. Beyond these
choices, we have also compared SparC-IB with a dis-
crete latent space IB model following VQ-VAE (Van
Den Oord et al. (2017)) on MNIST data. We train each
model for 5 values of the Lagrange multiplier β in the set
(0.02, 0.04, 0.06, 0.08, 0.1). We calculate the validation set
error for each model for these β values. Since increasing β
penalizes the amount of information retained by the latent
space about the inputs, we expect the error to increase as β
increases.

Methods MNIST CIFAR-10
Acc % LL Acc % LL

SparC-IB 98.65 (0.001) 3.24 (0.004) 84.44 (0.015) 2.53 (0.010)
Drop-VIB 98.25 (0.000) 3.12 (0.003) 85.43 (0.004) 2.37 (0.015)
Intel-VIB 98.51 (0.001) 3.23 (0.007) 82.77 (0.010) 2.49 (0.063)
Fixed K: 6 98.27 (0.001) 3.22 (0.004) 82.29 (0.050) 2.49 (0.107)

Fixed K: 32 98.54 (0.001) 3.23 (0.003) 83.76 (0.012) 2.44 (0.013)
Fixed K: 128 85.28 (0.165) 2.85 (0.358) 81.88 (0.001) 2.48 (0.036)

Table 2: In-distribution performance of all methods in
terms of accuracy and log-likelihood (SD in the parenthe-
sis) at MNI for MNIST and CIFAR-10 (maximum for each
column highlighted). SparC-IB performs as good as the
best performing model in terms of both metrics.

For MNIST, we find that, across β, the compound distri-
bution prior with (a, b) = (2, 2) performs best in terms
of in-distribution prediction accuracy across β as com-
pared to other SparC-IB choices, fixed-dimensional VIB
approaches and Drop-VIB and Intel-VIB, as shown in
Fig. 3(a) . For CIFAR-10 data, we observe that com-
pound strategy with prior (a, b) = (1, 3) has the best
accuracy compared to other SparC-IB choices at MNI,
fixed-dimensional VIB models and Intel-VIB but is slightly
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(a) Test error vs. β (b) Log likelihood vs. noise (c) Log likelihood vs. rotation (d) Log likelihood vs. attack

Figure 3: In- and out-of- distribution performance on MNIST.

(a) Test error vs. β (b) Log likelihood vs. noise (c) Log likelihood vs. attack

Figure 4: In- and out-of- distribution performance on CIFAR-10.

lower than Drop-VIB (numbers are shown in Table 2).
However, we find from Table 2 that SparC-IB compound
(1,3) has the highest log-likelihood at MNI among the other
approaches. Furthermore, we have found that the best test
accuracy for the discrete latent space IB is 97.79% (avg.
over 3 seeds) in MNIST, which is lower than SparC-IB.

Methods ImageNet
Acc % LL

SparC-IB 79.71 (0.001) 8.48 (0.007)
Drop-VIB 79.86 (0.000) 8.19 (0.002)
Intel-VIB 79.88 (0.000) 8.53 (0.003)

Fixed K: 1024 79.88 (0.000) 8.52 (0.005)

Table 3: In-distribution performance of all methods in
terms of accuracy and log-likelihood (SD in the parenthe-
sis) at MNI for ImageNet (maximum for each column high-
lighted). All models are close in terms of both metrics (es-
pecially log-likelihood).

For Imagenet data, we observe that the compound strategy
with prior (a, b) = (2, 2) has the best validation accuracy
compared to other SparC-IB choices. Furthermore, the
in-distribution performance is at least as good as the fixed-
dimensional VIB model (Table 3), but it has a slightly lower
accuracy compared to the Drop-VIB and Intel-VIB. The
test error for Intel-VIB is very high when β > 0.04. This
behavior is due to the fact that the dimension selector in
Intel-VIB (Section 6.3 in Miao et al. (2021)) is pruning al-
most all values of the latent allocation vector A for values
of β > 0.04.

4.2 OUT-OF-DISTRIBUTION DATA

We consider three out-of-distribution scenarios to mea-
sure the robustness of our approach and compare it with
vanilla VIB with fixed latent dimension capacity, as well

as with other sparsity-inducing strategies. The first is a
white-box attack, in which we systematically introduce
shot noise corruptions into the test data Mu and Gilmer
(2019); Hendrycks and Dietterich (2019). The second is
a rotation transform (only for MNIST data). The third is
the black-box adversarial attack simulated using the pro-
jected gradient descent (PGD) strategy Madry et al. (2017).
We use the log-likelihood metric to compare the out-of-
distribution performance of the methods (Ovadia et al.
(2019)). Comparison in terms of other metrics is included
in the Appendix A.8.

4.2.1 NOISE CORRUPTION

White-box attack or noise corruption is generated by
adding shot noise. Following Mu and Gilmer (2019), Pois-
son noise is generated pixel-by-pixel and added to the test
images for both MNIST and CIFAR-10. The levels of noise
along the horizontal axis of panel (b) of Fig. 3 and Fig. 4
represent an increasing degree of noise added to the images
of the validation set. For our approach and each of the five
models that are being compared, we plot the log-likelihood
as a function of the level of noise to assess the robustness of
these approaches. We find that with both MNIST (panels
(b) in Fig. 3) and CIFAR-10 (panels (b) in Fig. 4), for each
of these three metrics, SparC-IB outperforms all other
approaches compared. For ImageNet (panel (b) in Fig. 5),
we find that Drop-VIB has a higher likelihood than our ap-
proach, possibly due to a large amount of input information
(estimated MI(X;Z) = 57.56 for Drop-VIB and = 10.35
for SparC-IB) learned in the latent space.

4.2.2 ROTATION

In this scenario, we evaluate the models trained on MNIST
data with increasingly rotated digits following Ovadia et al.
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(a) Test error vs. β
value

(b) Log likelihood
vs. noise

(c) Log likelihood
vs. attack radius

Figure 5: In- and out-of- distribution results on ImageNet.

(2019), which simulates the scenario of data that are mod-
erately out of distribution to the data used for training the
model. We show the results of the experiments in panel (c)
in Fig. 3. We can see that SparC-IB with the compound
distribution prior outperforms the rest of the five models in
terms of log-likelihood, we also note that the performance
of the Drop-VIB has the lowest in this scenario.

4.2.3 ADVERSARIAL ROBUSTNESS

Multiple approaches have been proposed in the literature to
assess the adversarial robustness of a model Tramer et al.
(2020). Among them, perhaps the most commonly adopted
approach is to test the accuracy in adversarial examples
that are generated by adversarially perturbing the test data.
This perturbation is in the same spirit as the noise corrup-
tion presented in the preceding section, but is designed to
be more catastrophic by adopting a black-box attack ap-
proach that chooses a gradient direction of the image pixels
at some loss and then takes a single step in that direction.
The projected gradient descent is an example of such an
adversarial attack. Following Alemi et al. (2016), we eval-
uated the robustness of the model to the PGD attack with 10
iterations. We use the L∞ norm to measure the size of the
perturbation, which in this case is a measure of the largest
single change in any pixel. Log-likelihood as a function
of the perturbed L∞ distance for MNIST (panel (d) in Fig.
3), for CIFAR-10 (panel (c) in Fig. 4), and for ImageNet
(panel (c) in Fig. 5) show that the SparC-IB approach
provides the highest log-likelihood across the attack radius
in all three datasets.

4.3 ANALYSIS OF THE LATENT SPACE

A key property of SparC-IB is the ability to jointly learn
the latent allocation and the dimension of the latent space
for each data point. In this section, our aim is to disen-
tangle the information learned in the latent space of the
SparC-IB approach by analyzing the posterior distribu-
tion of the dimension variable and the information learned
in the latent allocation vector for MNIST data. Similar
analyses for CIFAR-10 and ImageNet are in the Appendix
A.8.

4.3.1 FLEXIBLE LATENT SPACE DIMENSION

A distinct feature of the proposed approach is the flexibility
enabled by the sparsity-inducing prior for learning a data-

Figure 6: Information content plot for different latent
dimensions (averaged across seeds). We observe that
SparC-IB learns the maximum information in a small di-
mensional latent space.

dependent dimension distribution. To demonstrate this, for
a compound model with (a, b) = (2, 2) in Fig. 1 we show
the distribution of posterior modes of dimension distribu-
tion across data points, aggregated per MNIST digit. We
see that, in fact, each digit, on average, preferred to have a
different latent dimension. We further note that the mode
values depicted by the plot for digits 5 and 8 are farther
away from the rest of the digits. Note that the pattern in
Fig. 1 is for a single seed. Although the pattern in di-
mension distribution modes changes across the seeds, the
separation between the classes remains (see A.9.1 in the
Appendix for details). We also observe a similar separation
of the latent dimensionality across classes with CIFAR-10
and ImageNet data (Appendix Fig. A7).

4.3.2 ANALYSIS OF INFORMATION CONTENT

The SparC-IB prior in (6) induces an ordered selec-
tion of the dimensions of the latent allocation vector An

based on the dimension dn. In Fig. 6, we plotted the
estimated mutual information or ̂MI(Z;Y ) against the in-
creasing dimension of the latent space (in increments of
5) for all models in MNIST. For a given dimension d,
̂MI(Z;Y ) = 1

N

∑N
n=1 log q(Yn|Zn = µn(X) ◦ γ(d)),

where the first d coordinates of γ(d) are 1s and the rest are
0s. We observe that the SparC-IB model has been able
to code the learned information in the first few (∼ 15) di-
mensions of the latent space. In contrast, we notice that the
fixed-dimensional VIB models, Drop-VIB, and Intel-VIB
require close to the full latent space to encode similar in-
formation levels. This characteristic perhaps hinders these
models in achieving good robustness performance consis-
tently on all data. However, we believe that further investi-
gation is needed to establish this claim. For CIFAR-10, we
observed the same characteristics of the information con-
tent plot in Fig. 6 whereas for ImageNet the information
plateaus at a larger dimension than Fig. 6 (see Fig. A8 in
the Appendix).
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Figure 7: Plot of pixel importance in encoding the latent
allocation mean (averaged across seeds) for a sample from
the MNIST test data. We observe that SparC-IB learns
important features of the latent space in the first few dimen-
sion of the latent space.

4.3.3 VISUALIZING THE LATENT DIMENSIONS

In deep neural networks, the conductance of a hidden unit,
proposed in Dhamdhere et al. (2018), is the flow of infor-
mation from the input through that unit to the predictions.
In this spirit, we measure the importance scores of indi-
vidual pixels in the dimensions of the latent mean alloca-
tion vector µ for the MNIST data. The computation de-
tails have been added in the Appendix A.9.4. In Fig. 7,
we plotted these measures for different methods (averaged
across seeds) for the first 15 dimensions of µ for a sample
from the MNIST test data. We observe that SparC-IB
encodes important features in the first few dimensions of
the latent space. For Intel-VIB and VIB with K = 32, we
see that the pixel information is spread over a large set of
dimensions of the latent space. For Drop-VIB, we notice
that it learns a lot of information in all the 15 dimensions.
Fig. 7 also helps explain the information jumps in Fig. 6.
We notice that the jump in the information content occurs
when we include the dimensions that have learned impor-
tant pixel information, e.g. for SparC-IB dimensions 3
and 8. Note that the Intel-VIB and fixed-dimensional VIB
models with high dimensions have many dimensions with
very little information about the input. Although Fig. 7 ex-
hibits some features of the digit learned by the latent space
(e.g., the middle part of the digit has high importance for
SparC-IB), in our experiments, we have not been able
to extract meaningful features in the latent dimensions that
are common across all the digits. In our view, this demands
further investigation.

5 CONCLUSIONS

In summary, we propose the SparC-IB method in this
paper, which models the latent variable and its dimension
through a Bayesian spike-and-slab categorical prior and de-
rived a variational lower bound for efficient Bayesian in-
ference. This approach accounts for the full uncertainty in
the latent space by learning a joint distribution of the latent
variable and the sparsity. We compare our approach with
commonly used fixed-dimensional priors, as well as us-
ing those sparsity-inducing strategies previously proposed
in the literature through experiments on MNIST, CIFAR-
10, and ImageNet in both the in-distribution and out-of-

distribution scenarios (such as noise corruption, adversarial
attacks, and rotation). We find that our approach obtains
as good accuracy and robustness as the best-performing
model in all the cases, and in some cases it outperforms
the other models. This is important because we found
that other VIB algorithms considered performed well on
a few datasets but have significantly poor performance on
the others. In addition, we show that enabling each data
to learn their own dimension distribution leads to separa-
tion of dimension distribution between output classes, thus
substantiating that latent dimension varies class-wise. Fur-
thermore, we find that the SparC-IB approach provides a
compact latent space in which it learns important data fea-
tures in the first few dimensions of the latent space, which
is known to lead to superior robustness properties.

There are several avenues for future research based on the
proposed model SparC-IB. Since the latent dimension-
ality of the data is modeled through a Bayesian spike-and-
slab prior with a categorical spike distribution over the di-
mension, an interesting avenue for future research could be
to find a rich class of hierarchical priors or a non-parametric
stick-breaking prior. Another direction might be to explore
other approaches to data-driven mutual information estima-
tion to tighten the lower bound of MI(X;Z). A key aspect
of this work is its broader appeal in the field of adaptive
selection of model complexity in machine learning. Be-
yond IB, the proposed sparsity-inducing prior is a promis-
ing candidate for the probabilistic node and depth selection
of DNN. Our approach for data-specific complexity learn-
ing can potentially be applied to have a NN with an optimal
number of layers with ordered and sparse information cap-
tured in each layer.
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Xi Yu, Shujian Yu, and José C Prı́ncipe. Deep determin-
istic information bottleneck with matrix-based entropy
functional. In ICASSP 2021-2021 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 3160–3164. IEEE, 2021.

Penglong Zhai and Shihua Zhang. Adversarial information
bottleneck. arXiv preprint arXiv:2103.00381, 2021.

https://arxiv.org/abs/1602.07261


Sparsity-Inducing Categorical Prior Improves Robustness of the Information Bottleneck

A APPENDIX

A.1 MODEL ARCHITECTURES AND HYPERPARAMETER SETTINGS

For the proposed SparC-IB model, we need to select the neural architecture to be used for the latent space mean and
variance, as well as the dimension encoder that learns categorical probabilities or compound distribution parameters. To
learn the parameters of the dimension distribution in both compound and categorical strategies, we split the head of the
encoder network into two parts, as depicted in Fig. 2. The first part estimates the parameters of the latent allocation variable
A and the second part estimates the parameters of the dimension variable d. For MNIST, we follow Rodrı́guez Gálvez et al.
(2020) and use an MLP encoder with three fully connected layers, the first two of dimensions 800 and ReLu activation, and
the last layer with dimension 2K + 2 for the compound strategy and 3K for the categorical strategy. The decoder consists
of two fully connected layers, the first of which has dimension 800 and the second predicts the softmax class probabilities
in the last layer. For CIFAR-10, following Yu et al. (2021), we adopt a VGG16 encoder and a single-layered neural network
as decoder. We choose the final sequential layer of VGG16 as the bottleneck layer that outputs the parameters of the latent
space.

For ImageNet, we crop the images at its center to make them 299 × 299 pixels and normalize them to have mean = (0.5,
0.5, 0.5) and standard deviation = (0.5, 0.5, 0.5). We have followed the implementation of Alemi et al. (2016) where we
transform the ImageNet data with a pre-trained Inception Resnet V2 (Szegedy et al. (2016)) network without the output
layer. Under this transformation, the original ImageNet images reduce to a 1534-dimensional representation, which we
used for all our results. Following Alemi et al. (2016), we use an encoder with two fully connected layers, each with 1024
hidden units, and a single-layer decoder architecture.

For comparison with other sparsity-inducing approaches, we chose the two most recent works: the Drop-B model (Kim
et al. (2021)) and the InteL-VAE (Miao et al. (2021)). The Drop-B implementation requires a feature extractor. For all three
data sets, we choose the same architecture for the feature extractor as the encoder of SparC-IB until the final layer, which
has K dimensions. We assume the same decoder architecture for Drop-B as for SparC-IB. Additionally, for Drop-B,
the K Bernoulli probabilities are trained with the other parameters of the model. For InteL-VAE, the encoder and decoder
architectures are chosen to be the same as in SparC-IB for all data sets. In addition, this model requires a dimension
selector (DS) network. Following the experiments in Miao et al. (2021), we select three fully connected layers for the DS
network with ReLu activations between, where the first two layers have dimension 10 and the last layer has dimension K.
We fix K (that is, the prior assumption of dimensionality) to be 100 for MNIST and CIFAR-10 and 1024 for the ImageNet
data.

The workflow of SparC-IB overlaps with the standard VIB when encoding the mean and sigma of the full dimension of
the latent variable. Furthermore, SparC-IB encodes categorical probabilities and then draws samples from a categorical
distribution. Unlike the reparameterization trick (Kingma and Welling (2013)) for Gaussian variables, there does not
exist a differentiable transformation from categorical probabilities to the samples. Therefore, we use the Gumbel-Softmax
approximation (Maddison et al. (2016), Jang et al. (2016)) to draw categorical samples. We apply the transformation in
Eq. 4 to the samples and take the element-wise product with the Gaussian samples before passing it to the decoder. Note
that there exists other differentiable reparameterization of the discrete samples, e.g., the Gapped Straight-Through (GST)
estimator Fan et al. (2022). However, in our experiments, the use of the Gumbel-Softmax approximation has led to a lower
loss value than that of the GST.

Fitting deep learning models involves several key hyperparameters. In Table A1, we provide the necessary hyperparameters
for training and evaluation of all fitted models in three data sets.

Hyperparameters MNIST CIFAR-10 ImageNet
Train set size 60,000 50,000 128,1167

Validation set size 10,000 10,000 50,000
# epochs 100 400 200

Training batch size 128 100 2000
Optimizer Adam SGD Adam

Initial learning rate 1e-4 0.1 1e-4
Learning rate drop 0.6 0.1 0.97

Learning rate drop steps 10 epochs 100 epochs 2 epochs
Weight decay Not used 5e-4 Not used

Table A1: Hyperparameter settings used to model the three data sets.
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Figure A1: Information curve on MNIST, CIFAR-10, and ImageNet.

A.2 DATA AUGMENTATION

For the CIFAR-10 data, we augmented the training data using random transformations. We pad each training set image
by 4 pixels on all sides and crop at a random location to return an original-sized image. We flip each training set im-
age horizontally with probability 0.5. Furthermore, we normalize each training and validation set image with mean =
(0.4914, 0.4822, 0.4465) and standard deviation = (0.2023, 0.1994, 0.2010).

A.3 CONVERGENCE CHECKS

For CIFAR-10, we observed overfitting after 100 epochs for the Drop-VIB model, where the validation loss started to
increase. Therefore, we saved the model at epoch 100 for our robustness analysis. For other models in our experiments on
MNIST and CIFAR-10, we observed the convergence of train and validation loss, and we have considered models at the
final epoch as the final models. For ImageNet, we saved the model with the lowest validation loss as our final model for all
the methods.

A.4 EVALUATION METRICS

We calculated three evaluation metrics for each method in each scenario: test error, log-likelihood, and Brier score. For
prediction in all in- and out-of-distribution scenarios, following Fischer and Alemi (2020), we have used the mean latent
space E(Z|X) as input to the decoder for all methods. Note that for SparC-IB we calculate the marginal expectation
by following, E(Z|X) = Eq(d|X)Eq(Z|d,X)(Z)=̂ 1

J

∑J
j=1 Eq(Z|d=dj ,X)(Z), where dj is a sample from q(d|X). In our

experiments, we have fixed J = 10.

A.5 SOFTWARE AND HARDWARE

We have forked the code base https://github.com/burklight/convex-IB-Lagrangian-PyTorch.git
that implements the Convex-IB method (Rodrı́guez Gálvez et al. (2020)) using PyTorch. The code to run the models used in
the experiments can be found in the following repository https://github.com/AnirbanSamaddar/SparC-IB.
For modeling MNIST, we used NVIDIA V100 GPUs and for CIFAR-10 and ImageNet experiments, we used NVIDIA
A100 GPUs.

A.6 INFORMATION CURVE: SELECTION OF β

In the IB Lagrangian, the Lagrange multiplier β controls the trade-off between two MI terms. By optimizing the IB
objective for different values of β, we can explore the information curve, which is the plot of (MI(X;Z),MI(Z;Y )) in the
2-d plane. Fig. A1 shows the information curve on the validation set for the models selected for MNIST, CIFAR-10 and
ImageNet for the robustness studies in the main article. For the fixed K VIB models, the information curves are similar
to Fig. A1. Minimum necessary information (Fischer (2020)) is a point in the information plane where MI(X;Z) =
MI(Z;Y ) = H(Y ), where the entropy is indicated by H(Y ). For classification tasks, where labels are deterministic
given the images, the entropy H(Y ) = log2 nc, where nc is the number of classes. Therefore, for MNIST and CIFAR-10
H(Y ) = log2 10 ∼ 3.32 and for ImageNet H(Y ) = log2 10 ∼ 9.97. Therefore, we choose β ∼ 0.08 for MNIST, β ∼ 0.04
for CIFAR-10, and β ∼ 0.02 for ImageNet, which gives us the closest proximity to MNI. The points are circled in Fig. A1.

A.7 SELECTION OF PRIOR PARAMETERS FOR SparC-IB

Fig. A2 shows the probabilities of the prior dimension considered for modeling the three data sets. These prior probabilities
are from the compound distribution (Eq. 6) with K = 100 (left figure) and K = 1024 (right figure).

https://github.com/burklight/convex-IB-Lagrangian-PyTorch.git
https://github.com/AnirbanSamaddar/SparC-IB
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Figure A2: Plot of prior dimension probabilities for choices of (a, b).

A.8 PERFORMANCE BASED ON OTHER EVALUATION METRICS ON OUT-OF-DISTRIBUTION DATA

In the main paper, we have presented the robustness results for the three data sets in terms of the log-likelihood. Here we
present the robustness results in terms of the test set error and the Brier score for all the methods across the three data sets.

Fig. A3 (a)-(e) show the results for the out-of-distribution MNIST test data. From the figures, we observe that in all the
scenarios SparC-IB performs as well as the best performing model. We further observe that the separation between the
models in terms of the test error and the Brier score is less than the log-likelihood which is our chosen metric in the main
paper. Similar results for CIFAR10 and ImageNet have been presented in Fig. A4 and Fig. A5 respectively. For CIFAR10
(Fig. A4), we observe similar behavior in terms of the test error and the Brier score as for MNIST. For ImageNet (Fig.
A5), we observe that SparC-IB is doing better in terms of test error in the L∞ attacks. However, Drop-VIB seems to
be performing better than other approaches for the white-box attacks. This behavior has been discussed in the main paper
(Sec. 4.2.1).

(a) Test error vs noise (b) Brier score vs noise (c) Test error vs rotation

(d) Brier score vs rotation (e) Test error vs L∞ radius

Figure A3: Out-of-distribution performance in terms of the test error, and the Brier score on MNIST. We observe that
SparC-IB approach with compound strategy and (a, b) = (2, 2) (red line) performs as well as the best-performing model
in all the cases.

A.9 ANALYSIS OF THE LATENT SPACE

A.9.1 DIMENSION DISTRIBUTION MODE PLOT ACROSS SEEDS

Fig. A6 shows the mode plot for SparC-IB compound (2,2) across 3 seeds on MNIST data. The overall range of
dimensions remains unchanged across the 3 seeds; however, we observe that each digit prefers a different dimension of the
latent space.
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(a) Test error vs noise (b) Brier core vs noise (c) Test error vs L∞ radius

Figure A4: Out-of-distribution performance in terms of the test error, and the Brier score on CIFAR-10. We observe that
SparC-IB approach with compound strategy and (a, b) = (1, 3) (green line) performs as good as the best performing
model in all the cases.

(a) Test error vs noise (b) Brier score vs noise (c) Test error vs L∞ radius

Figure A5: Out-of-distribution performance in terms of the test error, and the Brier score on ImageNet. In the white-noise
scenario, the drop-VIB performs better than our approach possibly due to learning more information about X . However,
we observe that SparC-IB approach outperforms other models in black-box attacks.

(a) (b) (c)

Figure A6: Mode plot for SparC-IB compound (a, b) = (2, 2) across the 3 seeds on MNIST. We observe separation of
posterior modes between the MNIST digits for all 3 seeds.

A.9.2 THE DIMENSION DISTRIBUTION MODE PLOT FOR CIFAR-10 AND IMAGENET

Fig. A7 shows the dimension distribution mode plot across classes of CIFAR-10 and ImageNet. We show these plots for
the SparC-IB compound (1,3) in CIFAR-10 and the SparC-IB compound (2,2) in ImageNet. In both data sets, we
observe that each class prefers a different latent dimension (especially on ImageNet).

A.9.3 INFORMATION CONTENT PLOT FOR CIFAR-10 AND IMAGENET

Fig. A8 shows the estimated MI(Z;Y ) (expression provided in Sec. 4.3.2) against the increasing dimension of the latent
space for CIFAR-10 and ImageNet. In CIFAR-10, SparC-IB provides the most compact representation among the other
models in which the information plateaus within the first dimensions (∼ 5) of the latent space. For ImageNet, we observe
that the information plateaus around dimension 500 which is smaller than the fixed-dimensional VIB and Intel-VIB models
but higher than the Drop-VIB model. In addition, we note that the behavior of the estimated MI(Z;Y ) as a function of
dimension is much smoother than those of the other two data sets. The reason for such behavior is perhaps the complexity
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(a) Dimension mode plot for CIFAR-10 (b) Dimension mode plot for ImageNet.

Figure A7: Plot of the posterior modes of the dimension variable for (a) CIFAR-10 and (b) 50 randomly chosen classes of
ImageNet. Both plot show separation between the latent dimension of the classes chosen by SparC-IB.

in the ImageNet data, where it requires a high-dimensional latent space to encode the necessary information of X where
each dimension’s contribution is small.

(a) Information content vs dimension
plot for CIFAR-10

(b) Information content vs dimension
plot for ImageNet.

Figure A8: Plot of the information content vs dimension of the mean of the encoder for (a) CIFAR-10 and (b) ImageNet.
Both plot show SparC-IB encodes the maximum information in a smaller dimensional latent space than other models.

A.9.4 CALCULATING PIXEL-WISE IMPORTANCE SCORES FOR LATENT DIMENSIONS
VISUALIZATION ON MNIST

We have used the Captum package Kokhlikyan et al. (2020) to calculate the pixel importance scores to visualize the latent
space (Sec. 4.3.3) for MNIST. Given an input image x and a baseline image x′, the importance score for the i th pixel on
the d th dimension of the mean of the latent space is calculated using the following expression.

Importance Scoredi (x) = (xi − x′
i)

∫ 1

α=0

∂µd(αx+ (1− α)x′)

∂xi
dα

In the above expression, µ(.) is the mean vector of the latent space and µd(.) represents its d-th coordinate. We used a
blank image where every pixel value is 0 as a baseline x′. We can interpret the score as the sensitivity of the dimensions of
µ(x) to a small change in each pixel integrated on the images that fall on the line given by αx+ (1− α)x′.
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