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Abstract

In this work we study the robustness to ad-
versarial attacks, of early-stopping strategies on
gradient-descent (GD) methods for linear re-
gression. More precisely, we show that early-
stopped GD is optimally robust (up to an abso-
lute constant) against Euclidean-norm adversar-
ial attacks. However, we show that this strat-
egy can be arbitrarily sub-optimal in the case of
general Mahalanobis attacks. This observation
is compatible with recent findings in the case of
classification Vardi et al. (2022) that show that
GD provably converges to non-robust models.
To alleviate this issue, we propose to apply in-
stead a GD scheme on a transformation of the
data adapted to the attack. This data transforma-
tion amounts to apply feature-depending learn-
ing rates and we show that this modified GD is
able to handle any Mahalanobis attack, as well
as more general attacks under some conditions.
Unfortunately, choosing such adapted transfor-
mations can be hard for general attacks. To the
rescue, we design a simple and tractable estima-
tor whose adversarial risk is optimal up to within
a multiplicative constant of 1.1124 in the popula-
tion regime, and works for any norm.

1 Introduction

Machine learning models are highly sensitive to small per-
turbations known as adversarial examples (Szegedy et al.,
2013), which are often imperceptible by humans. While
various strategies such as adversarial training (Madry et al.,
2018) can mitigate this vulnerability empirically, the situ-
ation remains highly problematic for many safety-critical
applications like autonomous vehicles or health, and mo-
tivates a better theoretical understanding of what mecha-
nisms may be causing this.
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From a theoretical perspective, the case of classification is
rather well-understood. Indeed, the hardness of classifi-
cation under test-time adversarial attacks has been crisply
characterized (Bhagoji et al., 2019; Bubeck et al., 2018).
In the special case of linear classification, explicit lower-
bounds have been obtained (Schmidt et al., 2018; Bhat-
tacharjee et al., 2021). However, the case of regression is
relatively understudied. Recently, Xing et al. (2021) have
initiated a theoretical study of linear regression under Eu-
clidean attacks, where an adversary is allowed to attack the
input data point at test time. The authors proposed a two-
stage estimator and proved its consistency. The optimal
estimator obtained in (Xing et al., 2021) corresponds to a
ridge shrinkage (i.e ℓ2 penalization).

In this paper, we consider linear regression under adver-
sarial test-time attacks w.r.t arbitrary norms (not just Eu-
clidean / ℓ2-norms as in (Xing et al., 2021)), and analyze
the robustness of gradient-descent (GD) along the entire
optimization path. By doing so we observe that GD might
fail to capture a robust predictor along its path especially
in the case of non-Euclidean attacks. We propose a vari-
ant of the GD scheme where an adapted transformation on
the data is performed before applying a GD scheme. This
allows us to understand the effect on robustness of early-
stopping strategies (not training till the end) for general at-
tacks. Finally we design a generic algorithm able to pro-
duce a robust predictor against any norm-attacks.

1.1 Summary of main contributions

Our main contributions are summarized as follows.

– Case of gradient-descent (GD). In Proposition 4.2, we
show that early-stopped GD achieves near-optimal adver-
sarial risk in case of Euclidean attacks. Early-stopping is
crucial because the predictor obtained by running GD till
the end can be arbitrarily sub-optimal in terms of adversar-
ial risk (Proposition 4.1). Contrasting with Proposition 4.2,
we show in Proposition 4.4 that early-stopped GD can be
arbitrarily sub-optimal in the non-Euclidean case, e.g when
the attacker’s norm is a Mahalanobis norm. Thus, GD,
along its entire optimization path, can fail to find robust
model in general.

– An Adapted GD scheme (GD+). We propose a mod-
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ified version of GD, termed GD+, in which the dynam-
ics are forced to be non-uniform across different features
and exhibit different regimes where early-stopped GD+ can
achieves near-optimal adversarial risk. More precisely, (i)
we show that it achieves near-optimal adversarial risk in the
case of Mahalanobis norm attacks (Proposition 5.1), (ii) we
also prove that it is near-optimally robust under ℓp-norm at-
tacks as soon as the features are uncorrelated (Theorem 5.2)
and (iii) we study the robustness along the entire optimiza-
tion path of GD+ in the case of general norm-attacks. In
particular, we provide a sufficient condition on the model
such that early-stopped GD+ achieves near-optimal adver-
sarial risk under general norm-attacks in Theorem 5.1 and
we show that when this condition is not satisfied, GD+ can
be arbitrarily sub-optimal (Proposition 5.3).

– A two-stage estimator for the general case. Finally, we
propose a simple two-stage algorithm (Algorithm 1) which
works for arbitrary norm-attacks, and achieves optimal ad-
versarial risk up to within a multiplicative constant factor
in the population regime. Consistency and statistical guar-
antees for the proposed estimator are also provided.

1.2 Related Work

The theoretical understanding of adversarial examples is
now an active area of research. Below is a list of works
which are most relevant to our current letter.

Tsipras et al. (2019) considers a specific data distribution
where good accuracy implies poor robustness. (Shafahi
et al., 2018; Mahloujifar et al., 2018; Gilmer et al., 2018;
Dohmatob, 2019) show that for high-dimensional data dis-
tributions which have concentration property (e.g., multi-
variate Gaussians, distributions satisfying log-Sobolev in-
equalities, etc.), an imperfect classifier will admit adver-
sarial examples. Dobriban et al. (2020) studies tradeoffs
in Gaussian mixture classification problems, highlighting
the impact of class imbalance. On the other hand, Yang
et al. (2020) observed empirically that natural images are
well-separated, and so locally-lipschitz classifies shouldn’t
suffer any kind of test error vs robustness tradeoff.

In the context of linear classification(Schmidt et al., 2018;
Bubeck et al., 2018; Khim and Loh, 2018; Yin et al., 2019;
Bhattacharjee et al., 2021; Min et al., 2021a,b), established
results show a clear gap between learning in ordinary and
adversarial settings. Li et al. (2020) studies the dynamics of
linear classification on separable data, with exponential-tail
losses. The authors show that GD converges to separator
of the dataset, which is minimal w.r.t to a norm which is
an interpolation between the the ℓ2 norm (reminiscent of
normal learning), and ℓq-norm, where q is the harmonic
conjugate of the attacker’s norm. Vardi et al. (2022) showed
that on two-layer neural networks, gradient-descent with
exponential-tail loss function converges to weights which
are vulnerable to adversarial examples.

Javanmard et al. (2020) study tradeoffs between ordinary
and adversarial risk in linear regression, and computed ex-
act Pareto optimal curves. Javanmard and Mehrabi (2021)
also revisit this tradeoff for latent models and show that
this tradeoff is mitigated when the data enjoys a low-
dimensional structure. Dohmatob (2021); Hassani and Ja-
vanmard (2022) study the tradeoffs between interpolation,
normal risk, and adversarial risk, for finite-width over-
parameterized networks with linear target functions. Ja-
vanmard and Soltanolkotabi (2022) investigate the effect
of adversarial training on the standard and adversarial risks
and derive a precise characterization of them for a class of
minimax adversarially trained models.

The work most related to ours is (Xing et al., 2021) which
studied minimax estimation of linear models under adver-
sarial attacks in Euclidean norm. They showed that the op-
timal robust linear model is a ridge estimator whose regu-
larization parameter is a function of the population covari-
ance matrix Σ and the generative linear model w0. Since
neither w0 nor Σ is known in practice, the authors proposed
a two-stage estimator in which the first stage is consistent
estimators for w0 and Σ and the second stage is solving
the ridge problem. In (Xing et al., 2021), the authors cover
only the case of Euclidean attacks while here, we extend
the study of the adversarial risk in linear regression under
general norm-attacks. More precisely, here we are inter-
ested in understanding the robustness of GD, for general
attacks and along the entire optimization path. As a sep-
arate contribution, we also propose a new consistent two-
stage estimator based on a ”dualization” of the adversarial
problem that can be applied for general attacks.

1.3 Outline of Manuscript

In Section 2, we present the problem setup, main defini-
tions, and some preliminary computations. The adversar-
ial risk of (early-stopped) GD in the infinite-sample regime
is analyzed in Section 4; cases of optimality and sub-
optimality of this scheme are characterized. In Section 5,
GD+ (an improved version of GD) is proposed, and its ad-
versarial risk in the population regime is studied. In Section
6, we consider the finite samples regime and we propose a
simple two-stage estimator, which works for all attacker
norms. Its adversarial risk is shown to be optimal up to
within a multiplicative factor, and additive statistical esti-
mation error due to finite samples.

2 Preliminaries

Notations. Let us introduce some basic notations. Addi-
tional technical notations are provided in the appendix.

[d] denotes the set of integers from 1 to d inclusive. The
maximum (resp. minimum) of two real numbers a and b
will be denoted a ∨ b (resp. a ∧ b). The operator norm of
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a matrix A is denoted ∥A∥op and corresponds to the posi-
tive square-root of the largest eigenvalue of AA⊤. Given
a positive-definite (p.d.) matrix S ∈ Rd×d and a vec-
tor w ∈ Rd, the Mahalanobis norm of w induced by S
is defined by ∥w∥S :=

√
w⊤Sw. We denote respectively

Md(R) and S++
d (R) the set of d×d matrices and positive-

definite matrices. Given p ∈ [1,∞], its harmonic con-
jugate, denoted q(p) is the unique q ∈ [1,∞] such that
1/p+ 1/q = 1. For a given norm ∥ · ∥, we denote ∥ · ∥⋆ its
dual norm, defined by

∥w∥⋆ := sup{x⊤w | x ∈ Rd, ∥x∥ ≤ 1}, (1)

Note that if the norm ∥·∥ is an ℓp-norm for some p ∈ [1,∞],
then the dual norm is the ℓq-norm, where q is the harmonic
conjugate of p. For example, the dual of the euclidean norm
(corresponding to p = 2) is the euclidean norm itself, while
the dual of the usual ℓ∞-norm is the ℓ1-norm.

The unit-ball for a norm ∥ · ∥ is denoted Bd
∥·∥, and defined

by Bd
∥·∥ := {x ∈ Rd | ∥x∥ ≤ 1}. Given any s ≥ 0, set of

s-sparse vectors in Rd is denoted Bd
0 and defined by

Bd
0 (s) := {w ∈ Rd | ∥w∥0 ≤ s}. (2)

Finally, define absolute constants c0 :=
√
2/π, α :=

2/(1 + c0) ≈ 1.1124 and β = 1.6862.

2.1 Problem Setup

Fix a vector w0 ∈ Rd, a positive definite matrix
Σ of size d, and consider an i.i.d. dataset Dn =
{(x1, y1), . . . , (xn, yn)} of size n, given by

yi = x⊤
i w0 + ϵi, for all i ∈ [n] (3)

where x1, . . . , xn i.i.d ∼ N(0,Σ) and ϵ1, . . . , ϵn i.i.d ∼
N(0, σ2

ϵ ) independent of the xi’s. Thus, the distribution
of the features is a centered multivariate Gaussian distribu-
tion with covariance matrix Σ, while w0 is the generative
model. σϵ ≥ 0 measures the size of the noise. These as-
sumptions on the model will be assumed along all the for-
mal claims of the paper. We also refer to n as the sample
size, and to d as the input-dimension.

In most of our analysis, except otherwise explicitly stated,
we will consider the case of infinite-data regime n =∞ –or
more generally n≫ d, which allows us to focus on the ef-
fects inherent to the data distribution (controlled by feature
covariance matrix Σ) and the inductive bias of the norm
w.r.t which the attack is measured, while side-stepping is-
sues due to finite samples and label noise. Also note that in
this infinite-data setting, label noise provably has no influ-
ence on the learned model.

2.2 Adversarial Robustness Risk

Given a linear model w ∈ Rd, an attacker is allowed to
swap a clean test point x ∼ N(0,Σ) with a corrupted ver-

sion x′ = x + δ thereof. The perturbation δ = δ(x) ∈ Rd

is constrained to be small: this is enforced by demanding
that ∥δ∥ ≤ r, where ∥ · ∥ is a specified norm and r ≥ 0 is
the attack budget. One way to measure the performance of
a linear model w ∈ Rd under such attacks of size r, is via
it so-called adversarial risk (Madry et al., 2018; Xing et al.,
2021).

Definition 2.1. For any w ∈ Rd and r ≥ 0, define the
adversarial risk of w at level r ≥ 0 as follows

E∥·∥(w,w0, r) := Ex

[
sup

∥δ∥≤r

((x+ δ)⊤w − x⊤w0)
2

]
, (4)

where x ∼ N(0,Σ) is a random test point.

It is clear that r 7→ E∥·∥(w,w0, r) is a non-decreasing
function and E∥·∥(w,w0, 0) corresponds to the ordinary
risk of w, namely

E(w,w0) := Ex[(x
⊤w − x⊤w0)

2] = ∥w − w0∥2Σ. (5)

In classical regression setting, the aim is to find w which
minimizes E(w,w0). In the adversarial setting studied
here, the aim is to minimize E∥·∥(w,w0, r) for any r ≥ 0.

We will henceforth denote by E
∥·∥
opt(w0, r) the smallest pos-

sible adversarial risk of a linear model for ∥ · ∥-attacks of
magnitude r, that is

E
∥·∥
opt(w0, r) := inf

w∈Rd
E∥·∥(w,w0, r). (6)

We start with the following well-known elementary but
useful lemma which proved in the supplemental. Also see
Xing et al. (2021); Javanmard and Soltanolkotabi (2022)
for the special case of Euclidean-norm attacks.

Lemma 2.1. Recall that c0 =
√
2/π, then for any w ∈ Rd

and r ≥ 0, it holds that

E∥·∥(w,w0, r) = ∥w − w0∥2Σ + r2∥w∥2⋆
+ 2c0r∥w − w0∥Σ∥w∥⋆.

(7)

The mysterious constant c0 =
√

2/π in Lemma 2.1 corre-
sponds to the expected absolute value of a standard Gaus-
sian random variable. In order to obtain a robust predictor
to adversarial attacks, one aims at minimizing the adversar-
ial risk introduced in (4). However the objective function
of the problem, even in the linear setting (7), is rather com-
plicated to optimize due to its non-convexity.

3 A Proxy for Adversarial Risk

The following lemma will be one of the main workhorses in
subsequent results, as it allows us to replace the adversarial
risk functional E with a more tractable proxy Ẽ.
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Lemma 3.1. For any w ∈ Rd and r ≥ 0, it holds that

E∥·∥(w,w0, r) ≤ Ẽ∥·∥(w,w0, r) ≤ α · E∥·∥(w,w0, r), (8)

where α := 2/(1 +
√

2/π) ≈ 1.1124 and

Ẽ∥·∥(w,w0, r) := (∥w − w0∥Σ + r∥w∥⋆)2. (9)

The result is proved in the appendix. Since α ≈ 1.1124, the
above approximation would allow us to get rougly 90%-
optimality in the adversarial risk by minimizing the (much
simpler) proxy function w 7→ Ẽ∥·∥(w,w0, r) instead. This
will precisely be the focus of the next sections.

We also denote Ẽ
∥·∥
opt(w0, r) the smallest possible value of

the adversarial risk proxy Ẽ∥·∥(·, w0, r).

4 Gradient-Descent for Linear Regression

While the optimization of adversarial risk can be complex,
the minimization of ordinary risk can be obtained by a sim-
ple gradient-descent. When applying a vanilla gradient-
descent (GD) scheme with a step-size η > 0, starting at
wη(0) := 0d to the ordinary risk defined in (5), one obtains
at each iteration t ≥ 1 the following updates:

wη(t, w0) := wη(t− 1)− η∇wE(wη(t− 1), w0)

= (Id − (Id − ηΣ)t)w0

(10)

This scheme can be seen as a discrete approximation of the
gradient flow induced by the following ODE:{

ẇ(t) = −Σ(w(t)− w0)
w(0) = 0d

which has a closed-form solution given by

w(t, w0) := (Id − exp(−tΣ))w0. (11)

Our goal is to evaluate the robustness of the predictors ob-
tained along the gradient descent path. We consider the
continuous-time GD, as the analysis of discrete-time GD is
analogous due to the absence of noise: the former is an in-
finitely small step-size η limit of the latter (Ali et al., 2019,
2020). In the following we mean by early-stopped GD, any
predictor (indexed by training time, t) obtained along the
path of the gradient flow. Observe that for such predictors
one has always that

E∥·∥2(w(t, w0), w0, r) ≥ E
∥·∥
opt(w0, r)

and so for any t ≥ 0. In particular we will focus on the
one that minimizes the adversarial risk at test time, that is
inft≥0 E

∥·∥2(w(t, w0), w0, r).

4.1 Euclidean Attacks: Almost-optimal Robustness

Here we consider Euclidean attacks, meaning that the at-
tacker’s norm is ∥ · ∥ = ∥ · ∥∗ = ∥ · ∥2. In the following
proposition, we first characterize the non-robustness of the
generative model w0.

Proposition 4.1. If r ≤
√
2/π ∥w0∥2

∥w0∥Σ−1
, then we have that

E∥·∥2(w0, w0, r) = E
∥·∥2

opt (w0, r).

and as soon as r >
√

2/π ∥w0∥2

∥w0∥Σ−1
, we have

E∥·∥2(w0, w0, r)/E
∥·∥2

opt (w0, r) ≥
r2∥w0∥22
∥w0∥2Σ

.

It is important to notice that the generative model w0 can
be optimal w.r.t both the standard risk E(·, w0) and the ad-
versarial risk E∥·∥2(·, w0, r) for Euclidean attacks as soon
as r is sufficiently small. However, as r increases, its ad-
versarial risk becomes arbitrarily large. Therefore, apply-
ing a GD scheme until convergence may lead to predictors
which are not robust to adversarial attacks even in the Eu-
clidean setting. In the next proposition we investigate the
robustness of the predictors obtained along the path of the
GD scheme (w(t, w0))t≥0 and we show that for any attack
r ≥ 0, this path contains an optimally robust predictor (up
to an absolute constant β := 1.6862).

Proposition 4.2. The following hold:

– If r ≤
√
2/π ∥w0∥2

∥w0∥Σ−1
or r ≥

√
π/2

∥w0∥Σ2

∥w0∥Σ
, then

inf
t≥0

E∥·∥2(w(t, w0), w0, r) = E
∥·∥2

opt (w0, r). (12)

– If
√
2/π ∥w0∥2

∥w0∥Σ−1
< r <

√
π/2

∥w0∥Σ2

∥w0∥Σ
, we have that

inf
t≥0

E∥·∥2(w(t, w0), w0, r) ≤ βE
∥·∥2

opt (w0, r) (13)

Therefore the early-stopped vanilla GD scheme is able to
capture an almost-optimally robust predictor for any Eu-
clidean attack of radius r (see Figure 1 for an illustration).

In our proof of Proposition 4.2, we show that GD early-
stopped at time t has the same adversarial risk (up to multi-
plicative constant) as a ridge estimator with regularization
parameter λ ∝ 1/t. The result then follows from (Xing
et al., 2021), where it was shown the minimizer of the ad-
versarial risk under Euclidean attacks is a ridge estimator.

In the isotropic case, i.e. when Σ = Id, early-stopped GD
even achieves the exact optimal adversarial risk.

Proposition 4.3. Assume that Σ = Id, then for all r ≥ 0,
we have inft≥0 E

∥·∥2(w(t, w0), r) = E
∥·∥2

opt (w0, r).
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Figure 1: We consider a d = 2 dimensional case where w0

and Σ are sampled according to a Gaussian and an Expo-
nential distributions respectively. We plot the adversarial
risk under Euclidean attacks of the optimal predictor along
the GD path (GD: adv. risk) as well as its standard risk
(GD: standard risk) and we compare them to the risks
of the optimal predictor (Opt) solving adversarial problem
when varying the attack strength r.

However, such results are only possible when the attacks
are Euclidean. In the following section, we show that
vanilla GD, along its whole optimization path, can be ar-
bitrarily sub-optimal in terms of adversarial risk for Maha-
lanobis Attacks.

4.2 Mahalanobis Attacks: Sub-optimality of
Gradient-Descent

Let us consider attacks w.r.t the Mahalanobis norm induced
by a symmetric positive definite matrix B, i.e. we consider
the case where

∥ · ∥ = ∥ · ∥B := ∥B1/2 · ∥2 .

In the next proposition, we present a simple case where GD
fails to be adversarially robust under such attacks.
Proposition 4.4. Let d = 2, Σ = Id and for any integer
m ≥ 1, let us consider the following positive-definite ma-
trix

B = B(m) =

(
1/m 0
0 m

)
. (14)

Also, consider the following choice of generative model
w0 = w0(m) = (1/

√
m, 1). Then, for any fixed r > 0,

lim
m−→+∞

inft≥0 E
∥·∥B (w(t, w0), w0, r)

E
∥·∥B

opt (w0, r)
= +∞.

Therefore under Mahalanobis attacks, any predictor ob-
tained along the path of GD can be arbitrarily sub-optimal.
To alleviate this issue, we propose in the next section a
modified version of the vanilla GD scheme which can han-
dle such attacks and even more general ones.

5 An Adapted Gradient-Descent: GD+

In fact, it is possible to obtain an almost optimally robust
predictor for Mahalanobis attacks using a modified version
of the GD scheme, termed GD+. Let M ∈ Md(R) be
an arbitrary invertible matrix. In order to build an almost-
optimally robust predictor for such attacks, we propose to
apply a GD scheme on a transformed version of the data.
More precisely, we propose to apply a GD scheme to the
following objective function:

EM (w,w0) := E(x,y)∼Pxy
(w⊤Mx− y)2

which leads to the following optimization dynamics:

wM (t, w0) := (Id − e−tMΣMT

)(M−1)⊤w0. (15)

This transformation amounts to apply feature-dependent
gradient steps determined by M to the classical GD
scheme. In the following proposition, we show that when
M is adapted to the attack, early-stopped GD+ is optimally
robust (up to an absolute constant).

Proposition 5.1. For any B ∈ S++
d (R) and r ≥ 0,

inf
t≥0

E∥·∥B (B1/2wB1/2

(t, w0), r) ≤ βE
∥·∥B

opt (r, w0).

Therefore by choosing M = B1/2, GD+ is able to ob-
tain near-optimality under ∥ · ∥B-norm attack. See Figure 2
for an illustration. Note that when B = B1/2 = Id, then
wId(t, w0) = w(t, w0), ∥ · ∥Id = ∥ · ∥2, and we recover as
a special case our result obtained in Proposition 4.2.

Figure 2: Here we plot the example studied in Proposi-
tion 4.4 for a fixed radius r = 1 when varying m. GD+
represents the modified GD scheme with M = B1/2 where
B is defined in Eq. (14), GD represent the vanilla GD and
Opt is the optimal predictor. Observe that the optimal ad-
versarial risk goes to 0 as m goes to +∞ while the adver-
sarial risk of the vanilla GD converges towards a constant.

In the following section, we investigate the robustness of
GD+ scheme on more general attacks.
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5.1 Robustness Under General Attacks

Our goal here is to provide a simple control of the adver-
sarial risk of GD+ under general norm-attack ∥ · ∥. For
that purpose, define the condition number κ∥·∥(M) of any
matrix M , w.r.t to the attacker’s norm ∥ · ∥ as

κ∥·∥(M) := λ∥·∥
max(M)/λ

∥·∥
min(M), where

λ∥·∥
max(M) := sup

w ̸=0

∥Mw∥2
∥w∥∗

, and

λ
∥·∥
min(M) := inf

w ̸=0

∥Mw∥2
∥w∥∗

where dual norm ∥ · ∥∗ is defined with respect to the
attacker-norm ∥ · ∥. We are now ready to show a general
upper-bound of our modified GD scheme.

Proposition 5.2. For any r ≥ 0, and invertible matrix
M ∈Md(R), it holds that

inft≥0 E
∥·∥(M⊤wM (t, w0), w0, r)

E
∥·∥
opt(r, w0)

≤ βκ∥·∥ ((M⊤)−1
)2

.

Therefore along the path of GD+ induced by M , one can
find a βκ∥·∥((M⊤)−1)2-optimally robust predictor against
∥ · ∥-attack. In particular, observe that when M = B1/2,
and ∥ · ∥ = ∥ · ∥B , we obtain that κ∥·∥((M⊤)−1) = 1 and
we recover as a special case the result of Proposition 5.1.

Remark 5.1. It is important to notice that M can be cho-
sen arbitrarily, and therefore adapted to the norm of the
attacks such that M → κ∥·∥((M⊤)−1) is minimized. How-
ever, minimizing this quantity in general is hard due to the
arbitrary choice of the norm ∥ · ∥.

In the next section, we study a specific case of GD+ and
provide a sufficient condition on the model w0 such that
this scheme is near-optimal under general norm-attacks.

5.2 A Sufficient Condition for Optimality

We consider the general case of an arbitrary norm-attack
∥·∥ with dual ∥·∥⋆ and we focus on a very specific path in-
duced GD+, which is when M = Σ−1/2. In that case, data
are normalized and the path drawn by (MwM (t, w0))t≥0 is
in fact a uniform shrinkage of the generative model. More
precisely, the predictors obtained along such a path are ex-
actly the one in the chord [0, w0] := {γw0 | γ ∈ [0, 1]}.
In particular, the optimal adversarial risk achieved by this
modified GD scheme is given by

inf
t≥0

E∥·∥(Σ−1/2wΣ−1/2

(t, w0), w0, r)

= inf
γ∈[0,1]

E∥·∥(γw0, w0, r)
(16)

Let g(w0) ∈ Rd be a subgradient of ∥ · ∥⋆ at w0. For
example, in the case of ℓ∞-norm-attacks, one may take

g(w0) = (sign(w0,1), . . . , sign(w0,d)), with sign(0) := 0.
In the case of of a Mahalanobis attack where ∥ · ∥ = ∥ · ∥B
for some positive-definite matrix B, one can take g(w0) =
B1/2w0/∥w0∥B with g(0) = 0. We can now state our suf-
ficient condition for near-optimality of GD+.
Condition 5.1. The subgradient g(w0) ∈ Rd can be cho-
sen such that

∥g(w0)∥∥w0∥∗
∥g(w0)∥Σ−1∥w0∥Σ

≥ c,

where c is a positive absolute constant.

The above condition is sufficient in order to obtain near-
optimality of GD+ as we show in the next proposition (see
Figure 3 for an illustration).
Theorem 5.1. Suppose Condition 5.1 is in order. Then, for
any positive r, it holds for M = Σ−1 that

inft≥0 E
∥·∥(M⊤wM (t, w0), w0, r)

E
∥·∥
opt(r, w0)

≤ (1 ∨ 1/c2)α.

In particular, for the case of ℓ∞-norm-attacks, we have the
following corollary.
Corollary 5.1. Consider the case where ℓ∞-norm-attacks.
If there exists an absolute constant c > 0 such that
∥w0∥1 ≥ c

√
d∥w0∥2, then with M = Σ−1 it holds that

inft≥0 E
∥·∥∞(M⊤wM (t, w0), w0, r)

E
∥·∥∞
opt (r, w0)

≤
(
1 ∨ κ∥·∥2(Σ)

c2

)
α.

For example, when w0 = (1, . . . , 1) –or equivalently, ran-
dom w0 ∼ N(0, Id), one can take c = 1, and observe that
∥w0∥1 ≳ d, ∥w0∥2 ≍

√
d, and so the bound in Corollary

5.1 holds.

The Condition 5.1 that ensures optimality of GD+ in The-
orem 5.1 cannot be removed. Indeed, we exhibit a simple
case where the uniform shrinkage strategy fails miserably
to find robust models even when they exist.
Proposition 5.3. Let Σ = Id, then it is possible to con-
struct w0 ∈ Rd and r > 0 such that in the limit d→∞, it
holds that r → 0, r

√
d→ +∞, and

inft≥0 E
∥·∥∞(w(t, w0), w0, r)

E
∥·∥∞
opt (r, w0)

→ +∞.

Therefore the uniform shrinkage strategy induced by GD+
(which here reduces to vanilla GD since Σ = Id) is not
adapted for all scenarios; it may fail to find a robust model
even when one exists.

In the next section, we restrict ourselves to the case of ℓp-
norm-attacks for p ∈ [1,+∞] and show that GD+ is able
to reach optimal robustness as soon as the data has uncor-
related features.
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Figure 3: We consider the case exhibited in the Corol-
lary 5.1 when d = 2, Σ = Id and w0 = (1, 1) under
ℓ∞-attacks. We plot the adversarial as well as the standard
risks for both the optimal shrinkage predictor as well as the
optimal predictor of the adversarial risk when varying r.

5.3 Optimality Under ℓp-norm Attacks

Now, let p ∈ [1,+∞] and consider attacks w.r.t the ℓp-
norm, i.e the attack strength is measured w.r.t the norm ∥ ·
∥ = ∥·∥p, with dual norm ∥·∥⋆ = ∥·∥q , where q ∈ [1,+∞]
is the harmonic conjugate of p. Popular examples in the
literature are p = 2 (corresponding to Euclidean attacks,
considered in Section 4.1) and p = ∞. In this section we
assume that Σ is a diagonal positive-definite matrix. This
assumption translates the fact that, both norm ∥ · ∥Σ and
∥ · ∥q act on the same coordinates system. When these two
norms are aligned, we show in the next theorem that the
the minimiser of the proxy introduced in Eq. (9) is in fact
a non-uniform shrinkage of w0 which can be recovered by
GD+. An illustration of the result is provided in Figure 4.

Theorem 5.2. Let Σ be any definite positive diagonal ma-
trix and p ∈ [1,+∞], then we have

inf
M∈Md(R),t≥0

E∥·∥p(M⊤wM (t, w0), w0, r)

E
∥·∥p

opt (r, w0)
≤ α.

Therefore GD+ is able to reach near-optimality in term of
adversarial risk, and so for any ℓp-attacks with p ∈ [1,+∞]
as soon as ∥ · ∥p and ∥ · ∥Σ are aligned.

Applying a GD+ scheme in practice might be difficult for
general attacks, as the choice of the transformation M must
be adapted accordingly. To alleviate this issue, we propose
in the next section a simple and tractable two-stage estima-
tor able to reach near-optimality and so for general attack.

Figure 4: We consider the case where d = 2, Σ is diago-
nal and w0 and the diagonal coefficients of Σ are sampled
according to a Gaussian and an exponential distribution re-
spectively. The choice of M is obtained by fine-tuning the
GD+. We compare the adversarial and standard risks under
ℓ∞ of the optimal predictor in the GD+ path with those of
the optimally robust predictor when varying the radius r.

6 Efficient Algorithms for Attacks in
General Norms

We propose a simple tractable estimator whose adversar-
ial risk is optimal up to within a multiplicative constant
of 1.1124. Here, we drop the assumption of infinite train-
ing data n = ∞. Thus, the estimators are functions of
the finite-training dataset Dn := {(x1, y1), . . . , (xn, yn)},
generated according to (3).

6.1 A Two-Stage Estimator and its Statistical
Analysis

Consider any vector ŵ which minimizes the adversarial
risk proxy w 7→ Ẽ∥·∥(w,w0, r) defined in (9). Note apart
from its clear dependence on the generative model w0, Ẽ∥·∥

also depends on the feature covariance matrix Σ. However,
we don’t assume that w0 nor Σ are known before hand;
it has to be estimated from the finite training dataset Dn.
Thus, we propose a two-stage estimator described below in
Algorithm 1.

Algorithm 1 Proposed Two-Stage Estimator.

1: Stage 1: Compute consistent estimators ŵ0 and Σ̂
from w0 and Σ respectively, from the data Dn.

2: Stage 2: Compute ŵ which minimizes the adversarial
risk proxy w 7→ Ẽ∥·∥(w,w0, r) defined in (9). See
Algorithms 2 and 3 for implementations of this step.

Stage 1 of Algorithm 1 can be implemented using off-the-
shelf estimators which adapt to the structural assumptions
on Σ and w0 and Σ (sparsity, etc.). Later, we will pro-
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Figure 5: Experiments with our two-stage estimator Al-
gorithm 1. Here, we focus on ℓ∞-norm-attacks. ”1+2”
means Stage 2 of our Algorithm 1 is computed via the
primal-dual algorithm (Algorithm 2), while ”1+3” means
it is computed via the Algorithm 3. The experimental set-
ting here is: input-dimension d = 200; covariance matrix Σ
of the features = heterogeneous diagonal, with entries from
Exp(1) distribution; the generative w0 is s-sparse vector
(with s = 10), normalized so that ∥w0∥2Σ = 1. Notice how
the adversarial risk of the estimator improves with number
of samples n, as expected. See supplemental for details.

vide simple tractable algorithms for implementing Stage 2.
Note that Stage 2 implicitly requires the knowledge of the
attacker-norm as it aims at minimizing Ẽ∥·∥.

6.2 Consistency of Proposed Two-Stage Estimator

We now establish the consistency of our proposed two-
stage estimator ŵ computed by Algorithm 1. Let Σ̂ be
an operator-norm consistent data-driven minimax estimator
for Σ, and let ŵ0 be a consistent estimator of the generative
model w0. Define error terms

e1 := ∥ŵ0 − w0∥2, e2 := ∥Σ̂− Σ∥op. (17)

We are now ready to state the adversarial risk-consistency
result for our proposed two-stage estimator (Algorithm 1).

Theorem 6.1. For all r ≥ 0, it holds that

Ẽ
∥·∥
opt(w0, r) ≤ Ẽ∥·∥(ŵ, w0, r) ≤ Ẽ

∥·∥
opt(w0, r) + ∆,

E
∥·∥
opt(w0, r) ≤ E∥·∥(ŵ, w0, r) ≤ αE

∥·∥
opt(w0, r) + ∆,

where α := 2/(1 + c0) ≈ 1.1124, ∆ = O(e21 +
e22), where the hidden constant in the big-O is of order
max(∥Σ∥2op, ∥w0∥2Σ).

Thus, our proposed two-stage estimator is robust-optimal
up to within a multiplicative factor 2/(1 + c0) ≈ 1.1124,
and an additive term O(e21+ e22) which is due to estimation
error of w0 and Σ from training data. Note that if we as-
sume that the covariance matrix Σ of the features is known,
or equivalently that we have access to an unlimited supply
of unlabelled data from N(0,Σ), then we effectively have
e2 = 0. In this case, the statistical error of our proposed es-
timator ŵ is dominated by the error e21 associated with es-
timating the generative model w0. Under sparsity assump-

tions, this error term is further bounded by
σ2
ϵ s log(ed/s)

n

(thanks to the following well-known result), which tends
to zero if the input dimension d does not grow much faster
than the sample size n. .

Proposition 6.1 ((Bickel et al., 2009; Bellec et al., 2018)).
If 1 ≤ s ≤ d/2, then under some mild technical conditions,
it holds w.h.p that

inf
ŵ0

sup
w0∈Bd

0 (s)

∥ŵ0 − w0∥2︸ ︷︷ ︸
e1

≍ σϵ

√
s log(ed/s)

n
. (18)

where Bd
0 (s) is defined in Eq. (2). Moreover, the above

minimax bound is attained by the square-root Lasso esti-

mator with tuning parameter λ given by λ ≍
√

log(2d/s)

n
.

Remark 6.1. Note that, in the special case of Euclidean-
norm attacks, our Theorem 6.1 (which works for all attack
norms) recovers the adversarial risk-consistency result es-
tablished in (Xing et al., 2021) as a special case.

6.3 Algorithm 1: Primal-Dual Algorithm

We now device a simple primal-dual algorithm for comput-
ing the second stage of our proposed estimator (Algorithm
1). The algorithm works for any covariance matrix Σ and
norm-attack with tractable proximal operator.

Let ŵ0 and Σ̂ be the estimates computed in the Stage 1
of Algorithm 1. Define and K := Σ̂1/2, a := Kŵ0,
f(z) := ∥z − a∥2, g(w) := r∥w∥⋆. Recall now that√
Ẽ∥·∥(w,w0, r) = ∥w − w0∥Σ + r∥w∥⋆ and so for any

model w. Then by ”dualizing”, we get that

inf
w∈Rd

∥w − w0∥Σ + r∥w∥⋆ = inf
w∈Rd

f(Kw) + g(w)

= inf
w∈Rd

g(w) + sup
z∈Rd

z⊤Kw − f⋆(z)

= inf
w∈Rd

sup
z∈Rd

z⊤Kw − f⋆(z) + g(w)︸ ︷︷ ︸
H(w,z)

,

(19)

where f⋆ is the Fenchel-Legendre transform of f . Consider
the following so-called Chambolle-Pock algorithm (Cham-
bolle and Pock, 2010) for computing a saddle-point for the
function H .

Algorithm 2 Primal-Dual algorithm which implements
Stage 2 of Algorithm 1. Only one iteration is shown here.

Inputs: ŵ0, Σ̂, η1, η2, z
(0) = w(0) = 0d.

1: z(t+1) ← projBd
∥·∥2

(z(t) + η2Σ̂
1/2(u(t) − ŵ0))

2: w(t+1) ← proxη1r∥·∥⋆
(w(t) − η1Σ̂

1/2z(t+1)),
3: u(t+1) ← 2w(t+1) − w(t)

Here, the ηk’s are stepsizes chosen such that η1η2∥Σ̂∥1/2op <
1. The nice thing here is that the projection onto the ℓ2-ball
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Figure 6: We compare our proposed two-stage estimator
given in Alg. 1 with the one proposed in Xing et al. (2021),
in the specific setting of Euclidean attacks when varying
sample size n and attack strength r. Here, Stage 2 of our
two-stage estimator is computed via Alg. 2. Dashed and
plain lines respectively represent the standard and adversar-
ial risks. We see that though more general, our algorithm is
able to recover similar performances as Xing et al. (2021)
in the special case of Euclidean attacks.

(line 1) admits a simple analytic formula. In the case of
ℓ∞-norm-attacks, the second line corresponds to the well-
known soft-thresholding operator; etc. Refer to Figures
5 & 6 for empirical illustrations of the algorithm. The
following convergence result follows directly from (Cham-
bolle and Pock, 2010).

Proposition 6.2. Algorithm 2 converges to a stationary
point (w(∞), z(∞)) of the H at an ergodic rate O(1/t).

6.4 Algorithm 2: Simple Thresholding-Based
Algorithm in the Case of ℓ∞-Norm Attacks

Now, suppose the covariance matrix of the features Σ is
diagonal, i.e Σ = diag(λ1, . . . , λd). In the case of ℓ∞-
attacks, we provide a much simpler and faster algorithm
for computing the second stage of our proposed estima-
tor. Indeed, for ℓ∞-attack we obtain an explicit form of
the optimal solution minimizing Eq. (9) as shown in the
next Proposition. We deduce the following result.

Proposition 6.3. Let c := max1≤j≤d |(w0)j |λj . There ex-
ists t ∈ [0, c] such that w(t) ∈ Rd is a minimizer of the
convex function w 7→ ∥w − w0∥Σ + r∥w∥1, where

w(t)j = ST((w0)j ; rt/λj), for all j ∈ [d]. (20)

and ST(·; s) is the soft-thresholding operator at level s.

An inspection of (20) reveals a kind of feature-selection.
Indeed, if the jth component of the ground-truth model w0

is small in the sense that |(w0)j | ≤ rt/λj , then w(t)j = 0,
i.e the jth component of w0 should be suppressed. On the
other hand, if |(w0)j | ≥ rt/λj , then (w0)j should be re-
placed by the translated version (w0)j−sign((w0)j)rt/λj .
That is weak components of w0 are suppressed, while
strong components are boosted.

The result is Algorithm 3, a simple method for computing
Stage 2 of our proposed two-stage estimator (Algorithm 1).
Refer to Figure 5 for an empirical illustration.

Algorithm 3 Non-uniform soft-thresholding which imple-
ments Stage 2 of Algorithm 1 for diagonal covariance ma-
trix under ℓ∞-attacks.

Inputs: ŵ0, Σ̂

1: Compute ĉ = max1≤j≤d |(ŵ0)j |λ̂j .
2: For each t in a finite grid of values between 0 and ĉ,

use held-out to retain the value of t for which the adver-
sarial risk of ŵ(t) is minimal, where each component
of ŵ(t) is given by ŵ(t)j = ST((ŵ0)j ; rt/λ̂j).

3: Return ŵ(t).

7 Concluding Remarks

In our work, we have undertaken a study of the robust-
ness of gradient-descent (GD), under test-time attacks in
the context of linear regression. Our work provides a
clear characterization of when GD and a modified version
(GD+) –with feature-dependent learning rates– can suc-
ceed to achieve the optimal adversarial risk (up to an ab-
solute constant). This characterization highlights the effect
over the covariance structure of the features, and also, of
the norm used to measure the strength of the attack.

Finally, our paper proposes a statistically consistent and
simple two-stage estimator which achieves optimal adver-
sarial risk in the population regime, up to within a constant
factor. Our proposed estimator adapts to attacks w.r.t gen-
eral norms, and to the covariance structure of the features.
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A Further Details of Experiments

In this section we detail the experiments presented in the main paper, to empirically verify our theoretical results. In the
Figures 1, 2, 3 and 4, we consider only d = 2-dimensional cases as we do not have access to the optimal value of the
adversarial risk and propose to compute it using a grid-search.
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A.1 Case of Optimality of GD under Euclidean Attacks

In Figure 1, we plot the optimal value of the adversarial risk under Euclidean attacks obtained along the path of the GD
scheme and compare it with the true optimal adversarial risk when varying the attack strength r. We observe that we
recover our statement proved in Proposition 4.2, that is that GD is optimally robust (up to an absolute constant) and in fact
we observe that we have exact equality between these two risks. We also compare their standard risks and observe that
they are also equal. It is important to notice that for r sufficiently small, the optimally robust predictor has a null standard
risk and therefore is also optimal, which is the result proved in Proposition 4.1.

A.2 Suboptimality of GD under General Mahalanobis Attacks

In Figure 2, we consider the example proposed in Proposition 4.4 and we plot the adversarial risks of the vanilla GD
presented in Eq. (11), as well as the one obtained by our modified GD+ presented in Eq. (15) and compare them to the
optimal adversarial risk when varying m. We show that vanilla GD can be arbitrarily sub-optimal as m goes to infinity
while our modified GD+, when selecting the adapted transformation B(m), is able to reach the optimal adversarial risk.

A.3 Sufficient Condition for Optimality

In Figure 3, we consider a simple example where the Condition 5.1 is satisfied and illustrate that in that case the uniform
shrinkage strategy, obtained by applying a GD scheme on the normalized data (i.e. by considering GD+ with M = Σ−1/2),
is optimally robust (as shown in Theorem 5.1). For that purpose we consider a dense generative model w0 under ℓ∞-attacks
and a covariance matrix Σ with a small condition number (in fact we consider Σ = Id for simplicity) and we show that the
adversarial risk of the uniform shrinkage strategy matches the optimal one.

A.4 Case of ℓp-Norm Attacks

In Figure 4, we illustrate the result obtained in Theorem 5.2. For that purpose we consider a general case where the
covariance matrix is diagonal and and sampled according to an Exponential distribution and the generative model is also
chosen at random according to a Gaussian distribution. We consider the case of ℓ∞-attacks as it is the most used setting
in practice. In order to select M in GD+, we propose to solve the following system in D (with D diagonal and positive
definite)

(Id − exp(−tD))w0 = wopt,

where wopt is obtained by solving the adversarial problem using a grid-search and w0 is the generative model. Then
we consider our GD+ scheme using M = (DΣ−1)1/2. Indeed, in the proof of Theorem 5.2, we propose a constructive
approach in order to show the optimality of GD+ which simply requires to find a diagonal matrix D solving the above
system. We compare the adversarial risk of our GD+ with this specific choice of M against the true optimal adversarial
risk and we observe that the two curves coincide when varying the radius r.

A.5 Experiments for Algorithm 1, the Two-Stage Estimator Proposed in Section 6

In Figure 5, we plot the adversarial risk computed by Algorithm 1, in the case of ℓ∞-norm attacks. the experimental setting
here is: input-dimension d = 200; covariance matrix Σ of the features is heterogeneous diagonal, with diagonal entries
drawn iid from an exponential distribution with mean λ = 1; the generative w0 is s-sparse vector with s = 10, normalized
so that ∥w0∥2Σ = 1. As explained in the figure legends, the acronym ”1+3” means it is computed via the Algorithm 3
(which works for diagonal covariance matrix and ℓ∞-norm attack), while ”1+2” means Stage 2 of our Algorithm 1 is
computed via the primal-dual algorithm (Algorithm 2, which works for every feature covariance matrix Σ).

Notice how the adversarial risk of the estimator improves with number of samples n, as expected (Theorem 6.1). Also,
unlike ”1+3”, for small values of the attack strength r the adversarial risk achieved by ”1+2” is dominated by optimization
error incurred in Stage 2 (Algorithm 2). Thanks to Proposition 6.2, this can be alleviated by running more iterations of
Algorithm 2.

In Figure 6, we also compare our proposed algorithm with the Two-Stage Estimator Proposed in Xing et al. (2021). Here,
the attack norm is Euclidean, and the covariance matrix of the features Σ is as in the above paragraph.
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B Preliminaries

B.1 Additional Notations

The asymptotic notation F (d) = O(G(d)) (also written F (d) ≲ G(d)) means there exists a constant c such that F (d) ≤
c ·G(d) for sufficiently large d, while F (d) = Ω(G(d)) means G(d) = O(F (d)), and F (d) = Θ(G(d)) or F (d) ≍ G(d)
means F (d) ≲ G(d) ≲ F (d). Finally, F (d) = o(G(d)) means F (d)/G(d) → 0 as d → ∞. Thus, F (d) = O(1) means
that F (d) is bounded for sufficiently large d; F (d) = Ω(d) means that F (d) is bounded away from zero for sufficiently
large d; F (d) = o(1) means that F (d) → 0. The acronym w.h.p is used to indicate that a statement is true except on an
event of probability o(1).

Also recall all the notations introduced in the beginning of Section 2.

B.2 Proof of Lemma 2.1: Analytic Formula for Adversarial Risk

Recall the adversarial risk functional E defined in (7).

Lemma 2.1. Recall that c0 =
√
2/π, then for any w ∈ Rd and r ≥ 0, it holds that

E∥·∥(w,w0, r) = ∥w − w0∥2Σ + r2∥w∥2⋆
+ 2c0r∥w − w0∥Σ∥w∥⋆.

(7)

For the proof, we will need the following auxiliary lemma.

Lemma B.1. For any x,w ∈ Rd, r ≥ 0 and y ∈ R, the following identity holds

sup
∥δ∥≤r

((x+ δ)⊤w − y)2 = (|x⊤w − y|+ r∥w∥⋆)2. (21)

Proof. Note that h(x, δ)/2 = η(x)2/2 + g(x, δ)/2, where g(x, δ) := w(δ)2 − 2η(x)w(δ), and η(x) := w(x) − y, and
w(x) := x⊤w. Now, because the function z → z2/2 is its own Fenchel-Legendre conjugate, we can ”dualize” our problem
as follows

sup
∥δ∥≤r

g(x, δ)/2 = sup
∥δ∥⋆≤r

−η(x)w(δ) + sup
z∈R

zw(δ)− z2/2

= sup
z∈R
−z2/2 + sup

∥δ∥≤r

(z − η(x))w(δ)

= sup
z∈R

r∥w∥⋆|z − η(x)| − z2/2

= sup
s∈{±1}

sup
z∈R

rs(z − η(x))− z2/2

= sup
s∈{±1}

−r∥w∥⋆sη(x) + sup
z∈R

r∥w∥⋆sz − z2/2

= sup
s∈{±1}

−r∥w∥⋆sη(x) + r2∥w∥2⋆/2

= r∥w∥⋆|η(x)|+ r2∥w∥2⋆/2.

We deduce that

sup
∥δ∥≤r

h(x, δ)/2 = η(x)2/2 + r∥w∥⋆|η(x)|+ r2∥w∥2⋆/2 = (|η(x)|+ r∥w∥⋆)2/2,

as claimed.

Proof of Lemma 2.1. Indeed, thanks to Lemma B.1 with y = x⊤w0, one has

E∥·∥(w,w0, r) := Ex∼N(0,Σ) sup
∥δ∥≤r

h(x, δ) = Ex∼N(0,Σ)[(η(x) + r∥w∥⋆)2],
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where the functions h and η are as in the proof of Lemma B.1. The result then follows upon noting that

Ex∼N(0,Σ)[η(x)
2] = Ex∼N(0,Σ)[(x

⊤w − x⊤w0)
2] = ∥w − w0∥2Σ,

Ex∼N(0,Σ)|η(x)| = Ex∼N(0,Σ)|x⊤w − x⊤w0| = c0∥w − w0∥Σ,

where c0 :=
√
2/π.

B.3 Proof of Lemma 3.1: Proxy for Adversarial Risk

Recall the definition of the adversarial risk proxy Ẽ from (9).

Lemma 3.1. For any w ∈ Rd and r ≥ 0, it holds that

E∥·∥(w,w0, r) ≤ Ẽ∥·∥(w,w0, r) ≤ α · E∥·∥(w,w0, r), (8)

where α := 2/(1 +
√

2/π) ≈ 1.1124 and

Ẽ∥·∥(w,w0, r) := (∥w − w0∥Σ + r∥w∥⋆)2. (9)

Proof. Let us first show the following useful Lemma.

Lemma B.2. For any a, b, c ≥ 0 with c ≤ 1, it holds that

(a+ b)2 ≥ a2 + b2 + 2abc ≥ 1 + c

2
(a+ b)2, (22)

with equality if c = 1.

Proof. Let h(a, b, c) := a2 + b2 + 2abc. For the LHS, it suffices to observe that h(a, b, c) ≤ h(a, b, 1) = (a + b)2. For

the RHS, WLOG assume that a ̸= 0, and set t := b/a ≥ 0. Observe
h(a, b, c)

(a+ b)2
=

1 + t2 + 2ct

(1 + t)2
, which is minimized when

t = 1, because 0 ≤ c ≤ 1 by assumption. We deduce that h(a, b, c)/(a + b)2 ≥ (1 + 1 + 2c)/(1 + 1)2 = (1 + c)/2, as
claimed.

Now, recall from Lemma 2.1 that E∥·∥(w,w0, r) = ∥w−w0∥2Σ + r2∥w∥2⋆ +2c0r∥w−w0∥Σ∥w∥⋆ with c0 :=
√

π/2, and
by denoting a = ∥w − w0∥Σ, b = r∥w∥⋆ and c = c0 the result follows directly from Lemma B.2.

C Proof of the Results of Section 4: Gradient-descent for Linear Regression

C.1 Proof of Proposition 4.1: Sub-optimality of the Generative Model w.r.t Adversarial Risk

Proposition 4.1. If r ≤
√
2/π ∥w0∥2

∥w0∥Σ−1
, then we have that

E∥·∥2(w0, w0, r) = E
∥·∥2

opt (w0, r).

and as soon as r >
√

2/π ∥w0∥2

∥w0∥Σ−1
, we have

E∥·∥2(w0, w0, r)/E
∥·∥2

opt (w0, r) ≥
r2∥w0∥22
∥w0∥2Σ

.

Proof. In (Xing et al., 2021, Proposition 1), the authors already show the optimality of w0 for r ≤
√

2/π ∥w0∥2

∥w0∥Σ−1
. Now

remark that for w = 0, one has

E
∥·∥2

opt (w0, r) ≤ E∥·∥2(0, w0, r) ≤ ∥w0∥2Σ (23)

Moreover, we have that for all r ≥ 0, E∥·∥2(w0, w0, r) = r2∥w0∥22. Combining it with Eq. (23) gives desired result.
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C.2 Proof of Proposition 4.2: Optimality of Gradient-Descent (GD) in Case of Euclidean Attacks

Recall the GD dynamics t 7→ w(t, w0) given in (11). We restate the result here for convenience.

Proposition 4.2. The following hold:

– If r ≤
√
2/π ∥w0∥2

∥w0∥Σ−1
or r ≥

√
π/2

∥w0∥Σ2

∥w0∥Σ
, then

inf
t≥0

E∥·∥2(w(t, w0), w0, r) = E
∥·∥2

opt (w0, r). (12)

– If
√
2/π ∥w0∥2

∥w0∥Σ−1
< r <

√
π/2

∥w0∥Σ2

∥w0∥Σ
, we have that

inf
t≥0

E∥·∥2(w(t, w0), w0, r) ≤ βE
∥·∥2

opt (w0, r) (13)

For the proof, we will need the following lemma.

Lemma C.1. For any β ≥ 0, let us denote wβ(w0) = (βId +Σ)
−1

Σw0 the ridge solution. Then for all r ≥ 0 and t ≥ 0,
we have

E∥·∥2(w(t, w0), w0, r) ≤ E∥·∥2(w1/t(w0), w0, 1.2985r).

Proof. In the Euclidean case we obtain a simple expression of E∥·∥2(·, w0, r). Let us denote {v1, . . . , vd} an orthonormal
basis where Σ can be diagonalized, λ1 ≥ · · · ≥ λd the eigenvalues of Σ and set cj := w⊤

0 vj for all j ∈ [d]. The adversarial
risk associated to w(t) can be written as

E∥·∥2(w(t, w0), w0, r) = E1(t, w0) + r2E2(t, w0) + 2r
√

2/π
√
E1(t, w0)E2(t, w0), where

E1(t, w0) :=

d∑
j=1

(1− αλj)
2tλjc

2
j , and E2(t, w0) :=

d∑
j=1

(1− (1− αλj)
t)2c2j .

By using the elementary fact that 1− x ≤ exp(−x) ≤ 1/(1 + x) for all x ≥ 0, we obtain first that

E1(t, w0) =

d∑
j=1

exp(−λj2t)λjc
2
j ≤

d∑
j=1

λj

(1 + tλj)2
c2j = ∥w1/t(w0)− w0∥2Σ = E1(w1/t(w0)) .

In addition, using the elementary fact1 that 1− exp(−x) ≤ 1.2985x/(1 + x) for all x ≥ 0, it follows that

E2(t, w0) =

d∑
j=1

(1− exp(−λjt))
2c2j ≤ 1.6862

d∑
j=1

(
λjt

1 + λjt

)2

c2j = 1.29852E2(w1/t(w0))

and the result follows.

Finally, we will need the following elementary lemma.

Lemma C.2. for any γ ≥ 1, r ≥ 0, we have E∥·∥(w,w0, γr) ≤ γ2E∥·∥(w,w0, r)

Proof. Indeed we have

∥w − w0∥2Σ ≤ γ2∥w − w0∥2Σ and 2c0γr∥w − w0∥Σ∥w∥⋆ ≤ 2c0γ
2r∥w − w0∥Σ∥w∥⋆

from which follows the result.

We are now in place to prove Proposition 4.2.
1For example, see (Ali et al., 2019, Lemma 7).
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Proof of Proposition 4.2. First note that in (Xing et al., 2021, Proposition 1), the authors show that as soon as r ≤√
2/π ∥w0∥2

∥w0∥Σ−1
, the robust predictor minimizing Eq. (4) is w0 which is attained by the GD dynamic when t goes to infinity.

They also show that when r ≥
√
π/2

∥w0∥Σ2

∥w0∥Σ
, the optimal solution is 0 which is reached by the vanilla GD scheme for

t = 0. Let us now show the result for
√
2/π ∥w0∥2

∥w0∥Σ−1
< r <

√
π/2

∥w0∥Σ2

∥w0∥Σ
. Indeed, in (Xing et al., 2021, Proposition 1),

they show that for any r in this range, there exists β∗ > 0, such that

E
∥·∥2

opt (w0, r) = E∥·∥2(wβ∗(w0), w0, r)

Then by considering topt := 1/β∗, we obtain that

E∥·∥2(w(topt, w0), w0, r) ≤ E∥·∥2(w1/topt(w0), w0, 1.2985r) ≤ 1.29852E
∥·∥2

opt (w0, r)

where the first inequality follows from Lemma C.1 and the second from Lemma C.2, which gives the desired result.

C.3 Uniform Shrinkage of w0 is Sub-optimal in General

In the case where the isotropic case where Σ = Id and the attacker’s norm is Euclidean, we can show that GD is optimally
robust and so for any radius r. In that case, the GD scheme is simply a uniform shrinkage of the generative model w0 as
we have that

w(t, w0) = (1− exp(−t))w0.

Let us now recall our statement for convenience.

Proposition 4.3. Assume that Σ = Id, then for all r ≥ 0, we have inft≥0 E
∥·∥2(w(t, w0), r) = E

∥·∥2

opt (w0, r).

Proof. First recall, from Proposition 4.2 that for r ≤
√
2/π or r ≥

√
π/2, we have already shown the result. Now

observe that in the isotropic case, the ridge solution is in fact also a uniform shrinkage of w0, as we have wβ(w0) =

(βId +Σ)
−1

Σw0 = 1
β+1w0, and therefore the optimality of the GD follows directly from (Xing et al., 2021, Proposition

1).

The next result shows that in the anisotropic case where Σ ̸= Id, uniform shrinkage can achieve arbitrarily bad adversarial
risk, while GD continues to be optimal (up to within an absolute multiplicative constant), thanks to Proposition 4.2.

Proposition C.1. For sufficiently large values of the input-dimension d, it is possible to construct a feature covariance
matrix Σ ∈ S++

d (R) and generative model w0 ∈ Rd such that tr(Σ), ∥w0∥Σ = Θ(1) and

E
∥·∥2

shrink(w0, 1/
√
d) = Ω(1), (24)

E
∥·∥2

opt (w0, 1/
√
d) = o(1). (25)

Proof. Fix β ∈ (1,∞), and any integer k ≥ 1, set λk := k−β . For a large positive integer d, consider the choice of the
feature covariance matrix Σ = diag(λ1, . . . , λd). Thus, the eigenvalues λk of Σ decay polynomially as a function of their
rank k, and Σ is very badly conditioned (its condition number is dβ , a nontrivial polynomial in the input-dimension d).
Consider a random choice of the generative model w0 ∼ N(0, Id). We will prove the following stronger statement

Claim. For large values of the input-dimension d and the above choice of feature covariance matrix Σ, the estimates
(24) and (25) hold w.h.p over the choice of w0 ∼ N(0, Id).

First observe that, by elementary concentration it holds w.p 1− e−Cd over the choice of w0 ∼ N(0, Id) that

∥w0∥22 ≍ E∥w0∥22 = d,

∥w0∥2Σ ≍ E∥w0∥2Σ = tr(Σ) =

d∑
k=1

k−β = Θ(1).

Since E
∥·∥2

shrink(w0, r) = ∥w0∥2Σ ∧ r2∥w0∥22, we deduce that for any r ≥ 0, the following holds w.p 1− e−Cd.

E
∥·∥2

shrink(w0, r) ≍ 1 ∧ r2d. (26)
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On the other hand, thanks to Lemma 3.1 one has√
E

∥·∥2

opt (w0, r) ≍ inf
w∈Rd

∥w − w0∥Σ + r∥w∥2 = sup
z∈S

z⊤w0, (27)

where S := Bd
∥·∥Σ−1

∩rBd
2 = {z ∈ Rd | ∥z∥2 ≤ r, ∥z∥Σ−1 ≤ 1}. In particular, we deduce that E

√
E

∥·∥2

opt (w0, r) ≍ ω(S),
i.e the Gaussian width of S, defined by

ω(S) = E
[
sup
z∈S

z⊤w0

]
. (28)

Observe that, the function G : a 7→ supz∈S z⊤a is r-Lipschitz w.r.t to the Euclidean norm. Indeed, for any a, b ∈ Rd,

|G(a)−G(b)| =
∣∣∣∣sup
z∈S

z⊤a− sup
z∈S

z⊤b

∣∣∣∣ ≤ sup
z∈S
|z⊤(a− b)| ≤ sup

z∈rBd
2

|z⊤(a− b)| = r∥a− b∥2.

Therefore, by concentration of Lipschitz functions of Gaussians, we have for any positive t,∣∣∣∣sup
z∈S

z⊤w0 − ω(S)

∣∣∣∣ ≤ t, w.p 1− 2e−t2d/(2r2). (29)

Subsequently, we will take t sufficiently small.

We now upper-bound ω(S). Referring to (Wei et al., 2020, Example 4)2, one observes that

ω(S) ≍ r1−1/β . (30)

Combining (26), (30), and (29) applied with t = ω(S) ≍ r1−1/β , we obtain that if r ≲ 1/
√
d, then it holds w.p 1−e−Cd−

2e−d/(2r2/β) = 1− o(1) over the choice of w0 ∼ N(0, Id) that

E
∥·∥2

shrink(w0, r) ≍ 1 ∧ r2d = r2d, (31)

E
∥·∥2

opt (w0, r) ≍ r2(1−1/β). (32)

Plugging r = 1/
√
d in the above then completes the proof of the claim.

C.4 Proof of Proposition 4.4: Sub-optimality of GD in Case of Mahalanobis Attacks

Proposition 4.4. Let d = 2, Σ = Id and for any integer m ≥ 1, let us consider the following positive-definite matrix

B = B(m) =

(
1/m 0
0 m

)
. (14)

Also, consider the following choice of generative model w0 = w0(m) = (1/
√
m, 1). Then, for any fixed r > 0,

lim
m−→+∞

inft≥0 E
∥·∥B (w(t, w0), w0, r)

E
∥·∥B

opt (w0, r)
= +∞.

Proof. Let us first compute a lower bound on the optimal adversarial risk along the path of the vanilla GD. Indeed, first
note that from Lemma 3.1, one obtains that

inf
t≥0

αE∥·∥B (w(t, w0), w0, r) ≥ inf
t≥0

Ẽ∥·∥B (w(t, w0), w0, r).

In the particular case where Σ = Id, we have that w(t, w0) := (1− exp(−t))w0 and therefore we obtain that

inf
t≥0

Ẽ∥·∥B (w(t, w0), w0, r) = min(∥w0∥22, r2∥w0∥B−1) = min(1/m+ 1, r2(1 + 1/m))

2Alternatively, it is easy to show that ω(S) ≍
∑d

k=1 min(λk, r
2), and then proceed from there.
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Therefore, one has

inf
t≥0

E∥·∥B (w(t, w0), w0, r) ≥ αmin(1/m+ 1, r2(1 + 1/m)) −→
m→∞

1/αmin(1, r2)

Let us now compute the value of the adversarial risk proxy Ẽ(w,w0, r). To this end, remark that in our specific example,
one can write the proxy adversarial risk at w = (w1, w2) as Ẽ∥·∥B (w,w0, r) = (α+ rβ)2, where

α = α(w) =

√
(w1 − 1/

√
m)2 + (w2 − 1)2, (33)

β = β(w) =
√
mw2

1 + (1/m)w2
2, (34)

The critical points of Ẽ∥·∥B (·, w0, r) are either 0 (β = 0), w0 (α = 0), or must satisfy ∇w(α + rβ) = 0, i.e
(w − w0)

α
+

rB−1w

β
= 0. Let us consider the latter case and let us define t := β/α satisfying the last equation. Then it is equivalent

to write t(w − w0) + rB−1w = 0. We conclude that the minimum of Ẽ∥·∥B (·, w0, r) is of the form

w = w(t) := D(t)w0, (35)

where D(t) = t(tId + rB−1)−1 = Id − (tId + rB−1)−1rB−1 is the d × d diagonal matrix with diagonal entries
(t/(t+ rm), t/(t+ r/m)). In that case we obtain that

Ẽ
∥·∥B

opt (w0, r) = α(w(t))2(1 + rt)2

= r2(1 + rt)2
(

m

(t+ rm)2
+

1

m2(t+ r/m)2)

)
Under the assumption that: for m sufficiently large, such t = t(m) exists and the sequence (t(m))m≥0 converges towards
an absolute and positive constant c, we obtain that

Ẽ
∥·∥B

opt (w0, r) −→
m→∞

0

Let us now show that such t(m) exists and that it does converges towards an absolute constant. Indeed, by definition,
showing that t exists is equivalent to showing that the equation ∥w(t)∥B−1 = t∥w(t)− w0∥Σ has a solution, which gives

1

(t+ rm)2
+

1

m(t+ r/m)2
= r2

[
m

(t+ rm)2
+

1

m2(t+ r/m)2

]
(36)

Therefore as soon as r2/m < 1 and r2m > 1, we obtain that such t exists and satisfies

t =
r
√
m− r2 − r/m

√
r2m− 1√

r2m− 1− 1/m
√
m− r2

−→
m→∞

1

and the result follows.

D Proofs of Results of Section 5: An Adapted Gradient-Descent (GD+)

D.1 Proof of Proposition 5.1: Optimality of GD+ in Case of Mahalanobis Norm Attacks

Proposition 5.1. For any B ∈ S++
d (R) and r ≥ 0,

inf
t≥0

E∥·∥B (B1/2wB1/2

(t, w0), r) ≤ βE
∥·∥B

opt (r, w0).

Proof. According to Proposition 4.2, we already know that early-stopped GD scheme on data with covariance Σ generated
by a model w0 achieves adversarial risk which is optimal for Euclidean / ℓ2 attacks, up to within a multiplicative factor
of β. Now remark that by considering our transformation on the data x̃ := Mx, we are defining a GD scheme on data
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with covariance MΣM⊤ generated by (M⊤)−1w0. We deduce that, early-stopped GD+ achieves the optimal value (up to
withing a multiplicative factor of β) in optimization problem

min
w∈Rd

∥w − (M⊤)−1w0∥2MΣM⊤ + r2∥w∥22 + 2rc0∥w − (M⊤)−1w0∥MΣM⊤∥w∥2 .

Now observe that

∥w − (M⊤)−1w0∥2MΣM⊤ = ∥M⊤w − w0∥2Σ

and therefore, by applying again a change of variables w̃ = M⊤w, we obtain that, along the path drawn by
(M⊤wM (t, w0))t≥0, there exists an optimal solution (up to within a multiplicative factor of β) for

min
w∈Rd

∥w − w0∥2Σ + r2∥(MT )−1w∥22 + 2rc0∥w − w0∥Σ∥(MT )−1w∥2 .

Finally, taking finally M = B1/2 gives the desired result, since the dual norm of ∥ · ∥B is ∥ · ∥B−1 .

D.2 Proof of Proposition 5.2: Case of Optimality of GD+ in Case of General Norm Attacks

Proposition 5.2. For any r ≥ 0, and invertible matrix M ∈Md(R), it holds that

inft≥0 E
∥·∥(M⊤wM (t, w0), w0, r)

E
∥·∥
opt(r, w0)

≤ βκ∥·∥ ((M⊤)−1
)2

.

Proof. Recall the definition of λ∥·∥
min and λ

∥·∥
max from the beginning of Section 5.1 of the main paper. Observe that for all

w ∈ Rd

λ
∥·∥
min((M

T )−1)∥w∥∗ ≤ ∥(MT )−1w∥2 ≤ λ∥·∥
max((M

T )−1)∥w∥∗ . (37)

In the following we also define ∥ · ∥M = ∥M · ∥2. Then, one computes

inf
t
E∥·∥(MwM (t, w0), w0, r) ≤ inf

t
E∥·∥M

(MwM (t, w0), w0, r/λ
∥·∥
min((M

T )−1))(MwM (t, w0))

≤ β inf
w∈Rd

E∥·∥M

(w,w0, r/λ
∥·∥
min((M

T )−1))

≤ β inf
w∈Rd

E∥·∥(w,w0, rκ
∥·∥((MT )−1))

≤ βκ∥·∥(((MT )−1))2 inf
w

E∥·∥(w,w0, r)

where the first inequality follows from the LHS of Eq. (37), the second from Proposition 5.1, the third from RHS of
Eq. (37), and the last one from Lemma C.2.

D.3 Proof of Theorem 5.1: A Case of Optimality of GD for Non-Euclidean / General Norm Attacks

Theorem 5.1. Suppose Condition 5.1 is in order. Then, for any positive r, it holds for M = Σ−1 that

inft≥0 E
∥·∥(M⊤wM (t, w0), w0, r)

E
∥·∥
opt(r, w0)

≤ (1 ∨ 1/c2)α.

Proof. Let g(w0) ∈ Rd be a subgradient of ∥ · ∥⋆ at w0. First note that ∥g(w0)∥ ≤ 1 and g(w0)
⊤w0 = ∥w0∥⋆ and let us

denote

λ :=
∥g(w0)∥
∥g(w0)∥Σ−1

(38)

Let us now show the following useful Proposition.
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Proposition D.1. Let w0 ∈ Rd and r > 0. Then we have that√
αE

∥·∥
opt(w0, r) ≥ sup

z∈Bd
2∩rBd

∥Σ1/2·∥

⟨z,Σ1/2w0⟩

Proof. Let us define the support function of a subset C of Rd as the function γC : Rd → (−∞,∞], defined by γC(x) :=
supw∈Rd x⊤w and let us introduce the following useful lemma.

Lemma D.1. Let A and B be two subsets of topological vector space V , such that the intersection of the relative interiors
of A and B is nonempty. Then, γA∩B = γA ⋆ γB , where f ⋆ g : V → (−∞,+∞] is infimal convolution of two proper
convex lower-semicontinuous functions f, g : V → (−∞,+∞], defined by (f ⋆ g)(v) := infv′∈V f(v − v′) + g(v′).

Now using Lemma 3.1, recall that√
αE

∥·|
opt(w0, r) ≥

√
Ẽ

∥·|
opt(w0, r) = inf

w
∥w − w0∥Σ + r∥w∥⋆

= (γBd
Σ−1

⋆ γBd
∥·∥

)(w0)

= γSr (w0) where Sr := Bd
Σ−1(1) ∩Bd

∥·∥(r)

= γ
S̃r
(Σ1/2w0) where S̃r := Bd

2 (1) ∩Bd
∥Σ1/2·∥(r)

from which the result follows.

Define now z(w0) := (r ∧ λ)Σ−1/2g(w0) ∈ Rd, and observe that

∥Σ1/2z(w0)∥ ≤ r∥g(w0)∥ ≤ r,

∥z(w0)∥2 ≤ λ∥g(w0)∥Σ−1 ≤ ∥g(w0)∥ ≤ 1.

Thus, z(w0) ∈ Bd
2 ∩ rBd

∥Σ1/2·∥. Then, thanks to Proposition D.1, it follows that√
αE

∥·∥
opt(r, w0) ≥ max

z∈Bd
2∩rB∥·∥Σ

z⊤Σ1/2w0

≥ z(w0)
⊤Σ1/2w0 = (r ∧ λ)g(w0)

⊤w0

= (r ∧ λ)∥w0∥⋆,

(39)

where α := 1/(1 +
√

2/π) ≈ 1.1124. Let us now define

c :=
λ∥w0∥∗
∥w0∥Σ

then αE
∥·∥
opt(w0, r) ≥ c2∥w0∥2Σ ∧ r2∥w0∥2⋆ ≥ (1 ∧ c2)(∥w0∥2Σ ∧ r2∥w0∥2⋆) which matches infγ∈[0,1] Ẽ

∥·∥(γw0, w0, r)
attained by the optimal uniform rescaling of w0 and the result follows.

D.4 Proof of Proposition 5.3: A Case of Sub-optimality of GD to ℓ∞-Norm Attacks

Proposition 5.3. Let Σ = Id, then it is possible to construct w0 ∈ Rd and r > 0 such that in the limit d → ∞, it holds
that r → 0, r

√
d→ +∞, and

inft≥0 E
∥·∥∞(w(t, w0), w0, r)

E
∥·∥∞
opt (r, w0)

→ +∞.

Proof. Let a, λ > 0, w0 := (a+λ, . . . , a+λ, λ, . . . , λ) and let α ≥ 1 be the number of coordinate such that (w0)i = a+λ.
Concrete values for a, λ, and α will be prescribed later. For such model we obtain that

∥w0∥1 = dλ+ αa and

∥w0∥2 =
√

α(a+ λ)2 + (d− α)λ2

=
√
αa2 + dλ2 + 2αaλ.
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Therefore the shrinkage model obtains an error equals to:

E
∥·∥∞
shrink(w0, r) = min(αa2 + dλ2 + 2αaλ, r2(dλ+ αa)2).

Now let w := (a, . . . , a︸ ︷︷ ︸
α times

, 0, . . . , 0), we obtain that

√
E

∥·∥∞
opt (w0, r) ≤ ∥w − w0∥2 + r∥w∥1 =

√
dλ+ rαa

Let us now consider the case where

r = λ =
1

d1/4 log d
, α = d1/2, a = 1.

Then, for large d we obtain that

∥w − w0∥2 + r∥w∥1 ≍
d1/4

log d

r∥w0∥1 ≍
d1/2

(log d)2
, ∥w0∥2 ≍ d1/4

from which follows that

E
∥·∥∞
shrink(w0, r)

E
∥·∥∞
opt (w0, r)

≥
min(d1/2, d

(log d)4 )

d1/2

(log d)2

≍ (log d)2 → +∞,

as claimed.

D.5 Proof of Theorem 5.2: Case of Optimality of GD+ to ℓp-Norm Attacks

Theorem 5.2. Let Σ be any definite positive diagonal matrix and p ∈ [1,+∞], then we have

inf
M∈Md(R),t≥0

E∥·∥p(M⊤wM (t, w0), w0, r)

E
∥·∥p

opt (r, w0)
≤ α.

For the proof, we will need the following useful lemma.

Lemma D.2. Given an extended-value convex function (EVCF) g : Rd → (−∞,∞], every minimizer of the EVCF
ga : Rd → (−∞,∞] defined by ga(x) := ∥x− a∥Σ + g(x) can be written as x = proxΣ,tg(a), for some t ∈ [0,∞].

In the above Lemma, we consider the proximal operator

proxΣ,tg(a) := arg min
x∈Rd

(1/2)∥x− a∥2Σ + tg(x), (40)

defined w.r.t to the Bregman divergence on Rd given by D(z, z′) := (1/2)∥z − z′∥2Σ.

Proof. Let x ∈ Rd be a minimizer of ga. If x ∈ {0, a}, then we are done. Otherwise, set t = t(x) := ∥x − a∥Σ.
Note that by first-order optimality conditions, x is a minimizer of ga iff 0 ∈ ∂ga(x) iff 0 ∈ Σ(x − a)/t + ∂g(x) iff 0 ∈
(x− a) + tΣ−1∂g(x) iff x = (I + tΣ−1∂g)−1(a) = proxΣ,tg(a), by definition of the proximal operator. Indeed recall tht
∂g is a maximal monotone operator (a result of Rockafellar from the 70’s Rockafellar (1970)), so that (I + tΣ−1∂g)−1(a)
is well-defined and single-value.

Let us now introduce another important Lemma in order to show the result.

Lemma D.3. For any q ∈ [1, 2], a ∈ Rd, and Σ positive definite diagonal matrix, we have

|proxΣ,∥·∥q
(a)| ≤ |a| and

sign(proxΣ,∥·∥q
(a)) = sign(a)

where the | · | and sign are the coordinate-wise operators.



Meyer Scetbon, Elvis Dohmatob

Proof. A simple computation reveals that

proxΣ,g = Σ−1/2 ◦ proxg◦Σ−1/2 ◦ Σ1/2,

for any EVCF g. Using the Moreau decomposition formula, we can further express

proxΣ,g(a) = Σ−1/2[Σ1/2a− prox(g◦Σ−1/2)⋆(Σ
1/2a)]

= a− Σ−1/2proxg⋆◦Σ1/2(Σ1/2a),

where g⋆ is the convex conjugate of g, and we have used the fact that (g◦Σ−1/2)⋆ = g⋆ ◦Σ1/2. Now, taking g = ∥·∥q , one
notes that g⋆ is the indicator function of the unit-ball Bd

∥·∥p
for the norm ∥ · ∥p, where p = p(q) ∈ [2,∞] is the harmonic

conjugate of q. Therefore, we obtain that

proxΣ,g(a) = a− Σ−1/2projBd

∥Σ1/2·∥p
(Σ1/2a).

Let us assume without loss of generality that all the ai ≥ 0. and let us show now that

0 ≤ Σ−1/2projBd

∥Σ1/2·∥p
(Σ1/2a) ≤ a

First note that for all the coordinates of the vector Σ−1/2projBd

∥Σ1/2·∥p
(Σ1/2a) are nonnegative. Indeed, if some coordinate

of the projection were negative, then by simply replacing it by 0, we could reduce the total cost of projection and therefore
contradicts its optimality. Then using the fact that Σ is diagonal, we want to show that for any v ∈ Rd

0 ≤ projBd

∥Σ1/2·∥p
(Σ1/2a) ≤ Σ1/2a

where the inequality is coordinate-wise. Now remarks that we have

projBd

∥Σ1/2·∥p
(Σ1/2a) = Σ−1/2projΣ

−1

Bd
∥·∥p

(Σa)

where

projΣ
−1

Bd
∥·∥p

(v) := argmin∥x∥p≤1∥x− v∥Σ−1

Therefore for any p ≥ 2, the first order condition gives on x := projΣ
−1

Bd
∥·∥p

(Σa) that for all coordinate i ∈ [d],

(1/λi)(xi − λiai) + νxp−1
i = 0, xi ≥ 0,

for some ν ≥ 0. The above further gives

(1/λi)xi + νxp−1
i = ai, ∀i ∈ [d].

It follows that x̃ := projBd

∥Σ1/2·∥p
(Σ1/2a) must satisfy:

1/(
√
λi)x̃i + ν(

√
λix̃i)

p−1 = ai

which is equivalent to

x̃i +
√
λiν(

√
λix̃i)

p−1 =
√
λiai

However if x̃i >
√
λiai, then by nonnegativity of

√
λiν(
√
λix̃i)

p−1 we obtain a contraction and the result follows.

The following is a generalization to the previous lemma.

Lemma D.4. Let C be a closed convex subset of Rd which is symmetric about the coordinate axes. Let a ∈ Rd and set
b = projC(a). Then, it holds coordinate-wise that sign(b) = sign(a) and |b| ≤ |a|.
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For example, if Σ is diagonal and the attacker’s norm ∥ · ∥ is coordinate-wise even (meaning that ∥x∥ = ∥z∥ whenever z
is obtained from x by flipping the sign of some or no coordinate), then the ball Bd

∥Σ1/2·∥ is symmetric about the coordinate
axes, and we recover the previous lemma.

Proof of Lemma D.4. Recall the Kolmogorov characterization of the equation b = projC(a), namely

(a− b)⊤(c− b) ≤ 0, ∀c ∈ C. (41)

Now fix an index i ∈ [d]. If bi = ai, there is nothing to show. Otherwise, suppose ai ≥ 0. Then bi ≥ 0, since
C is symmetric about the ith axis in Rd (see details further below). Also, C must contain b − tei, for sufficient small
t > 0; otherwise bi = ai. Here, ei is the ith standard basis vector in Rd. Applying (41) with c = b − tei then gives
(a − b)⊤(−tei) ≤ 0, i.e −tai + tbi ≤ 0, i.e 0 ≤ bi ≤ ai. Similarly, if ai ≤ 0, consider c = b + tei instead, to deduce
ai ≥ bi ≤ 0. We conclude that |bi| ≤ |ai| as claimed.

To conclude the proof we need to provide one omitted detail, namely, that bi has the same sign as ai. We proceed be
reductio ad absurdum. So, suppose aibi < 0. Let b′ be obtained from b by flipping the sign ith coordinate. Because C is
symmetric around the ith axis, it must contain b′. One then computes

∥b′ − a∥22 − ∥b− a∥22 = (bi − ai)
2 − (bi − ai)

2 = (bi + ai)
2 − (bi − ai)

2 = 4aibi < 0,

which contradicts the optimality of b as the point of C which is closest to a.

We are now ready to prove Theorem 5.2.

Proof of Theorem 5.2. Because Σ := diag(λ1, . . . , λd) is diagonal let M = diag(σ1, . . . , σd) with σi > 0 and let us
consider B = MΣ−1. In that case we obtain that:

B1/2wB1/2

c (t, w0) := B1/2(Id − exp(−tB1/2ΣB1/2)t))B−1/2w0

= (Id − exp(−tM))w0

Then using Lemma D.3, the minimizer, wopt of w 7→ Ẽ∥·∥(w,w0, r) satisfies in a coordinate-wise manner:

|wopt| ≤ |w0|, sign(wopt) = sign(w0).

If (w0)i = 0 then by the above conditions we have necessarily (wopt)i = 0 and therefore σi > 0 can be chosen arbitrarily.

Now, let us consider the case where (w0)i ̸= 0. Fix t > 0. If |(w0)i| > |(wopt)i| > 0, we can just take σi such that:

1− exp(−tσi) =
|(wopt)i|
|(w0)i|

, i.e σi = σi(t) = −
1

t
log

(
1− |(wopt)i|

|(w0)i|

)
.

On the other hand, if |(w0)i| = |(wopt)i|, we can simply consider a positive sequence of (σi,m)m≥0 such that σi,m −→
m→∞

∞. Finally, if |(w0)i| > |(wopt)i| = 0, then we can consider a positive sequence of (σi,m)m≥0 such that σi,m −→
m→∞

0.
Finally by considering such sequence we obtain that

lim
m→∞

B1/2
m wBm(t, w0)→ wopt

Then, by using the fact that

lim
m→∞

E∥·∥p(B1/2
m wBm(t, w0), w0, r) ≤ lim

m→+∞
Ẽ∥·∥p(B1/2

m wBm(t, w0), w0, r)

= inf
w

Ẽ∥·∥p(w,w0), w0, r)

≤ α inf
w

E∥·∥p(w,w0), w0, r),

and the desired result follows.
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E Proof of Theorem 6.1: Consistency of Proposed Two-Stage Estimator (Algorithm 1)

Theorem 6.1. For all r ≥ 0, it holds that

Ẽ
∥·∥
opt(w0, r) ≤ Ẽ∥·∥(ŵ, w0, r) ≤ Ẽ

∥·∥
opt(w0, r) + ∆,

E
∥·∥
opt(w0, r) ≤ E∥·∥(ŵ, w0, r) ≤ αE

∥·∥
opt(w0, r) + ∆,

where α := 2/(1+c0) ≈ 1.1124, ∆ = O(e21+e22), where the hidden constant in the big-O is of order max(∥Σ∥2op, ∥w0∥2Σ).

Proof. For r ≥ 0, vectors w, a ∈ Rd and a psd matrix C ∈ Rd×d, define F (w, a,C, r) := ∥w − a∥C + r∥w∥⋆. Note that
the adversarial risk proxy Ẽ defined in (9) can be written as Ẽ∥·∥(w,w0, r) = F (w,w0,Σ, r)

2, for all w ∈ Rd. Further
more, by Lemma 3.1, we know that

E∥·∥(w,w0, r) ≤ F (w,w0,Σ, r)
2 ≤ α · E∥·∥(w,w0, r). (42)

Thus, the second line of inequalities in the theorem follows from the first. Thus, we only prove the first line.

So, let wopt be any minimizer of F (w,w0,Σ, r) over w ∈ Rd. Observe that

F (ŵ, w0,Σ, r)− F (wopt, w, w0,Σ, r) = F (ŵ, w0,Σ, r)− F (ŵ, ŵ0, Σ̂, r) + F (ŵ, ŵ0, Σ̂, r)− F (wopt, ŵ0, Σ̂, r)

+ F (wopt, ŵ0, Σ̂, r)− F (wopt, w0,Σ, r)

≤ F (ŵ, w0,Σ, r)− F (ŵ, ŵ0, Σ̂, r) + F (wopt, ŵ0, Σ̂, r)− F (wopt, w0,Σ, r),

(43)

where we have used the fact that F (ŵ, ŵ0, Σ̂, r) − F (wopt, ŵ0, Σ̂, r) ≤ 0, since ŵ minimizes w 7→ F (w, ŵ0,Σ, r) by
construction. We deduce that

F (ŵ, w0,Σ, r) ≤ F (wopt, w, w0,Σ, r) + e4(ŵ) + e4(wopt), (44)

where e4(w) := |F (w,w0,Σ, r)− F (w, ŵ0, Σ̂, r)|. The rest of the proof is divided into two steps.

Step 1: Controlling e4(wopt). Now, for any w ∈ Rd, repeated application of the triangle-inequality gives

e4(w) := |F (w,w0,Σ, r)− F (w, ŵ0, Σ̂, r)| = |∥w − w0∥Σ − ∥w − ŵ0∥Σ̂|
= |∥w − w0∥Σ − ∥w − ŵ0∥Σ + ∥w − ŵ0∥Σ − ∥w − ŵ0∥Σ̂|
≤ ∥Σ∥op · e1 + ∥w − ŵ0∥2 · e2 ≲ e1 + ∥w − ŵ0∥2 · e2.

(45)

Let γr(w0) := infw∈Rd F (w,w0,Σ, r). We deduce that

e4(wopt) ≤ e1 + ∥wopt − ŵ0∥2 · e2 ≤ e1 + (∥wopt − w0∥2 + ∥ŵ0 − w0∥2) · e2
≤ e1 + (γr(w0) + e1) · e2 ≲ e1 + γr(w0) · e2 ≲ e1 + ∥w0∥Σ · e2,

(46)

where the last step is thanks to the fact that γr(w0) ≤ ∥w0∥Σ.

Step 2: Controlling e4(ŵ). If we take w = ŵ to be a minimizer of the function F (w, ŵ0, Σ̂, r) over Rd, then

λmin(Σ̂)∥w − ŵ0∥22 ≤ ∥w − ŵ0∥2Σ̂ = ∥w − ŵ0∥2Σ + (w − ŵ0)
⊤(Σ̂− Σ)(w − ŵ0)

≤ ∥w − ŵ0∥2Σ + ∥w − ŵ0∥2Σ · e2
≤ γr(ŵ0)

2 + ∥w − ŵ0∥2Σ · e2
≤ ∥ŵ0∥2Σ + ∥w − ŵ0∥2Σ · e2.

We deduce that

(1− e2)∥w − ŵ0∥22 ≤ ∥ŵ0∥2Σ ≤ (∥w0∥Σ + e1)
2, (47)

and so ∥w − ŵ0∥2 ≲ ∥w0∥Σ + e1. Plugging this into (45) gives

e4(ŵ) ≲ e1 + ∥w0∥Σ · e2. (48)

Putting things together establishes that

F (ŵ, w0,Σ, r) ≤ F (wopt, w0,Σ, r) +O(e1) +O(∥w0∥Σ · e2), (49)

from which the result follows.


