
Improving Adaptive Conformal Prediction Using Self-Supervised Learning

Nabeel Seedat* Alan Jeffares*

University of Cambridge University of Cambridge

Fergus Imrie Mihaela van der Schaar

University of California, Los Angeles University of Cambridge

The Alan Turing Institute

Abstract

Conformal prediction is a powerful distribution-

free tool for uncertainty quantification, establish-

ing valid prediction intervals with finite-sample

guarantees. To produce valid intervals which are

also adaptive to the difficulty of each instance,

a common approach is to compute normalized

nonconformity scores on a separate calibration

set. Self-supervised learning has been effectively

utilized in many domains to learn general repre-

sentations for downstream predictors. However,

the use of self-supervision beyond model pretrain-

ing and representation learning has been largely

unexplored. In this work, we investigate how self-

supervised pretext tasks can improve the quality

of the conformal regressors, specifically by im-

proving the adaptability of conformal intervals.

We train an auxiliary model with a self-supervised

pretext task on top of an existing predictive model

and use the self-supervised error as an additional

feature to estimate nonconformity scores. We em-

pirically demonstrate the benefit of the additional

information using both synthetic and real data

on the efficiency (width), deficit, and excess of

conformal prediction intervals.

1 INTRODUCTION

Much of machine learning (ML) research can be summa-

rized as the task of minimizing a model’s predictive error

on unseen data. In the regression setting, this might corre-

spond to minimizing the mean squared error. However, for

real-world applications, particularly in high-stakes domains
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such as healthcare and finance, we seek various forms of

model trustworthiness. One such factor considered in this

work is estimates of, or even better guarantees, concern-

ing a model’s predictive uncertainty, i.e. quantifying the

uncertainty in a model’s prediction.

Conformal prediction (Vovk et al., 2005) has received sig-

nificant attention in recent years for this purpose. This

powerful method provides valid prediction intervals with

finite-sample, frequentist guarantees on the marginal cov-

erage of the intervals. More precisely, for a random vector

and label (X,Y ) ∈ R
p × R drawn from a joint distribution

PXY and a conformal predictor Ĉ : R
p → {subsets in R},

then for a user-defined level of coverage (1− α), conformal

prediction provides guarantees of the form

P{Y ∈ Ĉ(X)} ≥ 1− α. (1)

This method requires minimal assumptions on the data (i.e.

exchangeability) and may be applied to any model upon

which we can define a non-conformity score quantifying the

disagreement between the model output and ground truth

target (e.g. mean squared error). It can even be applied post

hoc to already trained models, assuming exchangeability of

a calibration dataset with the test data of interest. For more

details, see Shafer and Vovk (2008).

A widely used paradigm is inductive conformal prediction

(ICP) Papadopoulos, 2008; Lei et al., 2018, which formu-

lates conformal prediction using a dataset to train the pre-

dictive model and a calibration dataset on which to compute

a critical non-conformity score, used to define the width

of the prediction interval. However, despite guarantees of

marginal coverage, these intervals are fixed and do not adapt

to sample difficulty. In practice, we often desire wider in-

tervals for challenging samples and narrower intervals for

easier samples. Locally adaptive conformal prediction (Pa-

padopoulos et al., 2008; Johansson et al., 2015a; Lei et al.,

2018) aims to address this with a conformal normalization

model, which predicts the residual errors of the predictive

model (also known as conformalized residual fitting - CRF).
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Figure 1: Left. Standard inductive conformal prediction results in constant width confidence intervals. Center. Conformal residual fitting
produces adaptive intervals but can be inefficient in regions. Right. The errors of a self-supervised task are included above the plot with
red indicating larger self-supervised errors. SSCP leverages these errors to improve the efficiency of conformal residual fitting.

The predicted residuals (representing sample prediction dif-

ficulty) are then used to adapt the intervals.

In this work, we tackle the case of ICP with locally adaptive

intervals and seek to improve the quality of the prediction in-

tervals. Although we primarily focus on the CRF approach,

the core ideas of this work can be trivially adapted to other

methods for local adaptivity such as Conformalized Quan-

tile Regression (CQR) as we discuss in Sec. 4.5 (Romano

et al., 2019). However, a key benefit of the CRF approach

is that the method does not directly modify the underlying

base predictive model when adapting the prediction inter-

vals. This enables post hoc conformalization in cases where

we cannot augment or retrain such as a fixed/pre-trained

regressor (e.g. behind an API) or in the case of a theoreti-

cally derived model (e.g. quantifying model error around

the Navier-Stokes equations in fluid mechanics).

Specifically, we consider how to improve the conformal

normalization function in order to improve the prediction in-

tervals. To do so, we diverge from the typical conformal pre-

diction setting and consider how auxiliary self-supervised

tasks can be leveraged to improve conformal predictors.

Self-supervised learning has been employed effectively to

learn representations to improve performance for down-

stream tasks; however, we also diverge from this standard

setting of model pretraining and representation learning and

address an under-explored avenue of using the error from

a self-supervised task to help determine more challenging

regions in input space such that conformal intervals can

adapt appropriately.

Consequently, we propose Self-Supervised Conformal Pre-

diction (SSCP), a framework that provides a recipe to lever-

age information from self-supervised pretext tasks to im-

prove prediction intervals (see Fig. 1 for a contrast to alterna-

tive approaches). We note that the auxiliary self-supervision

information does not impact the theoretical guarantees of

conformal prediction (see Sec. 4.6). To the best of our

knowledge, this is the first work to integrate and examine

the benefit of self-supervised errors to improve conformal

prediction making the following contributions:

Contributions: 1⃝ Self-supervision improves the resid-

ual estimates, especially in challenging and sparser re-

gions: We empirically demonstrate that self-supervised

losses improve residual estimates thereby improving the

prediction interval adaptiveness (Sec.5.1), especially for

more challenging examples and in sparser regions (Sec.5.3).

2⃝ Labeled data can be repurposed: We empirically

demonstrate that labeled data can be repurposed for the

self-supervised task to improve the quality of conformal pre-

diction intervals (Sec.5.2.1). 3⃝ Unlabeled data improves

CP: We empirically demonstrate the value of unlabeled

data to improve the quality of conformal prediction intervals

beyond a standard application of self-supervision represen-

tation learning (Sec.5.2.2).

2 RELATED WORK

Adaptive Conformal Prediction. While standard con-

formal prediction does provide marginal coverage (Equa-

tion 1), in practice we often desire conditional coverage

P{Y ∈ Ĉ(X)|X = x} ≥ 1 − α. Although it has been

shown that exact conditional coverage cannot be guaranteed

in finite samples (Foygel Barber et al., 2021; Vovk, 2012),

many works have improved the situation by relaxing the

requirement of guarantees on coverage or by maintaining

marginal coverage whilst seeking to improve adaptivity to a

given test point.

Locally adaptive conformal prediction (Papadopoulos et al.,

2008, 2011; Johansson et al., 2015b) uses an independent

model to induce adaptiveness, hence its mechanism is inde-

pendent of the base predictive model. This flexibility means

it can be applied to any architecture of predictive model or

to an already trained model.

In contrast, typically, other methods are not independent

of the predictive model as they require specialized model

architectures to obtain adaptive intervals, they require ad-

ditional assumptions, and/or they sacrifice coverage guar-

antees. For example, Conformalized Quantile Regression

(CQR) Romano et al., 2019 has a modified neural network

that predicts the two quantiles. Parallel lines of research con-

sider non-parametric density estimation-based approaches



Nabeel Seedat*, Alan Jeffares*, Fergus Imrie, Mihaela van der Schaar

(Chernozhukov et al., 2021; Izbicki et al., 2020) and confor-

mal histogram regression (Sesia and Romano, 2021) which

discretely approximates the conditional density f(y|x).

Finally, conformal prediction splits the dataset into training

and calibration datasets. While this may not be an issue with

sufficient labeled data, in many settings we only have access

to small/limited labeled datasets, which might significantly

affect performance. In such settings, we often have access

to large amounts of unlabeled data. To the best of our

knowledge, SSCP is the first work to take advantage of such

unlabeled data for conformal prediction in the context of

self-supervised learning. We note that SSCP requires no

additional splits in the labeled data over the underlying ICP

method.

Self-Supervised Learning. Self-supervised learning has

been effectively utilized in many domains, from computer

vision (Chen et al., 2020; Grill et al., 2020) to NLP (Kenton

and Toutanova, 2019; Brown et al., 2020) to learn informa-

tive representations from raw input features, with the goal

of improving the performance of downstream models. In

the tabular domain, masking and reconstruction methods

are often popular pretext tasks, using methods such as au-

toencoder reconstruction, VIME (Yoon et al., 2020), where

the task is to recover a mask vector in addition to the origi-

nal sample from a corrupted version of the input, and other

variants, e.g. (Lee et al., 2022).

Although self-supervision has had great success, its use be-

yond model pretraining and representation learning has been

largely unexplored. This work bridges this gap by studying

how self-supervised losses can be used to provide additional

information about the difficulty of a sample, making use

of this information to improve the quality of conformal

prediction intervals.

3 BACKGROUND: Conformal Prediction

In this section, we provide a brief summary of both ICP and

CRF, two methods that are fundamental to our proposed

framework. For proofs of the theoretical properties refer-

enced in this section, we refer the reader to Vovk (2012).

We begin with a brief description of the general setting.

Consider the supervised learning setting in which we are

provided with features X ⊆ R
dX and labels Y ⊆ R

dY . We

wish to learn a prediction interval Ĉ : X → {subsets of R}
such that, for a desired coverage rate 1− α ∈ R and a test

point (X,Y ) ∈ X × Y , we ensure that Equation 1 holds.

To train such a model, we assume access to labeled data

Dlabeled ⊂ X × Y . We consider regression predictive tasks;

hence, the label yi ∈ Y is a scalar.

Throughout this work, we consider inductive (or split) con-

formal prediction. The standard practice in the literature is

to subdivide the labeled data into training, calibration and

testing Dlabeled = {Dtrain ∪ Dcal ∪ Dtest}. One might wish

to also consider including an (optional) fourth subdivision

Dres, however, we defer considering this detail until Sec.

4.1. In this setting, the conformal predictor f , around whose

predictions we desire confidence intervals, is trained on

Dtrain.

3.1 Inductive conformal prediction (ICP)

Given the trained predictive model f , we wish to produce

conformal predictive intervals as a measure of uncertainty,

[l(x), r(x)] for each test instance x ∈ Dtest. These intervals

should guarantee that the target y of an instance x lies within

the interval such that E
[

1y∈[l(x),r(x)]

]

≥ 1 − α where the

significance level α ∈ (0, 1) can be chosen1 i.e. valid

intervals with desired marginal coverage. In performing

ICP, we only require the mild assumption of exchangeability

between Dcal and Dtest as defined in Def. 3.1.

Definition 3.1 (Exchangeability). A dataset of n observa-

tions is exchangeable if the data points do not follow any

particular order, i.e., all n permutations are equiprobable.

Exchangeability is a weaker assumption than i.i.d.; indeed,

i.i.d. observations satisfy exchangeability.

To obtain these intervals, we carry out a calibration step.

Dcal is used to compute a non-conformity score µ, which

estimates how different a new instance looks from other

instances. In practice, absolute error is a popular non-

conformity score (i.e. µ(x) = |y − f(x)|). We then

obtain an empirical distribution of non-conformity scores

{µ(x) | x ∈ Dcal} over the calibration instances.

The critical non-conformity score ϵ, then corresponds to

the ⌈(|Dcal|+ 1)(1− α)⌉-th smallest residual from the set

{µ(x) | x ∈ Dcal}. Finally, we use ϵ to construct the

intervals [l(x), r(x)] = [f(x)− ϵ, f(x) + ϵ].

3.2 Conformal residual fitting (CRF)

Unfortunately, the width of the ICP confidence intervals de-

scribed in the previous section are constant for all instances.

While they do obtain valid coverage, they do not reflect

the difficulty of individual samples and are inefficient as a

result (see Fig. 1). To remedy this, CRF proposes to pro-

duce locally adaptive intervals based on an estimate of the

predictive model’s residuals.

Specifically, to enable locally adaptive intervals (i.e. lo-

cally adaptive conformal prediction), a normalized non-

conformity function γ is used (Equation 2). The numerator

is computed as before based on µ, however, the function σ in

the denominator permits us to normalize the non-conformity

score per sample (i.e. as an estimate of difficulty), where σ

is a conformal normalization model.

1We select α = 0.1 in our experiments.



Improving Adaptive Conformal Prediction Using Self-Supervised Learning

γ(x) :=
|y − f(x)|

σ(x)
, (2)

The critical non-conformity score ϵ is then computed simi-

larly to before using the ⌈(|Dcal|+ 1)(1− α)⌉-th smallest

residual of the empirical distribution of normalized non-

conformity scores {γ(x) | x ∈ Dcal}.

To train σ, a sensible approach is to use an additional, typi-

cally disjoint dataset Dres upon which we can evaluate the

trained predictive model f to obtain predictions which will

be used as targets. This allows us to construct the set of

tuples {(x, |y − f(x)|) | x ∈ Dres}. This set is used to

train the conformal normalization model, σ : X → R
+,

to predict the residuals. σ is then applied at testing time

to estimate the predictive model’s residuals on samples in

X ∈ Dtest.

4 METHOD: Self-Supervised Conformal

Prediction

In this section, we describe our proposed method to lever-

age self-supervision to improve locally adaptive conformal

prediction, which we refer to as Self-Supervised Conformal

Prediction (SSCP).

Recall CRF adapts confidence intervals by predicting the

residuals of the main model using an auxiliary residual

model. By predicting regions in which the predictive model

will make greater or smaller errors, the intervals can be

adapted appropriately. However, the task of predicting resid-

uals can be challenging; indeed, presumably they would

not be residuals in the first place otherwise. Therefore, we

propose to improve the performance of the residual model

with the additional signal.

Our method is motivated by the following idea: can self-

supervised tasks provide this added signal? With an appro-

priately selected self-supervised task, not only do we get

its prediction at test time but also its ground truth target.

Therefore, we have access to the self-supervised error even

at test time. If this error has a relationship with the error of

the main model, then it can provide a useful input feature

to the residual model. While correlated errors will often

occur naturally due to factors such as noise or complexity

in the data distribution, we can encourage this relationship

in errors by careful selection of the self-supervised task

and/or shared representation between the main model and

the self-supervised model.

Furthermore, the self-supervised model can simply be

trained on the labeled training data as an extra step or, even

better, it can also leverage any additional unlabeled data that

is available. We highlight that this method can be applied

orthogonally and in addition to any standard self-supervised

representation learning of the main model.

Our proposed SSCP method consists of three steps which

we also summarize graphically in Fig. 2 and algorithmically

in Algorithm 1.

• (S1) Predictive and self-supervised phase: First, we

train a predictive model to solve the regression task, as

normal. Then, we share the learnt representations from

the predictive model, and solve the self-supervised

pretext task on top of these representations.

• (S2) Conformal normalizer phase: Train a confor-

mal normalizer to learn the residuals of the predic-

tive model using the data features as well as the self-

supervised errors on the same instances.

• (S3) Conformalization phase: Finally, we apply CRF

using the prediction model, self-supervised model, and

residual model trained in the previous steps.

In the following sections, we describe each step in more

detail. First, however, we take a brief detour to describe the

data splits and any assumptions on their distributions.

4.1 Data splits and assumptions

We begin by briefly summarizing the required data splits

for performing SSCP. We also highlight that our method

requires no further data splits beyond CRF and is therefore

more data efficient due to its reuse of labeled data and ability

to additionally use unlabeled data for the self-supervised

tasks. Dtrain refers to the data on which the predictive and

self-supervised models are trained. This may consist of

a mixture of labeled and unlabeled data, where in many

practical cases we have access to an unlabeled set with

cardinality significantly greater than that of the labeled set.

We also note that neither model is required to use this full

set for training (e.g. the predictive model might only use

the labeled data while the self-supervised model uses both

labeled and unlabeled).

Although not typically discussed in the literature, the resid-

ual model should ideally be trained on disjoint data from

the predictive model. We refer to this as Dres and, by us-

ing a separate dataset, we ensure that the residual model

does not learn on the potentially overfit Dtrain residuals.2

Then, as usual, we have calibration and testing data Dcal

and Dtest, respectively. The only assumption required on the

data to achieve valid coverage is that these two datasets are

exchangeable. We require no assumptions on the remaining

data although, as in any learning problem, model perfor-

mance is likely to be affected by a divergence between their

distributions.

2We note that training both f & σ on Dtrain is possible, but
comes with the associated overfitting risk of training σ on training
residuals instead of testing residuals. We used a principled experi-
mental design by including this additional split resulting in Dres,
but practitioners may obtain better performance by double dipping
on Dtrain.
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Figure 2: SSCP produces adaptive conformal prediction intervals leveraging self-supervised learning to improve the conformal normalizer
(σ) and consists of 3 phases. (S1) where (i) train the predictive regressor f = e ◦ g, thereafter (ii) the encoder representation (e) is
transferred to use for the self-supervised task, where we train the self-supervised predictor h. (S2) the conformal normalizer phase is then
carried out, with the conformal normalizer, augmented with the self-supervised input, trained to predict residuals (representing difficulty
of prediction). Finally, (S3) the conformalization phase, computes non-conformity scores (µ) on Dcal, with the critical non-conformity
score (ϵ) chosen as the (1− α)-smallest. At test time, the adaptive prediction intervals [l(x), r(x)] are produced by adapting the critical
non-conformity score ϵ using the conformal normalizer, i.e ϵσ(x). The “shaded blocks” in each phase are trainable.

4.2 Predictive and self-supervised phase (S1)

Predictive task. The goal of the predictive stage is to

obtain a regressor f : X → Y mapping inputs to targets.

Typically, this is a machine learning model (e.g. a neural

network) trained on Dtrain. However, we place no assump-

tions on this model, which could be any predictive model.

An example of such a scenario beyond standard models

might appear in a healthcare setting in which our model is

the decision process of a doctor around which we would

like to obtain valid confidence intervals.

In this work, we focus on the more conventional set-

ting of a data-based model trained on Dtrain to minimize

the supervised loss L (usually mean squared error), i.e.

min
f

E(x,y)∼Dtrain
[L(y, f(x))]. We select this model to be

a neural network consisting of an encoder e and a predictor

g such that f = g ◦ e. This provides us with the ability to

share an encoding representation between the supervised

and self-supervised task, which enforces a relationship be-

tween the two models.

We also highlight that a standard application of self-

supervised learning could be applied in learning the predic-

tive model in addition to the SSCP procedure we describe

in this work. This would consist of applying standard self-

supervision prior to the predictive task (S1). Our SSCP

framework is orthogonal to such an application.

Self-supervised task. The self-supervised task consists of

training some model fss also on Dtrain but this time for some

pretext task. We also place no restrictions on the choice of

self-supervised task. However, we wish its errors to have a

useful relationship with those of the predictive model.

In this work, we focus on tabular data where tasks such as

input reconstruction-based tasks (such as autoencoders or

VIME Yoon et al., 2020) are popular. Depending on the

task, various domain-specific tasks have been proposed in

the self-supervised literature which may be leveraged in this

step. We also use a neural network fss = h ◦ e where e is

the pre-trained encoder of the predictive model and h is a

task-specific decoder. We fix the weights of e, such that it

retains the desired connection with the predictive task. We

then optimize h to solve the pretext task, minimizing the

self-supervised loss Lss as part of the following objective:

min
h

E(X)∼Dtrain
[Lss(x, (h ◦ e)(x))]. (3)

4.3 Conformal normalizer phase (S2)

The conformal normalization model σ is directly responsible

for the adaptiveness of the prediction intervals. Hence, by

improving σ, we can in turn improve the adaptiveness of

the intervals. As previously discussed, this model is fit to

Dres to avoid learning the training residuals, which may

not generalize. In this work, we propose to incorporate

the self-supervised error Lss as an additional feature to σ.

Fundamental to this, we can compute Lss at both training

and test time, since we do not need access to labels.

Furthermore, to reiterate, if the self-supervised loss for



Improving Adaptive Conformal Prediction Using Self-Supervised Learning

a specific sample has a relationship to the difficulty of

the predictive task, then, by adding Lss as a feature, we

pass this information to σ when predicting the normalizing

residuals. To do so, we augment the input space of σ as

X̂ = {X,Lss(X)} and train σ as usual. The decision of

which residual normalizer model to use should be selected

on a problem-specific basis. We successfully apply a ran-

dom forest (Sec. 5.1) and a neural network (Sec. 5.2) in our

experiments.

4.4 Conformalization phase (S3)

Finally, given our trained predictive model f , self-

supervised model fss, and residual model σ, we can apply

the same calibration procedure as standard CRF on Dcal

(as described in Sec. 3.2) to obtain the α-quantile non-

conformity score ϵ. Then for a new test example x, we

obtain adaptive and valid intervals.

[l(x), r(x)] = [f(x)− ϵσ(x̂), f(x) + ϵσ(x̂)], (4)

where x̂ = {x,Lss(x)}. We summarize the complete SSCP

framework algorithmically in Algorithm 1.

Algorithm 1 Self-supervised Conformal Prediction

1: Input: Dtrain, Dres, Dcal, e, g, h, σ

2: procedure SSCP

3: Train f = g ◦ e on Dtrain (Sec. 4.2 S1 (i))

4: Train fss = h ◦ e on Dtrain (Sec. 4.2 S1 (ii))

5: Calculate self-supervised errors Lss on Dres

6: Train σ on Dres ∪ Lss (Sec. 4.3 S2)

7: Apply standard CRF calibration (Sec. 4.3)

8: Return: e, g, h, σ for test evaluation

4.5 Other locally adaptive methods

The SSCP framework described throughout this section has

primarily focused on CRF as a method for achieving lo-

cally adaptive intervals. However, simple adaptations to the

procedure permit alternative methods to be considered. A

powerful alternative that has emerged in recent years is CQR

(Romano et al., 2019). In Appendix C.3, we describe the

adaption required to integrate CQR into our SSCP frame-

work and provide an empirical evaluation of CQR as an

alternative method.

4.6 Remark on SSCP and coverage guarantees

Conformal prediction provides theoretical guarantees on the

validity of coverage of the prediction intervals based on the

exchangeability assumption (see Def. 3.1). SSCP inherits

these same guarantees. Just as in the case of CRF, SSCP

provides valid coverage provided the calibration set and test

set satisfy exchangeability (see e.g. Tibshirani et al. (2019)

for proof of these guarantees). We provide an extended

comment on this point in Appendix A.

5 EXPERIMENTS

In this section, we empirically assess the benefit provided

by SSCP 34 compared to CRF. We begin with a synthetic

example to highlight why adding a self-supervised loss to

the conformal normalization model can improve prediction

intervals. Then, we demonstrate the performance of SSCP

on a diverse range of real-world datasets, which differ in

terms of numbers of samples, features, and difficulty.

Evaluation metrics We desire that the self-supervised in-

formation improves the quality of the conformal prediction

intervals on average. We assess the quality based on the

following commonly used metrics (Romano et al., 2019;

Navratil et al., 2020). Note, that in all cases, we still obtain

intervals with valid coverage. Decreases in these metrics

whilst still maintaining coverage implies superior adaptation

and improvement to the quality of the prediction intervals:

• Width: The size of the conformal prediction interval,

i.e. E[r(x)− l(x)], x ∈ X

• Deficit: The interval shortfall, when the true value y

lies outside the predicted interval. i.e. E[1y/∈[l(x),r(x)] ·
min{|y − l(x)|, |y − r(x)|}], x ∈ X

• Excess: The additional width included not needed to

capture the true value y. E[1y∈[l(x),r(x)] · min{y −
l(x), r(x)− y}], x ∈ X

Experimental setup. We use the same underlying predic-

tive model in all comparisons to isolate the effects of the

conformal prediction method (since by definition a better

predictive model can achieve narrower intervals). Our base-

line is locally adaptive conformal prediction (denoted CRF),

where the non-conformity score is the absolute error of the

residuals.

In our experiments, we illustrate SSCP using VIME (Yoon

et al., 2020) as an example of a potential self-supervision

task. We selected VIME as it is regarded as highly per-

formant on tabular data. As a pretext task, from a partially

masked input, VIME aims to reconstruct the original sample

in addition to recovering the mask vector. We provide ad-

ditional experiments and ablations in Appendix C. Further

experimental details can be found in Appendix B.

5.1 Synthetic demonstration

We begin by illustrating our method on a synthetic dataset.

While a standard application of self-supervision to improve

the predictive model is likely to improve performance, the

primary contribution of this work is to apply self-supervision

3https://github.com/seedatnabeel/SSCP
4https://github.com/vanderschaarlab/SSCP
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to achieve a more adaptive conformal normalization model

σ.

We isolate this effect by generating synthetic residuals from

a hypothetical predictive model and comparing the perfor-

mance of a conformal normalization model with and without

access to the errors of a self-supervised task. Therefore, any

improvements in this setting are exclusively due to this ad-

ditional information.

Data Generation. In order to visualize the results, we

assume both the inputs x and the model residuals r are gen-

erated as a function of a single, uniformly distributed latent

dimension L ∈ U(0, 1). We assume that there are discrete

regions in which the model has made larger errors and there-

fore its residuals are distributed as r ∈ N (step(L), 0.1),
where step() denotes a step function defined as

step(x) =

{

1.5 if x ∈ (0.2, 0.4) or x ∈ (0.6, 0.8)

0.1 otherwise.
(5)

The sign of the residual is chosen at random. A visualization

of these residuals (plotted prior to taking their absolute value,

which maps them to R
+ as required) is provided in Fig. 3.

0.0 0.2 0.4 0.6 0.8 1.0

Latent dimension L

−1.5

0.0

1.5
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Figure 3: 200 observations drawn from our synthetic distribu-
tion with the distributions ground truth 90% prediction intervals
highlighted with a dashed line.

The input features x are also sampled as a function of L. We

consider a 20-dimensional input consisting of 10 uniformly

sampled pairs of points along the circumference of a circle

with its base at the origin and a radius of L. This results in

an increasingly sparse input space for larger values of L.

Results. Predicting r from x is challenging in the small data

setting. However, by applying self-supervision to the inputs

x, we can better learn the latent process, which in turn can

provide useful information for the supervised conformal nor-

malization model. One of the most simple self-supervised

tasks is a standard autoencoder that reconstructs the input.

Taking advantage of our knowledge of the data generation

process, we consider a single latent unit in the bottleneck

layer. Due to the increasing sparsity of inputs with increas-

ing L, this would result in self-supervised errors that are

linearly correlated with L (i.e. the autoencoder could rea-

sonably model the single ground truth latent dimension L).

Since the residuals are a function of L, this self-supervised

error provides a useful feature.

In Fig. 4 we compare the conformal prediction intervals

(α = 0.1) of a random forest of 1000 trees with and with-

out the additional self-supervised feature, where out-of-bag

predictions are used for calibration.

We observe that while both methods achieve the desired

level of marginal coverage, the additional information from

the self-supervised input results in adaptive intervals. How-

ever, the standard approach is unable to model the relation-

ship between inputs and residuals, and is forced to default to

more conservative intervals in order to maintain coverage.

This example illustrates that, for a given sample, strictly

narrower intervals might not be optimal. Indeed, for sam-

ples with large residuals, CRF achieves narrower intervals

than SSCP. However, these intervals are overly tight, and

coverage is only maintained over the entire dataset due to

overly conservative coverage in low residual regions.
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Figure 4: Conformal prediction intervals. Standard CRF (pink)
fails on this synthetic task due to a complex relationship between
the inputs and the latent dimension. By including the errors of
a self-supervised task as an input, SSCP (green) is able to learn
much more efficient prediction intervals.

Takeaway. Augmenting the conformal normalization

model’s inputs with a self-supervised loss better models

the heteroscedasticity in the predictive model’s residuals,

which results in more adaptive conformal prediction inter-

vals.

5.2 Real data

We now assess the performance of SSCP on multiple real-

world regression datasets. These datasets have been used

in Romano et al. (2019). We assess the utility of using

self-supervision in two plausible scenarios.

5.2.1 Fully labeled data setting

Setup. This experiment evaluates the utility of SSCP if we

only have access to fully labeled data (i.e. only the data
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used to train the predictive model). We evaluate whether the

same labeled data can be repurposed for self-supervision

simply by ignoring the label (i.e. we have no unlabeled data

in Dtrain). The benefit of this setup is that it is applicable to

any supervised learning setting. Formally, Dlabeled is split

as follows Dlabeled = {Dtrain ∪ Dcal ∪ Dres ∪ Dtest}.

The datasets as described in Sec. 4 are used for both the

predictive and normalization models. We can use Dtrain

for the self-supervised tasks, simply by ignoring the label.

Analysis. We assess the aforementioned setup on multi-

ple real-world datasets. Table 1 highlights that indeed the

SSL task on labeled data improves the conformal prediction

intervals across all datasets in terms of reduced width and

excess, occasionally at the expense of slightly larger deficit.

However, coverage is maintained in all scenarios.

We also note that, of course, the smaller datasets (with

respect to samples) see the smallest improvements when

compared to those datasets where we have more samples.

This is expected, as we simply have fewer data samples on

which the SSL task can learn. That said, irrespective of the

number of samples, there is still a benefit in repurposing

existing labeled data to extract self-supervised information.

Table 1: Assessing the impact of the SSL task on improving CRF,
even without additional data. We find in all cases, averaged over
5 runs, that the additional SSL information can help to improve
width, deficit, and excess (↓ better).

Dataset Metric CRF SSCP

concrete (n=1030)

Avg.Width 0.768 0.743

Avg.Deficit 0.099 0.098

Avg.Excess 0.263 0.253

community (n=1994)

Avg.Width 2.602 2.462

Avg.Deficit 0.355 0.361

Avg.Excess 1.030 0.967

star (n=2161)

Avg.Width 0.293 0.263

Avg.Deficit 0.036 0.031

Avg.Excess 0.120 0.100

bike (n=10886)

Avg.Width 0.720 0.690

Avg.Deficit 0.164 0.161

Avg.Excess 0.244 0.232

Blog data (n=52397)

Avg.Width 3.474 3.360

Avg.Deficit 3.084 3.155

Avg.Excess 1.292 1.227

Facebook (n=81311)

Avg.Width 1.917 1.860

Avg.Deficit 1.956 1.998

Avg.Excess 0.584 0.554

Takeaway. Self-supervision improves the quality of con-

formal prediction intervals, even on a fixed dataset without

additional data, simply by repurposing the labeled data.
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Figure 5: Relative prediction interval widths of SSCP compared to
CRF for varying proportions of labeled data (↓ better). Avg. inter-
val width across datasets is lower with the inclusion of unlabeled
data across all p.

5.2.2 Augmented with unlabeled data setting

Setup. This experiment highlights the value of self-

supervision, coupled with unlabeled data, to improve CRF-

based models. We consider the typical setup in self-

supervised learning, with Dlabeled and Dunlabeled.

We evaluate the effect for varying proportions p of labeled

examples. Dlabeled is then split and used for the predictive

and normalization models, as in Sec. 5.2.1. Dunlabeled

augments the dataset used to train the self-supervised model

(i.e. VIME).

Analysis. What happens for varying p? For different val-

ues of p, the inclusion of the unlabeled data through self-

supervision reduces the width of the prediction intervals

(Fig. 5). Of course, as p increases, so too does the quality

of the predictive and normalization models.

This explains the natural increase in relative width of SSCP

vs. CRF for increasing p, i.e. as expected, with more su-

pervised data to train on (and less unlabeled data), there is

a reduced benefit of the unlabeled data. However, even as

p increases, we still note the benefit of the self-supervised

signal in reducing the width of the intervals relative to CRF.

As an ablation, to quantify the benefit of the unlabeled

data, we train the self-supervised task on ONLY the smaller

Dlabeled, rather than the larger combination which includes

Dunlabeled. The results indicate that the inclusion of unla-

beled data is indeed beneficial with tighter intervals. These

results can be found in Appendix C.1.

Finally, we expect that the choice and nature of the SSL

task is impactful, and specific pretext tasks might provide

superior signal to the normalization model. We discuss this

in greater detail in Appendix C.4 by assessing alternative

modes of self-supervision.
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Takeaway. Self-supervision using unlabeled data helps to

improve the quality of conformal intervals, across different

proportions of labeled vs. unlabeled data.

5.3 Insights

Let us now examine where SSCP helps the most. First, we

compare the prediction intervals of samples with CRF vs.

the same samples with SSCP. We find that the main source of

improvement over CRF is for those samples with the largest

interval width. Fig. 6 highlights that SSCP significantly

reduces the interval width for these samples, which is the

key source of the reduction in average width.
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Figure 6: Prediction interval width for most challenging samples
on Star. SSCP reduces interval width

This begs the question on what type of samples/regions

SSCP helps? To facilitate visualization, we reduce the di-

mensionality of the input features X using principal compo-

nent analysis (PCA). We plot PC1 vs. output y and compare

the prediction intervals for SSCP vs. CRF.

In Fig. 7, we examine two coarse regions of the PC1 space:

dense and sparse. In the denser regions, CRF has narrower

intervals, similar to SSCP. Whilst, in the sparser regions,

CRF often has much wider prediction intervals compared to

SSCP. It is in these sparse regions that SSCP clearly helps.
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Figure 7: Comparing the prediction intervals in different regions.
SSCP provides benefit in the sparser regions.

The rationale is that in the sparser regions, the conformal

normalization model σ does not perform well. Hence, to

satisfy the coverage constraint, the CRF intervals are more

conservative and therefore more inefficient in these chal-

lenging sparser regions.

In contrast, SSCP with the SS signal helps to improve the

conformal normalization model (i.e. the residuals are pre-

dicted more accurately) and hence by virtue of the improved

σ it achieves intervals with lower width on the sparser chal-

lenging regions. Quantitatively, this improvement to σ in

MAE is ±14% and ±5% for Fig. 7 (a) and (b) respectively.

Further analysis is found in Appendix C.4.2 and C.4.3.

Takeaway. SSCP improves prediction interval width on the

most challenging samples and sparser regions.

6 DISCUSSION

Improving the quality of prediction intervals is crucial for

more reliable uncertainty quantification. In this work, we

show the value of self-supervised learning beyond model

pretraining and representation learning. We propose a frame-

work to integrate self-supervised losses to improve confor-

mal prediction intervals. We empirically show on both

synthetic and real data that self-supervision improves the

prediction intervals of locally adaptive conformal prediction,

specifically CRF. In addition, the self-supervision assists in

more challenging and sparser regions.

Limitations. SSCP provides a framework to highlight the

value of self-supervision for conformal prediction. Our

evaluation of pretext tasks (in the main paper and appendix)

are provided as examples and additional tasks could be

evaluated using the provided “recipe”, inclusive of future

work to design a conformal prediction-specific pretext task.

Societal impact. Quantifying predictive uncertainty is im-

portant for ML, especially in high-stakes settings such as

medicine and finance. SSCP seeks to improve this and pro-

vide more trustworthy predictions, by providing end users

with reliable prediction intervals as a measure of confidence.

Future work. The findings of this paper open up avenues

for future research, leveraging the idea that self-supervision

can be used to improve conformal prediction. The fol-

lowing are proposed areas of future exploration: (i) as-

sessing alternative self-supervised approaches (e.g. Chen

et al., 2020; Lee et al., 2022), (ii) development of new

conformal-aware self-supervised tasks, (iii) application of

self-supervision to improve feature-wise conformal predic-

tion (as per Seedat et al., 2022, Teng et al., 2022), (iv) the

use of self-supervision with other data modalities such as

images, where the self-supervised tasks tend to be distinct

from the tabular setting.

ACKNOWLEDGEMENTS

The authors are grateful to Alicia Curth, Boris van Breugel,

Nicolas Huynh, Paulius Rauba, Tennison Liu, and the anony-

mous AISTATS reviewers for their comments and feedback

on an earlier manuscript. Nabeel Seedat and Alan Jeffares

are funded by the Cystic Fibrosis Trust. Fergus Imrie and

Mihaela van der Schaar are supported by the National Sci-

ence Foundation (NSF, grant number 1722516). Mihaela

van der Schaar is additionally supported by the Office of

Naval Research (ONR).



Improving Adaptive Conformal Prediction Using Self-Supervised Learning

References

Vladimir Vovk, Alexander Gammerman, and Glenn Shafer.

Algorithmic learning in a random world. Springer Sci-

ence & Business Media, 2005.

Glenn Shafer and Vladimir Vovk. A tutorial on conformal

prediction. Journal of Machine Learning Research, 9(3),

2008.

Harris Papadopoulos. Inductive conformal prediction: The-

ory and application to neural networks. In Tools in Artifi-

cial Intelligence. Citeseer, 2008.

Jing Lei, Max G’Sell, Alessandro Rinaldo, Ryan J Tibshi-

rani, and Larry Wasserman. Distribution-free predictive

inference for regression. Journal of the American Statis-

tical Association, 113(523):1094–1111, 2018.

Harris Papadopoulos, Alex Gammerman, and Volodya Vovk.

Normalized nonconformity measures for regression con-

formal prediction. In Proceedings of the IASTED Inter-

national Conference on Artificial Intelligence and Appli-

cations (AIA 2008), pages 64–69, 2008.

Ulf Johansson, Cecilia Sönströd, and Henrik Linusson. Effi-

cient conformal regressors using bagged neural nets. In

2015 International Joint Conference on Neural Networks

(IJCNN), pages 1–8, 2015a. doi: 10.1109/IJCNN.2015.

7280763.

Yaniv Romano, Evan Patterson, and Emmanuel Candes.

Conformalized quantile regression. Advances in Neural

Information Processing Systems, 32, 2019.

Rina Foygel Barber, Emmanuel J Candes, Aaditya Ramdas,

and Ryan J Tibshirani. The limits of distribution-free con-

ditional predictive inference. Information and Inference:

A Journal of the IMA, 10(2):455–482, 2021.

Vladimir Vovk. Conditional validity of inductive conformal

predictors. In Asian Conference on Machine Learning,

pages 475–490. PMLR, 2012.

Harris Papadopoulos, Vladimir Vovk, and Alexander Gam-

merman. Regression conformal prediction with nearest

neighbours. Journal of Artificial Intelligence Research,

40:815–840, 2011.

Ulf Johansson, Cecilia Sönströd, and Henrik Linusson. Effi-

cient conformal regressors using bagged neural nets. In

2015 International Joint Conference on Neural Networks

(IJCNN), pages 1–8, 2015b. doi: 10.1109/IJCNN.2015.

7280763.

Victor Chernozhukov, Kaspar Wüthrich, and Yinchu Zhu.

Distributional conformal prediction. Proceedings of the

National Academy of Sciences, 118(48):e2107794118,

2021.

Rafael Izbicki, Gilson T Shimizu, and Rafael B Stern. Flex-

ible distribution-free conditional predictive bands using

density estimators. In Proceedings of the Twenty Third

International Conference on Artificial Intelligence and

Statistics (AISTATS), pages 3068–3077. PMLR, 2020.

Matteo Sesia and Yaniv Romano. Conformal prediction

using conditional histograms. Advances in Neural Infor-

mation Processing Systems, 34:6304–6315, 2021.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and

Geoffrey Hinton. A simple framework for contrastive

learning of visual representations. In International Con-

ference on Machine Learning, pages 1597–1607. PMLR,

2020.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
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A COMMENT ON SSCP COVERAGE

Conformal prediction was originally introduced in Vovk et al. (2005). However, this so-called transductive method is

impractical for naive use with most modern algorithms due to multiple refits of the model being required per test point.

Inductive (or split) conformal prediction (Papadopoulos, 2008) provides a satisfying solution to this limitation by separating

the fitting of the model and the calibration of the conformal predictor across two disjoint datasets. As noted in Tibshirani

et al. (2019); Zhang et al. (2020), by considering the trained model µ fixed, the non-conformity scores on the calibration and

test data are clearly exchangeable provided the data itself is exchangeable. Of course, this method results in constant interval

width across all test points, which is determined by the critical non-conformity score ϵ. In order to provide adaptive width

intervals that reflect the difficulty of a particular example, Papadopoulos and Haralambous (2010) introduced a residual

estimator σ resulting in CRF. By adjusting the denominator of the non-conformity score function to γ(x) = |y−f(x)|
σ(x) , the

prediction intervals become (µ(x)− ϵ · σ(x), µ(x) + ϵ · σ(x)) and still enjoy marginal coverage in the inductive setting. We

emphasize that it is only required that the calibration data and test data are exchangeable, both µ and σ can be trained on any

disjoint data provided they are subsequently held fixed.

It is straightforward to check that the method proposed in this work (SSCP) can be viewed as a special case of CRF as

described in the previous section and, therefore, maintains the same coverage guarantees. The additional self-supervised

function fss can simply be viewed as a sub-component of an alternative residual model, defined as σ̂(x) = σ({x, fss(x)).
Just as before, and provided this model remains fixed during calibration and testing, the same conformal prediction coverage

guarantees hold.
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B EXPERIMENTAL DETAILS

In this section, we outline further details of the experimental setup used in Section 5.

We assess SSCP on multiple open-source regression datasets from the UCI repository (Asuncion and Newman, 2007).

These datasets vary both in the number of features as well as in the number of samples (documented in Table 1). Similar to

Romano et al. (2019), we standardize the features to have zero mean and unit variance. The output y is rescaled by the mean

absolute value.

We compute the performance metrics averaged over 5 random runs. In each run, we change the train-test split sampling,

where the split proportion of 80-20. Dres is then split 80-20 with Dtrain and then subsequently Dcal split 80-20 with the

remaining Dtrain. We fix α=0.1.

B.1 Predictive and conformal normalization models.

Our baseline models, both the predictive model and conformal normalization model, are implemented using neural networks.

Our architectures are similar to those used in Romano et al. (2019).

The neural network is an MLP with three fully connected layers, each with ReLU activations. The input is an n-dimensional

feature vector X passed to an input layer with 64 hidden units. The hidden layer also contains 64 units. Finally, the output

layer is a single neuron corresponding to the regression output y.

Mean squared error loss is used throughout our experiments, optimized using Adam with a learning rate of 5e-4. Batch

size is 128 and we apply dropout regularization with dropout probability of 0.1. Finally, we train using early stopping with

patience of 20.

We extract up to the second fully connected layer as the encoder e.

B.2 Self-supervised learning

VIME. We specifically leverage the self-supervised component of VIME. This consists of an encoder together with an

output mask estimator and feature estimator, which are jointly optimized. We keep the default architecture as per Yoon et al.

(2020) with a dense layer for each.

We train with a batch size of 128 for 500 epochs with early stopping enabled. The probability of corruption used is 0.3 and

the weight of the feature to mask loss α is set to 2. Future work could assess how to optimally set these parameters specific

to the conformal prediction setting.

A minor difference to standard VIME in our application is that rather than the input being raw features, we provide the

output from encoder e as the task input, and train VIME as the self-supervised predictor h.

Autoencoder. Similar to VIME rather than the input being raw features, we provide the output from the encoder e as the

input, and simply train the autoencoder decoder portion as the self-supervised predictor h.

The decoder has the same layers and dimensionality as the encoder e, simply being reversed such that the reconstructed

output matches the dimensionality of the raw features.

We train with a batch size of 128 for 500 epochs with early stopping enabled. MSE is the loss function. Similar to VIME,

the nature and depth of the autoencoder could be assessed as future work concerning how to optimally set these parameters

specific to the conformal prediction setting.
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C ADDITIONAL EXPERIMENTS

C.1 Ablation: unlabeled data experiment

Goal. This experiment seeks to understand the benefit of the unlabeled data to SSCP. To do so, we perform an ablation

of the unlabeled data when used with SSCP for varying proportions p of labeled data. In the ablation variant, i.e. SSCP

(Labeled), we only re-use the fully labeled data for the self-supervised task and compare it to SSCP (ALL) which augments

the self-supervised dataset with the unlabeled data.

Analysis. The results outlined in Table 2 highlight the benefit of the unlabeled data, especially true in the low data regime

when the labeled dataset is small (i.e. low p), where the ablation SSCP (Labeled) showcases an increased average interval

width, i.e. when not including the unlabeled data.

Table 2: Avg. width of intervals with and without unlabeled data (↓ is better)

p SSCP (ALL) SSCP (Labeled) Difference

0.1 3.603 3.893 0.290

0.2 2.878 3.000 0.122

0.3 1.796 1.752 -0.044

0.4 1.505 1.459 -0.045

0.5 1.465 1.490 0.025

C.2 Sanity check: alternative sources of signal

Goal. We aim to assess the value of alternative sources of signal with respect to the residual prediction, in order to

highlight the value imbued by the self-supervision. We assess (i) using an isolation forest instead of SSL and (ii) using the

self-supervised signal directly, rather than as input to a residual/normalization model σ.

Analysis. Sanity check comparing alternative self-supervised signals to SSCP (VIME). We analyze adding an isolation

forest in place of VIME i.e. SSCP (IF) and simply using the SSL signal for normalization, instead of training σ (SSL-

normalizer). The results are shown in Table 3 and indicate that indeed overall the usage of VIME provides the best intervals

in the most stable manner.

Table 3: Sanity check comparing alternative self-supervised signals to SSCP (VIME). We report mean average interval width over 5 runs.
(↓ better)

Dataset SSCP (VIME) SSCP (IF) SSCP (SSL-normalizer)

Overall 1.587 1.652 4.139

concrete(n=1030) 0.743 0.904 0.761

community(n=1994) 2.462 2.581 2.468

star(n=2161) 0.263 0.230 0.207

bike(n=10886) 0.690 0.711 1.016

Blog data (n=52397) 3.360 3.360 11.823

Facebook (n=81311) 1.860 2.127 8.562
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C.3 Conformalized Quantile Regression

Conformalized Quantile Regression (CQR) (Romano et al., 2019) provides a powerful alternative to CRF for achieving

locally adaptive intervals for conformal prediction. The method builds upon conditional quantile regression (Koenker

and Bassett Jr, 1978) in which the pinball loss objective is utilized such that a model predicts upper and lower quantiles

around a target by enforcing non-symmetric and opposite loss functions for the two model outputs. This method was then

conformalized in Romano et al. (2019) using an inductive conformal prediction procedure.

Although CQR removes the flexibility of post hoc conformalization of an arbitrary model, it often benefits from more

efficient intervals in practice. Therefore, one might wish to consider it as an alternative to CRF in our SSCP framework.

The key difference between the two methods is that CQR no longer requires a separate conformal normalizer model, as the

prediction intervals [l(x), r(x)] are derived from the main model’s quantile predictions. Instead, we pass the self-supervised

errors as an additional input into the encoder of the main model. Sharing the encoder between the self-supervised model fss
and the main model f (i.e. e = ess) can still be achieved by passing a placeholder (0) for the additional feature during the

self-supervised phase. In our experiments, we consider both a shared encoder between the two models (Shared) and an

independent encoder per model (Indep). This procedure is summarized in Algorithm 2.

Algorithm 2 Self-supervised Conformal Prediction with CQR

1: Input: Dtrain, Dcal, e, ess, g, h

2: procedure SSCP

3: Train fss = h ◦ ess on Dtrain

4: Calculate self-supervised errors Ltrain
ss on Dtrain and Lcal

ss on Dcal

5: Train f = g ◦ e on Dtrain ∪ Ltrain
ss

6: Apply standard CQR calibration on Dcal ∪ Lcal
ss

7: Return: e, ess, f , g, h for test evaluation

We include the results of applying SSCP with CQR to the same experiments described in Sections 5.2.1 & 5.2.2 in Table

4 & Figure 8 respectively. In the fully labeled setting we find that (1) independent encoders outperform shared encoders

using the method we describe, and (2) CQR augmented with a self-supervised signal is competitive with and often improves

vanilla CQR in terms of average interval width. In the partially labeled setting, we observe a similar trend that for lower

quantities of labeled data, SSCP provides the largest gains over standard CQR. The trend between the four methods indicates,

consistent with the labeled setting, that independent encoders outperform a shared representation. However, evidence for

improved performance with additional unlabeled data is inconclusive in these experiments. Hence, further research on more

effective ways to (1) share a representation in this context and (2) integrate unlabeled data provide exciting directions for

future work.

Table 4: Repeating the fully labeled experiments from Section 5.2.1 with CQR. We report mean average interval width (↓ better) over 5
runs. These results indicate that using CQR augmented with a self-supervised loss (SSCP-CQR), often improves vanilla CQR.

Dataset CQR SSCP-CQR (Indep) SSCP-CQR (Shared)

Overall 0.904 0.866 0.894

concrete(n=1030) 0.532 0.505 0.512

community(n=1994) 1.733 1.603 1.685

star(n=2161) 0.196 0.198 0.208

bike(n=10886) 0.620 0.623 0.650

Blog data (n=52397) 1.441 1.402 1.405

Facebook (n=81311) 1.274 1.220 1.292
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Figure 8: Repeating the partially labeled experiments from Section 5.2.2 with CQR. Evaluating independent vs. shared representations
and the inclusion of additional unlabeled data for various proportions of labeled data. Lower proportions of labeled data achieve the
largest gains over standard CQR.

C.4 Evaluating alternative self-supervised tasks & the source of gain

C.4.1 High-level

Goal. In the main manuscript, we have examined VIME as an example self-supervised task coupled with SSCP. We extend

this analysis and explore a reconstructing autoencoder (AE) as an alternative self-supervised task. We refer to these as SSCP

(AE) and SSCP (VIME).

Analysis. We compare the performance of SSCP (VIME) and SSCP (AE) to CRF in Table 5. We find that, in general, the

addition of the self-supervised loss is a useful feature, resulting in more adaptive intervals.

That being said, VIME seems to provide greater performance improvements across a variety of datasets when compared to

the AE. This is of course reasonable, as VIME has been shown to be a more performant self-supervised task in general for

tabular data. Next, we take a deep-dive to understand the impact of the self-supervised task and where the improvements lie.

Table 5: Assessing the impact of the SSL task on improving CRF, for two different self-supervised tasks (i.e. VIME and AE). We find in
general that the self-supervision helps with VIME being more performant than AE as the self-supervised task. (↓ better)

Dataset Method CRF SSCP(AE) SSCP(VIME)

concrete(n=1030)

Avg.Width 0.768 0.794 0.743 ↓
Avg.Deficit 0.099 0.117 0.098 ↓
Avg.Excess 0.263 0.276 0.253 ↓

community(n=1994)

Avg.Width 2.602 2.667 2.462 ↓
Avg.Deficit 0.355 0.382 0.361 ↓
Avg.Excess 1.030 1.068 0.967 ↓

star(n=2161)

Avg.Width 0.293 0.261 ↓ 0.263 ↓
Avg.Deficit 0.036 0.040 0.031 ↓
Avg.Excess 0.120 0.110 ↓ 0.100 ↓

bike(n=10886)

Avg.Width 0.720 0.706 ↓ 0.690 ↓
Avg.Deficit 0.164 0.161 ↓ 0.161 ↓
Avg.Excess 0.244 0.241 ↓ 0.232 ↓

Blog data (n=52397)

Avg.Width 3.474 3.400 ↓ 3.360 ↓
Avg.Deficit 3.084 3.095 3.155

Avg.Excess 1.292 1.246 ↓ 1.227 ↓

Facebook (n=81311)

Avg.Width 1.917 1.872 ↓ 1.860 ↓
Avg.Deficit 1.956 2.010 1.998

Avg.Excess 0.584 0.563 ↓ 0.554 ↓
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C.4.2 Deep-dive

Goal. We now take a deep-dive to better understand the differences for SSCP with different self-supervised tasks, SSCP

(VIME) and SSCP (AE). In addition, we seek to understand the gains from SSCP better. The analysis in this section is

performed on the Star dataset.

Analysis. We first compare the prediction intervals in low-dimensional space. Similar to the main manuscript, we reduce

the dimensionality of the input features (X) using PCA to facilitate visualization. We plot PC1 vs. output y and compare the

prediction intervals for SSCP (VIME) vs. SSCP (AE) vs. CRF. The results can be seen in Figure 9.

We see that, in general, CRF results in wider intervals compared to the SSCP variants. Additionally, SSCP (VIME) generally

outperforms SSCP (AE) with narrower intervals. In the analysis that follows, we show that the majority of this gain in

performance is achieved on the most uncertain examples in the more sparsely populated regions of input space. The

implication is that the self-supervised loss is useful in informing the interval widths on the most uncertain examples where

the highest inefficiency occurs.

We also seek to better understand why SSCP (VIME) outperforms SSCP (AE). Beyond simply being a better self-supervised

task in general (Yoon et al., 2020), we find that VIME loss also appears to have a stronger relationship with the predictive

model’s errors when compared to the autoencoder, with correlations of 0.33 and 0.06 respectively.

Delving deeper beyond the mean correlation of SS loss with the main predictive model error. We find that the largest

improvements in reducing interval width occur for samples that have the largest correlation of SS loss with the predictive

model error (±0.35-45). We find limited improvement for samples with the lowest correlation (±0.11-0.20), highlighting

the importance of the relationship between SS loss and the predictive error itself.

As described in the main text, a stronger relationship between the self-supervised loss and the predictive model errors

should typically result in a better residual model and, in turn, more efficient prediction intervals. This result confirms that

hypothesis. The broader implication is that such considerations should be kept in mind when selecting the self-supervised

task. Furthermore, these findings could be leveraged in future works for designing specific self-supervised tasks in the SSCP

setting such that the task should seek to explicitly increase this correspondence.

5.0 2.5 0.0 2.5 5.0
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1
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CRF Interval

SSCP (AE)

True

Figure 9: Comparing the prediction intervals in different regions. All variants of SSCP provide benefit in the sparser regions. The intervals
are similar for SSCP (VIME) and SSCP (AE) in the denser regions, with SSCP (VIME) generally performing better. This is especially the
case in the sparser regions with narrower intervals.

We then continue the deep-dive to better understand the performance improvements. We specifically analyze the types of

samples for which the self-supervised loss provides the greatest gains. Figure 10 orders the metrics sample-wise from largest

to smallest. We can clearly see that the SSCP improvements are, in general, for those samples for which the metric is the

highest in CRF. In other words, the self-supervision helps to improve the prediction intervals where the greatest inefficiency

occurs on the most challenging samples with the greatest uncertainty. This is of course also the most natural target, as it is

more challenging to improve prediction intervals that are already close to optimal.

Figure 11 which illustrates the distribution of said metrics also confirms this insight. We note the reduction in the long tails

of the distributions when augmenting with the self-supervised loss.

To summarize, in general, SSCP largely improves the intervals on samples with higher uncertainty (i.e. larger intervals)

which often correspond to regions of sparsity in the input space. These fine-grained improvements at the sample-level then

translate into the dataset-level improvements to the prediction intervals reported in our experiments (Section 5).
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Figure 10: Comparing the metrics - ordered from the largest to smallest. We note that the benefit of SSCP for both VIME and AE is
largely in reducing the excess width of the intervals on those samples for which it is greatest (i.e. the most inefficient intervals).
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Figure 11: Comparison of the distributions of the metrics. We can clearly see that the addition of the self-supervision helps to reduce the
long tails of the distributions corresponding to the most inefficient intervals.

C.4.3 Robustness study

Goal. We wish to assess the robustness of the intervals and their improvements over the different random runs. Conse-

quently, we aim to assess the confidence interval (CI) gains (i.e. reductions) for SSCP (VIME) vs. CRF.

Analysis. We assess the 90% CI’s of the reduction in interval width (i.e. performance gain) across all datasets averaged

across runs. The results are shown in Fig. 12.

We find that SSCP is robust in the improvements, showing a net gain over CRF (with interval reductions) across all datasets.

This result is indicative of the robustness of including the self-supervised signal to improve the conformal intervals.
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Figure 12: Assessing the 90% confidence interval gains — which implies width reductions across datasets, averaged across runs. We find
that SSCP has a net reduction in intervals across all datasets, highlighting the robustness of the approach
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