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Abstract

Tree-shaped graphical models are widely used
for their tractability. However, they unfortunately
lack expressive power as they require commit-
ting to a particular sparse dependency structure.
We propose a novel class of generative models
called mixtures of all trees: that is, a mixture over
all possible (nn−2) tree-shaped graphical models
over n variables. We show that it is possible to
parameterize this Mixture of All Trees (MoAT)
model compactly (using a polynomial-size repre-
sentation) in a way that allows for tractable likeli-
hood computation and optimization via stochastic
gradient descent. Furthermore, by leveraging the
tractability of tree-shaped models, we devise fast-
converging conditional sampling algorithms for
approximate inference, even though our theoret-
ical analysis suggests that exact computation of
marginals in the MoAT model is NP-hard. Em-
pirically, MoAT achieves state-of-the-art perfor-
mance on density estimation benchmarks when
compared against powerful probabilistic models
including hidden Chow-Liu Trees.

1 INTRODUCTION

Probabilistic graphical models (PGMs) have been exten-
sively studied due to their ability to exploit structure in com-
plex high-dimensional distributions and yield compact repre-
sentations. The underlying graph structure of these models
typically dictates the trade-off between expressive power
and tractable probabilistic inference. On one end of the spec-
trum lie tree-shaped graphical models including Chow-Liu
trees (Chow and Liu, 1968), where the underlying graph is a
spanning tree T = (V,E) on n vertices. Tree distributions
allow for efficient sampling and exact inference on a variety

Proceedings of the 26th International Conference on Artificial Intel-
ligence and Statistics (AISTATS) 2023, Valencia, Spain. PMLR:
Volume 206. Copyright 2023 by the author(s).

of queries such as computing marginals (Pearl, 1988; Dar-
wiche, 2003) and are widely used in practice (Zhang and
Poon, 2017). However, by committing to a single sparse de-
pendency structure (by choice of spanning tree) their expres-
sive power is limited. On the other end of the spectrum, we
have densely connected graphical models such as Markov
random fields (MRFs) (Koller and Friedman, 2009; Rabiner
and Juang, 1986), Bayesian networks (Pearl, 1988), and
factor graphs (Loeliger, 2004), which excel at modelling
arbitrarily complex dependencies (Mansinghka et al., 2016),
but do so at the cost of efficient computation of marginal
probabilities. This spectrum and the underlying tradeoff
extends beyond graphical models to generative models at
large. For instance, deep generative models like variational
autoencoders (VAEs) (Maaløe et al., 2019) are extremely
expressive, but do not support tractable inference.

In this work, we propose a novel class of probabilistic mod-
els called Mixture of All Trees (MoAT): a mixture over all
possible (nn−2) tree-shaped MRFs over n variables; e.g.,
MoAT represents a mixture over 10196 components when
modeling joint distributions on 100 variables. Despite the
large number of mixture components, MoAT can be com-
pactly represented by O(n2) parameters, which are shared
across the tree components. The MoAT model strikes a new
balance between expressive power and tractability: (i) it
concurrently models all possible tree-shaped dependency
structures, thereby greatly boosting expressive power; (ii) by
leveraging the tractability of the spanning tree distributions
and the tree-shaped MRFs, it can not only tractably compute
normalized likelihood but also efficiently estimate marginal
probabilities via sampling. In addition, as a fixed-structure
model, MoAT circumvents the problem of structure learning,
which plagues most probabilistic graphical models.

This paper is organized as follows. Section 2 defines the
MoAT model and shows the tractability of exact (normal-
ized) likelihood computation despite the presence of super-
exponentially many mixture components. In Section 3, we
discuss the MoAT model’s parameterization and learning,
and demonstrate state-of-the-art performance on density es-
timation for discrete tabular data. Next, in Section 4, we
discuss the tractability of marginals and MAP inference in
MoAT and prove hardness results. Finally, we view MoAT
as a latent variable model and devise fast-converging impor-
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tance sampling algorithms that let us leverage the extensive
literature on inference in tree distributions.

2 MIXTURES OF ALL TREES

In this section, we propose mixture of all trees (MoAT)
as a new class of probabilistic models. We first introduce
tree-shaped Markov random fields (MRFs) and define the
MoAT model as a mixture over all possible tree distributions
weighted by the spanning tree distribution. Then, we demon-
strate how to tractably compute normalized likelihood on
the MoAT model.

2.1 Mixture of Tree-shaped Graphical Models

A tree-shaped MRF with underlying graph structure
G(V,E) represents a joint probability distribution PrG over
n random variables X = X1, · · · , Xn by specifying their
univariate and pairwise marginal distributions. Specifically,
assuming G is a tree with vertex set V = {1, · · · , n}, we
associate with each edge (u, v) ∈ E a pairwise marginal
distribution Puv(Xu, Xv) and each vertex u a univariate
marginal distribution Pv(Xv). Assuming that Puv and Pv

are consistent, then the normalized joint distribution PrG is
given by Meilă et al. (2000):

PrG(x) =

∏
(u,v)∈E Puv(xu, xv)∏
u∈V Pv(xv)deg v−1

, (1)

where x=(x1, · · · , xn) denotes assignment to X and deg v
denotes the degree of v in G; see Pr1(X1, X2, X3) in Fig-
ure 1 as an example tree-shaped MRF.

Despite the tractability of tree-shaped MRFs, they suffer
from the problem of limited expressive power. To improve
the expressive power, prior works propose to learn mixtures
of tree models (Anandkumar et al., 2012; Meilă et al., 2000),
where they focus on simple mixtures of a few trees, and pro-
pose EM algorithms for parameter and structure learning.
This idea, however, suffers from several limitations. Firstly,
while it is known how to optimally pick a single tree distri-
bution with respect to the training data via the Chow-Liu
algorithm (Chow and Liu, 1968), no known closed form
solution exists for picking the optimal set of tree distribu-
tions as mixture components from the super-exponentially
many possible choices for spanning trees. Secondly, by
having a small fixed number of (even possibly optimal) mix-
ture components, the model forces us to commit to a few
sparse dependency structures that might not be capable of
capturing complex dependencies anyway.

Though mixture of trees model becomes more expressive as
more tree structures are included, the number of parameters
increases with the number of mixture components, which
seem to suggest that a mixture over a large number of tree
components is infeasible. Despite this, we propose the mix-
ture of all trees model (MoAT), a polynomial-size represen-

tation for the mixture over all possible (super-exponentially
many) tree-shaped MRFs.

Formally, we define:

PrMoAT(x) =
1

Z

∑
T∈ST(Kn)

(∏
e∈T

we

)
PrT (x) (2)

where Kn denotes the complete graph on n vertices, ST(G)
denotes the set of spanning trees of a connected graph G,
and Z is the normalization constant. Each mixture com-
ponent is a tree-shaped MRF PrT weighted by

∏
e∈T we,

that is, product of the edge weights of the tree. Note that
we define the weight of each tree to be proportional to its
probability in the spanning tree distribution (Borcea et al.,
2009), which is tractable, allowing for efficient likelihood
computation on MoAT (Section 2.2.)

Though a MoAT model represents a mixture over super-
exponentially many tree-shaped MRFs, the number of pa-
rameters in MoAT is polynomial-size due the the parameter
sharing across its mixture components. Specifically, all
tree-shaped MRFs PrT (x) share the same univariate and
pair-wise marginals (i.e., Pu(xu) and Puv(xu, xv)); in ad-
dition, each edge in the graph Kn is parameterized by a
positive weight wuv . To summarize, a MoAT model over n
variables has O(n2) parameters.

Figure 1 shows an example MoAT model over 3 binary
random variables X1, X2, X3, for which there are 3 possible
spanning trees. Note that each of the mixture components
(tree distributions) share the same set of marginals, but
encode different distributions by virtue of their different
dependency structures.

For example, for the distribution represented in Figure 1,

PrMoAT(X1 = 1, X2 = 0, X3 = 1)

=
1

Z

∑
T∈ST(Kn)

(∏
e∈T

we

)
T (x)

=
1

2× 3 + 3× 6 + 6× 2
× [

(
2× 3× 0.5× 0.3

0.7

)
+

(
2× 6× 0.5× 0.2

0.6

)
+

(
3× 6× 0.2× 0.3

0.5

)
]

By Cayley’s formula (Chaiken and Kleitman, 1978), the
number of spanning trees increases super-exponentially with
respect to the number of random variables, thus preventing
us from evaluating them by enumeration.

2.2 Tractable Likelihood for MoAT

Despite a super-exponential number (nn−2) of mixture com-
ponents, we show that computing (normalized) likelihood
on MoAT is tractable. Our approach primarily leverages the
tractability of spanning tree distributions and their compact
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Figure 1: An example MoAT distribution over 3 binary random variables X1, X2, and X3. The summation at the top
denotes a mixture distribution where the mixture weights are given by the weights of the corresponding spanning tree (shown
on the edges). The tables on the left shows the univariate and pairwise marginal distributions, which are shared across the
mixture components (3 possible spanning trees).

representation as probability generating polynomials, which
has been extensively studied in the context of machine learn-
ing (Li et al., 2016; Mariet et al., 2018; Robinson et al.,
2019; Zhang et al., 2021).

Definition 1. Let Pr(·) be a probability distribution over
n binary random variables X=X1, X2, . . . , Xn, then the
probability generating polynomial for Pr is defined as∑

x∈{0,1}n
Pr(X = x)

(∏
i s.t. xi=1

zi

)
,

where each zi is an indeterminate associated with Xi.

To define spanning tree distributions and present their rep-
resentation as probability generating polynomials, we first
introduce some notation. Let G = (V,E) be a connected
graph with vertex set V = {1, . . . , n} and edge set E. Asso-
ciate to each edge e ∈ E an indeterminate ze and a weight
we ∈ R≥0. If e = {i, j}, let Ae be the n× n matrix where
Aii = Ajj = 1, Aij = Aji = −1 and all other entries
equal to 0. Then the weighted Laplacian of G is given by
L(G) =

∑
e∈E wezeAe,

For instance, the weighted Laplacian for the example MoAT
distribution in Figure 1 is2zab + 6zac −2zab −6zac

−2zab 2zab + 3zbc −3zbc
−6zac −3zbc 3zbc + 6zac


Using L(G)\{i} to denote the principal minor of L(G) that
is obtained by removing its ith row and column, by the
Matrix Tree Theorem (Chaiken and Kleitman, 1978), the
probability generating polynomial for the spanning tree dis-
tribution is given by:

det(L(G)\{i}) =
∑

T∈ST(G)

(∏
e∈T

weze

)
(3)

Now we derive the formula for computing PrMoAT(x) effi-
ciently. We first set G = Kn and ze =

Puv

PuPv
and define:

L∗ := L(Kn)\{i}
∣∣
ze=

Puv
PuPv

;

and it follows from Equation 3 that

det (L∗) =
∑

T∈ST(Kn)

(∏
e∈T

we

) ∏
(u,v)∈T

Puv

PuPv
;

note that
∏

(u,v)∈T PuPv =
∏

u P
deg(u)
u ; hence,

det (L∗)=
1∏

v∈V Pv

∑
T∈ST(Kn)

(∏
e∈T

we

) ∏
(u,v)∈T Puv∏

v∈V P deg v−1
v

=
Z∏

v∈V Pv
PrMoAT,

where the second equality follows from the definition of
MoAT (Equation 2). Finally, we multiply both sides by(∏

v∈V Pv

)
/Z thus PrMoAT(x) can be evaluated as:

PrMoAT(x) =
1

Z

(∏
v∈V

Pv (xv)

)
det(L∗∣∣

x
).

Note that the normalization constant of the MoAT model
Z =

∑
T∈ST(Kn)

(∏
e∈T we

)
can be evaluated efficiently

as a determinant by replacing the indeterminate ze with the
constant 1. As the computational bottleneck is the determi-
nant calculation, the time complexity is upper bounded as
O(nω), where ω is the matrix multiplication exponent.

3 DENSITY ESTIMATION

In the previous section, we introduced the MoAT model and
described how we can compute likelihood tractably. In this
section, we describe how to parameterize the MoAT model
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in a way that is amenable to learning and subsequently effec-
tive density estimation on real world datasets. There are few
desirable properties we seek from this parameterization (of
univariate and pairwise marginals in particular). Firstly, we
need to parameterize the marginals in way that are consis-
tent with each other. This is essential as it guarantees that all
tree-shaped mixture components (Equation 1) in the MoAT
model are normalized. Secondly, we want our parameteriza-
tion to capture the entire space of consistent combinations
of univariate and pairwise marginals. In particular, this also
ensures that every tree distribution is representable by our
parameterization.

3.1 MoAT Parameter Learning

For a MoAT model over n binary random variables V =
{X1, X2, ..., Xn}, we propose the following parameteriza-
tion (as illustrated in Figure 2):

• Edge weights: we ∈ R≥0 for e ∈
(
V
2

)
.

• Univariate marginals: pv=P (Xv=1) ∈ [0, 1] ∀v ∈ V .
• Pairwise marginals: puv = P (Xu = 1, Xv = 1) ∈
[max(0, pu + pv − 1),min(pu, pv)] for {u, v} ∈

(
V
2

)
.

0 0

0 1

1 0

1 1

X2 X3 Pr
1 − α2 − α3 − β23

α3 − β23
α2 − β23

β23

0

1

X1 Pr

α1

1 − α1 0

1

X2 Pr

α2

1 − α2 0

1

X3 Pr

α3

1 − α3

0 0

0 1

1 0

1 1

X1 X2 Pr
1 − α1 − α2 − β12

α2 − β12
α1 − β12

β12

0 0

0 1

1 0

1 1

X1 X3 Pr
1 − α1 − α3 − β13

α3 − β13
α1 − β13

β13

Figure 2: Parameterization for multivariate and univariate
marginals for the example distribution on three binary ran-
dom variables. The αis and βijs are the free parameters.

As mentioned in Section 2, to ensure that all the mixture
components of MoAT are normalized, our parameterization
for Pu and Puv needs to be consistent; specifically, they
need to satisfy the following constraints:

• P (Xv= 0) + P (Xv=1)=1 for all v ∈ V .
•
∑

a∈{0,1} P (Xu = a,Xv = b) = P (Xv = b) ∀b ∈
{0, 1},∀{u, v} ∈

(
V
2

)
.

•
∑

(a,b)∈{0,1}2 P (Xu=a,Xv=b)=1 ∀{u, v} ∈
(
V
2

)
.

Lemma 1. For any distribution Pr(·) over binary ran-
dom variables X1, . . . , Xn, there exists a set of parame-
ters (i.e., pv and puv) in our hypothesis space such that
Pr(Xu) = Pu(Xu) and Pr(Xu, Xv) = Puv(Xu, Xv) for
all 1 ≤ u, v ≤ n; i.e., the univariate and pair-wise marginals
of Pr are the same as Pu and and Puv .

See appendix for proof. This lemma shows that the MoAT
parameterization is not just valid, but also fully general in
the sense that it covers all possible consistent combinations
of univariate and pairwise marginals. Further, the MoAT
parameterization naturally extends to categorical variables.
For categorical random variables V = {X1, X2, ..., Xn},
let val(Xi) = {1, 2, · · · , ki}. It is easy to see that the
values P (Xv = i) for i ∈ {1, 2, · · · , kv − 1} uniquely
determine the univariate marginals. Similarly, the val-
ues P (Xu = i,Xv = j) for (i, j) ∈ {1, 2, · · · , ku −
1} × {1, 2, · · · , kv − 1} uniquely determine the pairwise
marginals. This extension is provably valid, but not fully
general. For MoAT over categorical variables, whether there
exists a fully general parameterization (i.e., Lemma 1 holds)
is unknown. See appendix for a detailed discussion.

Parameter Learning For individual tree distributions,
the optimal tree structure (as measured by KL divergence
from training data) is the maximum weight spanning tree
of the complete graph, where edge weights are given by
mutual information between the corresponding pairs of
variables (Chow and Liu, 1968). Following this intuition,
we use mutual information to initialize we; besides, we
also initialize the univariate and pairwise marginals of the
MoAT model by estimating them from training data. Finally,
given our parameter initialization, we train the MoAT model
by performing maximum likelihood estimation (MLE) via
stochastic gradient descent.

It is worth noting that our parameter initialization is deter-
ministic. We perform ablation studies to check the effective-
ness of our initialization. As shown in Figure 3, compared
to random initialization, we observe that our special initial-
ization always leads to better initial log likelihood, faster
convergence and better final log likelihood.

3.2 Density Estimation via MoAT

We evaluate MoAT on a suite of density estimation datasets
called the Twenty Datasets (Van Haaren and Davis, 2012),
which contains 20 real-world datasets covering a wide range
of application domains including media, medicine, and re-
tail. This benchmark has been extensively used to evaluate
tractable probabilistic models. We compare MoAT against
two baselines: (1) hidden Chow-Liu trees (HCLTs) (Liu
and Van den Broeck, 2021), which are a class of probabilis-
tic models that achieve state-of-the-art performance on the
Twenty Datasets benchmark and (2) the mixture of trees
model (MT) (Meilă et al., 2000).

Table 1 summarizes the experiment results. MoAT outper-
forms both HCLT and MT on 14 out of 20 datasets. In
particular, the MoAT model beats baselines by large mar-
gins on all datasets with more than 180 random variables.
It is also worth noting that despite having fewer parameters
(O(n2)) than MT (O(k ·n2), where k is the number of mix-
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(a) NLTCS Dataset

(b) Jester Dataset

Figure 3: Average log-likelihood throughout training on
datasets across various data dimensionalities: our initializa-
tion vs. random initialization (averaged over 5 runs).

ture components in MT), MoAT almost always outperforms
MT, with the exception of a few smaller datasets, where
MoAT does not have enough parameters to fit the data well.

4 ON THE HARDNESS OF MARGINALS
AND MAP INFERENCE

In this section, we prove the hardness of semiring queries
(which is a generalization of marginals) and Maximum a
posteriori (MAP) inference on the MoAT model.

4.1 On the Hardness of Computing Marginals

First, we define the notion of semiring queries.
Definition 2. Semiring Queries (SQ): Let p(X) be a real-
valued function over random variables X. The class of
semiring queries QF is the set of queries that compute values
of the following form:

f(e) =
∑
z

p(z, e)

where e ∈ val(E) is a partial configuration for any subset
of random variables E ⊆ X, and Z = X\E is the set of
remaining random variables.

When the semiring sum/product operations correspond to
the regular sum/product operations and the function p is a
likelihood function, the semiring query f(e) actually com-
putes marginal probabilities.

Dataset # vars MoAT HCLT MT
nltcs 16 -6.07 -5.99 -6.01
msnbc 17 -6.43 -6.05 -6.07
kdd 65 -2.13 -2.18 -2.13
plants 69 -13.50 -14.26 -12.95
baudio 100 -39.03 -39.77 -40.08
jester 100 -51.65 -52.46 -53.08
bnetflix 100 -55.52 -56.27 -56.74
accidents 111 -31.59 -26.74 -29.63
tretail 135 -10.81 -10.84 -10.83
pumsb 163 -29.89 -23.64 -23.71
dna 180 -87.10 -79.05 -85.14
kosarek 190 -10.57 -10.66 -10.62
msweb 294 -9.80 -9.98 -9.85
book 500 -33.46 -33.83 -34.63
tmovie 500 -49.37 -50.81 -54.60
cwebkb 839 -147.70 -152.77 -156.86
cr52 889 -84.78 -86.26 -85.90
c20ng 910 -149.44 -153.4 -154.24
bbc 1058 -243.82 -251.04 -261.84
ad 1556 -15.30 -16.07 -16.02

Table 1: Comparison of average log likelihood of MoAT,
HCLT, and MT across the Twenty Datasets benchmarks.
Best results are presented in bold.

In fact, if p is the likelihood function for the MoAT model,
for an assignment e to E ⊆ X,

f(e) =
1

Z

∑
z

∑
T∈ST(Kn)

(∏
v∈V

Pv (xv)

)
 ∏

(u,v)∈T

w(u,v)
Puv(xu, xv)

Pu(xu)Pv(xv)

 ,

where Z =
∑

T∈ST(Kn)

(∏
e∈T we

)
is the normaliza-

tion constant and z enumerates over all instantiations of
Z = X\E. Thus, in this case, f(e) actually computes
marginals in the MoAT model. However, the generality of
the semiring queries allows for negative parameter values
and hence negative “probabilities”, which we leverage to
prove hardness of semiring queries on the MoAT model.

Since most marginal computation algorithms on tractable
probabilistic models (such as the jointree algorithm which
relies on variable elimination (Zhang and Poole, 1996;
Dechter, 1996) and circuit compilation based methods
(Chavira and Darwiche, 2008; Darwiche, 2002)) are semir-
ing generalizable (Wachter et al., 2007; Kimmig et al., 2017;
Bacchus et al., 2009), the hardness of semiring queries on
the MoAT model would strongly suggest the hardness of
marginal computation. In other words, the hardness of
semiring queries would rule out most marginal inference
techniques in the literature as they perform purely algebraic
computations on the parameter values without any restric-
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tions/assumptions on the range of these values. We dedicate
the rest of this subsection to establishing the same, while
deferring most technical proof details to the appendix.

Theorem 1. Computation of semiring queries on the MoAT
model is NP-hard.

Proof. To prove the hardness of semiring queries, we pro-
ceed by a reduction from the subset spanning tree prob-
lem (denoted SST), which we define below.

Lemma 2. Define SST as the following decision problem:
given a connected graph G = (V,E) and a subset K ⊂ V
of the vertices, decide if there exists a spanning tree of G
whose leaves are exactly K. SST is NP-hard.

Consider an arbitrary connected graph G = (V,E) on
|V | = n ≥ 3 vertices and a subset of vertices K ⊂ V .
Set MoAT likelihood function parameters on n binary ran-
dom variables X = {X1, X2, . . . , Xn} (corresponding to
the vertices of G) as follows:

• 0 < ϵ < 1

• we =

{
1, e = {i, j} ∈ E

0, otherwise

• val(Xi) = {0, 1}.

• Pv(0) = ϵ, Pv(1) = −1 for all v ∈ V .

• Puv(α, β) =


ϵ, α = β = 0

0, α = β = 1

−ϵ, otherwise

One can intuitively interpret an assignment of 1 as corre-
sponding to labelling a node as a leaf, and 0 as marking it
as unknown. The univariate and pairwise marginals have
been carefully chosen to ensure that any tree assigns higher
probability to assignments where all the nodes assigned 1
are leaves in the tree and lower probabilities to assignments
where one or more nodes that are assigned 1 are actually
internal nodes. In fact, for any tree, there exists a likelihood
separation of ϵ between assignments that agree on the leaves
and those that do not. By assigning 1 to all the variables in
K ⊂ V and 0 to others, and by choosing a sufficiently small
ϵ, we can now effectively use the MoAT likelihood as an
indicator for the presence of an spanning tree whose leaves
are a superset of K. More impressively, we can exactly
count the number of spanning trees that satisfy the desired
property, and we formalize the same in the following lemma.

Lemma 3. Let x be a complete assignment, and denote by
ONES(x) the set of variables are are set to 1 in x. Denote by
|x| the value |ONES(x)| and LEAVES(T ) the set of leaves
of a spanning tree T . Let k be the number of spanning trees

T of G with ONES(x) ⊆ LEAVES(T ). Then,{
k

ϵn−2 ≤ Z · p(x) ≤ k
ϵn−2 + nn−2

ϵn−3 , |x|%2 = 0
−k
ϵn−2 + −nn−2

ϵn−3 ≤ Z · p(x) ≤ −k
ϵn−2 , |x|%2 = 1

See appendix for proof.

Corollary 1. Let ϵ < 1
2n+1·nn−2 . The number of

spanning trees T with K ⊆ LEAVES(T ) is given by∣∣⌊Z · ϵn−2 · p(x)⌉
∣∣, where xi = 1 if and only if i ∈ K

(that is, x is the assignment that assigns 1 to all the variables
in K and 0 to all the other variables), ⌊x⌉ denotes the closest
integer to x.

Proof. Let k be the number of spanning trees T with K ⊆
LEAVES(T ). When |x|%2 = 0, k ≤ Zϵn−2p(x) ≤ k +
ϵnn−2 ≤ k + 1

2n+1 . Thus,
∣∣⌊Zϵn−2p(x)⌉

∣∣ = k as desired.
An analogous proof holds for the case of |x|%2 = 1.

Note that Puv

PuPv
≥ 0, and hence the sign of p(x) depends

solely on the parity of |x|. Thus, we can leverage the
inclusion-exclusion formula to count spanning trees T with
K = LEAVES(T ) using expressions for number of span-
ning trees T with K ⊆ LEAVES(T ) given by Corollary 1.

Lemma 4. The number of spanning trees T with K =
LEAVES(T ) is given by

∣∣⌊Zϵn−2f(e)⌉
∣∣.

Proof Sketch. From the inclusion-exclusion formula we
obtain that the number of spanning trees T with K =
LEAVES(T ) (upto sign) is given by∑

K⊆L

(−1)|L|
∑

T∈ST(G)

1(L ⊆ LEAVES(T ))

=
∑

val(z1)

∑
val(z2)

. . .
∑

val(zk)

(−1)|x|
∣∣⌊Zϵn−2p(x)⌉

∣∣
= ⌊Zϵn−2

∑
val(z1)

∑
val(z2)

. . .
∑

val(zk)

p(x)⌉

= ⌊Zϵn−2f(e)⌉

We now obtain that there exists a spanning tree T with
K = LEAVES(T ) if and only if

∣∣⌊Zϵn−2f(e)⌉
∣∣ > 0. This

completes the reduction from SST, as desired.

It is worth re-emphasizing the strength of this hardness
result in the context of marginal computation, in that it elim-
inates all marginal inference algorithms that are agnostic to
parameter values (which is, to the best of our knowledge,
all possible known exact marginal inference techniques in
literature). This opens up an interesting question about new
classes of marginal computation algorithms that are not
parameter-value agnostic.
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4.2 On the Hardness of MAP Inference

In this section, we prove that maximum-a-posteriori (MAP)
inference (i.e., computing the most likely assignment) for
the MoAT model is NP-hard via a reduction from the 3-
coloring problem (Lovász, 1973).

Theorem 2. MAP inference for MoAT is NP-hard.

Proof. Consider an arbitrary connected graph G = (V,E)
on |V | = n vertices. Build a MoAT model M on n discrete
random variables X = {X1, X2, . . . , Xn} (corresponding
to the vertices of G) as follows:

• we =

{
1, e = {i, j} ∈ E

0, otherwise

• val(Xi) = {R,G,B}.

• Pv(R) = Pv(B) = Pv(G) = 1
3 for all v ∈ V .

• Puv(α, β) =

{
0, α = β
1
6 , α ̸= β

Observe that the weights define a uniform distribution over
all possible spaninng trees of G. Furthermore, the univariate
marginals Pv and pairwise marginals Puv are consistent and
define a valid tree distribution.

Next, observe that a complete assignment x to X corre-
sponds to a coloring of the original graph G. It is easy to
check that for any particular spanning tree T,

T (x) =

{
1

3×2n−1 , x is a valid 3-coloring of the tree
0, otherwise

Now, we show that x is a valid 3 coloring of the given graph
G if and only if M(x) = 1

3×2n−1 .

Firstly, if x is a valid 3-coloring of G, then no pair of adja-
cent vertices in G are assigned the same color. Hence, the
probability assigned to x by any of the spanning trees of G
is 1

3×2n−1 . Hence,

M(x) =
1

Z

∑
T∈ST(G)

(∏
e∈T

we

) ∏
(u,v)∈T Puv (xu, xv)∏
v∈V Pv (xv)

deg v−1

=
1

3× 2n−1

 1

Z

∑
T∈ST(G)

(∏
e∈T

we

) =
1

3× 2n−1

Conversely, if x is not a valid 3-coloring of G, then there
exist at least one pair of neighboring vertices in G which
share the same color. Now, any spanning tree that contains
the corresponding edge (which always exists) would assign
zero likelihood to x and M(x) be strictly less than 1

3×2n−1 .
Thus, the graph is 3-colorable if and only if the global MAP
state of M has a probability of 1

3×2n−1 .

5 EFFICIENT APPROXIMATE
INFERENCE

Unlike usual mixture models, all mixture components in
MoAT are close to maximum likelihood on the entire dataset
(owing to their consistent univariate and pairwise marginals),
but are just sufficiently different enough to model complex
dependencies. In this section, we explore how this key obser-
vation combined with the tractability of tree-shaped models
lets us devise fast-converging algorithms for approximate
inference on MoAT.

5.1 MoAT as a Latent Variable Model

Interestingly, the MoAT model yields itself to being inter-
preted as a latent variable model in an extremely natural
way with clear semantics. Defining Y to be the latent ran-
dom variable with val(Y ) = ST(G), one can view MoAT
as a distribution over {Y,X1, X2, ..., Xn}, where Y mod-
els the choice of spanning tree, and inference of the form
PrMoAT(x) amounts to marginalizing out the latent vari-
able Y . More precisely,

PrMoAT(x)=
∑

T∈ST(G)

(∏
e∈T we

)
Z

·
∏

(u,v)∈T Pruv (xu, xv)∏
v∈V Pv (xv)

deg v−1

=
∑

y∈val(Y )

P (y) · P (x | y)

It is worth emphasizing the distinctiveness of this charac-
terization. Typically in latent variable models, the latent
variables act as higher dimensional features over some sub-
set of the variables. However, for the MoAT model, the
latent variable controls the sparse dependency structure that
is enforced across the same set of variables.

5.2 Efficient Importance Sampling on MoAT

Exact marginals and conditionals are provably tractable
on tree distributions owing to classic techniques such as
variable elimination. Consequently, tree distributions are ex-
tremely amenable to efficient conditional sampling (Koller
and Friedman, 2009). We show that MoAT, a mixture over
tree distributions, also supports effective conditional sam-
pling even though our theoretical analysis (Section 4.1)
suggests that even computation of marginals in MoAT is
NP-hard.

Importance Sampling Revisiting the view of MoAT as a
latent variable model P (Y,X), we arrive at a very natural
choice of proposal distribution Q(Y,X) that leads to an
efficient importance sampling algorithm (Tokdar and Kass,
2010). For evidence e, (and abusing notation to have x refer
to an assignment to the unobserved variables) we have that:

Q(y,x | e)
= P (y)P (x | ye) ≈ P (y | e)P (x | ye) = P (y,x | e)
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Figure 4: Convergence of various sampling algorithms for posterior marginal inference on NLTCS with different evidence
sizes. The reported results are averaged across 5 random seeds.

At a high level, this amounts to sampling a spanning tree
unconditionally (Durfee et al., 2017), and then sampling
the remaining variables from the chosen tree distribution
conditioned on the evidence. More precisely, the weighting
function for the samples drawn from the proposal distribu-
tion is given by

w(y,x | e) = P (y,x | e)
Q(y,x | e)

=
P (y | e)
P (y)

=
P (e | y)
P (e)

The efficiency of the sampling algorithm (as evaluated
through, say, the effective sample size) depends on how
close the sample weights are to 1. Intuitively, the ratio
P (e|y)
P (e) captures how much the likelihood of partial evidence

in a single spanning tree differs from the corresponding
likelihood in the model. As all the mixture components
share the same consistent set of univariate and pairwise
marginals, it is natural to expect that this ratio does not de-
viate significantly from 1, thereby leading to high-quality
samples. Indeed, our empirical analysis demonstrates that
the aforementioned intuition does hold.

Note that we do not actually need to compute P (e) to obtain
the sample weights when computing expectations. We can
use the unnormalized weight w′(y,x | e) = P (e | y) as
P (e) is a multiplicative constant given e, thereby leading
to a self-normalizing importance sampling algorithm. The
expectation of any function f(X) over P can be estimated
using samples D = {xy[1], . . . ,xy[M ]} from Q as:

ÊD(f) =

∑M
m=1 f(x[m])w(xy[m])∑M

m=1 w(xy[m])

=

∑M
m=1 f(x[m])P (e | y[m])∑M

m=1 P (e | y[m])

=

∑M
m=1 f(x[m])w′(xy[m])∑M

m=1 w
′(xy[m])

Collapsed Sampling Observe that the sample weights
w(y,x | e) = P (e|y)

P (e)=w(y|e) only depend on e and y and are

independent of x. Given an arbitrary function f(x), this
allows to effectively “push the expectation inside” to the tree
level, and freely leverage any estimation method available
for estimating the expectation of f(x) on a tree distribution.
This amounts to a form of collapsed sampling (Koller and
Friedman, 2009):

Ex,y∼P (·|e)(f(x)) =
∑
xy

P (y | e) · P (x | ye) · f(x)

=
∑
xy

w(y,x | e) · P (y) · P (x | ye) · f(x)

=
∑
y

P (y)
∑
x

w(y,x | e) · P (x | ye) · f(x)

=
∑
y

P (y) · w(y | e)
∑
x

(P (x | ye) · f(x))

=
∑
y

P (y) · w(y | e) ·Ex∼P (·|ye)f(x)

Our empirical estimator then becomes

ÊD(f) =

∑M
m=1 w

′(y[m])Ex∼(·|ye)(f(x))∑M
m=1 w

′(y[m])

Intuitively, we sample a spanning tree, compute the desired
quantity in the corresponding tree distribution, and weight
the estimate appropriately. We are thus able to drastically
speed up convergence by leveraging the whole suite of exact
and approximate techniques available for estimation in tree
distributions which have been extensively studied in the
literature. For instance, as conditionals of the form P (Xi =
1 | e) are tractable in tree distributions, we can efficiently
estimate PrMoAT(Xi = 1 | e) as

P̂rMoAT(Xi=1 | e) =
∑M

m=1 w
′(y[m])P (Xi = 1 | y[m]e)∑M

m=1 w
′(y[m])
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Empirical Evaluation Empirically, we evaluate our im-
portance sampling algorithm and the collapsed importance
sampling algorithm against a standard Gibbs sampling al-
gorithm (Gelfand and Smith, 1990), which is enabled by
tractable likelihood computation on the MoAT model. In
our experiments, we focus on posterior marginal inference:
we fix evidence e of various sizes, and estimate univariate
marginals of the remaining variables conditioned on the evi-
dence P (Xi | e). To illustrate speed of convergence to the
true value, we require to exactly compute these ground-truth
conditionals. To that end, we limit ourselves to a MoAT
model on the 16 variable NLTCS dataset from the Twenty
Datasets benchmark, where we can exactly compute MoAT
marginals and conditionals by exhaustive enumeration. We
use average KL-divergence as our metric to assess the speed
of convergence:

DKL(P∥P̂ )

=
∑

Xi∈X\E

P (xi |e) log
P (xi |e)
P̂ (xi |e)

+ P (xi | e)log
P (xi |e)
P̂ (xi |e)

As we see Figure 4, the importance sampling and collapsed
importance sampling converge orders of magnitude faster
than Gibbs sampling. These results are all the more im-
pressive when we account for the superior computational
complexity of importance sampling. The bottleneck in the
importance sampling algorithm is the spanning tree sam-
pling, leading to a time complexity of O(nω). However,
each sample in Gibbs sampling requires n likelihood es-
timation queries, resulting in a complexity of O(n · nω).
Further, we observe that the importance sampling algorithm
produces very high quality samples as illustrated by the
closeness of sample weights to 1 (Figure 5).

Figure 5: Distribution of sample weights for |e| = 4.

6 CONCLUSION

In this paper, we propose a novel class of generative models
called mixture of all trees (MoAT), which strikes a new
balance between expressivity and tractability. Despite be-
ing a mixture over super-exponentially many tree-shaped
distributions, we show that it allows for tractable computa-
tion of (normalized) likelihood. Besides, learning a MoAT

model does not involve the problem of structure learning,
which plagues most probabilistic graphical models.

While we prove hardness of certain classes of queries such
as MAP, we demonstrate how MoAT’s foundation in tree-
shaped models allows us to naturally obtain extremely fast
approximate inference algorithms by interpreting it as latent
variable model with clear semantics and leveraging tractabil-
ity of its underlying mixture components. Empirically, we
see that MoAT achieves state-of-the-art performance on a
variety of density estimation tasks, outperforming powerful
probabilistic models such as HCLTs. We leave it to future
work to explore MoAT’s potential to scale to non-tabular
data such as images and text.

We hope that MoAT opens up interesting questions that
push the boundaries of tractability and expressive power for
probabilistic graphical models.
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A Complete Proofs

This is section, we present lemmas whose proofs were deferred to the appendix.

Lemma 1. For any distribution Pr(·) over binary random variables X1, . . . , Xn, there exists a set of parameters (i.e., pv
and puv) in our hypothesis space such that Pr(Xu) = Pu(Xu) and Pr(Xu, Xv) = Puv(Xu, Xv) for all 1 ≤ u, v ≤ n; i.e.,
the univariate and pair-wise marginals of Pr are the same as Pu and and Puv .

Proof. Pick MoAT parameters pv = Pr(Xv = 1) and puv = Pr(Xu = 1, Xv = 1). By construction, the summation
constraints are satisifed. Thus, it suffices to check that all the univariate and pairwise marginals are non-negative. For
any v ∈ V , we have that P (Xv = 1) = pv ∈ [0, 1]. Then P (Xv = 0) = 1 − pv ∈ [0, 1] as desired. Further, for
every {u, v} ∈

(
V
2

)
, P (Xu = 1, Xv = 0) = pu − puv, P (Xu = 0, Xv = 1) = pv − puv, and P (Xu = 0, Xv = 0) =

1−puv−(pu−puv)−(pv−puv) = puv−(pu+pv−1) ≥ 0 since P (Xu = 1, Xv = 1) ∈ [max(0, pu+pv−1),min(pu, pv)]
Hence, the univariate and pair-wise marginals of Pr are the same as Pu and and Puv , as desired.

.

Lemma 2. Define SST as the following decision problem: given a connected graph G = (V,E) and a subset K ⊂ V of the
vertices, decide if there exists a spanning tree of G whose leaves are exactly K. SST is NP-hard.

Proof. We proceed via reduction from HAMILTONIAN− PATH. Observe that a spanning tree with exactly two leaves is a
Hamiltonian path between the two leaves. Given G = (V,E), we iterate over all pairs of vertices {i, j}, and query the SST
oracle for the existence of spanning tree with K = {i, j}. Then, G has a Hamiltonian path if and only if there exists at least
one pair of vertices for which the decision of the SST oracle is YES.

Lemma 3. Let x be a complete assignment, and denote by ONES(x) the set of variables are are set to 1 in x. Denote by |x|
the value |ONES(x)|. Denote by LEAVES(T ) the set of leaves of a spanning tree T . Let k be the number of spanning trees

T of G with ONES(x) ⊆ LEAVES(T ). Then,

{
k

ϵn−2 ≤ Z · p(x) ≤ k
ϵn−2 + nn−2

ϵn−3 , |x|%2 = 0
−k
ϵn−2 + −nn−2

ϵn−3 ≤ Z · p(x) ≤ −k
ϵn−2 , |x| |%2 = 1

Proof. We will compute the values of the MOAT likelihood function p for any complete assignment x.

• Case 1: ONES(x) ⊆ LEAVES(T )(∏
v∈V

Pv (xv)

) ∏
(u,v)∈E

w(u,v) ·
Puv(xu, xv)

Pu(xu) · Pv(xv)


=

∣∣∣∣∣∣
(∏

v∈V

Pv (xv)

) ∏
(u,v)∈E

w(u,v) ·
Puv(xu, xv)

Pu(xu) · Pv(xv)

∣∣∣∣∣∣ · (−1)|x|

(Since Puv

Pu·Pv
≥ 0 and Pv(xv) < 0 ⇐⇒ xv = 1)

=

∣∣∣∣∣
∏

(u,v)∈E w(u,v)Puv (xu, xv)∏
v∈V Pv (xv)

deg v−1

∣∣∣∣∣ · (−1)|x|

=

∣∣∣∣∣
∏

(u,v)∈E ϵ∏
v∈V ϵdeg v−1

∣∣∣∣∣ · (−1)|x|

=

∣∣∣∣∣
∏

(u,v)∈E ϵ∏
v∈V ϵdeg v−1

∣∣∣∣∣ · (−1)|x|

=

∣∣∣∣ ϵn−1

ϵ2n−3

∣∣∣∣ · (−1)|x|

=
1

ϵn−2
· (−1)|x|

• Case 2: ONES(x) ̸⊆ LEAVES(T )
In this case γ ≥ 1 internal nodes (nodes with degree more than one) are assigned a value of 1. Then similarly,
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– If |x|%2 = 0, we obtain that

0 ≤

(∏
v∈V

Pv (xv)

) ∏
(u,v)∈E

w(u,v) ·
Puv(xu, xv)

Pu(xu) · Pv(xv)


=

∣∣∣∣∣∣
(∏

v∈V

Pv (xv)

) ∏
(u,v)∈E

w(u,v) ·
Puv(xu, xv)

Pu(xu) · Pv(xv)

∣∣∣∣∣∣
=

∣∣∣∣∣
∏

(u,v)∈E ϵ∏
v∈V Pv (xv)

deg v−1

∣∣∣∣∣
≤
∣∣∣∣ ϵn−1

ϵ2n−4

∣∣∣∣
≤ 1

ϵn−3

– If |x|%2 = 1, we obtain that

0 ≥

(∏
v∈V

Pv (xv)

) ∏
(u,v)∈E

w(u,v) ·
Puv(xu, xv)

Pu(xu) · Pv(xv)


=−

∣∣∣∣∣∣
(∏

v∈V

Pv (xv)

) ∏
(u,v)∈E

w(u,v) ·
Puv(xu, xv)

Pu(xu) · Pv(xv)

∣∣∣∣∣∣
=−

∣∣∣∣∣
∏

(u,v)∈E ϵ∏
v∈V Pv (xv)

deg v−1

∣∣∣∣∣
≥−

∣∣∣∣ ϵn−1

ϵ2n−4

∣∣∣∣
≥− 1

ϵn−3

As the maximum number of spanning trees on a graph with n vertices is nn−2, we obtain the desired bounds:
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• If |x|%2 = 0, we obtain that

Z · p(x) =
∑

T∈ST(G)

(∏
v∈V

Pv (xv)

) ∏
(u,v)∈E

w(u,v) ·
Puv(xu, xv)

Pu(xu) · Pv(xv)


=

∑
T∈ST(G)

K⊆LEAVES(T )

(∏
v∈V

Pv (xv)

) ∏
(u,v)∈E

w(u,v) ·
Puv(xu, xv)

Pu(xu) · Pv(xv)



+
∑

T∈ST(G)
K ̸⊆LEAVES(T )

(∏
v∈V

Pv (xv)

) ∏
(u,v)∈E

w(u,v) ·
Puv(xu, xv)

Pu(xu) · Pv(xv)


≥

∑
T∈ST(G)

K⊆LEAVES(T )

1

ϵn−2
+

∑
T∈ST(G)

K ̸⊆LEAVES(T )

0

≥ k

ϵn−2

Similarly Z · p(x) ≤
∑

T∈ST(G)
K⊆LEAVES(T )

1

ϵn−2
+

∑
T∈ST(G)

K ̸⊆LEAVES(T )

1

ϵn−3

≤ k

ϵn−2
+

nn−2

ϵn−3

• If |x|%2 = 1, we similarly obtain that

Z · p(x) ≤ −k

ϵn−2

Z · p(x) ≥ −k

ϵn−2
+

−nn−2

ϵn−3

Thus,

{
k

ϵn−2 ≤ Z · p(x) ≤ k
ϵn−2 + nn−2

ϵn−3 , |x|%2 = 0
−k
ϵn−2 + −nn−2

ϵn−3 ≤ Z · p(x) ≤ −k
ϵn−2 , |x| |%2 = 1

as desired.

Lemma 4. The number of spanning trees T with K = LEAVES(T ) is given by
∣∣⌊Zϵn−2f(e)⌉

∣∣.
Proof. Since the number of spanning trees T with K ⊆ LEAVES(T ) is given by

∣∣⌊Z · ϵn−2 · p(x)⌉
∣∣, from the inclusion-

exclusion formula we obtain that the number of spanning trees T with K = LEAVES(T ) (upto sign) is given by∑
K⊆L

(−1)|L|
∑

T∈ST(G)

1(L ⊆ LEAVES(T ))

=
∑

val(z1)

∑
val(z2)

. . .
∑

val(zk)

(−1)|x|
∣∣⌊Zϵn−2p(x)⌉

∣∣
=
∑

val(z1)

∑
val(z2)

. . .
∑

val(zk)

⌊Zϵn−2p(x)⌉
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Let {x} = |x− ⌊x⌉|. Since the {Z · ϵn−2 · p(x)} ≤ ϵ · nn−2 for all x, we obtain that∑
val(z1)

∑
val(z2)

. . .
∑

val(zk)

{Z · ϵn−2 · p(x)}

≤2n · ϵ · nn−2

<2n · 1

2n+1 · nn−2
· nn−2

<
1

2

Thus, we obtain that the number of spanning trees T with K = LEAVES(T ) is given by∑
val(z1)

∑
val(z2)

. . .
∑

val(zk)

⌊Z · ϵn−2 · p(x)⌉

=⌊
∑

val(z1)

∑
val(z2)

. . .
∑

val(zk)

Z · ϵn−2 · p(x)⌉

=⌊Z · ϵn−2 ·
∑

val(z1)

∑
val(z2)

. . .
∑

val(zk)

p(x)⌉

=⌊Z · ϵn−2 · f(e)⌉

B Parameterization for Categorical Variables

Consider the MoAT pairwise marginal matrix P
(ku×kv)
uv defined by Puv[i][j] = P (Xu = i,Xv = j).

B.1 Relation to Doubly Stochastic Matrices

This MoAT pairwise marginal matrix is closely related to the class of matrices called doubly stochastic matrices, where all
the entries are between 0 and 1 and the rows and columns sum to 1. Recall that for the MoAT pairwise marginal matrix,
we similarly require that the rows and columns sum to the corresponding univariate marginals. The set of k × k doubly
stochastic matrices (often referred to as the Birkhoff polytope) lies in a (k − 1)× (k − 1) affine subspace of Rk×k, and to
the best of our knowledge there is no known valid and fully general parameterization for this class of matrices that allows
for unconstrained optimization. Similarly, the pairwise marginal matrices which are uniquely defined by the values Puv[i][j]
for (i, j) ∈ {1, 2, · · · , k − 1} × {1, 2, · · · , k − 1}, also lie in a (k − 1) × (k − 1) affine subspace of Rk×k, and there is
unfortunately, to the best of our knowledge, no known valid and fully general parameterization for this class of matrices that
allows for unconstrained optimization.

However, we instead propose a valid parameterization of MoAT pairwise marginal matrices that is not fully general, but has
min(ku, kv)− 1 free parameters (as opposed to a fully general paramterization with (ku − 1)× (kv − 1) parameters) that
can be learnt in an unconstrained manner.

B.2 Proposed MoAT Parameterization

First we consider the case of square pairwise marginal matrices P (k×k)
uv . We define it inductively, defining a parameterization

for the first l × l submatrix of Puv (denoted Pl)for l ∈ [2, k]. One can interpret this a defining a parameterization for the
marginal distribution P (Xu ∈ [1, l], Xv ∈ [1, l]), in a way that preserves the relative proportion of univariate marginals.

• Base case (l = 2):
This is identical to having binary random variables Xu and Xv with the following univariate marginals.

– P2(Xu = 1) = P (Xu=1)
P (Xu=1)+P (Xu=2)
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– P2(Xu = 2) = P (Xu=2)
P (Xu=1)+P (Xu=2)

– P2(Xv = 1) = P (Xv=1)
P (Xv=1)+P (Xv=2)

– P2(Xv = 2) = P (Xv=2)
P (Xv=1)+P (Xv=2)

The matrix can be parameterized by a single parameter λ2 = P2(Xu = 1, Xv = 1) as shown in Lemma 1.

• Inductive case (l >= 3):
Assume we have have a parameterization for first (l − 1) × (l − 1) submatrix Pl−1 of Puv. Pick λl ∈
[max(0,

∑l−1
t=1 P (Xu=t)∑l
t=1 P (Xu=t)

+
∑l−1

t=1 P (Xv=t)∑l
t=1 P (Xv=t)

− 1),min(
∑l−1

t=1 P (Xu=t)∑l
t=1 P (Xu=t)

,
∑l−1

t=1 P (Xv=t)∑l
t=1 P (Xv=t)

)].

Then, define Pl as follows:

Pl[i][j] =



λl × Pl−1[i][j], i < l, j < l
P (Xu=i)∑l

t=1 P (Xu=t)
− λl × P (Xu=i)∑l−1

t=1 P (Xu=t)
, i < l, j = l

P (Xv=j)∑l
t=1 P (Xv=t)

− λl × P (Xv=j)∑l−1
t=1 P (Xv=t)

, i = l, j < l

1−
∑l−1

t=1 P (Xu=t)∑l
t=1 P (Xu=t)

−
∑l−1

t=1 P (Xv=t)∑l
t=1 P (Xv=t)

+ λl, i = l, j = l

By choice of λl, all the entries of this matrix are non-negative. It now suffices to check that the univariate marginals are
in proportion.

– For i < l,

Pl(Xu = i) =

l∑
j=1

Pl[i][j]

=

l−1∑
j=1

Pl[i][j] + Pl[i][l]

=

l−1∑
j=1

(λl × Pl−1[i][j]) +
P (Xu = i)∑l
t=1 P (Xu = t)

− λl ×
P (Xu = i)∑l−1
t=1 P (Xu = t)

=
P (Xu = i)∑l
t=1 P (Xu = t)

as desired.

– For i = l,

Pl(Xu = l) =

l∑
j=1

Pl[l][j]

=

l−1∑
j=1

Pl[l][j] + Pl[l][l]

=

l−1∑
j=1

(
P (Xv = j)∑l
t=1 P (Xv = t)

− λl ×
P (Xv = j)∑l−1
t=1 P (Xv = t)

)

+ 1−
∑l−1

t=1 P (Xu = t)∑l
t=1 P (Xu = t)

−
∑l−1

t=1 P (Xv = t)∑l
t=1 P (Xv = t)

+ λl

=

l−1∑
j=1

(
P (Xv = j)∑l
t=1 P (Xv = t)

)
+ 1−

∑l−1
t=1 P (Xu = t)∑l
t=1 P (Xu = t)

−
∑l−1

t=1 P (Xv = t)∑l
t=1 P (Xv = t)

=1−
∑l−1

t=1 P (Xu = t)∑l
t=1 P (Xu = t)

=
P (Xu = l)∑l
t=1 P (Xu = t)
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as desired.

– By symmetry, the desired results hold for Pl(Xv = j) for all 1 ≤ j ≤ l.

Observe that since
∑k

t=1 P (Xu = t) = 1, Pk(Xu = t) = P (Xu = t) for all 1 ≤ t ≤ k. Similarly, Pk(Xv = t) =
P (Xv = t) for all 1 ≤ t ≤ k. Thus, Pk is the desired k × k MoAT pairwise marginal matrix, with learnable parameters
λ2 · · ·λk.

Lastly, observe that this parameterization generalizes to non-square matrices too. Without loss in generality, assume P is
ku × kv with ku < kv . First, we can parameterize the first 2× kv − ku − 2 submatrix by a single parameter. Then, we can
add ku − 2 scaling parameters λi as in the case of the square matrix to obtain a parameterization for the whole matrix. Note
that the total number of free parameters in this parameterization is min(ku, kv)− 1.

C Experimental Setup

All experiments were performed on Intel(R) Xeon(R) Gold 5220 CPU @ 2.20GHz. For the experiments on the Twenty
Dataset density estimation benchmark, the MoAT model is trained with two sets of hyperparameters: (1) for the datasets
with < 500 random variables, the model is trained with batch size = 1024 and learning rate = 0.05 and (2) for the datasets
with ≥ 500 random variables, the model is trained with batch size = 64 and learning rate = 0.01. All models are trained for
50 epochs with early stopping: the test log-likelihood corresponding to the epoch with the best validation log-likelihood is
reported. The total training time for all datasets takes roughly a day on one NVIDIA RTX A5000 gpu. Complete code and
datasets for all the experiments can be found at https://github.com/UCLA-StarAI/MoAT.
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