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Abstract

Learning causal relationships between variables
is a well-studied problem in statistics, with many
important applications in science. However,
modeling real-world systems remain challeng-
ing, as most existing algorithms assume that the
underlying causal graph is acyclic. While this
is a convenient framework for developing theo-
retical developments about causal reasoning and
inference, the underlying modeling assumption
is likely to be violated in real systems, because
feedback loops are common (e.g., in biologi-
cal systems). Although a few methods search
for cyclic causal models, they usually rely on
some form of linearity, which is also limiting,
or lack a clear underlying probabilistic model.
In this work, we propose a novel framework for
learning nonlinear cyclic causal graphical mod-
els from interventional data, called NODAGS-
Flow. We perform inference via direct likeli-
hood optimization, employing techniques from
residual normalizing flows for likelihood estima-
tion. Through synthetic experiments and an ap-
plication to single-cell high-content perturbation
screening data, we show significant performance
improvements with our approach compared to
state-of-the-art methods with respect to structure
recovery and predictive performance.

1work performed while intern at Genentech
2corresponding author

Proceedings of the 26th International Conference on Artificial
Intelligence and Statistics (AISTATS) 2023, Valencia, Spain.
PMLR: Volume 206. Copyright 2023 by the author(s).

1 INTRODUCTION

Understanding the causal relationships between interacting
variables is a fundamental problem in science (Sachs et al.,
2005; Zhang et al., 2013; Segal et al., 2005) since a causal,
or mechanistic understanding is fundamental to correctly
predict the effects of previously unobserved interventions
on a system. Such systems can be modeled using a directed
graph where each variable in the system is associated with
a node and the edges represent causal relationships.

With a few notable exceptions (Hyttinen et al., 2012;
Richardson, 1996; Mooij and Heskes, 2013; Bongers et al.,
2016), most work on causal structure learning relies on the
assumption that the underlying graph connecting the vari-
ables is a directed acyclic graph (DAG). This assumption
facilitates the definition of a probability distribution over
the observed variables for very general functional relation-
ships. It also provides additional regularization to the esti-
mation problem by narrowing down the class of graphs that
are compatible with the observed probability distribution
(the Markov Equivalence Class) (Richardson, 1996). How-
ever, there is compelling evidence that feedback loops are
common in many real-world systems, such as those arising
in gene-regulatory networks (Sachs et al., 2005; Freimer
et al., 2022), violating the acyclicity assumption. These
networks can however be probed with a large number of
interventions through recent technological advances in bio-
logical assays building upon CRISPR/Cas9 and single-cell
RNA-Sequencing (Dixit et al., 2016; Frangieh et al., 2021),
alleviating the need for the additional regularization pro-
vided by the DAG constraint. Moreover, enforcing acyclic-
ity necessitates searching for candidate solutions over large
combinatorial search spaces, complicating algorithm de-
sign. Combined, this suggests that Cyclic Causal Graphs
(CCG) should be better suited to model causal semantics in
this regime.

In this work, we present a novel framework for causal dis-
covery that does not rely on the DAG assumption, but in-
stead allows for the presence of cycles in the underlying
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graph, while also modeling flexible, nonlinear relationships
between the observed nodes. It is based on formulating the
observation model as the steady state of a discrete dynam-
ical system (Hyttinen et al., 2012). This elegantly allows
for cycles in the underlying graph but comes at the cost
of necessitating an evaluation of the gradient of the gov-
erning functional relationships in the likelihood evaluation.
We propose to employ the framework of normalizing flows
(Papamakarios et al., 2021), in particular contractive resid-
ual flows (Behrmann et al., 2019; Chen et al., 2019), to
deal with this complication. We provide a comparison of
our framework, called NODAGS-Flow, to state-of-the-art
structure learning methods on various graph recovery and
prediction tasks.

After discussing related work (Section 2), we cover the
problem setup including relevant background and mod-
eling assumptions in Section 3. Then, we present the
proposed NODAGS-Flow framework (Section 4), solving
nonlinear cyclic causal discovery through likelihood opti-
mization with contractive residual flows. Finally, we vali-
date NODAGS-Flow on various synthetic benchmarks and
on real-world data with genetic interventions (Section 5).
Across the benchmarks, NODAGS-Flow beats state-of-the-
art algorithms on nonlinear problems, even in the case
when the underlying graph is acyclic, highlighting the prac-
tical benefits of NODAGS-Flow.

2 RELATED WORK

In causal discovery, the primary goal is to recover the un-
derlying causal graph and the associated conditional prob-
ability distributions from observational and potentially in-
terventional data. We next discuss previous approaches on
acyclic and cyclic graphs, followed by the key contribu-
tions of our approach.

2.1 Acyclic causal discovery

Most causal discovery algorithms to date deal with the
case of acyclic graphs, and they are commonly catego-
rized into constraint-based, scored-based, and hybrid meth-
ods. Constraint-based methods such as the PC algorithm
(Spirtes et al., 2000; Triantafillou and Tsamardinos, 2015;
Heinze-Deml et al., 2018) aim to recover the underlying
graph through constraints given by conditional indepen-
dence relations encoded by causal graphs. Most constraint-
based methods suffer from poor scalability and necessitate
complicated algorithm design to handle the graphical con-
straints.

Score-based methods such as GES (Meek, 1997; Hauser
and Bühlmann, 2012) learn the graph structure by opti-
mizing a score function over candidate models. A popular
choice of score function is given by the likelihood function
in frequentist setups or the posterior likelihood in Bayesian

formulations, and their regularized variants, such as the
Bayesian Information Criterion (BIC). These methods of-
ten employ greedy approaches due to the super-exponential
size of the search space.

More recently, the NOTEARS methodology (Zheng et al.,
2018) introduced a continuous constraint for limiting the
search space of the optimization problem to DAGs, closing
the gap between DAG learning and continuous optimiza-
tion and avoiding explicit greedy searches over combina-
torial structures. Several extensions followed (Yu et al.,
2019; Ng et al., 2020, 2022; Zheng et al., 2020; Lee et al.,
2019; Brouillard et al., 2020) which allowed for learning
DAGs under various assumptions on the underlying causal
system. In particular, Ng et al. (2022); Kalainathan et al.
(2018) introduced a Gumbel-Softmax parameterization of
the adjacency matrix in the observational setting which was
adopted by Brouillard et al. (2020) to the intervention setup
in addition to interventional masks which allowed for mod-
eling imperfect interventions. While the NOTEARS frame-
work strongly simplifies algorithm design for DAG learn-
ing, it necessitates sequentially solving multiple optimiza-
tion problems, which poses difficulties in applying its non-
linear extensions to larger graphs without further regular-
ization (Lopez et al., 2022).

Hybrid methods combine both previous approaches
(Tsamardinos et al., 2006; Solus et al., 2017; Wang et al.,
2017). Notably, one proposed hybrid approach (Khe-
makhem et al., 2021) used autoregressive normalizing
flows for the underlying model, but strongly relied on the
acyclicity assumption to fix an ordering and on constraint-
based methods to estimate the skeleton of the underlying
graph.

NODAGS-Flow is a score-based method and closest in
spirit to the NOTEARS family of algorithms because it
starts from a simple score function and is entirely based
on continuous optimization. However, it does extend to the
cyclic case and by doing so avoids the need for sequential
optimization to handle the DAG constraint. In fact, in the
presence of interventional data, we show in Sections 4.3
and 5.1 how it can beat the performance of NOTEARS and
similar algorithms in the case where the underlying graph
is a DAG.

2.2 Cyclic causal discovery

Cyclic causal discovery methods allow for feedback loops
in the underlying causal mechanism, which complicates
defining appropriate causal semantics. Early work on this
topic extended constraint-based methods to this setting
(Richardson, 1996), allowing the recovery of the underly-
ing Markov Equivalence Class. However, exactly recover-
ing cyclic graphs is more challenging than acyclic ones.
For example, in the linear case, without resorting to as-
sumptions such as faithfulness or sparsity, cyclic graphs
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are impossible to identify from purely observational data
but can be consistently recovered when the interventions
satisfy “pair conditions” for ordered pairs of nodes through
the LLC algorithm (Hyttinen et al., 2012). A more thor-
ough treatment of establishing causal semantics for cyclic
models can be found in Bongers et al. (2016).

Other notable works are Huetter and Rigollet (2020);
Améndola et al. (2020) and Mooij and Heskes (2013),
which use likelihood maximization for cyclic causal dis-
covery, but they both are limited to either the linear case
or rely on a linear approximation of the causal mechanism
around the mean of the data, respectively. Drton et al.
(2019) provide an alternate approach to compute the like-
lihood of the data via block-coordinate descent but it can
only handle observational data.

Related works that are more disconnected from the litera-
ture on causal discovery directly start with modeling causal
or mechanistic relationships as arising from a dynamical
system and have shown promise in modeling biological
systems (Yuan et al., 2021; Nilsson et al., 2022). However,
they lack a precise likelihood model.

Compared to these approaches, NODAGS-Flow provides a
clearly defined and extensible likelihood model that han-
dles nonlinear causal relationships.

2.3 Contributions

NODAGS-Flow endows the graph with semantics similar
to those in Mooij and Heskes (2013) and Hyttinen et al.
(2012), modeling the data as generated from the steady
state of a dynamical system with an explicit noise model.
However, instead of linear functional relationships, we al-
low for a rich class of nonlinear structural functions. Con-
trary to methods like NOTEARS (Zheng et al., 2018) and
its nonlinear extensions which necessitate solving a series
of optimization problems to deal with the acyclicity con-
straint, NODAGS-Flow consists of only a single optimiza-
tion, thus significantly simplifying algorithm design. In
particular, our model naturally extends the classical no-
tion of a Structural Equation Model (SEM) (Bollen, 1989;
Pearl, 2009) and subsumes DAG estimation in these mod-
els as a special case.

3 PROBLEM SETUP

3.1 Cyclic Causal Models via Structural Equations

Let G = (V,E) represent a causal graph, where V , E de-
note the set of vertices and edges, respectively. Each ver-
tex vi ∈ V has an associated random variable xi corre-
sponding to its observation and x = (x1, . . . , xd) denotes
the complete vector of observations. Following the frame-
work proposed by Bollen (1989) and Pearl (2009), we use
a Structural Equation Model (SEM), also known as Struc-

tural Causal Model (SCM), to represent the system. That
is,

xi = fi(xpa(i)) + εi i = 1, . . . , d, (1)

where pa(i) ⊆ {1, . . . , d} \ {i} is the parent set of xi, fi
encodes the functional dependence of xi on its parents, also
referred to as the causal mechanism of xi. The parent-child
relationships defined by the SEM encode the edges in G,
i.e., the edge xj → xi exists if and only if j ∈ pa(i). The
variables (ε1, . . . , εd) are known as the disturbance vari-
ables. By combining equation (1) over i = 1, . . . , d and
writing f = (f1, . . . , fd), we have the following vector-
ized form:

x = f(x) + ε. (2)

Additionally, the SEM also specifies a probability density
pE(ε) over the disturbance variables. We assume that the
system is free of confounders, that is, the disturbance vari-
ables are independent of each other. Finally, we define x as
the solution to the system (1) for a random draw of ε.

In a classical SEM, the underlying graph is acyclic and a so-
lution to (1) is naturally given by forward substitution along
the topological ordering of the graph. Here, we instead ex-
plicitly assume that the mapping x 7→ ε = (id − f)(x)
is invertible, where id is the identity map, and that both
(id − f) and (id − f)−1 are differentiable. This ensures
that there is a unique x that corresponds to each disturbance
vector ε. Under these conditions, the probability density of
x is well-defined and can be obtained using the change of
variable formula for density functions,

pX(x) = pE
(
(id− f)(x)

)∣∣det J(id−f)(x)∣∣, (3)

where J(id−f) denotes the Jacobian matrix of the function
(id− f) evaluated at x.

3.2 Modeling Interventions

One of the key aspects of inferring causal models is the
ability to predict the behavior of the system under inter-
ventions. Following Spirtes et al. (2000) and Pearl (2009),
we consider surgical interventions, i.e., all incoming causal
influences to the intervened-upon variables are removed.
This results in a mutilated graph G̃ where the intervened-
upon nodes in G have no incoming edges. Following the
notational convention of Hyttinen et al. (2012), we con-
sider K interventional experiments and denote one such
experiment by Ek = (Ik,Uk), where Ik is the set of
intervened-upon nodes and Uk is the set of passively ob-
served nodes. Let Uk ∈ {0, 1}d×d be a diagonal matrix
such that (Uk)ii = 1 if and only if vi ∈ Uk. Under the
interventional setting Ek, the SEM now becomes

x = Ukf(x) +Ukε+ c, (4)

where c denotes the value of the intervened-upon variables,
i.e., ci = xi if i ∈ Ik and 0 otherwise. Equation (4) cor-
responds to the assumption that the intervened-upon nodes
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are fixed and the equations for the passively observed vari-
ables remain unchanged. Similar to before, we assume that
the functions (id − Ukf) are invertible for all k. From
equation (2), the density function x for experiment Ek is

pX(x) = pX(xIk)pE
(
[(id−Ukf)(x)]Uk

)
|det J(id−Ukf)(x)|, (5)

where pE
(
[(id−Ukf)(x)]Uk

)
denotes subsetting the likeli-

hood to only the variables in Uk. Here, we assume surgical
interventions as introduced above and that the intervention
targets are known.

Given a set of interventions, we would like to learn the un-
derlying parent-child relations in the graph by maximizing
the likelihood of the generated data. This requires the com-
putation of |det J(id−Ukf)(x)| to be tractable for each sam-
ple. To that end, we employ normalizing flows to model the
map x 7→ ε (see Section 4.1). Normalizing flows provide a
rich class of functions for which the Jacobian determinant
is easily computable.

4 NODAGS-FLOW: RESIDUAL FLOW
FOR CAUSAL LEARNING

In this section, we present the individual components of
the NODAGS-Flow framework, namely contractive resid-
ual flows for calculating the log-det term, neural network
architectures for modeling f , diagonal preconditioning to
enable DAG learning, and finally the full score function
that is being optimized. For ease of notation, in the follow-
ing, we collect all model parameters into a single vector θ
if not explicitly noted otherwise.

4.1 Contractive Residual Flows for Causal Learning

Residual flows are a class of invertible functions of the form

z′ = z + g(z). (6)

The name comes from the resemblance to the structure of
residual networks (He et al., 2016). We note that solving
(2) for ε, the relationship governing our causal model is
ε = x − f(x), which is of the same form as (6) with
g(z) = −f(z). To ensure that our model is well-defined,
we need the invertibility of this transformation, along with
invertibility for every possible intervention in (4). The Con-
tractivity of f is one constraint that guarantees this invert-
ibility. In the following, we outline the machinery intro-
duced by Behrmann et al. (2019); Chen et al. (2019) to
exploit this constraint for tractable generative modeling,
which we adapt for structure learning.

A function f : Rd → Rd is said to be contractive if
there exists a constant L < 1 such that for any two points
z1, z2 ∈ Rd,

∥f(z1)− f(z2)∥ ≤ L∥z1 − z2∥.

It then follows from the Banach fixed point theorem
(Rudin, 1953) that if f is contractive, then the residual
transformation id−Ukf is invertible for any masking ma-
trix Uk.

Although Banach’s fixed point theorem guarantees invert-
ibility, we have no analytical form for the inverse. How-
ever, the inverse can be obtained via fixed-point iterations.
That is, starting with an arbitrary x0, repeatedly compute
xk+1 = f(xk) + ε for all k > 0. The Banach fixed point
theorem guarantees that this procedure converges. More-
over, the rate of convergence is exponential in the number
of iterations k and bounded by O(Lk). This fixed-point it-
eration also provides an explicit interpretation of the causal
semantics of the system in terms of a discrete dynamical
system with fixed disturbances.

To efficiently approximate contractive functions and eval-
uate (5), two technical challenges remain: enforcing con-
tractivity and evaluating the log-determinant of the Jaco-
bian. To address the first, we employ neural networks to ap-
proximate f and note that a fixed Lipschitz constant can be
enforced on a neural network layer by rescaling its weights
by its spectral norm as shown by Behrmann et al. (2019)
and Miyato et al. (2018). The composition of multiple such
Lipschitz layers is still a Lipschitz function.

To address the second challenge, we employ the unbiased
estimator of the log-det term introduced in Chen et al.
(2019). Since f is contractive, by extending the power se-
ries expansion of log(1 + x) to matrices, we have

log |det J(id−f)(x)| = log |det(I − Jf (x))|

= −
∞∑
k=1

1

k
Tr
{
Jkf (x)

}
, (7)

where I denotes the identity matrix. The contractivity of f
guarantees the convergence of the above series. The trace
of Jkf (x) can be efficiently computed using the Hutchinson
trace estimator (Hutchinson, 1989):

Tr
{
Jkf (x)

}
= Ew[w⊤Jkf (x)w], (8)

where w is a random vector with zero mean and unit co-
variance. Behrmann et al. (2019) evaluate the above power
series by truncating it to a finite number of terms. How-
ever, this approach has the drawback of being biased. Chen
et al. (2019) improve on this by adding additional random-
ization to this evaluation, truncating the power series at a
random cut-off n ∼ p(N), where p is a probability distri-
bution over natural numbers N, and re-weighting the terms
in the power series to obtain an unbiased estimator. Hence
the final estimator we use in NODAGS-Flow is now given
by,

log |det J(id−f)(x)| = −En,w

[
n∑
k=1

w⊤Jkf (x)w

k · P (N ≥ k)

]
.

(9)
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Here, we choose n ∼ Poi(N), a Poisson distribution with
intensity N that we treat as a hyperparameter.

4.2 Parametrization and Sparsity Penalization

A first naı̈ve implementation of the causal mechanism f
through a Multi-Layer Perceptron (MLP) did not produce
promising results due to the presence of self-cycles (depen-
dencies from a node v to itself). To address this, and to si-
multaneously add sparsity penalization on the dependency
structure of f , we add a dependency mask M ′ ∈ {0, 1}d×d
with zero-diagonal that we apply via masking entries of x.
That is, we introduce an MLP gθ and set

[fθ(x)]i = [gθ(M
′
i,∗ ⊙ x)]i, i = 1, . . . , d, (10)

where ⊙ denotes the Hadamard product. Similar to Brouil-
lard et al. (2020) and Lopez et al. (2022), to enable effi-
cient learning of M ′ during training, we model its entries
as draws from a Gumbel-Softmax distribution M ′ ∼ Mϕ

(Jang et al., 2016) with straight-through gradient estima-
tion. Sparsity penalization is then achieved by adding
λEM ′∼Mϕ

[∥M ′∥1] to the loss function for a regulariza-
tion parameter λ > 0, where the expectation can be calcu-
lated explicitly from the parameters of Mϕ. The Gumbel-
Softmax parametrization Mϕ also offers access to an esti-
mator for the underlying graph.

We note that in the special case of a 1-layer MLP, fθ(x) =
σ(W⊤x) for a weight matrix W and an activation function
σ, we can achieve the above more efficiently via enforcing
a zero diagonal on W and direct ℓ1-penalization on the
entries of W .

4.3 Extension to Non-Contractive DAGs via
Preconditioning

Although contractivity is sufficient for the invertibility of
id− f , it is not a necessary condition. Indeed, for the case
of DAGs, the causal mechanism f need not be contractive
for id− f to be invertible, as the fixed point iterations will
always converge after d steps. However, f being contrac-
tive is still convenient to efficiently estimate the absolute
Jacobian-determinant as explained above. Via a diagonal
rescaling (or preconditioning) of the model parameters, we
can significantly increase the space of models that can be
represented by contractive functions f . In particular, this
includes all models whose underlying graph is a DAG, as
shown in the following proposition.

Proposition 1 (Non-contractive to Contractive). Let (G, f)
represent a causal DAG and its causal mechanism. If f is
a non-contractive function, then there exists f̃ of the form
f̃ = Λ ◦ f ◦ Λ−1, where Λ denotes multiplication with a
diagonal matrix with positive diagonal entries such that f̃
is contractive.

We refer to the appendix for proof of the above proposi-

tion. Proposition 1 allows us to rewrite the SEM purely in
terms of a contractive function (f̃ ) and a diagonal matrix
(Λ), when the underlying graph is a DAG. That is,

x = Λ−1 ◦ f̃ ◦ Λ(x) + ε. (11)

Hence, for a given observed set Uk, the logarithm of the
determinant of the Jacobian now becomes

log |det JΛ−1◦(I−Ukf̃)◦Λ|

= log |detΛ−1|+ log |detΛ|+ log |det J(I−Ukf̃)
|

= log |detΛ| − log |detΛ|︸ ︷︷ ︸
=0

+ log |det J(I−Ukf̃)
|

= log |det J(I−Ukf̃)
|, (12)

which only depends on a contractive function and hence
can be estimated efficiently using the procedure detailed in
Section 4.1. In training the model, we treat Λ as a learnable
parameter to be optimized via the log-likelihood function.

4.4 Score Function for Differentiable Causal
Learning

Given a set of interventional experiments {Ek}Kk=1 and cor-
responding observations, we would like to learn the graph
structure as well as the underlying functions governing the
parent-child relations. To that end, similar to previous work
(Brouillard et al., 2020; Lopez et al., 2022), we use the log-
likelihood of the not-intervened-on nodes as a score func-
tion. That is, approximating the log-det term by (9), we
consider

L
(
θ, fθ, {x(k,i)}M,Nk

k=1,i=1,M
)
=

M∑
k=1

Nk∑
i=1

[
log pE,θ

(
[(id−Ukfθ)(x

(k,i))]Uk

)
− En,w

{ n∑
r=1

w⊤[JrUkfθ(x(i,k)
)]
w

r · P (N ≥ r)

}]
, (13)

where x(i,k) denotes the i-th sample in the k-th experiment,
and pE,θ is parametrized as independent Gaussian distribu-
tions with learnable means and standard deviations. To-
gether with ℓ1 penalization introduced in Section 4.2 with
parameter λ > 0 and the preconditioning in Section 4.3,
the inference is performed by solving the following opti-
mization problem with stochastic optimization methods:

max
θ,Λ

E
M ′∼Mϕ

L(θ,Λ−1◦fθ ◦Λ,M ′)−λ E
M ′∼Mϕ

[∥M ′∥1].

(14)

Given a family of interventions {Ik}Kk=1, when the under-
lying SEM is linear, we provide consistency guarantees for
NODAGS-Flow (Theorem A.6, section A.2). In particular,
we show that under appropriate assumptions, maximizing
(14) returns a graph Ĝ that is equivalent to the ground truth
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Figure 1: Performance on synthetic interventional data. The box plots show the median and inter-quartile ranges over the
independent trails.

graph, where the equivalence is with respect to a notion
of quasi-equivalence, developed by Ghassami et al. (2020)
that we extend to the interventional setting.

5 EXPERIMENTS

We tested NODAGS-Flow on synthetic and real-world
datasets. The performance of NODAGS-Flow is compared
with some of the existing state-of-the-art causal discovery
algorithms, LLC (Hyttinen et al., 2012) (linear & cyclic
graphs), GOLEM (Ng et al., 2020) (linear and acyclic),
NOTEARS (Zheng et al., 2018) (linear and acyclic), and
DCDI (Brouillard et al., 2020) (nonlinear and acyclic). Of
the chosen baselines, only DCDI and LLC are capable of
handling interventional data out of the box, the other two
algorithms were modified to allow for learning from inter-
ventions by summing over different experimental regimes
and masking out loss-terms corresponding to intervened-
upon nodes as in (13).

Table 1: Synthetic experiment settings.

Setting Interventions SEM Cyclic
int-dag-lin True Linear False

int-dag-nonlin True Nonlinear False
int-cyc-lin True Linear True

int-cyc-nonlin True Nonlinear True
obs-lin False Linear False

obs-nonlin False Nonlinear False

5.1 Experiments on synthetic data

We considered both observational and interventional data
for the synthetic datasets. The interventions were assumed
to be perfect with known targets. Each dataset was gen-
erated from graphs with d = 20 nodes and for each in-
tervention, 5000 observations were sampled. The obser-
vational data consists of 20,000 samples sampled from the
graph. For the function f , we considered three different
cases, namely (1) a linear function, f(x) = W⊤x, (2)
a nonlinear function, f = ReLU(W⊤x), a single-layer
MLP with ReLU (rectified linear unit) activation, ensur-
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Figure 2: Performance on synthetic observational data. The box plots show the median and inter-quartile ranges over the
independent trails.
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Figure 3: Performance comparison between LLC and NODAGs-Flow as the number of interventions used for training the
model is increased from 0 to 9 on a 10-node graph.

ing contractivity by rescaling by the operator norm, (3) a
non-contractive nonlinear function, f = SELU(W⊤x), a
single-layer MLP with SELU (Scaled Exponential Linear
Unit) activation, with the underlying graph being a DAG.

In total, we obtain 6 different settings for the synthetic
experiments, summarized in Table 1. For the setting
int-dag-nonlin, the causal mechanism f was taken from
case (3) and for the settings int-cyc-nonlin and obs-nonlin,
f was taken from case (2). The latent distribution pE(ε)
was chosen as a Gaussian distribution with the same vari-
ances. The graphs were generated using an Erdős-Rényi
random graph model with an expected edge density of 2, al-
lowing for cycles, whereas in case (3), we ensured acyclic-
ity by creating a causal order and ensuring that the par-
ents for each node always come from its predecessor in the
causal order. The weight matrices were sampled from the
uniform distribution, with post-scaling to ensure that the
overall function is contractive for the first two settings.

Performance evaluation The performance was evalu-
ated with respect to the following metrics: (1) Structural
Hamming Distance (SHD), (2) Total number of True Posi-
tive edges (True Pos) predicted, (3) Total Edges edges pre-
dicted, (4) Area Under Precision-Recall Curve (AUPRC),
and (5) holdout Interventional-NLL (NLL) (Gentzel et al.,
2019), the negative log-likelihood over unseen interven-

tions. SHD, True Pos, Total Edges, and AUPRC measure
the accuracy of the recovered graph structure whereas NLL
measures the predictive power of the model over unseen
interventions. For the interventional data sets, the train-
ing data consisted of single-node interventions across all
nodes. For both the interventional and observational data
sets, the test set consisted of interventions on two or three
nodes (random with equal probability), randomly sampled
from the total set of nodes.

The results of the synthetic experiments are reported in Fig-
ures 1 and 2. In both figures, the box plots show the median
and the inter-quartile ranges over independent trials. In Fig-
ures 1 and 2, each column shows the performance with re-
spect to the metric stated at the top of the column for the
different settings shown in Table 1. On linear interventional
data (Figure 1, int-dag-lin and int-cyc-lin), NODAGS-Flow
attains comparable performance to that of LLC (which was
specifically designed for the interventional linear case),
both in terms of graph structure recovery and the predic-
tion of unseen interventions. In int-dag-lin, GOLEM and
NOTEARS match the performance of LLC and NODAGS-
Flow as the setting is well specified for these models. As
expected GOLEM and DCDI drop in performance when
cycles are introduced (Figure 1, int-cyc-lin).

On non-linear interventional data (Figure 1), NODAGS-
Flow performs the best when the graph contains cycles
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Figure 4: Performance comparison on Perturb-CITE-seq Frangieh et al. (2021) data. The box plots show the median and
inter-quartile ranges over the independent trails.

(int-cyc-nonlin) followed by LLC. When the causal graph
is a DAG and the causal mechanism non-contractive (Fig-
ure 1, int-dag-nonlin), the added learnable parameter Λ al-
lows NODAGS-Flow to learn a non-contractive function
by rescaling a contractive function f by Λ. In this case,
NODAGS-Flow and DCDI are the best performing mod-
els. This highlights the benefits of a larger, potentially
simpler search space for structure learning provided by
our approach compared to specifically enforcing DAG con-
straints.

On the other hand, in the observational setting, due to the
inherent identifiability issues caused by not confining the
search space to DAGs, NODAGS-Flow trails behind the
other methods enforcing a DAG constraint, see Figure 2.
We exclude LLC in Figure 2 as it is incapable of handling
purely observational data.

Scaling with Interventions In the previous experiments,
we ensured that the models were provided with interven-
tions over all the single nodes in the graph. Here, we test
the model’s capability to learn the graph structure with lim-
ited interventional information. We compare NODAGs-
Flow with LLC as we increase the number of interventions
provided during training in the case of a linear contractive
SEM.

From Figure (3) we can see that NODAGS-Flow requires
significantly fewer interventions compared to LLC as it at-
tains close to perfect structure recovery around 4 interven-
tions on a d = 10 node graph. It is also important to
note that LLC cannot work on purely observational data
as it subsets the data according to the performed interven-
tions, whereas NODAGS-Flow can handle both observa-
tional and interventional data out of the box.

5.2 Experiment on Real-World Transcriptomics Data

Here, we present an experiment focused on learning a gene
regulatory network from gene expression data with genetic
interventions (Perturb-seq), a type of dataset that allows
one to causally investigate biology at an unprecedented
scale. Recent advances (Dixit et al., 2016) have made
it possible to perform such genetic interventions at large
scales (in the order of hundreds or thousands of genes (Re-

plogle et al., 2022)) and be able to measure the effect of full
gene expression profile on the order of hundreds of thou-
sands of cells.

We focus on a Perturb-CITE-seq (Frangieh et al., 2021)
dataset that investigated drivers of resistance to Immune
Checkpoint Inhibitors (ICI). It contains gene expressions
taken from 218,331 melanoma cells split over three differ-
ent conditions, namely: (1) control (57,627 cells) , (2) co-
culture (73,114 cells), and (3) interferon (IFN)-γ (87,590
cells). Each measurement contains the identity of the tar-
get genes and the expression profiles of each gene in the
genome.

Due to practical and computational limitations, we restrict
our experiment to a subset of 61 genes out of approxi-
mately 20,000 genes in the genome. For interventions, we
chose all the single-gene interventions corresponding to the
61 chosen genes. Each condition is considered a separate
dataset and we train NODAGS-Flow and the baselines on
these datasets separately. Since there is no ground-truth
DAG available, we evaluate our model based on its pre-
dictive power on unseen interventions. To that end, we
perform 2 splits on each of the datasets into 90% training
and 10% test interventions. Interventional NLL (I-NLL)
and the Interventional Mean Absolute Error (I-MAE) were
used as metrics to evaluate the models. I-MAE was cal-
culated as the mean of ∥f(x)−x∥1/d over all observations
x in a hold-out dataset.

From Figure (4) we can see that NODAGS-Flow outper-
forms all the baselines with respect to both metrics. Of
all the baselines LLC seemed to attain the worst perfor-
mance, we, therefore, discuss the performance comparison
with LLC in more detail in the appendix. This shows that
learning cycles in the graph allow for better learning of the
underlying distribution and thereby improve the predictive
power of the model. Figure 5 shows the cluster map ob-
tained from the adjacency matrix learned by NODAGS-
Flow on the Co-culture partition of the Perturb-CITE-seq
datasets.
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Figure 5: Adjacency matrix of the graph learned by
NODAGS-Flow on the Perturb-CITE-seq data set (Co-
culture).

6 DISCUSSION

We proposed NODAGS-Flow, a novel causal discovery ap-
proach that is capable of learning nonlinear and cyclic re-
lations between variables through a simple optimization
framework, avoiding optimization problems with complex
constraints such as NOTEARS. Experiments on synthetic
interventional data showed matching performance with
state-of-the-art methods (LLC) on linear data and superior
performance when recovering nonlinear relationships, both
in the case of cyclic and acyclic causal graphical models.

We also presented an application of our approach on
real-world gene expression data with genetic interventions
(Perturb-CITE-seq), where we learned a gene-regulatory
network on 61 genes. NODAGS-Flow was able to
achieve better predictive performance on unseen interven-
tions through an interpretable, mechanistic model that al-
lows for feedback loops. We hope that applications on
more biological datasets could enhance understanding of
transcriptomic regulation and aid in the design of novel per-
turbations.

Interesting potential extensions to our model include (1)
incorporating more realistic measurement noise models,
which have been shown to significantly affect the quality of
transcriptomic machine-learning tools (Grün et al., 2014;
Lopez et al., 2018), (2) explore imperfect interventions and
the case where the intervention targets are unknown which
is quite common in biological settings, and (3) scaling up
the model to handle larger graphs, potentially by incor-

porating ideas from low-rank models (Segal et al., 2005;
Lopez et al., 2022).
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The appendix is organized as follows: in Appendix A we present the proof of Proposition 1 and the consistency result of
NODAGS-Flow followed by the implementation details and further details regarding the real-world experiment in appendix
B and appendix C respectively.

A PROOFS

A.1 Proof of Proposition 1

In this section, we present a detailed proof of Proposition 1.

Proof. For ease of notation, we assume that f is everywhere differentiable and denote its Jacobian by Jf . The general
case can be proved similarly since Lipschitz functions are almost everywhere differentiable by Rademacher’s theorem
(Ambrosio et al., 2000). Let f be L-Lipschitz.

Without loss of generality, we assume that the graph G is topologically sorted along the indices i = 1, . . . , d. If not, we can
rearrange the dimensions of f accordingly. With this, the Jacobian Jf is a strictly lower triangular matrix. For a desired
contractivity constant 0 < c < 1, we recursively define the entries of the diagonal matrix Λ ∈ Rd×d as follows:

Λd,d = 1,

Λi,i =
d2L

c
max
j>i

Λj,j , for i < d.
(15)

Defining f̃ = Λ ◦ f ◦ Λ−1, we have that Jf̃ = ΛJfΛ
−1. For any x ∈ Rd, the (i, j)-th entry of Jf̃ is therefore given by

(Jf̃ (x))i,j =
Λi,i
Λj,j

(Jf (Λ
−1x))i,j . (16)

Since ∥z∥1 ≤
√
d∥z∥2 by the Cauchy-Schwarz inequality and ∥z∥2 ≤ ∥z∥1 for all z ∈ Rd, we obtain

|(Jf (x))i,j | ≤ sup
z:∥z∥1≤1

∥Jf (x)[z]∥1 ≤ sup
z:∥z∥2≤1

√
d∥Jf (x)[z]∥2 ≤

√
d∥Jf (x)∥op ≤

√
dL. (17)

In turn, the entries of Jf̃ can be bounded as follows: for i > j, by combining (17) with the definition of Λ (15), we obtain

|(Jf̃ (x))i,j | =
Λi,i
Λj,j

|(Jf (x))i,j | ≤
cΛi,i

d2Lmaxk>j Λk,k

√
dL ≤ c

d3/2
. (18)

For i ≤ j, since Jf and therefore Jf̃ are strictly lower triangular by definition, (Jf̃ (x))i,j = 0.

Finally, applying similar reasoning as in (17) and the bound in (18), we obtain a bound on the operator norm of Jf̃ ,

∥∥∥Jf̃ (x)∥∥∥
op

= sup
z:∥z∥2≤1

∥Jf̃ (x)[z]∥2 ≤ sup
z:∥z∥1≤

√
d

∥Jf̃ (x)[z]∥1 =
√
dmax

j

d∑
i=1

|(Jf̃ (x))i,j | ≤ d3/2
c

d3/2
= c < 1.

This concludes the proof, showing that f̃ is contractive.

A.2 Consistency of NODAGS-Flow

In the following, we show consistency of the NODAGS-Flow estimator under a suitable notion of graph equivalence
inspired by Ghassami et al. (2020) and Ng et al. (2020). For simplicity, we restrict our attention to the case where the
structural equations are linear. That is,

x = B⊤x+ ε, (19)

where ε ∼ N (0,Ω), and Ω is the intrinsic noise variance. Then, x is Gaussian distributed with the precision matrix given
by

Θ = Θ(B) = (I −B)Ω−1(I −B)⊤.
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For the family of interventions {Ik}k, under the interventional setting J ∈ {Ik}k, we then get

ΘJ = ΘJ(B) = (I − UJB)Ω−1
J (I − UJB)⊤,

where ΩJ [i, i] = 1 if i ∈ J , and else ΩJ [i, i] = σ2
i .

As an alternative to the classical notion of Markov equivalence (Richardson, 1996) in the cyclical setting, Ghassami et al.
(2020) introduced the notion of quasi-equivalence among directed graphs, which we slightly adapt and extend to the
interventional case below.

Let Θ(G) denote the set of distributions generated by the graph G due to different choices of B and Ω, endowed with
a metric ρ. In the linear setting, we can think of these equivalently as precision matrices embedded in Rd×d endowed
with the Euclidean metric (Frobenius norm) and denote the Hausdorff dimension (Folland, 1999) of all such parameterized
distributions by δmax with associated Hausdorff measure ηδmax . Let us define a distributional constraint as any constraint
enforced by the structure of G on the generated distribution (or, equivalently, the precision matrix). Additionally, a hard
constraint is a distributional constraint for which the set of values satisfying the constraints have ηδmax -measure zero over
the space of parameters of the distribution. The set of hard constraints of G is denoted by H(G).

Definition A.1 (Interventional Quasi-Equivalence). Let G1, G2 be two directed graphs and {Ik}k a family of interven-
tional targets. Let δJ denote the Hausdorff dimension of Θ(GJ

1 ) ∪ Θ(GJ
2 ) for every J ∈ {Ik}k and denote by ηδJ the

associated Hausdorff measure. We define G1 and G2 as interventionally quasi-equivalent, denoted by G1
∼=I G2, if

ηδJ
(
Θ(GJ

1 ) ∩Θ(GJ
2 )
)
̸= 0 for all J ∈ {Ik}k.

In the above definition, GJ denotes the mutilated intervention graph of G corresponding to the set of targets J ∈ {Ik}k.
An implication of the above definition is that if two graphs G1 and G2 are interventionally quasi-equivalent (henceforth
referred to as equivalent) for a family of targets {Ik}k, then GJ

1 and GJ
2 share the same hard constraints for all J ∈ {Ik}k.

Note that the targets J can also be an empty set which would correspond to the purely observational setting.

Definition A.2. Generalized Faithfulness (Ghassami et al., 2020) A distribution Θ is said to be generalized faithful (g-
faithful) to the graph G if Θ satisfies a hard constraint κ if and only if κ ∈ H(G).

Using the idea of g-faithfulness, we make the following assumptions.

Assumption A.3. For a family of targets {Ik}k, the interventional distributions ΘJ are g-faithful to the corresponding
ground truth interventional graph GJ , for all J ∈ {Ik}k.

Assumption A.4. If there exists DGs G and G1 such that H(G1) ⊆ H(G), and |E(G1)| ≤ |E(G)|, then H(G1) = H(G).

Note that when J = ∅ ∈ {Ik}k, ΘJ = Θ. Let us now consider the following objective

min
ϕ,ψ

EB∼BϕEΩ∼Ωψ

[
L(B,X, I,Ω) + λRsparse(B)

]
, (20)

where L(B,X , I) is the cumulative log-likelihood function over the interventional targets and the data X . Rsparse is
a sparsity inducing regularizer and Bϕ is a distribution over possible parameters B parametrized by ϕ. The following
theorem is an extension of Theorem 3 in Ghassami et al. (2020) and provides the consistency guarantee for the simplified
version of NODAGS-Flow.

Assumption A.5. Given a family of interventions {Ik}k, the distribution over the space of graph Bϕ contains at least one
representative of B∗, the corresponding graph G∗ such that ΘJ ∈ Θ(GJ

∗ ) for all J ∈ {Ik}k.

Theorem A.6. Under Assumptions A.3, A.4, and A.5 the global minimizer of (20) with a suitably chosen λ outputs Ĝ ∼=I G
asymptotically.

Proof. Let G be the ground truth graph and ΘJ the associated interventional distributions in the interventional setting
J ∈ {Ik}k. Let B and Ω denote the edge weights of G and the intrinsic noise variances respectively.

Choosing the penalty coefficient λ such that the likelihood term dominates asymptotically, the mass of the distributions Bϕ
and Ωψ will eventually concentrate around the solutions of the maximum likelihood estimator. If not, the (20) would be
sub-optimal. Pick any such pair of parameters (B̂, Ω̂). By optimality of the maximum likelihood objective, we have that
(I−UJ B̂)Ω̂−1

J (I−UJ B̂)⊤ = ΘJ for all J ∈ {Ik}k. Let us denote the DG corresponding to B̂ as Ĝ. Since ΘJ ∈ Θ(ĜJ)
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Algorithm 1 NODAGS-Flow Training

Input: Interventional targets {Ti}Ni=1, interventional data {xi}Ni=1, batch size B, learning rate α, penalty coefficient λ.
Output: Causal Mechanism fθ, Causal structure Mϕ, Preconditioning Λ

1:
2: [IT ; IV ] = [N ] ▷ [Training set; Validation set]
3: Initialize fθ, Mϕ, Λ.

4: while not CONVERGED
(

NLL
(
{xi}i∈IV

)
, fθ

))
do ▷ Until the validation NLL converges

5: Shuffle {(xi, Ti)}i
6: for t = 1 to N/B do
7: {Mi}Bi=1 ∼ Mϕ ▷ Sample batch of mask values from Mϕ

8: Compute LOSS = - 1
B

∑B
i=1 L

(
θ,Λ−1 ◦ fθ ◦ Λ, {xj}Btj=B(t−1), {Tj}

Bt
j=B(t−1),Mi

)
+ λ∥Mϕ∥1

9: Backpropagate using ADAM(LOSS,Mϕ, fθ,Λ, α)
10: Perform RESCALE(fθ) to ensure fθ is 0.9-Lipschitz
11: end for
12: return fθ,Mϕ,Λ
13: end while

for all J ∈ {Ik}k, ΘJ must satisfy all the distributional constraints of GJ for all J ∈ {Ik}k. Therefore from Assumption
A.3, we have that H(ĜJ) ⊆ H(GJ) for all J ∈ {Ik}k.

Due to the presence of Rsparse in the objective, we have |E(Ĝ)| ≤ |E(G)|, otherwise, the solution to the objective would
be G. Hence, from Assumption A.4 we have that H(ĜJ) = H(GJ), for all J ∈ {Ik}k. Therefore Ĝ ∼=I G.

B IMPLEMENTATION DETAILS

In this section, we present the implementation details of NODAGS-Flow, the baselines as well as the setup of the experi-
ments.

B.1 NODAGS-Flow

We consider the parametric family of neural networks (NN), denoted as gθ, to model the causal function f . As detailed
in section 4.2 of the main paper, the dependency structure (parent-child relations) is encoded by introducing a dependency
mask M ′ ∈ {0, 1}d×d in the model. M ′ is then used to mask the inputs for each node as shown in equation (10) of the
main paper. For the neural network architecture, we fix each hidden layer to have the same number of neurons (= d) and
vary the number of hidden layers in the model. If the data is nonlinear we add a ReLU activation function to each layer of
the neural network, allowing NODAGS-Flow to learn nonlinear parent-child relations.

In order to maintain the contractivity of the neural network, the weights of each layer are rescaled by its spectral norm,
similar to Behrmann et al. (2019) and Miyato et al. (2018). This is done every time the weights are updated, that is, after
every backward pass (RESCALE(fθ) in algorithm 1). In practice, we choose the Lipschitz constant of the neural network
to be 0.9. For computing the log Jacobian determinant, we sample the number of terms in the power series from a Poisson
distribution with parameter σ initialized to 2. Additionally, σ is treated as a parameter to be learned during training. During
the training stage, we use the Neumann gradient series formulation of the log Jacobian determinant estimator in Behrmann
et al. (2019) as this provides a more efficient way for backpropagation over the entries of the Jacobian matrix. Whereas
in the validation stage, we use the standard estimator for the log Jacobian determinant. The number of hidden layers,
regularization parameter λ, and the number of terms used for computing the spectral norm of the weights (nL) are treated
as parameters to be tuned. Algorithm 1 shows the overall training procedure of NODAGS-Flow.

B.2 Baseline Methods

We now provide the implementation details of the baselines used in our experiments. The LLC algorithm proposed by
Hyttinen et al. (2012) was reimplemented and a sparse regularization term was added in order to make LLC solve the same
objective as NODAGS-Flow and the other baselines. In accordance with the method proposed by Hyttinen et al. (2012)
we assume that the intervened nodes are independent and sampled from the standard normal distribution. Of the other
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Table 2: Hyperparameter spaces for all the models.

Hyperparameter space

NODAGS-Flow
log10(λ) ∈ [−4, 2]

# hidden units ∈ {0, 1, 2, 3}
nL ∈ {5, 10, 15}

LLC log10(λ) ∈ [−4, 2]

GOLEM log10(λ) ∈ [−4, 2]
λDAG ∈ [−3, 3]

NOTEARS log10(λ) ∈ [−4, 2]
DCDI log10(λ) ∈ [−4, 2]

baselines used only DCDI (Brouillard et al., 2020) supports interventional data out of the box. Hence NOTEARS (Zheng
et al., 2018) and GOLEM (Ng et al., 2020) were reimplemented along the lines of Lopez et al. (2022). For NOTEARS,
DCDI, and GOLEM, we threshold the adjacency matrices (probability of an edge for DCDI) with a threshold t obtained
by performing a binary search with T = 20 evaluations of an acyclicity test to find the largest possible DAG from the
estimated weights matrix.

B.3 Hyperparameter Tuning

For all methods, an exhaustive hyperparameter search was performed using the Ax library (Bakshy et al., 2018) that can
perform joint Bayesian and bandit optimization over the set of hyperparameters. The list of chosen hyperparameters for
each model is summarized in Table 2. Ax samples from the range of values provided for each parameter, the models are
then trained using the sampled parameters and are then evaluated on the validation set. For the synthetic experiments, the
training set consists of single-node interventions over all the nodes in the graph and the validation set consists of inter-
ventions over 2-3 randomly chosen nodes. For the Perturb-CITE-seq data set, we randomly split 10% of the interventions
to be a part of the validation set and the rest with the training set. We perform separate hyperparameter tuning for the
synthetic and the real-world experiments and use the optimal parameter values provided by Ax for the respective experi-
ments. Additionally, we fix the learning rate to 10−2 and use Adam optimizer (Kingma and Ba, 2015) for maximizing the
log-likelihood.

B.4 Compute Time analysis

In Figure 6, we compare the runtime between NODAGS-Flow and the chosen baselines. It is important to note that, LLC
(unlike NODAGS-Flow, DCDI, GOLEM, and NOTEARS) is not deep-learning-based method and hence doesn’t require
any training via stochastic gradient methods. Instead, it solves simple linear regression problems from the estimated
covariance matrices for each intervention. This makes LLC considerably faster than the other algorithms as seen in Figure
6. Additionally, due to the lack of training LLC is excluded from Time per Epoch and Total Epochs plots. Aside from LLC,
we can see that the other methods are comparable in terms of total runtime and runtime per epoch. In particular, the log-det
approximation necessary in every epoch of NODAGS-Flow renders the computational cost per epoch for NODAGS-Flow
the highest. However, NODAGS-Flow is overall faster than the only other method relying on a nonlinear mechanism,
DCDI, by a factor of more than 3.5 due to not relying on solving a constrained optimization problem via the Augmented
Lagrangian Method.

10−1 100 101
Minutes

NODAGS
LLC

GOLEM
DCDI

NOTEARS
Total

0 1 2 3
Seconds

Time per Epoch

0 200 400
Epochs

Total Epochs

Figure 6: Comparison of the runtime of the chosen
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B.5 Code Statement

We implemented our models using the PyTorch library in Python and the code for NODAGS-Flow along with the baselines
is available on GitHub at https://github.com/Genentech/nodags-flows.

C REAL-WORLD EXPERIMENT

The data set was downloaded from the Single Cell Portal of the Broad Institute (accession code SCP1064). We removed
cells containing less than 500 expressed genes and genes that were expressed in less than 500 cells. Due to computational
constraints, we chose a subset of 61 genes (Table 3) from the total set of genes in the genome, ensuring that all the chosen
genes were perturbed. The three different conditions (co-culture, IFN-γ, and control) were partitioned into distinct data
sets. The models were trained and evaluated on each of the three data sets. Figures 8 and 9 show the cluster map of the
learnt adjacency matrices for the IFN-γ and control datasets respectively.

Table 3: The list of chosen genes from Perturb-CITE-seq dataset (Frangieh et al., 2021).

ACSL3 ACTA2 B2M CCND1 CD274 CD58 CD59 CDK4 CDK6
CDKN1A CKS1B CST3 CTPS1 DNMT1 EIF3K EVA1A FKBP4 FOS
GSEC GSN HASPIN HLA-A HLA-B HLA-C HLA-E IFNGR1 IFNGR2
ILF2 IRF3 JAK1 JAK2 LAMP2 LGALS3 MRPL47 MYC P2RX4
PABPC1 PAICS PET100 PTMA PUF60 RNASEH2A RRS1 SAT1 SEC11C
SINHCAF SMAD4 SOX4 SP100 SSR2 STAT1 STOM TGFB1 TIMP2
TM4SF1 TMED10 TMEM173 TOP1MT TPRKB TXNDC17 VDAC2

C.1 NODAGS-Flow vs. LLC

Figure 7 shows the performance comparison between NODAGS-Flow and LLC. It can be seen that NODAGS-Flow is able
to outperform LLC with respect to both the evaluation metrics and across all three conditions. This shows that learning
nonlinear relations does indeed provide an advantage, but we also attribute LLC’s poor performance to the mismatch
in LLC’s treatment of the intervened nodes to its actual behavior. That is, LLC considers the intervened nodes to be
independent with zero mean and unit variance, which is not the case in the data set and hence the significantly worse
performance compared to the other baselines.

Figure 7: Performance comparison between NODAGS-Flow and LLC on Perturb-CITE-seq data set.

https://github.com/Genentech/nodags-flows
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Figure 8: Clustermap of the adjacency matrix learned by NODAGS-Flow on the IFN-γ datasets.
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Figure 9: Clustermap of the adjacency matrix learned by NODAGS-Flow on the control datasets
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