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Abstract

This paper develops a model-free sequential test
for conditional independence. The proposed test
allows researchers to analyze an incoming i.i.d.
data stream with any arbitrary dependency struc-
ture, and safely conclude whether a feature is
conditionally associated with the response under
study. We allow the processing of data points on-
line, as soon as they arrive, and stop data acqui-
sition once significant results are detected, rigor-
ously controlling the type-I error rate. Our test
can work with any sophisticated machine learn-
ing algorithm to enhance data efficiency to the
extent possible. The developed method is in-
spired by two statistical frameworks. The first
is the model-X conditional randomization test,
a test for conditional independence that is valid
in offline settings where the sample size is fixed
in advance. The second is testing by betting,
a “game-theoretic” approach for sequential hy-
pothesis testing. We conduct synthetic experi-
ments to demonstrate the advantage of our test
over out-of-the-box sequential tests that account
for the multiplicity of tests in the time horizon,
and demonstrate the practicality of our proposal
by applying it to real-world tasks.

1 INTRODUCTION

A central problem in data analysis is to rigorously find con-
ditional associations in complex data sets with nonlinear
dependencies. This problem lies at the heart of causal dis-
covery (Pearl et al., 2000; Peters et al., 2017), variable se-
lection (Barber and Candès, 2015; Candes et al., 2018), ma-
chine learning interpretability (Burns et al., 2020; Lu et al.,
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2018), economics (Angrist and Kuersteiner, 2011; Wang
and Hong, 2018), and genetics studies (Sesia et al., 2019;
Bates et al., 2020), to name a few. In such applications, the
data are often collected online, and, naturally, researchers
are interested in analyzing the data points immediately af-
ter they are observed so that further data acquisition can be
terminated as soon as significant results are detected. This
experimental setting, for example, is typical in decision-
making (Nikolakopoulou et al., 2018; Bhui, 2019) and clin-
ical trials (Park et al., 2018), where the need for additional
samples to obtain accurate statistical inference must fre-
quently be balanced with experimental costs.

To formalize the problem, suppose we are given a stream of
data points (Xt, Yt, Zt) for t ∈ N = 1, 2, . . . , where each
triplet contains a response Yt ∈ R, a feature Xt ∈ R, and
a vector of covariates Zt ∈ Rd. We assume the observa-
tions are sampled i.i.d. from PY XZ = PY |XZPXZ , where
PY |XZ is unknown. Given such an online data stream, our
goal is to test for conditional independence (CI), where the
null hypothesis is given by

H0 : Xt ⊥⊥ Yt | Zt for all t ∈ N.

In words, we say that H0 is true if Xt is independent of the
response Yt after accounting for the effect of the covariates
Zt, simultaneously for all time steps t. We refer to Xt that
satisfies H0 as an ‘unimportant’ feature. Analogously, the
alternative hypothesis implies that Xt carries new informa-
tion on the response Yt beyond what is already contained
in Zt, i.e., Xt ̸⊥⊥ Yt | Zt. Therefore, we say that such a
feature Xt is ‘important’.

The goal of sequential hypothesis testing is to formulate a
concrete decision rule on whether we can confidently reject
the null at each time step t, by monitoring and accumulat-
ing the evidence collected at each step against the null us-
ing past data {(Xs, Ys, Zs)}ts=1 (Wald, 1945). This allows
the analyst great flexibility, as she can decide, at each step,
whether new data should be collected to support the ques-
tion under study. Key to this setting is the need to provide
the analyst with a tool that rigorously controls the type-I
error rate—defined as the probability of rejecting the null
when it is in fact true—at any given desired level α, simul-
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taneously for all time steps t. This requirement should not
be confused with the premise of classic offline tests for CI
that attain type-I error rate control only when the sample
size is fixed in advance. We refer to these as offline tests,
emphasizing that one cannot naively monitor the outcome
of a classic test—a p-value—and reject the null at an op-
tional time step t without accounting for the multiplicity of
the tests across the time horizon; this strategy would result
in inflation of the type-I error rate. Beyond online type-I
error rate control, ideally, we wish to have a powerful test
that would reject the null when it is false, and we want it to
do so as early as possible.

Our contribution

In this paper, we develop a novel sequential test for CI.
Our proposal takes inspiration from two powerful and at-
tractive statistical tools that are gaining increasing atten-
tion in recent years. The first is the model-X conditional
randomization test (CRT) by Candes et al. (2018), an of-
fline test for CI. The second is testing by betting (Shafer
and Vovk, 2019; Grünwald et al., 2020), a “game-theoretic”
approach for sequential hypothesis testing, where our pro-
posal is very much inspired by the line of work reported
in (Ramdas and Wenbe, 2020; Ramdas et al., 2022). The
method we introduce in this paper, presented in Section 4,
generalizes the offline CRT to the challenging online set-
ting, resulting in a new test with the following features.

Safe testing with early stopping: building on recent ad-
vances in sequential testing using e-values and martingales,
detailed in Section 3, the proposed CI test is guaranteed to
control the type-I error rate at any time step. In particular,
the analyst is allowed to track the outcome of the test over
time, and safely reject the null if it exceeds a user-defined
significance level, preventing a wasteful collection of un-
necessary new data points.

Model-X setting: similar to the offline CRT method, de-
scribed in Section 2, the online test we propose does not
make any assumptions on the conditional distribution of
Y | X,Z. For instance, we do not make unrealistic as-
sumptions that the relationship between Y and (X,Z) is
linear, or that Y | X,Z is Gaussian. However, this advan-
tage comes at the cost of assuming that the distribution of
X | Z is known. This assumption is common to all tests be-
longing to the family of model-X knockoffs, including the
CRT, and it is manageable when (i) large unlabeled data are
available in contrast to labeled data, or (ii) when we have
good prior knowledge about the distribution of X | Z (Can-
des et al., 2018; Sesia et al., 2019; Romano et al., 2020).
We discuss this in more detail in Section 4.2.

Online learning from past experience: the proposed test
can leverage any machine learning algorithm to powerfully
discover violations of the CI null. In particular, when a
new triplet (Yt, Xt, Zt) is observed, we use online learn-

ing techniques to efficiently update the running predictive
model, instead of fitting a new model from scratch. This
way, the whole data stream is used for training in a compu-
tationally efficient manner. The proposed framework also
falls under the umbrella of interactive tests (Lei and Fithian,
2018; Lei et al., 2021; Duan et al., 2022), providing the an-
alyst the liberty to look at past data and decide how to mod-
ify the learning algorithm at any time step—e.g., to switch
to a model that is more robust to outliers—to better dis-
criminate the null and alternative hypotheses when applied
to future test points.

Optimized software package: we provide a python code
that implements our testing framework, is available at
https://github.com/shaersh/ecrt. The pack-
age includes important design principles: an automatic
hyper-parameter tuning that does not require fitting the ma-
chine learning model from scratch (Supplementary Sec-
tion E); an ensemble procedure for improving the power
of the test by averaging multiple martingales (Section 4.2);
and a de-randomization procedure that also improves
power by reducing inherent algorithmic randomness due to
a sampling mechanism that is necessary to formulate the
test (Section 4.2).

2 MODEL-X CI TESTING

The CRT, developed by Candes et al. (2018), is an offline
test for CI that we build upon in this work. A key advan-
tage of the CRT is that it assumes nothing on the condi-
tional distributions of Y | X,Z and Y | Z. This test, how-
ever, assumes that the conditional distribution of X | Z is
known. The CRT procedure, described in Algorithm 3 in
Supplementary Section B, resembles classic permutation
tests and has two key components: a test statistic func-
tion T (·) and a function that samples dummy features X̃
from PX|Z . Since X̃ is sampled without looking at Y , the
dummy triplets (X̃, Y, Z) satisfy X̃ ⊥⊥ Y | Z by construc-
tion. Hence, by comparing the test statistic evaluated on the
original {(Xi, Yi, Zi)}ni=1 and dummy {(X̃i, Yi, Zi)}}ni=1

triplets, the CRT generates a valid p-value pn, controlling
the CI null at level α when the sample size n is fixed in
advance (Candes et al., 2018), i.e.,

P[pn ≤ α | the null is true] ≤ α for a fixed n. (1)

Put differently, when all n observations are available be-
fore testing, one can use pn to rigorously control the type-I
error. However, future observations cannot be utilized to
generate a new p-value (e.g., in cases where the null is not
rejected) without a proper correction that ensures the valid-
ity of the sequential test. To see this, suppose for simplicity
that under the null pn ∼ Uniform(0, 1) is distributed uni-
formly over the [0, 1] interval for any fixed n, satisfying (1).
Next, let τ be a data-dependent stopping time, given by

τ = {minn : pn ≤ α, n ∈ N}.

https://github.com/shaersh/ecrt
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Now, observe that with this choice of stopping time,
P[pτ ≤ α | the null is true] cannot be bounded by α any-
more: there exists τ such that a rejection rule pτ ≤ α would
result in an invalid α-level test.

In many applications, however, one is interested in apply-
ing the test online to obtain reliable data-driven conclusions
as soon as possible. This motivates us to adopt a fresh sta-
tistical approach for hypothesis testing, called testing by
betting, briefly described in the next section.

3 TESTING BY BETTING

Before diving into the mathematical principles of the test-
ing by betting approach, we follow Shafer and Vovk (2019)
and Shafer (2021) and present an intuitive interpretation of
this framework. Imagine we are playing a game, in which
we start with initial toy money. At each time step, we place
a bet against the null hypothesis, and then reality reveals
the truth. If this bet turns out to be correct, our wealth is
increased by the money we risk in the bet; otherwise, we
lose and the wealth is decreased accordingly. If our wealth
at time t is at least 1/α times as large as the initial toy
money we started with (e.g., we have managed to multiply
our initial money by a factor of 1/0.05 = 20 for α = 0.05)
we can confidently reject the null, knowing that the type-I
error is guaranteed to be controlled at level α. A property
important to the formulation of the above game is this: if
the null is true, the game must be fair in the sense that it is
unlikely we will be able to significantly increase our initial
toy money, no matter how sophisticated our betting strategy
is.

A mathematical object that is crucial to formalize a fair
game is a test martingale, defined below.

Definition 1. A random process {St : t ∈ N0} is a test
martingale for a given null hypothesis H0 if it satisfies the
following conditions: (i) S0 = 1, (ii) St ≥ 0, ∀t ∈ N0,
and (iii) {St : t ∈ N0} is a supermartingale under H0.

In the view of testing by betting, the initial value of the test
martingale S0 represents the initial toy money in the game,
and St corresponds to our wealth at time t. Now, suppose
we are handed a valid test martingale {St : t ∈ N0}, and
let τ ≥ 1 be a data-dependent optional stopping time. By
invoking the optional stopping theorem we get

EH0
[Sτ ] ≤ EH0

[S0] = 1, (2)

meaning that Sτ is a non-negative random variable whose
expected value is bounded by one for any stopping time
τ ≥ 1. In the literature on testing by betting, Sτ is often
referred to as an e-value (Vovk and Wang, 2021; Wang and
Ramdas, 2022; Grünwald et al., 2020). Importantly, the
consequence of (2) is that, under the null, the game is fair
since the expected value of our wealth St at any time step
t is bounded by the initial toy money S0. Moreover, since

{St : t ∈ N0} is a non-negative supermartingale under H0,
we can apply Ville’s inequality (Ville, 1939) and get

PH0
(∃t ≥ 1 : St ≥ 1/α) ≤ αEH0

[S0] = α, (3)

for any α ∈ (0, 1). Therefore, the ability to form a valid test
martingale allows us to rigorously test for H0 and reject the
null if St ≥ 1/α at any time step, with the premise that the
type-I error would not exceed the level α. Crucially, when
the null is false, St can largely grow depending on how suc-
cessful our betting strategy is. In Section 4 we formulate a
valid test martingale and design a powerful betting strategy.

Related work. Sequential testing has a long standing his-
tory (Wald, 1945; Lai, 1984; Naghshvar and Javidi, 2013;
Lhéritier and Cazals, 2018), where the sequential probabil-
ity ratio test of Wald (1945) is perhaps one of the first se-
quential hypothesis tests. More recently, the testing by bet-
ting methodology (Shafer and Vovk, 2019; Shafer, 2021)
has led to the design of new powerful nonparametric ap-
proaches for constructing confidence sequences, e.g., (Jun
and Orabona, 2019; Waudby-Smith and Ramdas, 2023), for
testing a single hypothesis, as well as for testing multiple
hypotheses; see (Waudby-Smith and Ramdas, 2023, Sec-
tion 6) for a detailed summary.

Related methods to our proposal are offline and online
two-sample tests that are based on martingales (Balsub-
ramani and Ramdas, 2016; Turner et al., 2021; Shekhar
and Ramdas, 2021; Duan et al., 2022). Specifically,
Shekhar and Ramdas (2021) studied the problem of design-
ing martingale-based sequential nonparametric one- and
two-sample tests that are consistent, i.e., these sequential
tests can attain power one under certain conditions. In our
work, we build on the foundations of Shekhar and Ram-
das (2021), and extend this framework to CI testing. Re-
cently, Ren and Barber (2022) suggested using e-values to
de-randomize the outcome of the knockoff filter—a sister
method to the CRT that focuses on false discovery rate con-
trol (FDR) in an offline setting. In our work, we aggregate
e-values to de-randomize our test, where the e-values we
define take a different form than those proposed by Ren
and Barber (2022), as we focus on sequential testing of
a single feature. Lastly, independent work by Grünwald
et al. (2022), which has been developed and posted in par-
allel to ours, also offers a martingale-based sequential test
under the model-X setting, although suggesting a different
test martingale. In Supplementary Section D we provide a
more detailed discussion about the relation of our proposal
to that of Grünwald et al. (2022), along with empirical com-
parisons.

4 THE PROPOSED e-CRT

In this section, we introduce e-CRT: a sequential test for CI
based on martingales and e-values. Suppose we are given a
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Figure 1: Illustration of the test martingale (wealth) St

as a function of t. The blue (resp. green) curve represents
the test martingale evaluated on simulated null data
(resp. non-null data).

machine learning model f̂t, fitted on an initial batch of la-
beled data {(Xs, Ys, Zs) : s ≤ t−1} to provide an estimate
of Y given (X,Z). At a high level, the test is initialized
with toy money S0 = 1 and proceeds as follows.

1. Collect a fresh test triplet (Xt, Yt, Zt).
2. Generate a dummy feature X̃t ∼ PX|Z(Xt | Zt), and

form the dummy triplet (X̃t, Yt, Zt).
3. Compute a betting score Wt. Use f̂t to bet against the

null, where the bet is that the prediction error of f̂t (or
any other test statistic), evaluated on the dummy triplet
(X̃t, Yt, Zt), would be higher than that of the original
triplet (Xt, Yt, Zt). A positive (resp. negative) score
indicates that our bet is successful (resp. unsuccessful).

4. Update the current wealth (test martingale) St: if the
betting score is positive, the previous St−1 is increased
by the money we risked on placing the bet; otherwise,
the previous wealth St−1 is decreased analogously.

5. Update the predictive model f̂t and get f̂t+1, e.g., by
taking one (or more) gradient steps to minimize a loss
evaluated on {(Xs, Ys, Zs) : s ≤ t}.

6. If St ≥ 1/α reject H0 and stop. Otherwise, increase t
and return to step (1).

In what follows, we describe each of the above components
in depth, define the proposed test martingale, and prove its
validity. Later, in Section 4.2, we provide additional design
principles that improve the power of the test.

Before doing so, we pause to provide a small synthetic ex-
periment that showcases how the wealth process St be-
haves under the null and the alternative. To this end,
we generate two different data sets. The first satisfies
H0, which we refer to as null data in which X is
unimportant. The second satisfies the alternative, which we
call non-null data in which X is important. The data
generation process for each case and the implementation
details are described in Section 5.1. Next, we apply e-CRT
on each data set, and present in Figure 1 the wealth pro-
cess St as a function of t. When the test is applied to the
null data, the value of St remains close to the initial
wealth S0 = 1 for all presented time steps t. In particu-

lar, St does not exceed the value 1/α = 20, and thus H0

cannot be rejected. By contrast, when the test is applied
to the non-null data, the wealth process grows as the
testing procedure proceeds, until reaching a target value of
1/α = 20. In this case, we reject the null and report that X
is indeed important. This experiment illustrates the advan-
tage of monitoring the value of St over time: we can safely
terminate the test after collecting 300 samples and avoid a
wasteful collection of new data.

4.1 Formulating the Test Martingale

Our procedure exploits the dummy feature X̃t, sampled
from the conditional distribution of X | Z to form a fair
game. In the sequel, we state key properties of the dum-
mies, which we will use to define our test. The proofs of
all statements given in this section are provided in Supple-
mentary Section A. We start by emphasizing that we sam-
ple X̃t ∼ PX|Z(Xt | Zt) without looking at Yt, and so
X̃t ⊥⊥ Xt | Zt for all t ∈ N by construction. Therefore,
Xt and its dummy X̃t are exchangeable conditional on Zt;
that is, (Xt, X̃t) | Zt

d
= (X̃t, Xt) | Zt, where d

= reads as
‘equal in distribution’. This implies that it is impossible to
distinguish between Xt and its dummy X̃t when viewing
Zt, for any time step t. Furthermore, under the null, this ex-
changeability property holds not only conditionally on Zt

but also on Yt.

Lemma 1. Take (Xt, Yt, Zt) ∼ PXY Z , and let X̃t be
drawn independently from PX|Z without looking at Yt. If

Yt ⊥⊥ Xt | Zt, then (Xt, X̃t, Yt, Zt)
d
= (X̃t, Xt, Yt, Zt).

The above result lies at the heart of the knockoff and CRT
frameworks, and its proof follows (Candes et al., 2018,
Lemma 3.2), (Barber et al., 2020, Lemma 1). Lemma 1
implies that, if the null is true, it is impossible to tell which
is the original feature and which is the dummy when view-
ing the full observation, at any time step t. This result is
essential for proving the validity of the CRT p-value, as
well as for formulating our test martingale, as we do next.

Denote by Ft = σ({Xs, Ys, Zs}ts=1) the sigma-algebra
generated by observations collected up to time t, where F0

is the trivial sigma-algebra. Let qt = T (Xt, Yt, Zt; f̂t) ∈ R
and q̃t = T (X̃t, Yt, Zt; f̂t) ∈ R be the test statistics evalu-
ated on the original and dummy triplets, respectively. Im-
portantly, T (·; f̂t) can be any function, and its choice may
affect the power of the test. For instance, one can define
T (·; f̂t) as the squared prediction error evaluated on the
current sample T (x, y, z; f̂t) = (f̂t(x, z) − y)2 using a
model f̂t trained on past data {Xs, Ys, Zs}t−1

s=1. Observe
that f̂t is not fitted on the new triplet (Xt, Yt, Zt), thus it is
considered as a fixed function once conditioning on Ft−1.

We then proceed by evaluating a betting score

Wt = g(qt, q̃t), (4)
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where the function g(a, b) ∈ [−m,m] is antisymmetric
g(a, b) = −g(b, a), satisfying g(a, b) > 0 if b > a and
g(a, b1) ≥ g(a, b2) for b1 ≥ b2. For example, g(a, b) =
m · sign(b− a). The hyper-parameter 0 < m ≤ 1 controls
the magnitude of the score. As in the knockoff filter, our
design of g ensures it follows the flip sign property, requir-
ing that a swap of the original feature Xt and its dummy
X̃t will flip the sign of Wt (Candes et al., 2018).

Under the alternative, one should interpret a strictly posi-
tive betting score Wt > 0 as a successful bet, which will
increase our wealth. This means that we gain some evi-
dence that Xt carries extra predictive power about Yt be-
yond what is already known in Zt. Analogously, a strictly
negative Wt < 0 indicates an erroneous bet, which will
reduce our wealth even though the null is false. Crucially,
under the null, Wt will be zero on average, no matter how
accurate f̂t is. In other words, it is impossible to have a
systematically positive Wt when H0 is true.

Lemma 2. Under the same conditions as in Lemma 1, if
H0 is true then EH0

[Wt | Ft−1] = 0 for all t ∈ N.

The core idea behind the proof of the above lemma is that,
under the null, Wt has a symmetric distribution about zero
conditional onFt−1, and thereby its expected value is zero;
see (Ramdas et al., 2020) for a related property of symmet-
ric distributions. In particular, Wt is equally likely to have
positive and negative values, which is a well-known result
in the knockoff literature with the important difference that
in our case we show it holds conditionally on Ft−1.

Armed with the betting score Wt at time t, we turn to define
a test martingale {St : t ∈ N0} for H0. The martingale
can be thought of as the wealth process, initialized by toy
money S0 = 1, and our ultimate goal is to maximize it. We
begin with defining the base martingale as follows:

Sv
t :=

t∏
j=1

(1 + v ·Wj), (5)

where v ∈ [0, 1] is a fixed amount of toy money that we are
willing to risk at step t.1 Proposition 2 in Supplementary
Section C.1 shows that {Sv

t : t ∈ N0} in (5) is a valid test
martingale. As a result, following Ville’s inequality in (3),
one can monitor Sv

t and control the type-I error for any
choice of v ∈ [0, 1]. Importantly, the amount of toy money
v that we risk when placing the bet affects the power.

The above immediately raises the question of how should
we choose v? Ideally, we want to set the best constant
v∗ so that Sv∗

t is maximized under the alternative. The
problem is that we are not allowed to look at the current

1We can set a different vt for each time step, yet vt must be
chosen without looking at the current (Xt, Yt, Zt) as otherwise
the test will cease to be valid. Intuitively, in such a case one can
always set vt = 0 when Wt is negative and vt = 1 otherwise, and
increase the wealth regardless on whether the null is true or false.

betting score Wt, so it is impossible to find such an ideal
data-dependent v∗ in foresight. As a thought experiment,
consider the simplest choice for g as the sign function for
which Wt ∈ {+1,−1}, and suppose we adopt an aggres-
sive betting strategy with v = 1. With this choice, when
we win a bet we will increase Sv

t by the maximal amount
possible at step t. However, if we lose a bet even once, we
will have Sv

t = 0, resulting in a powerless test; to see this,
assign Wt = −1 in (5). We give a concrete example that
visualizes this discussion in Supplementary Section C.2.

As a way out, we formulate a powerful betting strategy us-
ing the mixture-method of Shekhar and Ramdas (2021),
which is intimately connected to universal portfolio opti-
mization (Cover, 2011). The mixture-method is defined as
the average over Sv

t for all v ∈ [0, 1]:

St =

∫ 1

0

Sv
t · h(v)dv, (6)

where h(v) is a probability density function (pdf) whose
support is on the [0, 1] interval, e.g., a uniform distribution.
We adopt the mixture method betting strategy to formu-
late our test martingale since it has appealing power prop-
erties, which we discuss soon. Before doing so, however,
we shall first prove that the test martingale in (6) is valid.
The theorem presented below states that by monitoring St

one can safely reject the null the first time St exceeds 1/α,
while rigorously controlling the type-I error simultaneously
for all optional stopping times. This result holds in finite
samples, without making any modeling assumptions on the
conditional distribution of Y | X , and for any machine
learning model f̂t, which we use to bet against the null. The
proof follows (Shekhar and Ramdas, 2021, Section 2.2).

Theorem 1. Under the same conditions as in Lemma 1, if
the null hypothesis H0 is true then for any α ∈ (0, 1),

PH0
(∃t : St ≥ 1/α) ≤ α.

Having established the validity of the test, we turn to dis-
cuss the key advantage of the mixture method betting strat-
egy. The idea behind this approach is that one of the base
martingales Sv

t in (6) must hit the best constant v∗, which,
in turn, drives the average martingale St upwards. We
demonstrate this visually in Supplementary Section C.2. In
fact, Shekhar and Ramdas (2021) proved that St is not only
dominated by Sv∗

t , but can also provably form a consistent
test that achieves power one in the limit of infinite data.

Proposition 1 (Shekhar and Ramdas (2021)). If
lim inft→∞

1
t

∑t
s=1 Ws > 0 under the alternative

H1. Then, PH1
(∃t : St ≥ 1/α) = 1 for any α ∈ (0, 1).

The condition of lim inft→∞
1
t

∑t
s=1 Ws > 0 implies that

it suffices that only on average the predictive model will be
able to tell apart the original and dummy triplets, so at the
limit of infinite data we will attain a consistent test.
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Algorithm 1 Betting score evaluation
Input: Data batch {(Xs, Ys, Zs)}bs=1; conditional distri-
bution PX|Z ; test statistic T (·); fixed predictive model f̂ ;
de-randomization parameter K; betting score function g(·).

1: Compute q ← T ({(Xs, Ys, Zs)}bs=1; f̂)
2: for k = 1, . . . ,K do
3: Sample X̃s ∼ PX|Z(Xs | Zs) for s = 1, . . . , b

4: Compute q̃ ← T ({(X̃s, Ys, Zs)}bs=1; f̂)
5: Compute a betting score W (k) ← g(q, q̃)

Output An average betting score W ← 1
K

∑K
k=1 W

(k)

Algorithm 2 e-CRT: sequential test for CI
Input: Data stream (Xt, Yt, Zt), t = 1, . . . ; test level α ∈
(0, 1); set of batch sizes B.

1: Train a predictive model f̂1 on an initial batch of data
{(Xt′ , Yt′ , Zt′)}ninit

t′=1

2: Set S0,b ← 1 for all b ∈ B
3: for t = 1, 2, . . . do
4: for b in B do
5: Set t′ ← ⌊t/b⌋
6: Set Dt,b = {(Xj , Yj , Zj)}t

′·b
j=(t′−1)·b+1

7: Compute the average betting score Wt′,b by ap-
plying Algorithm 1 to Dt,b with f̂(t′−1)·b+1

8: Update St,b ←
∫ 1

0

∏t′

s=1(1 + v ·Ws,b) · h(v)dv
9: Compute the ensemble-over-batches martingale

St ← 1
|B|

∑
b∈B St,b

10: if St ≥ 1/α then
11: Reject the null hypothesis H0 and stop
12: else
13: Obtain f̂t+1 by online updating f̂t after adding the

most recent point (Xt, Yt, Zt) to the train set

4.2 Practical Considerations

In this section, we provide design principles that improve
the power of the test while maintaining its validity. For ease
of reference, we provide a pseudo code that implements the
following ideas in Algorithm 2.

De-randomization. To reduce the algorithmic randomness
induced by the generated dummy feature X̃t, we (i) sample
K > 1 independent dummy copies of Xt; (ii) compute the
corresponding betting scores W (k)

t , k = 1, . . . ,K; and (iii)
evaluate the average betting score Wt = 1

K

∑K
k=1 W

(k)
t .

We refer to K as the de-randomization hyper-parameter.
Importantly, this strategy preserves the validity of the test
martingale St in (6), since the expected value of the av-
erage betting score is also equal to zero under the null,
i.e., 1

K

∑K
k=1 EH0

[W
(k)
t | Ft−1] = 0. The ablation study

presented in Section 5.3 demonstrates that the above de-
randomization procedure improves the power of the test,
even for a moderate choice of K.

Ensemble over batches. The betting score Wt presented
in (4) is evaluated on a single data point. This choice, how-
ever, might be inferior to evaluating Wt on a batch of sev-
eral data points, as working with a batch is often less sen-
sitive to the randomness in the data. On the other hand, a
larger batch size reduces the total number of updates of the
wealth process St that we can make, and this may result
in slower growth of the total wealth for a given number of
data points. To mitigate the above trade-off, we suggest an
ensemble approach by formulating the test martingale

St =
1

|B|
∑
b∈B

St,b, t ∈ N (7)

as an average of |B| test martingales St,b, where B is a
set containing the batch-sizes and | · | returns the set size.
Each of the batch martingales St,b is evaluated analogously
to (6), however on a batch of size b instead of a single data
point. We refer the reader to Supplementary Section F for
more details on the ensemble approach, where we rigor-
ously explain why (7) is a valid test martingale. This pro-
cedure is summarized in Algorithm 2. The ablation study
in Section 5.3 demonstrates the above trade-off and the ad-
vantage of our ensemble procedure.

Unknown conditional. As in the CRT, to generate the
dummy X̃ we assume that we have access to PX|Z , how-
ever, in many real applications this distribution may not
be known precisely. Here, we briefly discuss several use-
cases where it is sensible to assume we have reasonable
knowledge about X | Z, and we refer the reader to Can-
des et al. (2018) for a more detailed discussion. One such
use-case is controlled experiments, e.g., genetic crossing
experiments (Haldane and Waddington, 1931), sensitivity
analysis of numerical models (Saltelli et al., 2008), and
gene knockout experiments (Cong et al., 2013). Another
important use-case is when we have a large number of un-
labeled observations of (X,Z), so we can estimate PX|Z
before applying the test. This is a reasonable assumption
in various economic or genetic applications as we can col-
lect covariates from different populations, or leverage pre-
vious studies that have acquired the same (X,Z) however
with different response variables. In such situations, we
can utilize powerful machine learning techniques to esti-
mate PX|Z using the available data, as suggested in previ-
ous work on model-X tests (Tansey et al., 2022; Gimenez
et al., 2019; Bellot and van der Schaar, 2019; Romano et al.,
2020; Sesia et al., 2019). We will rely on such ideas in
our experiments with real data. Importantly, the above line
of research demonstrates the robustness of the CRT and
knockoffs to errors in the estimation of PX|Z . We believe it
will be striking to provide a rigorous robustness theory for
our e-CRT, possibly by following the approach presented
in (Barber et al., 2020; Berrett et al., 2020).
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Figure 2: Performance evaluation with simulated data, evaluated over 1000 independent trials. Left: type-I error.
Middle: empirical power. Right: histogram of the stopping times evaluated on the non-null data. We set α = 0.05.

5 SYNTHETIC EXPERIMENTS

5.1 Experimental Setup

In this section, we evaluate the performance of e-CRT
in a controlled synthetic setting, where PX|Z and PY |XZ

are known. We generate a sequence of i.i.d. data points
{(Xt, Yt, Zt)}nt=1, where n is the maximal number of sam-
ples that can be collected. The features Xt, Zt are sampled
as follows: Zt ∼ N (0, Id) and Xt | Zt ∼ N (u⊤Zt, 1)
where u ∼ N (0, Id), so as Xt and Zt are dependent by
design (Javanmard and Mehrabi, 2021). Unless specified
otherwise, we fix the number of covariates to d = 19,
so in total we have 20 features. Next, we consider two
different conditional models for PY |XZ . The first model
is used to examine the validity of our test by evaluating
the type-I error rate, which we refer to as null data
model. Specifically, we sample Yt such that Yt ⊥⊥ Xt | Zt

as follows: Yt | Xt, Zt ∼ N ((w⊤Zt)
2, 1), where w ∼

N (0, 1). To evaluate the empirical power—i.e., the rate
we reject H0 when applying a test with significance level
α—we define the following non-null data model in
which Yt ̸⊥⊥ Xt | Zt by construction: Yt | Xt, Zt ∼
N ((w⊤Zt)

2 + 3Xt, 1), where w ∼ N (0, 1). We com-
pare the performance of our e-CRT to offline CRT (Candes
et al., 2018), detailed in Section 2, as well as to the holdout
randomization test (HRT) (Tansey et al., 2022), which is
a computationally efficient variant of the offline CRT that
often comes at the price of reduced power due to data split-
ting. All the methods use lasso regression model to com-
pute the test statistics, whereas in e-CRT we fit the model
online as described in Supplementary Section E. Additional
implementation details on all methods are provided in Sup-
plementary Section G.1.

We also compare e-CRT to out-of-the-box sequential ver-
sions of the offline CRT/HRT that allows monitoring the
p-value pt over time. Towards that end, we apply the state-

of-the-art ADDIS-spending approach (Tian and Ramdas,
2021), which rigorously adjusts the p-value at time t by
accounting for multiple comparisons in the time horizon,
controlling H0. We refer to the ADDIS-spending version
of the CRT and HRT as ADDIS-CRT and ADDIS-HRT;
see Supplementary Section G.1 for implementation details.
Unfortunately, we find it infeasible to generate a p-value
pt for each time step t due to the high computational com-
plexity of the CRT: it requires fitting M predictive models
from scratch for each t, where we set M = 1000 in our
experiments to have a reasonable resolution for the p-value
corrected by ADDIS-spending. Therefore, we apply AD-
DIS on p-values evaluated using CRT/HRT over a grid of
11 times steps in total.

5.2 Type-I Error, Power, and Early Stopping

Type-I error. Recall Figure 1 from Section 4, illustrating
that the test martingale St does not grow significantly over
time for a single realization of the null data. Here, we
expand this experiment by reporting the type-I error rates
of all the sequential tests as a function of t, evaluated on
1000 independent realizations of the null data model.
Following Figure 2 (left), we can see how the type-I error of
our e-CRT is controlled and falls below the level α = 0.05
for all time steps t, as expected. The same conclusion holds
for the sequential tests ADDIS-CRT and ADDIS-HRT. We
also present in Supplementary Figure 6 the type-I error of
the offline CRT and offline HRT, showing these also control
the type-I error rate, however for a fixed sample size t.

Robustness. In practice, we do not have access to the sam-
pling distribution of X | Z, and thus it is important to
study the robustness of the test to approximation error in
the sampling of X̃ . In Supplementary Section G.5.1 we
conduct such an experiment, showing that inflation in the
type-I error occurs only when the estimation of PX|Z is
far from the true distribution. Further, in Supplementary
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Section G.5.2 we consider a more challenging X | Z that
follows a student-t distribution and show how a recent non-
parametric method (Rosenberg et al., 2022) can be used
to effectively estimate the conditional distribution. There,
we demonstrate how the type-I error is controlled, and also
that the power grows with t. A related experiment is given
in Section 6, where we apply our method to real data for
which PX|Z is unknown and thus must be estimated from
data.

Power. The middle panel in Figure 2 presents the empirical
power as a function of t, evaluated on 1000 independent re-
alizations of the non-null data model. Observe how
the offline tests outperform the sequential ones when the
sample size t is relatively small. Yet, for a larger number
of samples with t > 500, the e-CRT tends to outperform
the offline HRT; this may be due to the sample inefficiency
of the HRT as it involves data splitting. Interestingly, the
e-CRT has comparable performance to CRT for t > 1000,
and the three tests nearly achieve power one when the sam-
ple size is large. Importantly, the e-CRT outperforms both
ADDIS-CRT and ADDIS-HRT for all t, highlighting the
advantages of our specialized test for CI compared to more
out-of-the-box sequential solutions.

Early stopping. The strength of any sequential test—
including our e-CRT—is the ability to monitor the outcome
of the test and reject the null as soon as it exceeds a pre-
defined threshold. Of course, the earlier the rejection hap-
pens the better the sample efficiency of the test. The right
panel in Figure 2 presents the histogram of the stopping
times of ADDIS-CRT and e-CRT over the 1000 realizations
of the non-null data used in the power experiments.
As can be seen, e-CRT tends to reject the null earlier than
ADDIS-CRT, indicating superior sample efficiency.

Additional experiments. Supplementary Section G.3
studies the effect of the number of covariates d on the
performance of e-CRT, where the overall trend is that the
power is decreased as d is increased, and the type-I error is
controlled. We also examine the impact of the dependency
strength between X and Z on the performance of our e-
CRT in Supplementary Section G.4. There, we observe a
decrease in power as the correlation increases, while con-
trolling the type-I error. This trend is in line with previous
studies that focus on the offline setting, see, e.g., Candes
et al. (2018); Liu et al. (2022); Shaer and Romano (2023).

5.3 Ablation Study

The effect of the de-randomization parameter K. In
Section 4.2 we suggest using an average betting score over
K realizations of Wt to reduce the randomization induced
by the generation of the dummy features. To study the ef-
fect of the de-randomization parameter K on the power
of the e-CRT, we generate non-null data stream of
length n = 2000 and present in Figure 3 (top) the power of

Figure 3: Ablation study. Empirical power of e-CRT (α =
0.05), evaluated on 1000 realizations of the non-null
data. Top: the effect of the de-randomization parameter
K on power. Bottom: the effect of the batch size on power,
in comparison to the batch-ensemble approach in (7).

e-CRT as a function of t for several values of K. It is evi-
dent that the power of the test is improved as K increases,
with a maximal absolute improvement of about 20%.

The effect of the batch size. In Section 4.2 we discuss
how different batch sizes might affect the performance of
the e-CRT, and describe the trade-off between using small
and large batch sizes. To visualize this trade-off, we ap-
ply the e-CRT on non-null data with and without
the ensemble-over-batches approach, for several choices
of batch sizes. Following Figure 3 (bottom), we can see
that, for smaller sample sizes, e-CRT with small batches
performs better than with large batches in terms of power.
However, the opposite is true for larger sample sizes, in
which larger batches are favored. Our proposed ensemble
approach achieves a remarkable performance: it tends to
follow the leading choice for all sample sizes tested.

6 REAL DATA EXPERIMENTS

6.1 Fund Replication

We begin with the task of identifying which stocks con-
tribute to the performance of known index funds. Our study
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follows Challet et al. (2021); Spector and Fithian (2022)
who deployed the knockoff filter in this context. Although
the samples are not i.i.d. and thus not satisfying the model-
X assumptions, we present this application to illustrate how
the e-CRT can be applied to real data. In our experiments,
we focus on a technology sector index fund named XLK,
and follow the data collection procedure of Spector and
Fithian (2022). The data consists of the daily log returns
of each stock in the S&P 500 since 2013 and the corre-
sponding daily log return of XLK. We exclude samples
and features with missing data, resulting in n = 2421 and
d = 457. More details are in Supplementary Section H.1.1.

Table 1 in Supplementary Section H.1.2 summarizes the re-
sults obtained by applying e-CRT, CRT and HRT on each
of the d = 457 stocks. We classify a stock as important if it
currently belongs to the technology sector XLK. We report
the p-values obtained by CRT and HRT for each stock, and
the test martingale Ststop for e-CRT, where tstop is the stop-
ping time for a test level of α = 0.05. Following Supple-
mentary Table 1, we can see that the e-CRT tends to reject
the null for stocks that are currently in XLK, and avoids
rejecting stocks that are currently not in XLK. Observe the
advantage of early stopping: the e-CRT rejects some of the
important stocks with a relatively small sample size tstop.

6.2 HIV Drug Resistance

Herein, we consider the task of detecting genetic mutations
in human immunodeficiency virus (HIV) of type-I that are
associated with drug resistance (Rhee et al., 2006). We fol-
low Romano et al. (2020) and study the resistance to the
Lopinavir protease inhibitor drug, applying the same pre-
processing steps to the raw data. Consequently, this data
set consists of n = 1555 samples of d = 150 features.
We consider the data points as if they arrive sequentially
and apply the test on each feature. See Supplementary Sec-
tion H.2.1 for details on the data and the tests we apply.

Table 2 in Supplementary Section H.2.2 summarizes the
results obtained by running e-CRT, CRT, and HRT on each
of the d = 150 mutations, analogously to the fund replica-
tion experiment. We classify each mutation by its effect on
drug resistance, as reported in previous studies. Following
Supplementary Table 2, we can see that our e-CRT tends
to reject the null for mutations that have been previously
reported to have a ‘major’ or ‘accessory’ effect and avoid
the ‘unknown’ ones. The e-CRT rejects some of the ‘ma-
jor’/‘accessory’ mutations with a relatively small sample
size tstop, demonstrating the advantage of early stopping.
Figure 11 in Supplementary Section H.2.2 portrays three
test martingales for representative mutations. Figure 11a
corresponds to a mutation that has not been reported in pre-
vious studies to have an effect on drug resistance. Indeed,
the test martingale does not grow significantly. By con-
trast, Figure 11b corresponds to a mutation that has been re-

ported to have a major effect on drug resistance, for which
St grows fast and reaches 1/α = 20 using only 240 sam-
ples. Lastly, Figure 11c corresponds to a mutation that has
been also reported to have a major effect. Here, St grows
at a slower rate and does not reach the nominal level of
1/α = 20. Yet, it achieves a final value of 6.5, which pro-
vides substantial evidence against the null (Vovk and Wang,
2021).

7 CONCLUSION

In this paper, we develop e-CRT—a sequential CI test that
allows processing each data point as soon as it arrives, sup-
porting early stopping while controlling the type-I error
for all t simultaneously. Our proposed test is inspired by
the model-X randomization test Candes et al. (2018), and
testing by betting Shafer and Vovk (2019); Shafer (2021).
We prove the validity of e-CRT and propose several design
choices to improve its power, including de-randomization
and batch ensemble. Numerical experiments demonstrate
the validity of our e-CRT, its superiority over existing out-
of-the-box sequential tests for CI, and the impact of the
design choices we make on the power of the test.

One important future direction is to theoretically analyze
the robustness of the e-CRT to errors in the estimation
of PX|Z , rigorously characterizing the potential inflation
in type-I error rate Barber et al. (2020); Grünwald et al.
(2022). From a practical perspective, it would be illuminat-
ing to develop more robust betting scores, for example, by
taking into account the error in the estimation of PX|Z or by
borrowing ideas from the doubly robust literature Shah and
Peters (2020); Shi et al. (2021); Niu et al. (2022). Another
direction is to explore new ways to fit predictive models and
form more powerful betting scores. In our experiments, we
train the predictive model on the original data to minimize
the MSE while ignoring the dummy features. Recently, in
the context of HRT, Shaer and Romano (2023) developed
a new loss function that takes into account the dummy fea-
tures during training to improve the power of the test. We
believe such an approach can be used in our context as well.
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Supplementary Material: Model-X Sequential Testing for Conditional
Independence via Testing by Betting

A MATHEMATICAL PROOFS

Proof of Lemma 1. Observe that it is equivalent to showing that

(Xt, X̃t, Yt) | Zt
d
= (X̃t, Xt, Yt) | Zt, (8)

since the marginal distribution PZ is identical on both sides of (8). Below, we use discrete random variables for simplicity,
as the continuous case can be proved analogously. From the law of total probability, we can write relation (8) as follows:

PY |XX̃Z(y | a, b, z) · PXX̃|Z(a, b | z) = PY |X̃XZ(y | a, b, z) · PX̃X|Z(a, b | z). (9)

Now, recall that (Xt, X̃t) | Zt
d
= (X̃t, Xt) | Zt by construction, therefore the conditional distributions PX̃X|Z and PXX̃|Z

on both sides of (9) are the same. As a result, it suffices to show that

Yt | (Xt, X̃t, Zt)
d
= Yt | (X̃t, Xt, Zt).

The above relation holds once observing that

PY |XX̃Z(y | a, b, z) = PY |Z(y | z)

= PY |X̃XZ(y | a, b, z),

where the first and second equality hold since Yt ⊥⊥ Xt | Zt, Yt ⊥⊥ X̃t | Zt, and Xt ⊥⊥ X̃t | Zt, implying that
Yt ⊥⊥ (Xt, X̃t) | Zt. This completes the proof.

Proof of Lemma 2. Observe that the predictive model f̂t is a fixed function given Ft−1, as it is fitted to {(Xs, Ys, Zs)}t−1
s=1.

Thus, we can invoke Lemma 1, implying that under the null

g(qt, q̃t) | Ft−1
d
= g(q̃t, qt) | Ft−1, (10)

as f̂t is a fixed function. Now, recall that g(·) is an antisymmetric function, i.e.,

g(qt, q̃t) = −g(q̃t, qt), (11)

and observe that by combining (10) and (11) we get the following

g(qt, q̃t) | Ft−1
d
= −g(qt, q̃t) | Ft−1.

This implies that, under the null, the density function of g(qt, q̃t) | Ft−1 is symmetric about 0, and therefore

EH0 [g(qt, q̃t) | Ft−1] = EH0 [Wt | Ft−1] = 0.
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Proof of Theorem 1. Note that S0 = 1 and St in (6) is non-negative for all t = N by construction. According to Ville’s
inequality (3), it is enough to show that {St : t ∈ N0} is a supermartingale under H0 with respect to the filtration {Ft−1 :
t ∈ N}. This statement holds true since

EH0 [St | Ft−1] = EH0

[ ∫ 1

0

t∏
s=1

(1 + v ·Wj) · h(v)dv | Ft−1

]

=

∫ 1

0

t−1∏
j=1

(1 + v ·Wj) · EH0
[1 + v ·Wt | Ft−1] · h(v)dv

=

∫ 1

0

t−1∏
j=1

(1 + v ·Wj) · (1 + v · EH0 [Wt | Ft−1]) · h(v)dv

=

∫ 1

0

t−1∏
j=1

(1 + v ·Wj) · h(v)dv = St−1.

The second equality is due Tonelli’s theorem Tonelli (1909), as
∏t

j=1(1 + v ·Wj) · h(v) is non-negative for all t ∈ N, and
h(v) is a probability density function. The last equality holds by invoking Lemma 2.

B THE OFFLINE CONDITIONAL RANDOMIZATION TEST

Algorithm 3 Offline Conditional Randomization Test
Input: Data {(Xi, Yi, Zi)}ni=1; test statistic T (·); number of iterations M .

1: Set t← T ({(Xi, Yi, Zi)}ni=1)
2: for m = 1, . . . ,M do
3: Sample dummy variables X̃i ∼ PX|Z(Xi | Zi) for i = 1, . . . , n

4: Set t̃(m) ← T ({X̃i, Yi, Zi)}ni=1)

Output: A p-value pn = 1
1+M

(
1 +

∑M
m=1 1{t̃(m) ≤ t}

)
.

C SUPPLEMENTARY DETAILS ON THE PROPOSED METHOD

C.1 Validity of the Base Martingale

In Section 4.1 we formulate the base martingale Sv
t in (5). Here, we prove in Proposition 2 that {Sv

t : t ∈ N0} is a valid
test martingale, according to Definition 1, for any v ∈ [0, 1].

Proposition 2. The base martingale {Sv
t : t ∈ N0} (5) is a valid test martingale w.r.t the filtration {Ft−1 : t ∈ N}, i.e.,

satisfying Definition 1, for any constant v ∈ [0, 1].

Proof. Let v ∈ [0, 1]. Note that Sv
0 = 1 and v ·Wt ≥ 0 for any t ≥ 1, hence Sv

t ≥ 0,∀t ∈ N0 by construction. To conclude
the prof, we show that {Sv

t : t ∈ N0} is a supermartingale under the null with respect to {Ft−1 : t ∈ N}:

EH0 [S
v
t | Ft−1] =

t−1∏
j=1

(1 + v ·Wj) · EH0 [1 + v ·Wt | Ft−1] =

t−1∏
j=1

(1 + v ·Wj) · (1 + v · EH0 [Wt | Ft−1]) = Sv
t−1.

C.2 Further Details on the Synthetic Experiment from Section 4.1

Here, we conduct an experiment that visualizes the advantage of the mixture-method St (6) over a constant v in Sv
t (5).

To this end, we present in Figure 4 the wealth process Sv
t obtained for several values of v and the mixture-method test

martingale St (6), for two different realizations of the non-null data generating model from Figure 1. We construct
St by applying Algorithm 2 to the generated data, with the choice of h(v) as the pdf of the uniform distribution on [0, 1].
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Figure 4: The effect of the amount of toy money v we risk on the wealth, in comparison with the mixture-method
martingale. Each of the two panels corresponds to a different realization of the non-null data. The green curves
represent Sv

t in (5) with different choices of v. The magenta curve represents the average test martingale St in (6).

The base test martingales Sv
t are constructed in the same fashion but with (5) in line 8 of Algorithm 2 instead of the mixture

approach. Below, we provide the implementation details of Algorithm 2 for this experiment.

• We set the betting score function in (4) to be g(a, b) = sign(b− a).

• The online learning model for f̂t takes the form of lasso regression using the hyper-parameter tuning approach de-
scribed in Section 4.2; we trained L = 20 models, each corresponds to a different η, where the number of samples for
initial training is set to be ninit = 20.

• The test statistic function is the mean squared error of a given batch T ({(Xs, Ys, Zs)}bs=1; f̂) = 1
b

∑b
s=1(f̂(Xs) −

Ys)
2, where we use a batch size of b = 5.

• We set the de-randomization parameter K, described in Section 4.2, to be equal to 20.

Although the data distribution is identical in both cases, the wealth processes presented in Figure 4 behave very differently:
the left panel portrays that the best-performing constant is v∗ = 0.3, whereas the right panel indicates that v∗ = 0.7.
Importantly, observe how the martingale Sv∗

t grows exponentially with t, and thus has a strong traction force on the
average martingale St. Observe also how the effect of the growing base martingales on St is stronger than that of the ones
that do not grow with t. This demonstrates the advantage of the mixture-method St (6) over the base martingale with a
constant v in Sv

t (5).

D SUPPLEMENTARY DISCUSSION ON RELATED WORK

The contemporary work by Grünwald et al. (2022) also offers an approach to test for CI sequentially based on test mar-
tingales. Although Grünwald et al. (2022) test martingale shares similarities with the method proposed in this work, there
are several key differences. Grünwald et al. (2022) martingale can be conceptualized as a likelihood ratio process and it
involves integration over PX|Z . By contrast, ours resembles the knockoffs approach which measures differences of a test
statistic evaluated on the original and dummy triplets, and is valid due to the anti-symmetry of the betting score (4). In
terms of power, under the assumption of a fast converging estimator for PY |X,Z , Grünwald et al. (2022) prove their test
martingale has a growth-rate optimality (Grünwald et al., 2020). On the other hand, following Proposition 1, we merely
assume a weaker assumption to achieve power one asymptotically (should not be confused with growth-rate optimality):
the model should distinguish the original and dummy triplets on average. Given the aforementioned variations, one may
opt for the technique put forth by Grünwald et al. (2022) if there is a reasonable estimate for the conditional distribution of
Y | X,Z. On the other hand, our method may be a more suitable choice if greater flexibility is desired for designing the
machine learning model.
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(a) (b) (c)

Figure 5: Empirical power and type-I error rate of e-CRT and the method proposed by Grünwald et al. (2022),
evaluated on 100 realizations of the data. (a) empirical power in a linear case, where φ(Xt, Zt) = β⊤Zt + 3 · Xt. (b)
empirical power in a non-linear case, where φ(Xt, Zt) = β⊤Zt + 6 · Xt · |Z(1)

t | · |Z
(2)
t |. (c) type-I error rate with

φ(Xt, Zt) = β⊤Zt.

To support the above discussion, we compare the two methods based on simulated data. We focus on binary classification
since Grünwald et al. (2022) present a concrete test martingale in this context. To this end, we generate Xt, Zt akin to
Section 5.1. The binary response Yt is generated from a Bernoulli distribution with a probability obtained by applying the
sigmoid function to c · φ(Xt, Zt), where we conduct two experiments. In the first, we choose φ to be a linear function
and c = 1, whereas in the second we choose φ to be a non-linear function and set c = 0.8. We deploy the method of
Grünwald et al. (2022) as described in (Grünwald et al., 2022)[Section 3.3], and our e-CRT with K = 20, B = {2, 5, 10},
g(a, b) = tanh(20 · (b − a)/max{a, b}), and T (·) be the binary cross entropy loss. We use a neural network classifier for
both testing methods.

We begin with a linear case, demonstrating a scenario where a reasonable estimation of PY |X,Z can be achieved. In this
experiment, we set φ(Xt, Zt) = β⊤Zt + 3 ·Xt with β ∼ N (0, Id) and d = 5. Figure 5a presents the empirical power of
both methods evaluated on 100 realizations of the described data. As can be seen, the method of Grünwald et al. (2022)
tends to be more powerful than ours, indicating the advantage of Grünwald et al. (2022) in cases where a good estimation
of PY |X,Z is attainable.

Next, we consider a more complex non-linear interaction model, where φ(Xt, Zt) = β⊤Zt + 6 ·Xt · |Z(1)
t | · |Z

(2)
t |. Here,

β ∼ N (0, Id) and d = 10, where Z
(j)
t represents the jth covariate of Zt. The empirical power of the methods, evaluated

on 100 realizations of the data, is depicted in Figure 5b. As portrayed, our e-CRT performs better in this case, indicating
the superiority of our e-CRT when it is harder to attain a fast converging estimator for PY |X,Z .

Lastly, Figure 5c presents the type-I error of both e-CRT and the method proposed by Grünwald et al. (2022), evaluated on
100 realizations of the data with φ(Xt, Zt) = β⊤Zt and c = 0.8 where β ∼ N (0, Id) and d = 10. There, the type-I error
is controlled for both methods.

E ONLINE LEARNING WITH AUTOMATIC HYPER-PARAMETER TUNING

Recall that after we place a bet for a new test point (Xt, Yt, Zt), we update the predictive model f̂t using (Xt, Yt, Zt)

by leveraging online learning techniques and get f̂t+1. The online update is done sequentially and thus computationally
efficient. For example, in our experiments we use lasso regression model, minimizing

β̂t := argmin
β

1

t

t∑
s=1

(X⊤
s β − Ys)

2 + η∥β∥1, (12)

where η is a hyper-parameter that controls the regularization strength. The above optimization problem is convex and it
is minimized using an iterative solver Wright (2015); Boyd et al. (2011). To form a computationally efficient learning
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algorithm, at each step t we initialize the iterative solver with the previous β̂t−1 and update the regression coefficients
by applying a few additional steps with the squared error term in (12) that includes the new observed point. To obtain a
powerful predictive model we should tune the hyper-parameter η, but tuning this parameter via standard cross-validation
may break the sequential update of β̂t. As a way out, we apply the following procedure for tuning η. We train online a
series of L models f̂ l

ttr
on {(Xs, Ys, Zs)}s<ttr over a grid of possible values of ηl, l = 1 . . . , L, where ttr < t, and evaluate

the models on the t− ttr recent holdout points. Next, we update the running model f̂t by minimizing (12) with ηl∗ , where
l∗ is the index of the model f̂ l

ttr
that achieves the smallest prediction error; this is done by applying a few steps of any

iterative solver, initialized with the previous β̂t−1.

F SUPPLEMENTARY DETAILS ON ENSEMBLE OVER BATCHES

In Section 4.2 we present our approach of ensemble of batch martingales St,b. Each of St,b is evaluated on a batch of size
b instead of a single data point. In more detail,

St,b =

∫ 1

0

Sv
t,b · h(v)dv, with Sv

t,b :=

⌊t/b⌋∏
s=1

(1 + v ·Ws,b), (13)

and ⌊·⌋ is the floor function. Above, we use the convention that
∏0

s=1(1 + v ·Ws,b) = 1. The betting score Ws,b in (13) is
evaluated similarly to (4) but on a batch via the following test statistic function

qs,b = T ({(Xj , Yj , Zj)}s·bj=(s−1)·b+1; f̂(s−1)·b+1) ∈ R,

that operated on the original batch of triplets; analogously, q̃s,b is obtained by invoking the same T function, however on
the dummy triplets, resulting in Ws,b = g(qs,b, q̃s,b). For example, T can be a function returning the mean squared error
of f̂(s−1)·b+1 evaluated on the observed data. Importantly, the test martingale in (7) is valid since

EH0
[St | Ft−1] = EH0

[
1

|B|
∑
b∈B

St,b | Ft−1

]
=

1

|B|
∑
b∈B

EH0
[St,b | Ft−1] =

1

|B|
∑
b∈B

St−1,b = St−1,

where the third equation is because each of the batch martingales St,b is valid.

G SUPPLEMENTARY DETAILS ON SYNTHETIC EXPERIMENTS

G.1 Implementation Details

In Section 5.1 we describe the experimental setup of our synthetic experiments. Here we provide the implementation
details of e-CRT and the baseline methods—CRT and HRT.

We implement the e-CRT procedure as described in Algorithm 2, with the following choices. We set the betting score
function (4) to be g(a, b) = sign(b − a). The martingale in (6) is evaluated by choosing h(v) as the pdf of the uniform
distribution on [0, 1]. The online learning model for f̂t takes the form of lasso regression using the hyper-parameter tuning
approach described in Section 4.2; we trained L = 20 models, each corresponds to a different η, where the number
of samples for initial training is set to be ninit = 20. The test statistic function is the mean squared error of a given
batch, defined as T ({(Xs, Ys, Zs)}bs=1; f̂) =

1
b

∑b
s=1(f̂(Xs) − Ys)

2, where we apply the batch-ensemble approach with
B = {2, 5, 10} in (7). Lastly, we set the de-randomization parameter K, described in Section 4.2, to be equal to 20.

The machine learning method we use in both CRT and HRT is a 5-fold cross-validated lasso regression algorithm. As
for the ADDIS-Spending approach Tian and Ramdas (2021) for adjusting CRT and HRT, we use the software package
available at https://github.com/jinjint/onlineFWER, with the default parameters.

G.2 Type-I Error of the Offline CRT and HRT

In Section 5.2 we present the empirical power of e-CRT compared to CRT, HRT and out-of-the-box sequential versions of
them ADDIS-CRT and ADDIS-HRT, evaluated on simulated data. There, we present the type-I error only for the sequential
tests: e-CRT, ADDIS-CRT and ADDIS-HRT. Here, we present in Figure 6 the type-I error of CRT and HRT evaluated on

https://github.com/jinjint/onlineFWER
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the same data as in Section 5.2. Importantly, the presented type-I error is evaluated by treating the data at each presented
time step as a fixed size dataset.

Figure 6: Type-I error of CRT and HRT evaluated over 1000 realizations of the null data model. Other details are as
in Figure 2.

G.3 Additional Synthetic Experiment with Varying Number of Covariates

In this section we evaluate the performance of e-CRT as a function of the number of covariates d. To do so, we follow
the data generation process described in Section 5.1 and sample n = 1000 data points of different dimensions d. Then,
we apply the e-CRT to each data set and we also apply CRT and HRT on the whole generated data (i.e., only once) to
serve as baseline for reference. Figure 7 presents the empirical power and the type-I error as a function of the number of
covariates d. It can be seen that the type-I error is controlled for all d, and the empirical power is decreased as we increase
the dimension d.

(a) Power (b) Type-I error

Figure 7: Empirical power and type-I error rate of e-CRT of level α = 0.05 as a function of number of covariates d.
Left: empirical power evaluated on 1000 realizations of the non-null data model. Right: type-I error rate evaluated
on 1000 realizations of the null data model.

G.4 Additional Synthetic Experiment with Increasing Correlation Between the Features

In this section, we study the effect of the dependency structure between X and Z on the performance of the proposed
method. To this end, we sample (Xt, Zt) ∈ Rd jointly from N (0,Σ), where Xt is the first covariate of the generated
d-dimension vector, and Zt are the rest d−1 covariates. We set the (i, j) entry in the covariance matrix to be Σi,j = ρ|i−j|,
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(a) Empirical power (b) Type-I error

Figure 8: Empirical power and type-I error rate of e-CRT as a function of the auto-correlation parameter ρ. The
empirical power and type-I error evaluated over 100 realizations of the data.

where ρ ∈ [0, 1] is the auto-correlation parameter. The response Yt is generated the same way as in Section 5.1. To examine
the impact of the dependency strength, we vary the auto-correlation parameter ρ and apply the e-CRT to the generated data
as described in Supplementary Section G.1. Figure 8 presents the empirical power and type-I error evaluated over 100
realizations of the data. Following that figure, one can see that the type-I error is controlled, as expected. One can also see
that the power decreases as the correlation increases. This result aligns with previous analysis in the field of CI testing;
see, for example, Candes et al. (2018); Liu et al. (2022); Shaer and Romano (2023).

G.5 Additional Synthetic Experiment on the Robustness of e-CRT

To implement e-CRT, we must generate dummy features X̃t from PX|Z . In practice, when this conditional distribution is
unknown it should be estimated from data. In general, there is no formal type-I error control in this case. Therefore, it is
important to study the robustness of e-CRT to errors in the estimation of PX|Z .

G.5.1 Parametric Estimation of PX|Z

Here, we apply e-CRT to a sequence of data points generated from the null data model from Section 5.1, but instead
of sampling X̃t from the true PX|Z , we consider the following data distribution:

Xt | Zt ∼ N (u⊤Zt, σ̃), where u ∼ N (0, Id).

When setting σ̃ = σ = 1 we recover the true PX|Z , and by increasing (resp. decreasing) σ̃ we move further away from the
true conditional distribution. Figure 9a presents the type-I error rate as a function of σ̃, where each curve corresponds to a
different number of samples used for initial training ninit. The test is applied to n = 1000 fresh samples, in addition to the
ninit ones. Interestingly, observe how the type-I error is conservatively controlled for small values of σ̃ < σ = 1, whereas
inflation in the type-I error is reported for larger values of σ̃. Observe also how this type-I error inflation is mitigated
when using more samples for initial training. To illustrate this behavior from a different angle, we present in Figure 9b the
difference q̃t − qt as a function of t for different values of σ̃, with the choice of ninit = 20. As displayed, the difference
q̃t − qt that corresponds to σ̃ = 0.1 tends to be smaller than the one corresponding to the true σ̃ = σ = 1, which is in line
with the tendency of our method to construct conservative martingale when σ̃ is small. On the other hand, when σ̃ = 3 the
difference q̃t − qt tends to be larger than that of σ̃ = 1, and this gap decreases as t increases, where the difference is closer
to zero for t = 150. This shows that the predictive model we use (lasso) tends to ignore the null feature with the increase
of the sample size, and thus the type-I error is moderated for larger ninit.
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(a) (b)

Figure 9: Robustness experiments with simulated data. The dummies X̃t are generated from a misspecify model of
PX|Z , where the farther σ̂ from σ = 1 the larger the estimation error of PX|Z . (a) Type-I error of e-CRT evaluated over
1000 realizations of the null data model, where each curve represents a different number of samples used for initial
training of the predictive model. (b) q̃t − qt of a single realization of the null data model as a function of t, with
ninit = 20.

G.5.2 Non-Parametric Estimation of PX|Z

In this section, we consider a more challenging scenario in which Zt ∼ N (0, I19) and Xt | Zt follows a Student-t distribu-
tion with 5 degrees of freedom and mean equals to Z

(1)
t Z

(2)
t . Here, Z(i)

t refers to the i’th covariate of Zt. We generate the
response Yt as described in Section 5.1. To estimate PX|Z , we first generate 3000 unlabeled samples (X,Z) and use the
non-linear density estimation method proposed by Rosenberg et al. (2022), called NL-VQR. For hyperparameter tuning,
we train NL-VQR on 2000 of the unlabeled samples and subsequently evaluated its goodness-of-fit on the remaining 1000
unlabeled samples using the KDE-L1 metric as described by Rosenberg et al. (2022). We then train the NL-VQR with all
the 3000 unlabeled samples using the chosen hyperparameters. We deploy the e-CRT on 3000 new, labeled data points,
sampled from the same distribution, with a kernel ridge regression model f̂t with a polynomial kernel of degree 2, whose
parameters are tuned by 5-fold cross-validation. The model is fitted on {(Xs, Ys, Zs)}t−1

s=1, at each time step t. Figure 10
presents the empirical power and type-I error obtained by the e-CRT. Observe how the type-I error rate grows slowly, but
it is controlled even for a relatively large number of samples. Observe also how the power reaches 1 when the sample size
is relatively large.

H SUPPLEMENTARY DETAILS ON REAL DATA EXPERIMENTS

H.1 Fund Replication Experiment

H.1.1 Supplementary Implementation Details

Here we provide supplementary details on the implementation of the fund replication experiment, described in Section 6.1.
We denote by Xj

t ∈ R the tth log return of the jth stock, and by Zj
t ∈ Rd−1 the vector of the tth log returns of all the stocks

except Xj
t . We deploy the e-CRT on the above data stream as in the synthetic experiments from Section 5.1, but with the

following adaptations. Since real data sets tend to have outliers, we choose to work with larger batches and a more moderate
betting function that takes into account the magnitude of the error, not only its direction as happen in the sign function used
in the synthetic experiments. Specifically, we form the betting function as g(a, b) = tanh(20 · (b − a)/max{a, b}), and
implement our method with an ensemble over batches of size {5, 10, 20}. As a strong baseline for reference, we apply the
offline CRT and offline HRT on the whole data set, and use lasso regression model with 5-fold cross-validation to tune its
hyper-parameter. In contrast to the controlled synthetic experiments from Section 5, here PXj |Zj is unknown and thus we
must estimate it from the data to generate X̃j , both for e-CRT and for CRT and HRT. For the offline tests, we approximate
it by fitting a multivariate Gaussian on all the samples. For e-CRT, we set ninit = 500, fit a multivariate Gaussian on the
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(a) Empirical power (b) Type-I error

Figure 10: Robustness experiments with simulated data where X | Z follows a Student-t distribution. The dummies
X̃t are generated from an estimated PX|Z , using the density estimation method proposed by Rosenberg et al. (2022). The
empirical power and type-I error are evaluated over 100 realizations of the data.

first 500 samples, and use the rest samples for testing.

H.1.2 Supplementary Table

Table 1: Summary of results obtained by CRT, HRT and e-CRT applied to each of the stocks in the data. The stocks belong
to the Information Technology sector are highlighted in light green. For CRT and HRT, green (resp. red) value represents a
p-value below (resp. above) α = 0.05. For e-CRT, we color each value according to the categorization in Vovk and Wang
(2021): red for insignificant, orange for ‘worth a bare mention’, blue and green indicate that the evidence against the null
is substantial or strong, respectively.

Symbol Sector CRT HRT e-CRT
p-value p-value Ststop tstop

FTNT Information Technology 0.035 1 52.8 2220
AAPL Information Technology 0.005 0.001 52.6 580
CDNS Information Technology 0.095 1 45.6 700
SNPS Information Technology 0.005 0.011 40.9 1940
MSFT Information Technology 0.005 0.001 37.7 560
ORCL Information Technology 0.005 0.157 33.2 560
V Information Technology 0.005 0.032 28.1 640
NVDA Information Technology 0.005 0.001 27.7 840
AMAT Information Technology 0.03 0.206 26.7 2260
QCOM Information Technology 0.005 0.001 25.5 1160
HPQ Information Technology 0.005 0.381 24.1 900
MA Information Technology 0.005 0.008 23.5 2200
IBM Information Technology 0.005 0.236 23.1 620
INTC Information Technology 0.005 0.002 22.8 600
ADBE Information Technology 0.005 0.006 22.7 1020
TER Information Technology 0.005 0.036 22.5 2180
ACN Information Technology 0.005 0.015 22.5 580
INTU Information Technology 0.005 1 21.7 2180
CTXS Information Technology 0.507 0.76 21.7 900
TXN Information Technology 0.005 0.085 20.9 1660
MU Information Technology 0.005 0.078 20.7 2200
CSCO Information Technology 0.005 0.093 20.7 580



Model-X Sequential Testing for Conditional Independence via Testing by Betting

AVGO Information Technology 0.005 0.281 20.6 1200
CTSH Information Technology 0.891 0.495 20.2 680
CRM Information Technology 0.005 0.008 20.1 900
KLAC Information Technology 0.085 0.223 8.6 2421
WU Information Technology 0.96 1 7.1 2421
FIS Information Technology 0.005 0.011 4.7 2421
AMD Information Technology 0.015 0.278 4.6 2421
TYL Information Technology 0.02 1 4.5 2421
IT Information Technology 0.02 0.154 3 2421
NXPI Information Technology 0.572 1 2.3 2421
PAYX Information Technology 0.731 1 1.6 2421
LRCX Information Technology 0.005 0.165 1.2 2421
ADI Information Technology 0.602 0.765 1 2421
TRMB Information Technology 0.716 1 1 2421
APH Information Technology 0.612 1 1 2421
BR Information Technology 0.522 1 1 2421
ADP Information Technology 0.428 1 0.9 2421
ADSK Information Technology 0.06 1 0.9 2421
ENPH Information Technology 0.537 1 0.9 2421
FISV Information Technology 0.204 0.286 0.8 2421
ZBRA Information Technology 0.199 1 0.8 2421
MPWR Information Technology 0.164 1 0.8 2421
MSI Information Technology 0.134 1 0.8 2421
GPN Information Technology 0.378 0.723 0.6 2421
PTC Information Technology 0.577 1 0.6 2421
ANSS Information Technology 0.085 1 0.6 2421
TEL Information Technology 0.005 0.067 0.6 2421
AKAM Information Technology 0.522 1 0.5 2421
NTAP Information Technology 0.383 1 0.5 2421
VRSN Information Technology 0.204 0.674 0.5 2421
GLW Information Technology 0.766 1 0.5 2421
FLT Information Technology 0.507 0.731 0.4 2421
DXC Information Technology 0.836 1 0.4 2421
STX Information Technology 0.677 0.593 0.4 2421
MCHP Information Technology 0.065 0.21 0.4 2421
IPGP Information Technology 0.517 1 0.3 2421
NOW Information Technology 0.403 1 0.3 2421
SWKS Information Technology 0.776 1 0.3 2421
JNPR Information Technology 0.428 1 0.3 2421
NLOK Information Technology 0.085 0.395 0.2 2421
WDC Information Technology 0.209 0.514 0.2 2421
JKHY Information Technology 0.831 0.368 0.2 2421
FFIV Information Technology 0.965 0.308 0.1 2421
CRL Health Care 0.308 0.587 37.7 1780
PKI Health Care 0.662 0.596 30.7 1660
GOOGL Communication Services 0.045 0.392 27.8 1120
EL Consumer Staples 0.005 1 27.4 2160
ALB Materials 0.015 1 25.6 2300
VZ Communication Services 0.005 0.386 25.4 740
DVN Energy 0.03 1 24.7 2220
CMG Consumer Discretionary 0.005 1 24.5 2140
LYB Materials 0.194 1 23.3 880
T Communication Services 0.01 0.797 22.7 700
LUMN Communication Services 0.005 0.301 22.2 1760
GOOG Communication Services 0.055 0.56 22.1 960
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ROP Industrials 0.005 1 22 2220
NDAQ Financials 0.005 1 16.7 2421
NFLX Communication Services 0.06 0.366 6 2421
LEN Consumer Discretionary 0.96 0.165 5.8 2421
HUM Health Care 0.169 1 4.6 2421
IPG Communication Services 0.025 1 4.1 2421
GNRC Industrials 0.104 1 3.9 2421
XYL Industrials 0.498 0.563 3.9 2421
AOS Industrials 0.124 0.956 3.5 2421
ATVI Communication Services 0.677 0.624 3.4 2421
VLO Energy 0.602 0.631 3.2 2421
EA Communication Services 0.02 0.354 3.1 2421
PWR Industrials 0.09 1 2.7 2421
FCX Materials 0.015 0.189 2.7 2421
EBAY Consumer Discretionary 0.01 0.432 2.6 2421
WAT Health Care 0.781 1 2.2 2421
DVA Health Care 0.005 1 2.2 2421
TROW Financials 0.771 0.326 2.1 2421
WHR Consumer Discretionary 0.761 1 1.9 2421
DISH Communication Services 0.149 1 1.9 2421
CE Materials 0.045 1 1.9 2421
PEAK Real Estate 0.522 1 1.8 2421
WMB Energy 0.04 1 1.8 2421
EXPD Industrials 0.1 1 1.8 2421
REGN Health Care 0.806 1 1.7 2421
MTCH Communication Services 0.02 0.221 1.7 2421
EFX Industrials 0.065 1 1.6 2421
ABBV Health Care 0.328 1 1.5 2421
KEY Financials 0.468 1 1.5 2421
INCY Health Care 0.119 1 1.5 2421
FAST Industrials 0.632 1 1.5 2421
DHI Consumer Discretionary 0.886 1 1.5 2421
SWK Industrials 0.164 1 1.4 2421
UAL Industrials 0.587 0.473 1.4 2421
ZION Financials 0.811 1 1.4 2421
BKR Energy 0.303 1 1.4 2421
TJX Consumer Discretionary 0.055 1 1.3 2421
RHI Industrials 0.438 1 1.3 2421
DIS Communication Services 0.134 1 1.3 2421
CMCSA Communication Services 0.458 1 1.2 2421
NEM Materials 0.194 1 1.2 2421
DRE Real Estate 0.731 1 1.2 2421
BKNG Consumer Discretionary 0.602 1 1.1 2421
LVS Consumer Discretionary 0.741 1 1.1 2421
PHM Consumer Discretionary 0.403 1 1.1 2421
PFG Financials 0.443 1 1.1 2421
CME Financials 0.975 1 1.1 2421
COP Energy 0.786 1 1.1 2421
EIX Utilities 0.313 1 1.1 2421
BAX Health Care 0.323 1 1.1 2421
APTV Consumer Discretionary 0.01 1 1.1 2421
TECH Health Care 0.05 1 1.1 2421
MNST Consumer Staples 0.313 1 1.1 2421
KMX Consumer Discretionary 0.244 0.418 1.1 2421
PPG Materials 0.617 1 1.1 2421
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LOW Consumer Discretionary 0.905 1 1.1 2421
NWL Consumer Discretionary 0.468 1 1.1 2421
AMZN Consumer Discretionary 0.015 0.18 1.1 2421
VTRS Health Care 0.682 1 1.1 2421
AMP Financials 0.572 1 1.1 2421
JNJ Health Care 0.945 1 1.1 2421
LUV Industrials 0.736 1 1 2421
LNT Utilities 0.458 1 1 2421
LMT Industrials 0.667 1 1 2421
COST Consumer Staples 0.786 1 1 2421
LLY Health Care 0.811 1 1 2421
EXR Real Estate 0.229 1 1 2421
COO Health Care 0.478 1 1 2421
CMS Utilities 0.378 1 1 2421
MDT Health Care 0.557 1 1 2421
EMR Industrials 0.627 1 1 2421
MMC Financials 0.468 1 1 2421
MMM Industrials 0.711 1 1 2421
MO Consumer Staples 0.677 1 1 2421
CLX Consumer Staples 0.512 1 1 2421
MRK Health Care 0.507 1 1 2421
CL Consumer Staples 0.537 1 1 2421
MSCI Financials 0.294 1 1 2421
MTB Financials 0.02 1 1 2421
MTD Health Care 0.279 1 1 2421
CI Health Care 0.408 1 1 2421
ECL Materials 0.453 1 1 2421
CMA Financials 0.368 1 1 2421
KMB Consumer Staples 0.771 1 1 2421
LIN Materials 0.015 1 1 2421
DHR Health Care 0.846 1 1 2421
HBI Consumer Discretionary 0.766 1 1 2421
ETR Utilities 0.726 1 1 2421
HBAN Financials 0.179 1 1 2421
HAS Consumer Discretionary 0.692 1 1 2421
DG Consumer Discretionary 0.184 1 1 2421
GWW Industrials 0.557 1 1 2421
DGX Health Care 0.612 1 1 2421
EVRG Utilities 0.388 1 1 2421
GPC Consumer Discretionary 0.348 1 1 2421
EOG Energy 0.866 1 1 2421
EW Health Care 0.746 1 1 2421
GIS Consumer Staples 0.428 1 1 2421
DLR Real Estate 0.572 1 1 2421
GD Industrials 0.687 1 1 2421
FRC Financials 0.706 1 1 2421
FMC Materials 0.761 1 1 2421
FITB Financials 0.289 1 1 2421
EXC Utilities 0.493 1 1 2421
HD Consumer Discretionary 0.756 1 1 2421
HRL Consumer Staples 0.552 1 1 2421
HST Real Estate 0.746 1 1 2421
ESS Real Estate 0.612 1 1 2421
LH Health Care 0.209 1 1 2421
DUK Utilities 0.846 1 1 2421
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LEG Consumer Discretionary 0.06 1 1 2421
L Financials 0.587 1 1 2421
CVS Health Care 0.144 1 1 2421
KMI Energy 0.164 1 1 2421
F Consumer Discretionary 0.129 1 1 2421
KIM Real Estate 0.582 1 1 2421
K Consumer Staples 0.756 1 1 2421
JCI Industrials 0.687 1 1 2421
ITW Industrials 0.602 1 1 2421
D Utilities 0.308 1 1 2421
DD Materials 0.473 1 1 2421
EQR Real Estate 0.896 1 1 2421
ILMN Health Care 0.279 1 1 2421
IDXX Health Care 0.597 1 1 2421
ES Utilities 0.736 1 1 2421
IEX Industrials 0.771 1 1 2421
JPM Financials 0.736 0.745 1 2421
SNA Industrials 0.781 1 1 2421
AMT Real Estate 0.791 1 1 2421
AON Financials 0.512 1 1 2421
TGT Consumer Discretionary 0.637 1 1 2421
TFX Health Care 0.438 1 1 2421
TFC Financials 0.836 1 1 2421
ARE Real Estate 0.07 1 1 2421
SYK Health Care 0.567 1 1 2421
STT Financials 0.562 1 1 2421
AVB Real Estate 0.617 1 1 2421
SO Utilities 0.338 1 1 2421
SLB Energy 0.761 1 1 2421
SJM Consumer Staples 0.826 1 1 2421
SIVB Financials 0.453 1 1 2421
SCHW Financials 0.9 1 1 2421
SBUX Consumer Discretionary 0.95 1 1 2421
RTX Industrials 0.393 1 1 2421
RSG Industrials 0.294 1 1 2421
AWK Utilities 0.771 1 1 2421
ROL Industrials 0.542 1 1 2421
AXP Financials 0.542 1 1 2421
TSCO Consumer Discretionary 0.333 1 1 2421
ALK Industrials 0.677 1 1 2421
RF Financials 0.572 1 1 2421
UNH Health Care 0.801 1 1 2421
AAP Consumer Discretionary 0.721 1 1 2421
YUM Consumer Discretionary 0.905 1 1 2421
XRAY Health Care 0.557 1 1 2421
XEL Utilities 0.249 1 1 2421
ABC Health Care 0.627 1 1 2421
ABT Health Care 0.522 1 1 2421
ADM Consumer Staples 0.473 1 1 2421
AEE Utilities 0.557 1 1 2421
AEP Utilities 0.662 1 1 2421
WFC Financials 0.572 1 1 2421
WELL Real Estate 0.582 1 1 2421
AFL Financials 0.388 0.358 1 2421
AJG Financials 0.731 1 1 2421
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VRSK Industrials 0.9 1 1 2421
VNO Real Estate 0.637 1 1 2421
VMC Materials 0.269 1 1 2421
VFC Consumer Discretionary 0.169 1 1 2421
USB Financials 0.164 1 1 2421
UNP Industrials 0.308 1 1 2421
BAC Financials 0.532 1 1 2421
NI Utilities 0.607 1 1 2421
PSA Real Estate 0.06 1 1 2421
O Real Estate 0.612 1 1 2421
PNW Utilities 0.045 1 1 2421
PNR Industrials 0.876 1 1 2421
CAH Health Care 0.04 1 1 2421
BK Financials 0.348 1 1 2421
PPL Utilities 0.428 1 1 2421
OMC Communication Services 0.786 1 1 2421
PKG Materials 0.667 1 1 2421
BRO Financials 0.627 1 1 2421
PH Industrials 0.532 1 1 2421
PM Consumer Staples 0.552 1 1 2421
PLD Real Estate 0.866 1 1 2421
BLK Financials 0.458 1 1 2421
PEG Utilities 0.353 1 1 2421
PVH Consumer Discretionary 0.239 1 1 2421
PEP Consumer Staples 0.109 1 1 2421
PG Consumer Staples 0.94 1 1 2421
PFE Health Care 0.687 1 1 2421
NTRS Financials 0.403 1 1 2421
NSC Industrials 0.557 1 1 2421
PNC Financials 0.224 1 1 2421
HCA Health Care 0.741 1 0.9 2421
TDG Industrials 0.821 1 0.9 2421
MCK Health Care 0.323 1 0.9 2421
BWA Consumer Discretionary 0.846 1 0.9 2421
COF Financials 0.04 0.959 0.9 2421
AIG Financials 0.537 0.291 0.9 2421
CNC Health Care 0.463 1 0.9 2421
DE Industrials 0.134 1 0.9 2421
TTWO Communication Services 0.443 1 0.9 2421
UDR Real Estate 0.02 1 0.9 2421
DLTR Consumer Discretionary 0.756 1 0.9 2421
UPS Industrials 0.393 1 0.9 2421
HIG Financials 0.731 1 0.9 2421
STZ Consumer Staples 0.841 0.719 0.9 2421
HOLX Health Care 0.9 1 0.9 2421
BIIB Health Care 0.468 1 0.9 2421
WYNN Consumer Discretionary 0.572 1 0.9 2421
BDX Health Care 0.935 1 0.9 2421
LKQ Consumer Discretionary 0.756 1 0.9 2421
PSX Energy 0.234 1 0.9 2421
AVY Materials 0.388 1 0.9 2421
JBHT Industrials 0.652 1 0.9 2421
CVX Energy 0.547 1 0.9 2421
SHW Materials 0.617 1 0.9 2421
FDX Industrials 0.697 1 0.9 2421
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HSY Consumer Staples 0.547 0.859 0.9 2421
HSIC Health Care 0.04 1 0.9 2421
NEE Utilities 0.025 1 0.9 2421
IFF Materials 0.592 1 0.9 2421
HON Industrials 0.463 1 0.9 2421
IP Materials 0.502 1 0.9 2421
FBHS Industrials 0.383 1 0.8 2421
CAT Industrials 0.726 1 0.8 2421
MKTX Financials 0.433 1 0.8 2421
FANG Energy 0.642 1 0.8 2421
VTR Real Estate 0.94 1 0.8 2421
BXP Real Estate 0.463 1 0.8 2421
MPC Energy 0.498 1 0.8 2421
NUE Materials 0.189 1 0.8 2421
NVR Consumer Discretionary 0.338 1 0.8 2421
WEC Utilities 0.93 1 0.8 2421
MS Financials 0.816 1 0.8 2421
REG Real Estate 0.582 1 0.8 2421
FE Utilities 0.065 0.287 0.8 2421
RE Financials 0.856 1 0.8 2421
CPRT Industrials 0.194 1 0.8 2421
SEE Materials 0.025 1 0.8 2421
J Industrials 0.736 1 0.8 2421
SPG Real Estate 0.493 1 0.8 2421
ICE Financials 0.935 0.348 0.8 2421
STE Health Care 0.025 1 0.8 2421
MHK Consumer Discretionary 0.09 1 0.8 2421
CTAS Industrials 0.01 0.054 0.8 2421
HES Energy 0.672 1 0.8 2421
LDOS Industrials 0.607 1 0.8 2421
TMUS Communication Services 0.612 1 0.8 2421
TRV Financials 0.03 1 0.8 2421
TSLA Consumer Discretionary 0.005 1 0.8 2421
AMGN Health Care 0.537 1 0.8 2421
DOV Industrials 0.522 1 0.8 2421
ROK Industrials 0.647 1 0.8 2421
BA Industrials 0.632 1 0.7 2421
CBRE Real Estate 0.095 1 0.7 2421
CPB Consumer Staples 0.234 1 0.7 2421
DTE Utilities 0.915 1 0.7 2421
APD Materials 0.682 1 0.7 2421
ALL Financials 0.328 1 0.7 2421
CCL Consumer Discretionary 0.493 1 0.7 2421
ZTS Health Care 0.448 1 0.7 2421
A Health Care 0.652 1 0.7 2421
HII Industrials 0.881 0.397 0.7 2421
ED Utilities 0.363 1 0.7 2421
OKE Energy 0.592 1 0.7 2421
ORLY Consumer Discretionary 0.562 1 0.7 2421
PGR Financials 0.562 1 0.7 2421
MLM Materials 0.249 1 0.7 2421
MET Financials 0.214 1 0.7 2421
RCL Consumer Discretionary 0.617 1 0.7 2421
SBAC Real Estate 0.378 1 0.7 2421
SRE Utilities 0.284 1 0.7 2421
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LNC Financials 0.667 1 0.7 2421
NRG Utilities 0.199 0.448 0.7 2421
TMO Health Care 0.045 0.28 0.7 2421
LHX Industrials 0.756 1 0.7 2421
NOC Industrials 0.348 1 0.7 2421
GPS Consumer Discretionary 0.358 1 0.7 2421
WBA Consumer Staples 0.234 1 0.7 2421
WM Industrials 0.94 1 0.7 2421
WMT Consumer Staples 0.915 0.349 0.7 2421
GE Industrials 0.244 1 0.7 2421
WST Health Care 0.493 1 0.7 2421
CHRW Industrials 0.169 1 0.6 2421
BMY Health Care 0.886 1 0.6 2421
HAL Energy 0.254 1 0.6 2421
MRO Energy 0.781 1 0.6 2421
EQIX Real Estate 0.597 0.687 0.6 2421
POOL Consumer Discretionary 0.761 1 0.6 2421
C Financials 0.781 0.058 0.6 2421
CCI Real Estate 0.9 1 0.6 2421
MDLZ Consumer Staples 0.353 1 0.6 2421
PXD Energy 0.542 1 0.6 2421
NCLH Consumer Discretionary 0.662 1 0.6 2421
TXT Industrials 0.697 1 0.6 2421
ROST Consumer Discretionary 0.537 1 0.6 2421
IVZ Financials 0.821 1 0.6 2421
TT Industrials 0.139 1 0.6 2421
IRM Real Estate 0.413 1 0.6 2421
ISRG Health Care 0.139 0.394 0.6 2421
AES Utilities 0.706 1 0.6 2421
WAB Industrials 0.249 1 0.6 2421
MAA Real Estate 0.592 1 0.6 2421
VRTX Health Care 0.801 0.63 0.5 2421
ATO Utilities 0.891 1 0.5 2421
WRB Financials 0.776 1 0.5 2421
SYY Consumer Staples 0.104 0.483 0.5 2421
SPGI Financials 0.279 1 0.5 2421
TAP Consumer Staples 0.035 1 0.5 2421
PRU Financials 0.353 1 0.5 2421
TPR Consumer Discretionary 0.826 0.538 0.5 2421
BEN Financials 0.02 1 0.5 2421
AME Industrials 0.408 1 0.5 2421
WY Real Estate 0.174 1 0.5 2421
PCAR Industrials 0.597 1 0.5 2421
CAG Consumer Staples 0.383 1 0.5 2421
CNP Utilities 0.065 1 0.5 2421
CINF Financials 0.403 1 0.5 2421
GS Financials 0.806 1 0.5 2421
DAL Industrials 0.542 1 0.5 2421
GM Consumer Discretionary 0.284 1 0.5 2421
CSX Industrials 0.771 1 0.5 2421
GL Financials 0.284 1 0.5 2421
MAR Consumer Discretionary 0.174 1 0.5 2421
EXPE Consumer Discretionary 0.711 0.369 0.5 2421
DRI Consumer Discretionary 0.438 1 0.5 2421
GRMN Consumer Discretionary 0.483 1 0.5 2421
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CHTR Communication Services 0.418 1 0.5 2421
ABMD Health Care 0.637 1 0.4 2421
GILD Health Care 0.493 1 0.4 2421
UHS Health Care 0.01 0.272 0.4 2421
ODFL Industrials 0.07 1 0.4 2421
DFS Financials 0.005 1 0.4 2421
NLSN Industrials 0.02 1 0.4 2421
TDY Industrials 0.682 1 0.4 2421
CF Materials 0.119 1 0.4 2421
CHD Consumer Staples 0.597 1 0.4 2421
MCD Consumer Discretionary 0.836 0.671 0.4 2421
RMD Health Care 0.657 0.687 0.4 2421
MAS Industrials 0.905 1 0.4 2421
RL Consumer Discretionary 0.244 1 0.4 2421
EMN Materials 0.045 1 0.4 2421
MKC Consumer Staples 0.353 0.687 0.4 2421
BIO Health Care 0.905 1 0.4 2421
MGM Consumer Discretionary 0.637 1 0.4 2421
BBY Consumer Discretionary 0.383 1 0.4 2421
AMCR Materials 0.363 1 0.4 2421
CB Financials 0.771 1 0.4 2421
AIZ Financials 0.736 1 0.3 2421
AAL Industrials 0.771 1 0.3 2421
FRT Real Estate 0.01 0.198 0.3 2421
URI Industrials 0.716 0.805 0.3 2421
ALGN Health Care 0.592 1 0.3 2421
DPZ Consumer Discretionary 0.856 1 0.3 2421
ULTA Consumer Discretionary 0.259 0.353 0.3 2421
ZBH Health Care 0.388 1 0.3 2421
ETN Industrials 0.537 1 0.3 2421
DXCM Health Care 0.214 0.327 0.3 2421
UAA Consumer Discretionary 0.791 1 0.3 2421
KO Consumer Staples 0.02 1 0.3 2421
NKE Consumer Discretionary 0.204 0.586 0.3 2421
BSX Health Care 0.517 0.834 0.3 2421
CBOE Financials 0.015 1 0.3 2421
LYV Communication Services 0.234 0.495 0.3 2421
AZO Consumer Discretionary 0.02 0.245 0.3 2421
PENN Consumer Discretionary 0.02 1 0.3 2421
CMI Industrials 0.015 0.217 0.3 2421
MOS Materials 0.537 1 0.2 2421
XOM Energy 0.189 1 0.2 2421
OXY Energy 0.632 1 0.2 2421
BBWI Consumer Discretionary 0.617 0.605 0.2 2421
TSN Consumer Staples 0.423 1 0.2 2421
RJF Financials 0.592 1 0.2 2421
CTRA Energy 0.383 1 0.2 2421
APA Energy 0.672 1 0.2 2421
KR Consumer Staples 0.562 0.719 0.2 2421
MCO Financials 0.905 0.343 0.1 2421
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H.2 Supplementary Details on the HIV Drug Resistance Experiment

H.2.1 Data and Implementation Details

In Section 6.2 we present an experiment of detection mutations in HIV that are associated with drug resistance. The data
set2 we consider there has not been collected sequentially, and thus it is not ideal to present the strength of our sequential
testing procedure. Yet, we choose this task because of its importance, and since it has been studied in depth in the knockoff
literature Barber and Candès (2015); Lu et al. (2018); Romano et al. (2020); Shaer and Romano (2023). In particular,
this data set is convenient to analyze as the effect of each mutation on drug resistance—reported by previous scientific
works—is summarized in https://hivdb.stanford.edu/dr-summary/comments/PI/.

We denote by (Xj
t , Z

j
t , Yt) the tth sample, where Xj

t ∈ {0, 1} indicates the presence or absence of the jth mutation,
and Zj

t ∈ Rd−1 is a vector that contains all the remaining measured mutations in locations 1, 2, . . . , j − 1, j + 1, . . . , d.
The response Yt represents the log-fold increase in drug resistance. We deploy the e-CRT the same way as described in
Section 6.1, with an additional adaptation; we fit a 5-fold cross-validated lasso model f̂t on {(Xs, Ys, Zs)}t−1

s=1 at each
time step t, in contrast to the 1-fold cross-validation approach we used in the previous experiments; we use the latter
to reduce computational cost, illustrating how to combine e-CRT with online learning algorithms. Naturally, the 5-fold
cross validation approach leads to a better choice of lasso’s hyper-parameter, and thus obtaining more accurate predictive
models. Next, we approximate PXj |Zj as follows. Since Xj is binary, we sample X̃j

t from a Bernoulli distribution with
probability of success π̂j(Zj

t ), where π̂j(Zj
t ) estimates PXj |Zj (Xj = 1 | Zj). We formulate this estimator by fitting a

logistic regression model on the unlabeled data {(Xj
t , Z

j
t )}nt=1, with an l2 regularization whose penalty parameter is tuned

via 10-fold cross-validation.

H.2.2 Supplementary Results

Table 2: Summary of the output of CRT, HRT and e-CRT applied to each of the HIV mutations in the data. The type
of each mutation (Major, Minor, Accessory, Other, Unknown) represents the effect of the feature on drug resistance as
reported by previous studies. The other details are as in Table 1.

Feature Name Mutation Type CRT HRT e-CRT
p-value p-value Ststop tstop

10F Accessory 0.005 0.001 25.5 680
10I Other 0.005 0.001 31.8 520
10V Other 0.01 0.001 25.5 1280
11I Other 0.005 0.009 5.5 1555
11L Other 0.98 1 1 1555
12A Unknown 0.94 1 1 1555
12I Unknown 0.716 1 1 1555
12K Unknown 0.806 1 0.9 1555
12N Unknown 0.711 1 1 1555
12P Unknown 0.458 1 1 1555
12S Unknown 0.204 0.556 1 1555
13V Unknown 0.005 0.001 23.8 1540
14R Unknown 0.03 0.042 1.2 1555
15V Unknown 0.925 0.929 0.2 1555
16A Unknown 0.005 0.001 20.7 1020
16E Unknown 0.647 1 0.8 1555
18H Unknown 0.925 1 0.5 1555
19I Unknown 0.438 1 0.4 1555
19P Unknown 0.637 1 1 1555
19Q Unknown 0.826 1 1 1555
19T Unknown 0.816 1 1 1555
19V Unknown 0.776 1 0.7 1555
20I Other 0.01 0.033 1 1555

2Data is available online at https://hivdb.stanford.edu/pages/published_analysis/genophenoPNAS2006

https://hivdb.stanford.edu/dr-summary/comments/PI/
https://hivdb.stanford.edu/pages/published_analysis/genophenoPNAS2006
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20M Other 1 1 1 1555
20R Other 0.005 0.004 26 1240
20T Accessory 0.005 0.002 40.9 1160
20V Other 0.254 1 0.8 1555
22V Unknown 0.025 0.116 5.7 1555
23I Accessory 1 0.357 0.5 1555
24F Accessory 0.005 0.001 20.9 1000
24I Accessory 0.005 0.002 24.9 940
30N Major 0.03 0.148 3.2 1555
32I Major 0.01 0.007 29 880
33F Accessory 0.005 0.001 27.3 600
33I Other 0.045 0.096 1.9 1555
33V Other 0.622 1 1 1555
34D Other 0.09 1 1 1555
34Q Other 0.03 0.002 27.3 1540
35D Other 0.388 0.282 0.4 1555
35G Other 0.826 0.887 1.2 1555
35N Other 0.945 1 0.9 1555
35Q Other 1 1 1 1555
36I Other 0.925 0.777 0.4 1555
36L Other 0.08 0.125 1.2 1555
36V Other 0.667 0.423 2.7 1555
37C Other 0.662 1 1 1555
37D Other 0.015 0.1 3.2 1555
37E Other 0.398 1 0.8 1555
37H Other 0.672 1 1 1555
37S Other 0.672 0.481 0.4 1555
37T Other 0.776 1 0.5 1555
37X Other 0.975 0.248 1 1555
39Q Other 0.985 1 0.8 1555
39S Other 0.965 0.392 1 1555
41K Other 0.368 1 0.4 1555
43T Accessory 0.005 0.001 21 880
45R Unknown 0.209 0.223 0.8 1555
46I Major 0.005 0.001 23.3 520
46L Major 0.005 0.001 21 980
46V Accessory 0.075 1 0.8 1555
47A Major 0.005 0.028 8 1555
47V Major 0.005 0.001 22.4 240
48M Major 0.005 0.067 6.5 1555
48V Major 0.005 0.003 23.6 660
50L Major 0.005 0.001 20 700
50V Major 0.005 0.001 21.3 440
53L Accessory 0.025 1 37 1320
54A Major 0.005 0.001 29.5 760
54L Major 0.02 0.071 20.6 1160
54M Major 0.005 0.003 21.5 960
54S Major 0.095 0.363 1.8 1555
54T Major 1 0.998 1 1555
54V Major 0.005 0.001 33.1 180
55R Unknown 1 1 0.6 1555
57G Unknown 0.478 1 0.3 1555
57K Unknown 0.1 0.07 0.9 1555
58E Accessory 0.02 0.002 1.9 1555
60E Unknown 0.577 1 0.5 1555
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61E Unknown 0.025 0.352 0.9 1555
61H Unknown 0.756 0.881 0.5 1555
61N Unknown 0.637 0.642 1.1 1555
62V Unknown 0.129 0.057 1.1 1555
63A Unknown 0.174 1 0.8 1555
63C Unknown 0.925 1 1 1555
63H Unknown 0.915 1 1 1555
63P Unknown 0.005 0.072 28.4 160
63Q Unknown 0.642 1 0.8 1555
63S Unknown 0.701 1 1.3 1555
63T Unknown 0.328 1 0.4 1555
63V Unknown 0.826 1 1 1555
63X Unknown 0.766 1 1 1555
64L Unknown 0.005 0.011 28.6 1300
64M Unknown 0.214 0.706 0.4 1555
64V Unknown 0.95 0.442 0.5 1555
65D Unknown 0.726 0.642 0.6 1555
66F Unknown 0.01 0.144 3.1 1555
66V Unknown 0.652 1 0.9 1555
67E Unknown 0.91 1 0.9 1555
67F Unknown 0.159 0.557 1.1 1555
69Q Unknown 0.811 1 0.7 1555
69R Unknown 0.279 1 0.8 1555
69Y Unknown 1 1 0.8 1555
70E Unknown 0.736 1 1 1555
70R Unknown 0.085 0.061 1.4 1555
70T Unknown 0.846 1 1 1555
71I Other 0.488 0.546 1.6 1555
71L Other 0.114 1 1 1555
71T Other 0.03 0.097 0.8 1555
71V Other 0.03 0.356 7.3 1555
72E Unknown 0.716 1 0.6 1555
72M Unknown 0.055 1 5.2 1555
72R Unknown 0.756 1 0.8 1555
72T Unknown 0.07 0.034 1 1555
72V Unknown 0.612 0.699 0.6 1555
73A Accessory 0.721 0.721 0.6 1555
73C Accessory 0.005 0.004 20.3 1080
73S Accessory 0.005 0.001 22.4 1260
73T Accessory 0.01 1 3.4 1555
74A Unknown 0.756 1 1 1555
74S Other 0.284 0.404 2.5 1555
76V Major 0.005 0.001 33.1 400
77I Unknown 0.005 0.003 6.3 1555
79A Unknown 0.806 0.341 1 1555
79S Unknown 0.726 1 0.9 1555
82A Major 0.005 0.001 21.1 480
82C Major 0.005 0.001 9.2 1555
82F Major 0.005 0.012 21.4 800
82I Other 1 0.941 0.7 1555
82L Major 0.836 1 0.6 1555
82M Major 0.94 1 0.5 1555
82S Major 0.229 0.544 1.3 1555
82T Major 0.005 0.003 25.4 880
83D Accessory 0.075 1 0.7 1555
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(a) (b) (c)

Figure 11: Real HIV data experiment. The test martingale St as a function of t, evaluated on three representative
mutations of HIV. (a) Mutation ‘12S’, which has not been reported in previous studies to have an effect on drug resistance.
(b) Mutation ‘47V’, which has been reported to have a major effect. (c) Mutation ‘48M’, which has been reported to have
a major effect.

84A Major 0.169 0.328 1.9 1555
84C Major 0.746 0.683 0.9 1555
84V Major 0.005 0.001 35.4 220
85V Other 0.866 0.874 0.4 1555
88D Accessory 0.005 0.059 20.1 1300
88G Major 0.657 1 1 1555
88S Major 1 0.172 0.7 1555
88T Major 0.975 1 1 1555
89I Unknown 0.005 0.044 1.4 1555

89M Unknown 0.328 0.669 0.3 1555
89V Accessory 0.01 0.026 20.6 600
90M Major 0.005 0.001 35.7 780
91S Unknown 0.189 1 1.1 1555
92K Unknown 0.289 0.555 0.6 1555
92R Unknown 0.736 0.62 0.7 1555
93L Unknown 0.005 0.086 3.2 1555
95F Unknown 0.408 0.514 0.9 1555


