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Abstract

Brands use cookies and device identifiers to link
different web visits to the same consumer. How-
ever, with increasing demands for privacy, these
identifiers are about to be phased out, mak-
ing identity fragmentation a permanent feature
of the online world. Assessing treatment ef-
fects via randomized experiments (A/B testing)
in such a scenario is challenging because iden-
tity fragmentation causes a) users to receive hy-
brid/mixed treatments, and b) hides the causal
link between the historical treatments and the
outcome. In this work, we address the problem of
estimating treatment effects when a lack of iden-
tification leads to incomplete knowledge of his-
torical treatments. This is a challenging problem
which has not been addressed in literature yet.
We develop a new method called DIET, which
can adjust for users being exposed to mixed treat-
ments without the entire history of treatments be-
ing available. Our method takes inspiration from
the Cox model, and uses a proportional outcome
approach under which we prove that one can ob-
tain consistent estimates of treatment effects even
under identity fragmentation. Our experiments,
on one simulated and two real datasets, show that
our method leads to up to 20% reduction in er-
ror and 25% reduction in bias over the naive es-
timate.

1 INTRODUCTION

Enterprises devote significant effort to optimize their cus-
tomers’ experience on websites and mobile applications.
The standard approach to optimizing user experience is to
conduct randomized experiments, commonly referred to as
“A/B Tests”. All randomized experiments require that we
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reliably identify the same user across their whole journey,
so that we can show them a consistent experience. Unfor-
tunately, the rapid evolution of the web ecosystem makes
this assumption fraught. There are multiple reasons for
this. First, the explosion in the number of devices means
that most people are concurrently using multiple devices
(e.g., a phone, a tablet, or different browsers on a laptop)
to interact with the same brand (through apps or websites).
Often, this interaction happens while the customer is not
logged into their account. Collectively, this trend means
that the customer’s identity is fragmented and their experi-
ence may not be consistent, since one device may be served
experience “A” while another sees “B”. A second source of
fragmentation comes from an increased focus on individual
privacy, as embodied in laws like General Data Protection
Regulation (GDPR)1. GDPR requires websites to explicitly
require the visitor’s permission before using any cookies
that may be used to track the user across their web ses-
sions. Aligning with this trend, all major browser and app
ecosystems have taken or planned steps to discourage the
use of cookies and device identifier for marketing and ex-
perience optimization (Seufert, 2020; Schiff, 2020; Bohn,
2020).

This phenomenon where a single user’s activities get as-
sociated with mutually disconnected identifiers with each
capturing only a fraction of the exposures and behaviors
is known as Identity fragmentation (Saha Roy et al., 2015;
Coey and Bailey, 2016; Lin and Misra, 2021). In the pres-
ence of fragmentation, treatment exposures cannot be con-
nected to outcomes, thus making the task of reliably es-
timating causal effects challenging. For example, a user
might see an ad for a product on their phone but purchase
it on their laptop. Unless the marketer can connect the
two sessions to the same user, the estimated effect of the
ad (Sinha et al., 2014) is biased (known as Fragmentation
Bias). A common way to overcome this is to connect ses-
sions that belong to the same user; perhaps using features
such as IP address, location, or device type. This idea is
known as session stitching or identity linking (Fellegi and
Sunter, 1969). However this method a) has no formal guar-
antees on linking accuracy, b) does not allow for quantify-
ing the uncertainty of the estimate, and c) partially linked

1https://gdpr-info.eu/

https://gdpr-info.eu/
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data can be misleading. Moreover as we show, the bias of
estimated effects under partial linkage can be difficult to
quantify (See AppendixB.3).

Fragmentation, while common in digital marketing, is not
limited to this area alone. It crops up in many areas such as
health care (Jason, 2020), social sciences (Ruggles et al.,
2018) and public administration (Churches et al., 2002).
In medical studies, the related problem of non-compliance
(patients takes a drug different from that assigned to them)
has received some attention (Sagarin et al., 2014), but the
scale of this problem (proportion of non-compliers) is still
assumed to be a small fraction of the sample size of the
experiment.

Most methods for estimating treatment effects require com-
plete knowledge of historical treatments, which is not pos-
sible under identity fragmentation. In this work we ad-
dress the challenging task of estimating treatment effects
under fragmentation, by considering it as a form of inter-
ference. To the best of our knowledge, ours is the first work
to address this problem. Inspired by the proportional haz-
ard models (Cox, 1972), we propose an estimator based
on multiplicative effects which we call Direct Inference of
Effect of Treatment (DIET). We conduct experiments with
DIET on observational logs of online sales from an e-tailer
and patient health care records, and find that DIET can re-
duce error by upto 20%.

Contributions: Our paper is the first to address the es-
timation of sequential/cumulative treatment effect under
identity fragmentation. Our proposed method goes beyond
cookies as the unit of analysis in A/B testing. Finally, our
theoretical results generalize the results of Coey and Bai-
ley (2016) and Lin and Misra (2021) on attenuation due to
fragmentation.

2 PROBLEM FORMULATION

2.1 Motivation

Consider the example of an online retailer which is looking
to deploy a new recommendation system S in place of their
existing system E. To assess the efficacy of the new sys-
tem, the company performs an A/B test by delivering rec-
ommendation from S (which we denote as treatment 1) to a
portion of its online visitors. Strategy S is considered supe-
rior to E if the outcome of interest (say purchase) is statisti-
cally significantly more for S compared to E. The users can
visit the website from both their laptop and mobile without
signing in. Without availability of a unique identifier the re-
tailer is not able to consistently use S tofor giveing the user
recommendations. For example, at time step 1, the user
visited the website on a laptop and was assigned treatment
1. The next visit, if happening from the mobile device,
means that the user may now get recommendation from E
(treatment= 0). As such, purchases from this user areis

due to the mixed influence of both treatments. Since the fi-
nal goal is to evaluated the benefits of theis regarding wide
scale deployment of S, we would like ; ideally we want to
compare the outcomes when the users always got treatment
1. However, considering the mixed treatment outcome for
the aforementioned user can bias the treatment effect es-
timates. Moreover, we do not have any way of knowing
whether the user received a mixed treatment or not.

2.2 Notation

We use the Neyman potential outcome framework for anal-
ysis (Neyman, 1923; Rubin, 1974). Suppose there are N
units (individuals) interacting with an online experimenta-
tion system. Each of the units has associated covariates X
which are fixed and observed. Each unit is observed for
T consecutive periods. In each period t, we know the out-
come Yit and the treatment status Zit ∈ {0, 1} for each unit
i 2.

We denote a random variable or its value in a particu-
lar period with subscript and their past history with su-
perscript. For example, Y1:t

i := (Yi1, Yi2, . . . , Yit) and
Z1:t

i := (Zi1, Zi2, . . . , Zit) are i’s outcome values and
treatment status up to period t, respectively; Zt:s :=
(Z1t, . . . , ZNt, . . . , Z1s, . . . , ZNs) is the history of treat-
ment assignment for all the units between period t and pe-
riod s. Moreover, we use Zt:s \ Zt′:s′

i to denote the same
history without unit i’s treatment status between time t′ and
s′.

The outcome for each unit i at period t, Yit, is jointly de-
cided by the entire sequence of treatment assignments. This
is a form of interference, however the interference is only
temporal, and a unit’s outcome only depends on their own
treatments and not on any others, that is,

Yit = Yit(Z
1:T
i ) = Yit(Zi1, Zi2, . . . , ZiT ).

We are interested in the causal effect generated by the
change of a treatment assignment history. For each unit
i at time t, we define the individualistic treatment effect of
history z1:T relative to history z̃1:T as:

τit(z
1:T , z̃1:T ) := Yit(z

1:T )− Yit(z̃
1:T ).

Two quantities which are of importance for this work are
the ‘instantaneous’ and ‘long-term’ effects of a treatment
allocation to a unit. Formally these are defined as:

• Contemporary direct effect: τit(1, 0;Z
1:T \ Zit) :=

Yit(1,Z
1:T \Zit)− Yit(0,Z

1:T \Zit). It captures the

2We are assuming a simplified setting where there are no new
users, and where we can identify a consistent time index t for the
user’s visits without actual linking of them. In practice, without
cookies such indexing too is challenging
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effect of observation (i, t)’s treatment, Zit, on its cur-
rent outcome, Yit, with all other treatments remaining
the same.

• Cumulative direct effect: τit(zs:t, z̃s:t;Z1:T \Zs:t
i ) :=

Yit(z
s:t,Z1:T \ Zs:t

i ) − Yit(z̃
s:t,Z1:T \ Zs:t

i ), where
s ≤ t. This is the cumulative effect of unit i’s history
between period s and t on its own outcome in period
t and induced by temporal interference. Once again
any treatment not included in the period s : t are kept
identical.

These quantities are often unidentifiable from observa-
tional data. A common practice is to marginalize over both
treatment assignments and over the N units to get Expected
Average Treatment Effect (EATE) (Pearl, 2000). The cor-
responding effects are given by3:

τt :=
1

N

N∑
i=1

τit = EiEZ1:T \Zit

[
τit(1, 0;Z

1:T \ Zit)
]
,

τt(z
s:t, z̃s:t) :=

1

N

N∑
i=1

τit(z
s:t, z̃s:t)

= EiEZ1:T \Zs:t
i

[
τit(z

s:t, z̃s:t;Z1:T \ Zs:t
i )

]
.

2.2.1 Problem Statement

In the absence of cookies, each visit by a unit has to be
treated as a separate unit. This cookie-free unit has no
history; so while the outcome observed is Yit(Z

1:T
i ), only

treatment Zit is observed. The question of concern for
this work is estimating the cumulative direct effect τt(1⃗, 0⃗)
(which we will sometimes also call global treatment effect)
of using treatment 1 over 0. This is the effect of the mar-
keter deploying the treatment Zi,t = 1∀t against the treat-
ment Zi,t = 0∀t; which we shall denote as 1⃗ and 0⃗, respec-
tively. If the history of treatments for each unit is known,
it is in principle straightforward to estimate the cumula-
tive direct effect. However the lack of identification means
for each unit we can only observe the current treatment,
and do not know the earlier treatments assigned to the unit.
This makes most existing methods on estimating cumula-
tive effect inapplicable to our problem. In the following
section, we propose a method to infer cumulative effects
from the observed data by estimating the relation between
the contemporary and cumulative effects. Our method re-
lies on some assumptions standard for treatment effect esti-
mation: sequential ignorability (Imai et al., 2010), no con-
tagion (Hudgens and Halloran, 2008) and positivity (Pearl,
2000). We refer the readers to the Appendix A for a de-
tailed discussion of these assumptions.

3We write τit rather than τit(1, 0) for simplicity and Ei repre-
sents averaging over units

3 METHOD

3.1 Intuition

To establish the intuition for our model, we describe a sim-
ple example in this section. Our general model is described
in the next section. Consider the simple setting with 3 time
periods, i.e., for a user i, we have 3 treatments (Z1:3

i =
Zi,1, Zi,2, Zi,3) and 3 outcomes (Y1:3

i = Yi,1, Yi,2, Yi,3)
over the time periods. Furthermore, let us assume that the
outcome Yit depends only on the current and previous treat-
ment allocations of the corresponding unit, i.e., observed
outcome is Yit(Zit, Zi,t−1) and Yit(., .)⊥⊥Zi,k≤t−2, Zj ̸=i,..
For the purpose of this section, we will suppress the depen-
dence on the user covariates X .

In the first two time periods the users retain cookies, and so
we can observe – and, in an experimental setup, control–
the treatments each user receives in the first two steps. Be-
fore the third visit, the cookie expires, and hence when the
user visits the third time, we do not have any information
about the treatment history. Moreover due to lack of in-
formation about the history, in the third period treatment
allocation necessarily undergoes randomization. Since the
periods 1 and 2 are standard sequential treatment problems,
we can focus only on the treatment effect in the third pe-
riod. Our goal is to estimate the treatment effect on the
outcome in the third time-period Yi,3 under a constant treat-
ment, i.e., E[Yi,3(1, 1)− Yi,3(0, 0)].

Let p1 denote the probability of assigning any user the
treatment 1 in the second time period; and Ȳi denote
the observed outcome in the third period (i.e. Ȳi =
Yi,3(Zi,3, Zi,2)). Observe that while Ȳi depends on Zi,2 we
cannot observe Zi,2. The naive treatment effect estimate
applied on the post-cookie time period (which is measur-
ing the direct effect of Zi,3) gives:

τ̂3 =

∑N
i=1 ȲiI[Zi,3 = 1]∑N
i=1 I[Zi,3 = 1]

−
∑N

i=1 ȲiI[Zi,3 = 0]∑N
i=1 I[Zi,3 = 0]

Here I is the indicator function. The above expression is
simply the difference in the average outcome between the
treated (Z.,3 = 1) and untreated (Z.,3 = 0) group. If the
observed outcome only depended on the recent treatment
Z.,3, then under sequential ignorability, the above estimate
is unbiased for the treatment effect. However when the out-
come depends on the history we get

E[τ̂3] = EZ2E[Yi,3(1,Z
2)]− EZ2E[Yi,3(0,Z

2)]

= p1E[Y3(1, 1)] + p0E[Y3(1, 0)]− p1E[Y3(0, 1)]

− p0E[Y3(0, 0)]

= p1E[(Y3(1, 1)− Y3(0, 1))] + p0E[(Y3(1, 0)− Y3(0, 0))]

= 0.5E[Y3(1, 1)− Y3(0, 0)] + 0.5E[Y3(1, 0)− Y3(0, 1)] (1)

where p1, p0 are the marginal probabilities of Z2 = 1, 0,
respectively; and we have suppressed i for notational con-
venience. Then in the last line, we have assumed perfect
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randomization to set p1 = p0 = 0.5 On the other hand the
desired estimand is E[(Y3(1, 1)− Y3(0, 0)].

Note that we have not used assumed anything specific
about the form of the outcome and so the above expres-
sion is true without any other model assumption. A dif-
ferent outcome process can now lead to different treat-
ment effects under the same observational data. For ex-
ample, in the simple case that outcome for mixed treat-
ments are the same i.e. Y3(1, 0) = Y3(0, 1), then the
above expression becomes 0.5(Y3(1, 1) − Y3(0, 0)). One
the other hand if the outcome depends only on the latest
treatment i.e. Y3(Z3, Z2) = Y3(Z3), then the earlier es-
timate (Y3(1, 1) − Y3(0, 0)) equals the desired estimand.
This shows that the cumulative treatment effect is uniden-
tifiable from only the observed data in the case of temporal
interference under identity fragmentation. This is not sur-
prising given that different joint distributions can have the
same marginal distributions (Koller and Friedman, 2009).

However, the above expression also suggests that if
the outcomes under mixed/interfered treatments, i.e.,
Y (1, 0), Y (0, 1) are related to Y (⃗1) and Y (⃗0) then we can
in principle adjust the previous estimator τt to obtain the
cumulative effect τt(⃗1, 0⃗) without any further experiments.
For example if Y3(1, 0)−Y3(0, 1) = α(Y3(1, 1)−Y3(0, 0),
then Equation 1 becomes

E[τ̂3] = 0.5(1 + α)[Y3(1, 1)− Y3(0, 0)] (2)

More generally if we could connect the potential outcome
on history Z to the potential outcomes Y (⃗1) and Y (⃗0), then
the above expression can be rewritten to factor out the de-
sired estimand Y3(1, 1)− Y3(0, 0).

3.2 DIET

Building on the above insight, next we present the core as-
sumption of our work which makes cumulative effect esti-
mation in the current scenario feasible.

Diet Assumption 1 (Outcome Model).

Yit(Z
1:t
i )− Yit(0⃗) = (Yit(1⃗)− Yit(0⃗)) ∗ ci(Z1:t

i , Xi)
(3)

In this formulation, ci(0⃗) = 0 and ci(1⃗) = 1, for every
unit. Note that c depends on the covariates Xi or be a ran-
dom variable as well instead of a constant function. In that
case, we assume that given the history of treatments (and
any applicable covariates) ci(Z1:t

i , Xi)⊥⊥Yit(0⃗), Yit(1⃗).

This model has some functional resemblance to the Cox
Proportional Hazards model (Cox, 1972; Breslow, 1975;
Clayton and Cuzick, 1985). However, unlike the Cox
model, which is focused on survival analysis4, we have

4The Cox hazard model can be mathematically written as

a baseline individual treatment effect (Yit(1⃗) − Yit(0⃗))
affected by the history of treatments by a relative-
risk/proportionality factor c. Moreover, unlike the Cox
model, the factor in our case can take any real value.

Theorem 1. For the outcome model described in Assump-
tion 1, cumulative treatment effects for any desired treat-
ment history and marginal/direct treatment effects are re-
lated when conditioned on the covariates. Specifically,

∀z, z′,Λt(z, z
′) :=

τt(z, z
′)

τt
is a function of only X .

The key idea is that if the differences between the various
potential outcomes are multiplicatively related, then so is
the direct treatment effect to the cumulative treatment ef-
fect. More specifically similar to Equation 2, the expected
cumulative treatment effect can be factored out from the
expression of direct treatment effect. For a detailed proof
of the theorem, we refer the reader to the AppendixB.1.

While Theorem 1 gives an existence result for the relation
between the contemporary direct effect (which we can also
call marginal treatment effect) and the global treatment ef-
fect, it may not be useful. More precisely, the exact value of
the constant Λ appearing in Theorem 1 depends not only on
the unknown risk coefficients ci but also on the treatment
allocation process which in turn depends on the cookie loss
process. This creates a challenge in estimation of cumula-
tive effects from direct effect without further assumptions.

However if one can estimate this dependence, consistent
estimators of the cumulative effect can be constructed even
in the presence of fragmentation. This is the key idea be-
hind our method, to infer the cumulative effects from di-
rect effect estimates. In Algorithm 1, we present our al-
gorithm called DIET (Direct Inference of Effect of Treat-
ment) for estimating the global treatment effect from frag-
mented data. With some restrictions on the data, our
DIET algorithm can identify the aforementioned depen-
dence between cumulative and direct effects from observa-
tional data. For this purpose, we make explicit our assump-
tion about fragmentation and cookie-loss, which allow the
aforementioned dependence to be identifiable.

Diet Assumption 2 (Limited Interference and Fragmenta-
tion).

a)∃H s.t. ci(Z
1:t
i ) = ci(Z

t−H:H
i )

b) Pr
(H+1⋂

j=1

∆i,t+j = 0|∆i,t = 1
)
> ε > 0

c)∆i,t ⊥ Z1:t
i ,Y1:T

i |Xi

Here ∆i,t represents the event that the cookie for unit i was
lost just before time t.

λ(t|x) = λ0(t)exp(βx) where λ0 is the baseline hazard rate and
exp(βx) is the covariate dependent relative risk. Borrowing this
term we would call our c function relative risk.
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These assumptions means that a) the relative risk function
ci has dependence on only a finite number H of previous
treatments, and not affected by an arbitrarily long history.
This is natural in many settings such as offers and ads,
where the effect of treatments decay with time. Further-
more, b) ensures that the fragmentation due to deletion/loss
of cookies is limited so that some units can be tracked for
more time steps than the limit H . This is not restrictive as
some users are likely to accept cookies or use only one de-
vice. In other cases their attributes might be unique enough
for stitching methods to be very accurate. Finally, c) means
that the event of cookie loss is conditionally independent
of treatments and outcomes. Both parts b) and c) are im-
plicitly related to standard assumptions in causal inference
literature (Hernan and Robins, 2013; Banerjee and Duflo,
2009; Pearl, 2000).

Algorithm 1 DIET procedure
Observed data (Xi, Y

1:T
i , Z1:T

i ), Horizon H

Estimate τ̂t(1⃗, 0⃗) of τt(1⃗, 0⃗)
Procedure:

1. Estimate propensities π = P (Zi,t|Z1:t−1
i ,Y1:t−1

i , Xi)

2. Stratify observation based on covariates Xi

3. Use propensity model π and stratified ob-
servations to estimate conditional direct ef-
fect τt for users with history, i.e., τ̂D

t (X) =

ÊXi=X ÊZt−H−1:t−1∼π[τit(1, 0;Z
t−H−1:t−1|X)]

4. Use propensity model π and stratified observa-
tions to compute conditional cumulative effect
τt(⃗1, 0⃗) for users with history, i.e., τ̂C

t (X) =

ÊXi=X ÊZt−H−1:t−1∼π[τit(1⃗, 0⃗;Z
t−H−1:t−1|X)]

5. Compute estimates Λ̂t(X) = τ̂C
t (X)/τ̂D

t (X)

6. Learn function to estimate Λf
t (X) from

Λ̂1(X), Λ̂2(X), · · · , Λ̂t(X)

7. Use propensity model π and stratified obser-
vations to estimate conditional marginal ef-
fects for users with history, i.e., τ̂g

t (X) =

ÊXi=X ÊZt−H−1:t−1∼π[τit(1, 0;Z
t−H−1:t−1|X)]

8. Infer τ̂t(1⃗, 0⃗) as EX [τ̂g
t (X)Λf

t (X)]

Theorem 2. Under Assumptions [1-2], the procedure in
Algorithm 1 gives a consistent estimator of cumulative
treatment effects.

We explain the idea behind the method and refer the readers
to the AppendixB.2 for the full proof. With a high enough
ε (or enough number of units), we will have some users
with histories longer than H available. These can be then
used to construct an estimate of the cumulative treatment
effect (Step 4). Similarly, we can estimate the contempo-
rary direct effect (marginal treatment effect) of the treat-
ments from the data (Step 3). We can then put these two

estimates together to learn the functional dependence be-
tween these two effects (Step 5 in Algorithm 1). These are
all noisy estimates (primarily due to the noise of global ef-
fect estimates); however our procedure gives us access to
multiple such estimates. These can then be fit together to
learn the true Λ function (Step 6 in Algorithm 1). The learnt
Λ can be used for inferring back the global effect. In the
case of experimental designs where the treatment policy is
already known to the marketer, Step 1 of the algorithm can
be skipped. Lastly, our method is concerned with inferring
the cumulative effect from the direct effect estimate. While
we need a propensity model π as well as estimator for the
effects τC , τD, our algorithm is agnostic to the choice of
such estimators. In our experiments, we would use a vanilla
Horvitz-Thompson estimator for measuring the effects and
a logistic regression model for propensity estimation.

Special Case Lin and Misra (2021) assume a model with
the outcome being linearly dependent on cumulative mar-
keting expenditure. This situation is a special case of
our model, where the relative function ci(Z

t−H:T
i ) =∑H

t=1 Zit

H . Lin and Misra (2021) then show that the con-
ducting analysis on cookie-level data leads to the treat-
ment effect being attenuated by the ”number of identities”.
Plugging these assumption about fragmentation and ci into
Equation 9 (Appendix), one can show that the direct treat-
ment effect is a similarly attenuated value of the cumula-
tive treatment effect (more discussion can be found in the
Appendix). As a simple case, if we consider the example
of Equation 1, and put ci(Zt−1, Zt) = Zt−1+Zt

2 , we can
see that the observed direct treatment effect = 0.5×(true
cumulative effect); i.e., the effect is attenuated. However,
unlike their model, we can handle an unknown and generic
c function.

4 EXPERIMENTS

We perform three sets of experiments. First, we compare
our proposal on a simulated dataset, and compare it to the
true simulated treatment effect. Next, we compare our pro-
posed method on a web analytics log dataset, by simulating
different levels of fragmentation. Finally, we compare our
method on a healthcare dataset with observational data.

Synthetic Simulation: For synthetic experiments, we
generated data for 50, 000 users for 10 time steps follow-
ing the outcome model in Equation equation 3. We set the
history window H = 3. For the hazard function ci(Z)
we chose for each user i a vector wi

c ∈ [0, 1]3, and set
ci(Z) = f(wi

c · Z). The base outcomes Yit(1⃗), Yit(0⃗)
were obtained from user covariates in a similar fashion,
i.e., Yit(1⃗) = wi

1 · Xit. We first compute the ratio Λ of
the ‘marginal’ treatment effect and the treatment effect for
history z, i.e., E[Yt(z) − Yt(0⃗)]/E[Yt(1) − Yt(0)] for dif-
ferent histories and at each time step. We present results on
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three types of treatment allocations labeled as Late (which
corresponds to treatment at only the last time step and 0
before that, i.e., Z1:H

i = [0, . . . , 0, 1]), Alter (which alter-
nates between treatments, i.e., Z1:H

i = [0, 1, 0, 1, .., 0, 1] )
and Complete (which is a treatment allocation of only treat-
ment 1, i.e., Z1:H

i = [1, 1, . . . , 1]). In Figure 1 we provide a
bar graph of the point estimate and the standard deviation of
Λ(Z) for the three different histories Z. The consistency of
Λ is neither limited to specific monotonic c or positive ef-
fects; we experimented with different risk ratios ( quadratic
and sinusoidal) and found similar results. For example in
Figure 1(c) we plot the value of Λ(H) for a more complex
sinusoidal relative risk function.

Equation 9 shows that if ci do not depend on time, nei-
ther does Λ. We experimentally show this in the Appendix
we experimentally show that this is true, where we plot the
function Λ over time (Figure 7a). Quantitatively the devi-
ation of the estimate is of order 0.01 against the estimate
value of order 1, and fluctuating around its mean with no
visible trend, demonstrating that time doesnt have any im-
pact on Λ.

Online Sales: We evaluate our estimator on a cookie-less
A/B testing scenario using observational data. For this pur-
pose we use a historical click-stream data made available
by YooChoose. This dataset (Ben-Shimon et al., 2015) is
the click event sessions for a major European e-tailer col-
lected over 6 months. The logs consist of a variable length
history of the sessions and includes data about clicks and
purchases, along with other information like offers, prod-
uct type etc. For the outcome, we considered whether an
event led to a purchase, and for the treatment we consid-
ered whether the event happened in context of a promotion
or special offer. In our experiments we used two versions
of DIET: Constant and Linear (based on the fitting model
used in Step 6 of Algorithm 1)

We first analyse whether incorporating previous treatments
affects the treatment effect estimate. If history has little or
no effect on the outcomes, there is no problem in using the
naive treatment estimate (i.e., the marginal effect). For this
purpose, we experiment with different horizon lengths H
(time steps), estimate the treatment effect knowing the en-
tire history and compare it against both the marginal effect
(MTE), and two versions of our DIET estimator. In Figure
2, we plot the bias of these estimates (along with the stan-
dard error) over different sub-samples of the data. We see
that the marginal effect is sufficiently biased once the his-
tory is taken into account. Furthermore, since conversion
rates in e-commerce is around 0.5-2%; the bias of the MTE
is of the same order as the treatment effect. As such, in this
application using the MTE instead of the correct estimator
can lead to significant error (∼ 100%). On the other hand
our DIET estimator though having slightly higher variance
reduces the bias considerably.

The previous experiment is in a setting where all history is
available. Furthermore, it is a situation where DIET has the
greatest advantage in terms of availability of long histories.
Hence, we next analyse the impact of cookie deletion on ef-
fect estimation. We randomly select a set of users to retain
history, while the other users delete their cookie every time.
In these experiments we set the dependence horizon to 3.
We vary the percentage of users for whom we allow access
to histories and compare performance of different estima-
tors. Since some fraction of users always retain cookies,
a natural baseline is to use traditional full history based
methods restricted to this smaller dataset of tracked users.
Another solution relies on stitching to connect the frag-
mented identities and using the enhanced dataset with full
history methods. We implement these as alternative base-
lines and use LTMLE (Stitelman et al., 2012; Schomaker
et al., 2019) to compute treatment effects. LTMLE is G-
computation (Robins and Hernán, 2009) based extension of
the Targeted Maximum Likelihood Estimation/TMLE ap-
proach of van der Laan (2010) which is knwon to be (semi-
parametrically) asymptotically efficient

We measure the mean squared error between estimated ef-
fect by different estimators and an oracle estimator with
access to all the histories for all the users. Figu The results
are plotted in Figure 4, where we can see that as fragmen-
tation reduces the MSE of all predictors improve. LTMLE
is known to asymptotoically efficient, and so it is not sur-
prising that it can achieve lowest error. However, when the
number of users with known history reduces, DIET starts
outperforming LTMLE. This is because LTMLE cannot use
fragmented records, whereas DIET can leverage these frag-
mented records. We also see a consistent improvement
(upto 20%) over a wide range of fragmented identities by
using DIET.

We also plot the bias of these baselines as the fraction of
users with history change. This is plotted in Figure 3.
While the bias of LTMLE as well as Linear DIET is small,
the bias of stitching based baseline is both high and varies
unpredictably as the percentage of fragmented identities
changes. This is consistent with our earlier proposition that
stitching based methods have uncontrollable bias. Further-
more while LTMLE remains unbiased, the reduction in his-
tory availability increases the variability of the estimate.

MIMIC 3: We perform experiments on a healthcare
based application using the Medical Information Mart
for Intensive Care (MIMIC-III) database (Johnson et al.,
2016). The dataset consists of trajectories of clinical mea-
surements (e.g., heart rate, respiratory rate), assigned treat-
ments (vasodilators, antibiotics and so on) as well as other
covariates of ICU patients. For our experiment we focus on
the subset of patients in MIMIC whose primary diagnosis
is sepsis. Since the are many potential treatment drugs (and
their combinations), we categorized them by types and then
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Figure 1: Bar chart of population Λ function (i.e. the ratio of cumulative effect to direct effect) for various treatment
policies (Late,Alter, Complete). Note that this is the population level average function. Different risk coefficients/hazard
models a) Linear, b) Quadratic and c) Sinusoidal have been plotted in different figures. The standard deviation has reported
on top of bars.

Figure 2: Bias (with standard error across trials) of dif-
ferent estimators as the time horizon of interference is in-
creased on YooChoose click-stream logs.

further binned them into binary labels. The goal once again
is to assess the cumulative treatment effect of a regime pro-
viding treatment 1 over treatment 0. We asses various out-
comes such as blood glucose level, oxygenation and white
blood cell counts.

We repeat the experiments we performed for the Yoo-
Choose data. We first demonstrate temporal interfer-
ence/history dependence on the outcomes. These results
can be seen in Figure6 in the Appendix. In this case, the
bias of marginal estimate is significantly higher than Lin-
ear DIET. We also observe smaller improvement over MTE
with DIET constant. This is likely because the model as-
sumptions do not hold in this case. For drug treatments,
different dose regimens can induce unpredictable effects
violating the outcome model assumption (Martinez et al.,

Figure 3: Bias of different estimators with H=3 as per-
centage of users with unfragmented identity varies on Yoo-
Choose click-stream logs. Stitching tends has an unpre-
dictable bias while LTMLE is unbiased.

2012). Moreover, as medical practitioners do not random-
ize prescriptions and base their decision on a variety of fac-
tors; observational medical datasets almost surely violate
assumptions of positivity and lack of confounders. Next
we assess the error of the estimator as the percentage of
users with available history varies. We see greater variance
and difference between the two different DIET estimators
in these experiments. However the general trend of lower
error compared to stitching and lesser variance compared
to LTMLE still holds. We see that at low history availabil-
ity DIET can reduce the error from LTMLE and stitching
by over 30%. Moreover DIET dominates stitching almost
everywhere and is competitive with LTMLE at higher data
availability as well.
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Figure 4: MSE (with standard error across trials) of esti-
mators as percentage of users with unfragmented identity
varies on YooChoose click-stream logs. Generally LTMLE
has lower error then DIET with high history availability, but
is worse than DIET when histories are unavailable. Stitch-
ing on the other hand tends to always have higher error.
In both cases, with less history the variability of existing
methods is higher than DIET.

5 RELATED WORKS

Stitching without Cookies: Considerable research has
gone into stitching fragmented user behaviour (Saha Roy
et al., 2015; Kim et al., 2017; Jin et al., 2019; De Smedt
et al., 2021). But these strategies rely on using features
of devices (e.g., IP Address) to predict which pairs of de-
vices represent the same human user. In an atmosphere of
increased privacy sensitivity, such strategies lead to further
mistrust of organizations, for instance, the GDPR explicitly
forbids the use of IP address as a feature for digital market-
ing. There are efforts within the industry to overcome the
absence of cookies, such as an approach called “Topics”
5. These are however focused on ad targeting and outreach
towards users. On the other hand, our goal is to assess the
impact of a given long-term experience or treatment.

Hazard models: The Cox model (Cox, 1972) and sim-
ilar proportional hazards models (Chen et al., 2010; Cao
et al., 2015) have a rich history in survival analysis. In the
context of online marketing, the effect of marketing inter-
ventions on screen time (Barbieri et al., 2016), return times
(Kapoor et al., 2014), time to opening emails (Sinha et al.,
2018), and long-term crowd engagement (Chandar et al.,
2022; Gu et al., 2022) have been explored with survival
models. However, none of these address the question of es-
timating the treatment effect under identity fragmentation.

Fragmentation bias: Weaknesses of using cookie-level
data against individual-level data is known in literature
(Chatterjee et al., 2003; Bleier and Eisenbeiss, 2015;
Hoban and Bucklin, 2015); but there is not a lot of work ad-

5https://bit.ly/3w1g8ak

dressing these from a formal perspective. Some approaches
used for parameter estimation from observational user logs
include missing data imputation (Novak et al., 2015) and
aggregation (Rutz et al., 2011). Taylor and Eckles (2018)
have suggested to focus on an ITT like setting for assess-
ing network influence. Koehler et al. (2013, 2016) uses a
combination of server logs, publisher provided data (PPD),
and public data to measure the reach of of online ad cam-
paigns when enough tracking information is unavailable.
However these methods are non-causal or user preference
models and are inapplicable for treatment effect estimation.

Earlier work most related to the current work is by Coey
and Bailey (2016) on bias caused by fragmentation when
using cookie-level data. Lin and Misra (2021) characterize
fragmentation bias in linear models. While our problem
is also caused due to using cookie-level data, unlike these
works our focus is on a temporal setting where historical
treatments effect the current outcome. We also show that
their results are a corollary of our results.

Interference: There have been many attempts to deal with
interference in the literature (Hudgens and Halloran, 2008;
Blackwell and Glynn, 2018). But these assume strong re-
strictions on the structure of spillover. For inter-unit in-
terference spatial models (Beck et al., 2006; LeSage and
Pace, 2009), and network models (Graham, 2008; Ace-
moglu et al., 2015; Leung, 2020) are commonly used. Re-
cently some work has focused on how to account for gen-
eral interference (Papadogeorgou et al., 2020; Zigler and
Papadogeorgou, 2018; Ogburn et al., 2020) . Yet these
works concentrate on creating experimental designs rather
than the analysis of observational studies (Savje et al.,
2018; Aronow et al., 2019; Chin, 2019). Furthermore these
techniques are designed primarily for spatial interference.
Recently, Shankar et al. (2022) devise a modified exper-
imentation procedure to perform A/B testing when user
identities are fragmented among different brands or related
channels. However there approach does not consider tem-
poral interference and is restricted to cooperating channels.

Dynamic and Sequential Treatments: Pioneering work
by Robins (1986) leds to development of Structural Nested
Models (SNM) and Marginal Structural Models (MSM)
(Robins and Hernán, 2009; Robins et al., 2000; Hernán
et al., 2000) which can be used to obtain unbiased esti-
mates of the cumulative effects for sequential and dynamic
treatments (Blackwell, 2013). Extensions of these ideas
have been proposed for incorporating deep neural networks
(Lim, 2018; Lin et al., 2021; Bica et al., 2020; Melnychuk
et al., 2022; Frauen et al., 2022; Li et al., 2021). How-
ever none of these methods can work without knowledge
of the entire history of treatments, and hence cannot be
used in the presence of identity fragmentation. While dif-
ference in difference (DID) methods have also been pro-
posed to do estimation for longitudinal studies (Goodman-
Bacon, 2018; Callaway and Sant’Anna, 2020), they focus

https://bit.ly/3w1g8ak
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(a) Glucose (b) White Blood Cell (c) Haemoglobin

Figure 5: Mean Squared Error (with standard error of trials) against the percentage patients with available history on sepsis
patients from MIMIC for different outcome measures. MSE is measured between prediction from different estimators and
true effect estimated from data. Generally LTMLE has lower error then DIET with high history availability, but is worse
than DIET when histories are unavailable. Stitching on the other hand tends to always have higher error and unpredictable
bias. In both cases, with less history the variability of existing methods is higher than DIET.

on a single known treatment allocation with uncertain tim-
ing. Furthermore these methods are known to be biased
under heterogenous treatment (Wang, 2021; Sun and Abra-
ham, 2020; De Chaisemartin and d’Haultfoeuille, 2020).
Our work instead focuses on multiple treatment without
fragmented user idenitities. To the best of our knowledge
we are the first to address treatment effect estimation under
temporal fragmentation.

6 CONCLUSION

We consider treatment effect estimation under in presence
of identity fragmentation for sequential treatments. This
setting naturally arises in the online businesses due to 1)
users using multiple devices or 2) depreciation of cookies.
To the best of our knowledge we are the first to address this
problem . We prove that under multiplicative model cu-
mulative treatment effects are functionally related to direct
treatment effect. We then provide a consistent estimator un-
der such a model and verify these results by experimenting
on simulated data. We also use our proposed DIET method
on real data and find that it can lead to upto 20% reduction
in error.

Our paper opens the door to more research in this area,
which can have significant social impact as well. Estimates
suggest that record fragmentation in healthcare systems im-
poses additional costs upto $1,950 per patient in the US
(Jason, 2020). Hence research in this area also serves an
important social good in terms of reducing healthcare costs.
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(Supplementary Material)

A Assumptions

Before proceeding further to the outcome model which would allow us to estimate the desired treatment effects, we in-
troduce some other critical assumptions. Note that these assumptions are either self-evidently true or common in causal
inference literature (and not specific to our method).

Assumption 1 (No reverse causality). If Z1:t = Z̃1:t, then

Yit(Z
1:T ) = Yit(Z̃

1:T ).

for any i and t.

This assumption requires that the potential outcome of any unit i at period t is not affected by treatments assigned in the
future. While there is no physical mechanism which future to affect the past outcomes, if information about future treat-
ments is available in advance units can adjust their behavior, leading to reverse causal influences. Another possible scenario
in which this can happen is if observations are recorded by distributed or asynchronous systems, or simply measurement
errors. In such a case the time stamps need not form a strict order and the logs might show reverse causality. Finally in ap-
plication of biostatistics (Davey Smith and Ebrahim, 2004), this can happend due to violations of exchangeability(Hernan
and Robins, 2013). Assumption 1 precludes any such possibilities and allows us to write Yit(Z

1:T ) as Yit(Z
1:t)6.

Assumption 2 (Sequential ignorability).

Zt ⊥ Yit(Zt,Z
1:T \ Zt)|Z1:(t−1),Y1:(t−1),X1:t,

Z1 ⊥ Yi1(Z1,Z
1:T \ Z1)|X1,

This assumption introduced by Imai et al. (2010) is a crucial and standard assumption for analysis of sequential treat-
ments. This assumption means that given the observed pre-treatment variables, the treatment assignment is statistically
independent of potential outcomes. It also implies that any mediators are also independent of outcomes given all observed
variables. This means that the treatment assignment in period t, Zt, is result of perfect randomization conditional on past
treatment assignments, past outcomes, and covariates that are not affected by Zt. Unlike the assumption of strict exogene-
ity in fixed effects models (Blackwell, 2013), sequential ignorability disallows any unobservable confounder. Therefore,
if both the outcome and the assignment process are affected by some unobservable variables (e.g., unit fixed effects), the
assumption will no longer hold.

Under Assumption 2 one can can use the information contained in the history to estimate the propensity scores at period t,
P (Zt = zt|Z1:(t−1),Y1:(t−1),X1:t), which play a key role in the identification of the estimands (Imai et al., 2011, 2010).

Assumption 3 (Bernoulli design and Positivity). In any period t, Zit is independent to each other for any i. Moreover
0 < P (Z1:t

i = z1:t) < 1 for any i and t.

We impose the common requirement of positivity (also known as overlapping) which is that each possible history for unit
i should have a positive probability to occur on its support (Pearl, 2000). The roots of this assumption can be traced to
seminal works of Basu (1971) and Horvitz and Thompson (1952). The bernoulli design assumption essentially is about
randomization across units. It says Zit can be dependent on the history, Z1:(t−1), but not on the treatment status of other
units in the same period, Zt \Zit. While this is implicitly assumed in essentially all causal literature (Austin, 2011; Rubin,
2010; Pearl, 2009) we make this explicit. For binary treatments, both positivity and bernoulli design, is can be ensured by
ensuring that there is some randomization at each time step i.e. 0 < P (Zit = z) < 1.

Assumption 4 (No contagion). For any i and t, the probability P (Zit = z) is decided only by unit i’s own history.

No contagion (Hudgens and Halloran, 2008; Ogburn and VanderWeele, 2014) means, treatment assigned to other units
Z

1:(t−1)
j can not affect Zit. In other words, the set of confounders excludes Z1:(t−1)

j , but may include Z1:(t−1)
i or Y1:(t−1)

i .

This is a version of the SUTVA assumption in literature (Rubin, 1990; Angrist et al., 1996; Rubin, 2005) via Y
1:(t−1)
i .

This allows us to focus only on the unit’s history and not consider inter-unit interference.

6This is a structural assumption on the form of the outcome rather than the assignment process.
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All of these assumption are common in causal inference literature (Robins et al., 2000; Blackwell, 2013; Pearl, 2000)
and are in general necessary for any treatment effect estimation method to be function. Next we briefly state the specific
assumptions needed by our approach.

A.1 DIET Assumptions

Assumption 5 (Outcome Model).

Yit(Z
1:t
i )− Yit(0⃗) = (Yit(1⃗)− Yit(0⃗)) ∗ ci(Z1:t

i ) (4)

Moreover if ci are random functions, then ci are conditonally independent given the covariates.

Assumption 6 (Limited Interference and Fragmentation).

a)∃H s.t. ci(Z
1:t
i ) = ci(Z

t−H:H
i )

b) Pr(
H+1⋂
j=1

∆i,t+j = 0|∆i,t = 1) > ε > 0

c)∆i,t ⊥ Z1:t
i ,Y1:T

i |Xi

Parts b) and c) of the Assumption 6 assumption are implicit in the Assumptions 2 and 3. However, we make this explicit
because deletion of cookies is an exogenous events and not directly observed, while other variables are observed.

Sequential ignorability implies there is no unmeasured confounding (Imai et al., 2011, 2010; Hernan and Robins, 2013).
Since the event of cookie deletion leads to randomization in treatments (hence making these dependent), if cookie deletion
is related to outcomes we effectively have a confounder. Part c) makes this explicit by making cookie deletion and outcomes
independent. Similarly positivity implies that all possible treatment histories should be possible. If we include cookie
deletion as exogenous treatments, treatment allocations where cookies are not deleted for atleast H time steps should have
non zero probability. This is exactly what part b) specifies.

B Proofs

B.1 Proof for Theorem 1

We focus simply on the cumulative effect at time t as the direct effect at time t is the cumulative effect of treatment at time
t.

τt(z
s:t, z̃s:t) = EiEZ1:T \Zs:t

i

[
τit(z

s:t, z̃s:t;Z1:T \ Zs:t
i )

]
= EiEZ1:T \Zs:t

i

[
Yit(z

s:t,Z1:T \ Zs:t
i )− Yit(z̃

s:t,Z1:T \ Zs:t
i )

]
(a)
= EiEZ1:T \Zs:t

i

[
Yit(z

s:t,Zi
1:T \ Zs:t

i )− Yit(z̃
s:t,Zi

1:T \ Zs:t
i )

]
(b)
= EiEZ1:t\Zs:t

i

[
Yit(z

s:t,Zi
1:t \ Zs:t

i )− Yit(z̃
s:t,Zi

1:t \ Zs:t
i )

]
(c)
= EiEZ1:t\Zs:t

i

[
(Yit(1⃗)− Yit(0⃗))(ci(z

s:t,Zi
1:t \ Zs:t

i )− ci(z̃
s:t,Zi

1:t \ Zs:t
i ))

]
(d)
= EiEZ1:t\Zs:t

i

[
(Yit(1⃗)− Yit(0⃗))(ci(z

t−H:t,Zi
1:t \ Zs:t

i )− ci(z̃
t−H:t,Zi

1:t \ Zs:t
i ))

]
(e)
= EiEZ1:t\Zs:t

i

[
(Yit(1⃗)− Yit(0⃗))

]
EZ1:t\Zs:t

i

[
(ci(z

t−H:t,Zi
1:t \ Zs:t

i )− ci(z̃
t−H:t,Zi

1:t \ Zs:t
i ))

]
(f)
= EiE

[
(Yit(1⃗)− Yit(0⃗))

]
EP (Z)C(zt−H:t, z̃t−H:t)

(g)
= EiE

[
(Yit(1⃗)− Yit(0⃗))

]
EπC(zt−H:t, z̃t−H:t, P (Z))

(5)

In the above derivation at (a) we used Assumption 4, to restrict the dependence only on Zi instead of all treatments. Next
in (b) we use Assumption 1 to drop any random variable of the future i.e. with time step more than t. Next in (c) we
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use Assumption 5 and simple algebra to factor out Yit(1⃗) − Yit(0⃗). Next in (e) we use Assumption 2 which provides
conditional independence to seperate the two expectations. In (f), we write the expectation over the ci as a functional over
the treatments z, z̃, and over the distribution induced by the treatment allocations. Finally in (g) we rewrite the expectation
over the treatment allocation policy as an expectation over some behaviour policy π analogous to propensity weighting
(Horvitz and Thompson, 1952; Hajek, 1971). This transformation requires knowing P (Z) as well as full support over all
possible allocations. Assumption 3 ensures positivity as well as gives us a way to compute the probability of a treatment
allocation. For more discussion on the admissibility of such change in expectation/sampling we refer the readers to works
of Basu (1971, 1980); Pearl (2000); Precup (2000); Shiba and Kawahara (2021).

Similarly, for the direct effect, we have

τt = EiE
[
(Yit(1⃗)− Yit(0⃗))

]
EπC(1, 0, P (Z)) (6)

We now consider the conditional effects τ |X instead of population effect τ . These are similar to the earlier expression,
however instead of taking expectation over all units Ei we average over units with matching covariates. This then gives us:

τt(z
s:t, z̃s:t)|X = E

[
E
[
(Yit(1⃗)− Yit(0⃗))

]
EπC(zt−H:t, z̃t−H:t, P (Z))|X

]
= E

[
E
[
(Yit(1⃗)− Yit(0⃗))

]
|X

]
CX(zt−H:t, z̃t−H:t, P (Z)) (7)

τt|X = E
[
E
[
(Yit(1⃗)− Yit(0⃗))

]
EπC(1, 0, P (Z))|X

]
= E

[
E
[
(Yit(1⃗)− Yit(0⃗))

]
|X

]
CX(1, 0, P (Z)) (8)

Note since the treatment allocation policy as well as the risk coefficients ci are functions of X; they are constant for the
conditional expectations in Equations 7,8. Computing their ratio gives the result that:

Λ(X) :=
τt(z

s:t, z̃s:t)|X
τt|X

=
CX(zt−H:t, z̃t−H:t, PX(Z))

CX(1, 0, PX(Z))
= constant (9)

B.2 Proof for Theorem 2

First we note that from Assumption 6 a, interference is limited to only a time period of H. Hence for cumulative effect
estimation at time t we can only look at session of length which begining at t−H .

Next we note that Assumption 6 b, implies that if for a unit i the cookie is lost at time step t i.e. ∆i,t = 1, then the
probability of it not being lost again within the next H steps is > ε. This implies for that unit there is atleast an ε chance
of getting a trajectory of length H or higher after cookie loss.

Putting both these together as N ∞−→ we will have atleast Nε sessions of length > H . Let us assume that this number is
M . Note that with high probability (w.h.p) M > Nε, as anytime a user loses a cookie, there is a chance to get another
history; and if a user doesn’t lose a cookie we have an even longer session.

Next, at step 3 of the Algorithm 1, we estimate the conditional direct effects τt(X). By standard results (Horvitz and
Thompson, 1952; Pearl, 2000), IPW estimation provides an unbiased consistent estimator τ̂Dt (X) for the direct effect.
Note that this is on the subset of data with history (so sample size is M ), and the corresponding error in estimate is

O
( 1√

M

)
.

By similar arguments, step 4 produces unbiased consistent estimator τ̂Ct (X) for τt(⃗1, 0⃗, X) with a sample size of M .

By Theorem 1, we know that τt (⃗1,⃗0,X)
τt(X) is a function of X (and perhaps t). Now in step 5, we compute Λ̂t(X) =

τ̂Ct (X)/τ̂Dt (X). Since as limM→∞ τ̂Ct (X) −→ τt(⃗1, 0⃗, X) and limM→∞ τ̂Dt (X) −→ τt(X), by the Mann-Wald Con-
tinuous Mapping theorem, we have

lim
M→∞

Λ̂t(X) −→ Λt(X)
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.

From Equations 7,8, the function CX(.) depend only on the individual risks coefficients ci and the distribution of treatments
Z, and by Assumption 5 these are independent. More over since Yi,t⊥⊥Yi,t−1|Xi (Neyman, 1923) and the treatment
allocation Zit are also conditionally independent by Assumption 4, so are Λ̂t (as they are functions of independent random
variables, in this case of observed outcomes).

In Step 6, we learn a model by fitting Λ̂t to a function. Assuming the function class for the estimator is powerful enough,
the independence between Λ̂t implies that we get a consistent estimator for Λ – or, in the case of constant and linear models,
an unbiased estimate of Λ.

In Step 8, we use consistent estimate of Λ with τ̂gt (X) (which by earlier arguments is also a consistent estimator of τt(X),
which once again via continuous mapping demonstrates the consistency of the final estimator of the conditional effect
τt(⃗1, 0⃗, X). By the definition of ATE, it is a weighted combination of the conditional ATEs (CATEs). Since we have
consistent CATEs, continuous mapping also gives consistency of the final ATE estimate.

Remark 1. Since in Step 8, the multiplication is with τ̂ which is from an independent subgroup (and is unbiased), the
final estimates will unbiased estimates if Λf

t were unbiased as well. While for specific forms like constant/linear models,
unbiased estimation can be proven, we need the target values Λ̂t to be unbiased. However our method only gives consistent
(but not unbiased) Λ̂t. Since the numerator of Λ̂t is unbiased, if we can get high accuracy direct effects one can potentially
get unbiasedness as well. We leave such estimation for future research.

Variance Analysis The ratio Λ is obtained via a ratio of two distributions and is hence difficult to analyze in the general
case. However if the number of users is large enough, both the estimates in the numerator and the denominator are
asymtotically normal. If the denominator is very likely to be positive (i.e. its mean is much higher than the variance), then
Katz et al. (1978) has shown that the above random variable is approximately log-Normal with log variance[

Var[Yt(1)− Yt(0)]

E[Yt(1)− Yt(0)]2
+

Var[Yt(1⃗)− Yt(0⃗)]

E[Yt(1⃗)− Yt(0⃗)]2

]

where Var refers to the variance of the random variable. Furthermore if the individual variances are small then the Delta
method approximation to the variance is:

Var[Λ̂] = Λ2

[
Var[Yt(1)− Yt(0)]

E[Yt(1)− Yt(0)]2
+

Var[Yt(1⃗)− Yt(0⃗)]

E[Yt(1⃗)− Yt(0⃗)]2

]

B.3 Proof for bias under partial linkage

Proposition 1. Fragmentation bias is non monotonic with respect to fraction of users with fragmented identities

Let us consider a simple linear model between exposure and outcome.

y ∼ α+ z′β (10)

Here, y is the outcome of interest (such as the dollar value of purchases); z represents a vector of variables including the
treatment i.e. advertising exposure and other relevant covariates, and ε is the error component. For simplicity we assume
a two device fragmentation scenario. The user accesses the website through 2 unlinked devices, and has corresponding
exposure and purchase recorded for each of the device associated identities. Let yj , zj denote the corresponding variables
on device j ∈ {1, 2}. By construction, y = y1 + y2 and z = z1 + z2, representing the aggregate spend and treatment
exposure.

The un-fragmented data consists of N identically and independently distributed observations corresponding to N unique
consumers. Let Y = [y(1), ..., y(N)]

′, Zj = [z′(1)j , ..., z
′
(N)j ], and define Z = [η Z1 + Z2] where η is a length-N vector

of ones. If consumer-level identities were observed, β can be obtained by regressing Y on Z. When the data is fragmented,
however, the advertiser instead observes

Ỹ ≡
[

Y1

Y2

]
, Z̃ ≡

[
η Z1

η Z2

]
.
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We use the variable s(i) to capture the purchase preference of the users. In particular, s(i) = 1 implies purchase corre-
sponding to user i was on device 1; else it was made on device 2. We can stack these s(i) variables into a diagonal matrix

where the ith diagonal is s(i). Then we put this matrix and its complement into a larger matrix of the form S =

[
s

I − s

]
.

S can then express the relationship between the fragmented and un-fragmented purchases as

Ỹ = SY. (11)

Similarly we have a relation between the unfragmented covariates (Z) and its fragmented version
(
Z̃
)

Z = WZ̃Ω. (12)

where W denote the block identity matrix [IN×N IN×N ], and Ω is a K + 1 diagonal matrix diag(1/2, 1K).

The OLS regression estimator using fragmented data is given by:

θ̂ = (Z̃ ′Z̃)−1(Z̃ ′Ỹ ) (13)

= (Z̃ ′Z̃)−1(Z̃ ′SY ) (14)

= (Z̃ ′Z̃)−1[Z̃ ′S(WZ̃ ′Ωθ + ε)] (15)

where θ denotes the combined vector [αβ].

Now let us suppose the pooled data contain a proportion r of fragmented users. In their seminal works Durbin (1953);
Theil and Goldberger (1992) show how, for linear models, the parameter obtained from mixed statistical estimation is the
weighted average of pure estimators. Specifically in our case it can be shows that

θ̂m = ωθ̂f + (I − ω)θ̂l, where ω = (rZ̃ ′Z̃ + (1− r)Z ′Z)−1rZ̃ ′Z̃,

where θ̂f is the estimator using only the fragmented data, while θ̂l is the estimator obtained from the unfragmented data
alone. It follows that E[θ̂m|Z] − θ = ω(E[θ̂f |Z] − θ). Since ω is a matrix and its dependence on r is mediated by two
factors, ω does not have a monotonic dependence on r. Secondly, the observed per parameter bias is a combination of
different components the vector E[θ̂f |Z]− θ (mediated by ω). Depending on individual terms in ω, the observed bias can
show both inverse sign or amplified magnitude. This means that unlike the attenuation bias of (Coey and Bailey, 2016),
where the parameters get shrunk closer to 0, there is no easily quantifiable bias direction or magnitude in the case of partial
linkage.

B.4 Proof for Attenuation Bias

We start with the linear model used in Lin and Misra (2021).

Y ∼ α+ zη

with a cap on maximum exposure B. Then the expected highest outcome is [ηB + α] while the lowest outcome is [α].
Identifying these as Y (⃗1) and Y (⃗0) we can see that the outcome Y (z) at any other exposure z is given by:

Y (z) = z
Y (⃗1)− Y (⃗0)

B︸ ︷︷ ︸
η

+Y (⃗0)︸ ︷︷ ︸
α

It is clear that this expression satisfies our outcome model assumption. Even more specifically for a sequence z⃗, the risk
factor ci(z⃗) is given by

∑
zt/H where we have divided by H for sake of normalization.

Next Lin and Misra (2021) prove that estimating treatment from the split data, (which would in our terminology be direct
treatment effect), provides an attenuated value of the cumulative effect. From our Theorem 1 we know that the direct and
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(a) Glucose (b) White Blood Cell (c) Haemoglobin

Figure 6: Bias (with standard error across trials) of different estimators against the horizon of temporal interference on
sepsis patients from MIMIC data for different outcome measures.

cumulative effects are related by a constant. Thus the basic result of Lin and Misra (2021) is a direct corollary of Theorem
1.

The only thing left now is to show that the constant is 1/K, showing attenuation by the number of identities K . This re-
quires translating their assumption about number of identities to temporal fragmentation. Since we have a H horizon period
of interference, we assume that this is split sequentially and equally among the K identities. Plugging the corresponding
histories into z, z′ in the definition of C (Equation 5) we see that

ci(z, Z)− ci(z
′, Z)) =

∑ zt +
∑

Z

H
− z′t +

∑
Z

H
= K/H

Similarly ci(1, Z)− ci(0, Z)) = 1/H .

Pluggin this result into Equation 9 gives Λ = K/H
1/H = K, proving that the cumulative effect is K (number of identities)

times the direct effect.

C Further Experiments

We repeat the experiments we performed earlier but focus on the MTE. We first demonstrate temporal interference/history
dependence on the outcomes. Next we assess the error of the estimator as the percentage of users with available history
varies. In Figure6 we observe a statistically significant bias of using MTE for two of the outcomes (WBC counts and
Haemoglobin). We also see greater variance and difference between the two different DIET estimators. We also see some
minor improvement in MSE by using DIET and greater variability. This can be partially attributed to the smaller amount
of data availability.

D Supplementary Figures
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(a) Value of λ(⃗1) for different time steps. Note that this is the population level average of ratio of the marginal
and global treatment effect i.e. E[Yt(⃗1)− Yt(⃗0)]/E[Yt(1)− Yt(0)].

(b) Value of Λ(H) for different treatment histories.
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