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Abstract

We study the supervised learning paradigm called
Learning Using Privileged Information, first sug-
gested by Vapnik and Vashist (2009). In this
paradigm, in addition to the examples and labels,
additional (privileged) information is provided
only for training examples. The goal is to use this
information to improve the classification accuracy
of the resulting classifier, where this classifier can
only use the non-privileged information of new
example instances to predict their label. We study
the theory of privileged learning with the zero-one
loss under the natural Privileged ERM algorithm
proposed in Pechyony and Vapnik (2010a). We
provide a counter example to a claim made in that
work regarding the VC dimension of the loss class
induced by this problem; We conclude that the
claim is incorrect. We then provide a correct VC
dimension analysis which gives both lower and
upper bounds on the capacity of the Privileged
ERM loss class. We further show, via a gener-
alization analysis, that worst-case guarantees for
Privileged ERM cannot improve over standard
non-privileged ERM, unless the capacity of the
privileged information is similar or smaller to that
of the non-privileged information. This result
points to an important limitation of the Privileged
ERM approach. In our closing discussion, we
suggest another way in which Privileged ERM
might still be helpful, even when the capacity of
the privileged information is large.

1 INTRODUCTION

The classical paradigm of supervised machine learning con-
siders the following setting: given a set of labeled training
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examples, try to find in a given set of functions, the one
with the smallest generalization error on the unknown test
examples. In this work, we study an augmentation of this
setting, first proposed by Vapnik and Vashist (2009), called
Learning Using Privileged Information, or simply, privi-
leged learning. In this paradigm, during the training stage,
additional information about the training examples is pro-
vided to the learner. This information, called privileged
information, is available only for training examples during
the training stage. The goal is to use this information to
improve the classification accuracy of the resulting classifier.
The classifier itself can use only non-privileged information
of new examples to predict their label. Thus, the privileged
information is only helpful inasmuch as it helps to obtain a
better classifier.

A classical motivating example to this paradigm (see Vapnik
and Vashist, 2009) considers a case where the goal is to
find a rule that predicts the outcome of a surgery after three
months, based on information about the patient which is
available before the surgery. However, for previous patients,
there is additional information collected during and after
the surgery. Although this information is not available dur-
ing classification of new patients, it does exist in historical
data and thus can be used as privileged information during
training.

In this work, we study the natural ERM algorithm proposed
in Pechyony and Vapnik (2010a), called Privileged ERM.
This algorithm minimizes a joint loss of the non-privileged
and the privileged information. We provide new results
which point to the limitations of this approach when the
privileged information is high-dimensional, or more gener-
ally, when the associated privileged loss class has a high
capacity. High-dimensional privileged information is natu-
ral in many settings where offline measurements collected
for training have a higher bandwidth or sensitivity than mea-
surements during test time. For instance, consider a learning
problem in which the goal is to classify images, in which the
non-privileged information provides a low-resolution image,
and the privileged information provides a high-resolution
image. This would be the case if during training the training
samples can be scanned using advanced equipment, while
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the classifier is deployed in a low-resource environment in
the field, in which only low-quality images can be obtained.
A similar application was studied in Lee et al. (2020). We
show here that the Privileged ERM approach with the zero-
one loss cannot guarantee successes in this regime without
additional assumptions.

We provide a VC dimension analysis for the loss class in-
duced by the Privileged ERM algorithm. Our analysis in-
cludes a counter example to a claim previously made in
Pechyony and Vapnik (2010a); The mistake can be traced to
an error in the proof of that claim. We provide a correct anal-
ysis with both lower and upper bounds on the VC dimension.
Thereafter, we study the regimes in which it is possible to
provide a guarantee that Privileged ERM will result in an
improved error bound over standard ERM, in which the
privileged information is not used at all. We conclude that
such worst-case guarantees must rely on a low-capacity priv-
ileged information class. Lastly, we suggest a possible way
in which Privileged ERM can still be helpful, even when the
capacity of the privileged information is large.

2 RELATED WORK

The paradigm of privileged learning was first proposed by
Vapnik and Vashist (2009). This work introduced the SVM+
algorithm, which demonstrated how privileged information
can be used in SVM-type algorithms, by changing their
goal such that it will incorporate the privileged information.
In addition to introducing the SVM+ algorithm, Vapnik
and Vashist (2009) derived results showing an improvement
in the rate of convergence that can be achieved when uti-
lizing privileged information in those types of algorithms,
when the privileged-information class is low-dimensional.
Pechyony and Vapnik (2010a) proposed an empirical risk
minimization algorithm called Privileged ERM and general-
ized of the privileged learning optimization problem to other
losses. They provide several theoretical claims regarding
the convergence rate of this algorithm.

Since its inception, privileged learning has been applied
in various domains. In Lapin et al. (2014) the connection
between SVM+ and weighted SVM is studied. It is shown
that privileged information can be encoded by weights asso-
ciated with every training example. In addition, it is shown
that weighted SVM can always replicate an SVM+ solu-
tion, while the converse is not true. In Vapnik and Izmailov
(2015), two mechanisms related to knowledge transfer be-
tween the instance space and the privileged information
space are described. These mechanisms can be used for
accelerating the speed of learning. In Qi et al. (2015), a
semi-supervised learning approach using privileged infor-
mation is proposed. This approach can exploit both the
distribution information in unlabeled data and privileged
information, to improve the efficiency of the learning. In
Yang et al. (2016), a metric-learning algorithm is proposed,

which exploits privileged information to relax a previous
method for metric-learning, under the ERM framework. In
Vrigkas et al. (2016), a probabilistic approach is described,
that combines learning using privileged information and
active learning. In Pasunuri et al. (2016), an algorithm for
learning decision trees using privileged information is pro-
posed. In Vapnik and Izmailov (2017), a mechanism of
knowledge transfer from the privileged information space
to the features space is proposed. It is shown that this mech-
anism is applicable to a neural network framework as well
as to SVM. Recent works study privileged learning in vi-
sion domains (e.g., Yuan et al., 2019; Gao et al., 2019; Li
et al., 2019). Lee et al. (2020) considers an application in
which the privileged information is high-dimensional. How-
ever, the theory of privileged learning has not addressed
the capacity limits of privileged information under its basic
methodologies.

3 PRELIMINARIES AND SETTING

We start by describing the privileged learning setting for
general losses, as defined in Pechyony and Vapnik (2010a).
Let X be the domain of elements that we wish to label.
Let X ∗ be the domain of the privileged information that is
available for training examples. Let Y be the set of possible
labels. The input to the learner consists of a sequence of
i.i.d. triplets:

S = (x1, x
∗
1, y1), ..., (xm, x

∗
m, ym),

xi ∈ X , x∗i ∈ X ∗, yi ∈ Y, (1)

generated according to a fixed but unknown probability
distribution D over X × X ∗ × Y . Let `X : Y × Y →
R+ be a bounded loss function over the non-privileged
example domain. The goal of privileged learning is to find a
hypothesis that obtains a low loss onD, by using the sample
S that includes the privileged information.

Assume a bounded loss for privileged information, `X∗ :
Y × Y → R+. Let C > 0 be a constant, and denote [t]+ =
max(t, 0). Given a classifier h : X → Y that uses only
non-privileged information, and a privileged-information
function φ : X ∗ → Y , Pechyony and Vapnik (2010a) define
the loss of the composite hypothesis (h, φ) on the example
(x, x∗, y) by:

`′C(h, φ, (x, x∗, y)) =

1

C
`X∗(φ(x∗), y) + [`X (h(x), y)− `X∗(φ(x∗), y)]+.

The function φ is thought of as a “correcting function” for
the loss induced by h on the example. Given a function
class over the non-privileged information H ⊆ YX , and a
function class over the privileged information Φ ⊆ YX∗ ,
Pechyony and Vapnik (2010a) defined the Privileged ERM
minimization problem as the following optimization prob-
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lem:

min
h∈H,φ∈Φ

m∑
i=1

`′C((h, φ), (xi, x
∗
i , yi)). (2)

In this work, we focus on the setting above in the important
special case of binary labels (Y = {0, 1}) and binary loss
functions, with C = 1. In this case, we have

`′C(h, φ, (x, x∗, y)) = max{`X (h(x), y), `X∗(φ(x∗), y)}.

This leads to the following optimization problem:

min
h∈H,φ∈Φ

m∑
i=1

max{`X (h(xi), yi), `X∗(φ(x∗i ), yi)}. (3)

It is instructive to think of φ as indicating which training
examples should be taken into account when minimizing
the loss over h, where φ(x∗i ) = 1 indicates that example
xi should be ignored in the minimization. For instance,
this could be relevant if the privileged information allows
identifying the reliability of the labeling, as in a case of
crowd-sourced labels. We thus assume that `X is the stan-
dard loss on the non-privileged information, defined by

`01
X (ŷ, y) := 1[ŷ 6= y]

and that `X∗ is an “ignoring” loss on the privileged informa-
tion, defined by:

`igX∗(z, y) := 1[z = 1].

Denote the error of h with respect to the distribution D by
err(h,D) := P(X,Y )∼D[h(X) 6= Y ] = E[`X (h(X), Y )].
Let err(h, S) be the empirical error of h over the uniform
distribution on S. The goal of privileged learning is thus
to find a hypothesis from H that obtains a low error on D,
using the sample S. In the paradigm of Privileged ERM that
we study here, this is attempted by solving the optimization
problem in Eq. (3).

4 VC-DIMENSION ANALYSIS

In this section, we study the VC-dimension of the rele-
vant function class for the minimization problem defined in
Eq. (3). Denote the VC dimension of a class of functions by
VC(·). Denote d := VC(H) and d∗ := VC(Φ). Define

f(h,φ)((x, x
∗), y) := max(`01

X (h(x), y), `igX∗(φ(x∗), y)),

and let

F(H,Φ) = {f(h,φ) | h ∈ H, φ ∈ Φ}.

We write F for F(H,Φ) when the subscripts are clear from
context. Eq. (3) is equivalent to running an ERM on S with
the hypothesis class F . Thus, the generalization behavior
of Privileged ERM is characterized by the VC dimension of
F .

What is the relationship between VC(F) and the values of
VC(H),VC(Φ)? This question was seemingly answered in
Pechyony and Vapnik (2010a); They defined the following
loss classes:

L(H) := {`X (h(·), ·) | h ∈ H},
L(Φ) := {`X∗(φ(·), ·) | φ ∈ Φ},

L(H,Φ) = {`′C((h, φ), (·, ·, ·)) | h ∈ H, φ ∈ Φ}.

and claimed that the following equality holds:1

Claim of Pechyony and Vapnik (2010a):
VC(L(H,Φ)) = VC(L(H)) + VC(L(Φ)). (4)

The equality was then used to prove generalization upper
bounds for the Privileged ERM optimization problem.

For `X := `01
X and `X∗ := `igX∗ , we have VC(H) =

VC(L(H)), VC(Φ) = VC(L(Φ)) and VC(L(H,Φ)) =
VC(F(H,Φ)). Therefore, if Eq. (4) were true, it would imply
that VC(F) = VC(H) + VC(Φ). However, we now show
that this equality in fact does not hold.2 Theorem 4.1 below
provides a counter example to the claimed Eq. (4).

Theorem 4.1. For any integer d > 0, and any two do-
mains X ,X ∗ such that |X |, |X ∗| ≥ 3d, there exist hypoth-
esis classes Hd ⊆ {0, 1}X and Φd ⊆ {0, 1}X

∗
such that

VC(Hd) = VC(Φd) = d while VC(F(Hd,Φd)) = 3d.

Proof. First, consider the case of d = 1. Let X3 =
{x1, x2, x3} ⊆ X be a set of size three of domain ex-
amples from X . We describe a hypothesis h from X3 to
{0, 1} via the triplet (h(x1), h(x2), h(x3)). Similarly, let
X∗3 = {x∗1, x∗2, x∗3} ⊆ X ∗, and describe a hypothesis φ
fromX∗3 to {0, 1} via the triplet (φ(x∗1), φ(x∗2), φ(x∗3)). De-
fine the following hypothesis classes over X3 and X∗3 :

H1 := {(0, 0, 0), (0, 0, 1), (1, 0, 0), (1, 1, 0)},
Φ1 := {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 1)}.

It is easy to see that VC(H1) = VC(Φ1) = 1. On the
other hand, when restricting F(H1,Φ1) to the set X̃3 :=
{((xi, x∗i ), 0)}i∈[3], we get that VC(F(H1,Φ1)) ≤ 3, since
the domain is of size 3. Moreover, the VC dimension is
exactly 3, since F(H1,Φ1) induces all possible labelings on
X̃3: Any labeling h ∈ H1 can be obtained by fh,φ0

, where
φ0 is the all-zero function in Φ1. Similarly, all labelings in
Φ1 can be obtained using the all-zero h0 ∈ H1. The two
additional missing labelings are (0, 1, 1) and (1, 1, 1). The
first can be obtained using h = (0, 0, 1) and φ = (0, 1, 0),

1The original claim includes real-valued losses, which requires
generalizing the definition of VC-dimension; Here we state it for
the special case of losses that map into {0, 1}

2We traced the issue to an application of quantifiers in the
wrong order in the proof of Eq. (4) in Pechyony and Vapnik
(2010a), which is available in the full version (Pechyony and
Vapnik, 2010b).
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and the second can be obtained using h = (1, 1, 0) and
φ = (0, 0, 1). Thus, VC(F(H1,Φ1)) = 3, as claimed.

Next, consider d > 1. Let X3d = {x1, ..., x3d} ⊆ X be a
set of 3d different domain points from X . Partition these
points into d triplets, denoted t1 := (x1, x2, x3), ..., td :=
(x3d−2, x3d−1, x3d). We describe a hypothesis h over X3d

as a sequence of d functions fromH1 that are applied to the
examples in the triplets t1, . . . , td. A description of φ over
X∗3d is analogous. Define the following hypothesis classes
of functions from X3d to {0, 1} and from X∗3d to {0, 1}:

Hd := {(h1, ..., hd) | h1, ..., hd ∈ H1},
Φd := {(φ1, ..., φd) | φ1, ..., φd ∈ Φ1}.

We first prove that VC(Hd) = d. Suppose for contradiction
that VC(Hd) > d. Then there exists a shattered set with
d+ 1 points. Since the predictors are defined on d triplets,
by the pigeonhole principle, there must be two points of the
shattered set that are from the same triplet. From this we can
conclude thatH1 shatters a set of size two, in contradiction
to VC(H1) = 1. Therefore, VC(Hd) ≤ d. Next, we prove
that VC(H) ≥ d, by showing that there exists a shattered
set of size d. Since VC(H1) = 1, in each of the d domain
triplets there is a point that H1 shatters. The set of all of
these points is a set of size d which is shattered by Hd, as
needed. We conclude that VC(Hd) = d. By analogous
arguments, VC(Φd) = d.

Lastly, we show that VC(F(Hd,Φd)) = 3d. Define the set

Fd := {(f1, ..., fd) | f1, ..., fd ∈ F(H1,Φ1)}.

We first claim that Fd ⊆ F(Hd,Φd): Let
(f(h1,φ1), ..., f(hd,φd)) ∈ Fd. From the definition of
F(H1,Φ1), ∀i ∈ [d] we have

f(hi,φi)((x, x
∗), y) = max(`01

X (hi(x), y), `igX∗(φi(x
∗), y)).

Therefore,

(f(h1,φ1), ..., f(hd,φd)) = f((h1,...,hd),(φ1,...,φd)) ∈ F(Hd,Φd).

From this we conclude that VC(F(Hd,Φd)) ≥ VC(Fd).
Now, consider the set X̃3d = {((xi, x∗i ), 0)}i∈[3d]. Re-
stricting Fd to the set X̃3d results in the set of all possible
functions over each triplet in X̃3d, as in the case of d = 1.
Thus, Fd is shattered by X̃3d. Therefore, VC(Fd) ≥ 3d as
needed.

We provide a correct upper bound for VC(F(H,Φ)) in the
following theorem.

Theorem 4.2. Let d, d∗ be integers and let X be some
domain. Let H ⊆ {0, 1}X ,Φ ⊆ {0, 1}X∗ be hypothesis
classes such that VC(H) = d and VC(Φ) = d∗. Then

VC(F(H,Φ)) ≤ 4 log2(4e)(d+d∗+1) ≈ 13.77(d+d∗+1).

To prove the theorem, we first provide a tight upper bound
on the VC dimension of the union of two hypothesis classes
over the same domain.

Lemma 4.3. Let Y = {0, 1}. Let J , H ⊆ YX be two
hypothesis class over the same domain. Then

VC(H ∪ J ) ≤ VC(H) + VC(J ) + 1.

This bound is tight: For any d, d∗ ∈ N, there exist J andH
such that VC(H) = d, VC(J ) = d∗ and VC(H ∪ J ) =
d+ d∗ + 1.

Proof. For a hypothesis class F , denote the growth function
of F by

ΠF (m) := max{ |F|S | | S ⊆ X × Y, |S| = m }.

Clearly, for any S, |H ∪ J |S ≤ |H|S + |J |S . Therefore
ΠH∪J (m) ≤ ΠH(m)+ΠJ (m).By Sauer’s Lemma (Sauer,
1972) and using the identity

(
m
k

)
=
(
m

m−k
)
, denoting d :=

VC(H) and d∗ := VC(J ), we get

ΠH∪J (m) ≤
d∑
i=0

(
m

i

)
+

d∗∑
i=0

(
m

i

)

=

d∑
i=0

(
m

i

)
+

m∑
i=m−d∗

(
m

i

)
. (5)

If m > d+ d∗ + 1 then m− d∗ ≥ d+ 2, so:

d∑
i=0

(
m

i

)
+

m∑
i=m−d∗

(
m

i

)
≤

m∑
i=0

(
m

i

)
= 2m. (6)

Combining Eq. (5) and Eq. (6), we conclude that for m >
d+ d∗ + 1, ΠH∪J (m) < 2m. Therefore,

VC(H ∪ J ) ≤ d+ d∗ + 1.

This proves the upper bound.

To show that this bound is tight, let d, d∗ ∈ N and consider
a domain X of size d+ d∗ + 1. LetH be the set of all the
functions that map at most d examples fromX to 1 and letJ
be the set of all the functions that map at most d∗ examples
from X to 0. Then, VC(H) = d and VC(J ) = d∗. To
show that VC(H ∪ J ) ≥ d + d∗ + 1, consider two cases
for a labeling of X :

• If the labeling includes at most d positive labels, then
there is a function inH that provides this labeling.

• If the labeling includes more than d positive labels,
then since the domain is of size d+d∗+1, the labeling
contains at most d∗ negative labels. Therefore, there is
a function in J that provides this labeling.

Thus,H∪J = YX , hence VC(H∪J ) = |X | = d+d∗+1,
as claimed.
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In our proof of Theorem 4.2 we further use a theorem from
Blumer et al. (1989).3

Theorem 4.4 (Blumer et al. 1989). Let (X ,R) be a set
system, where X is a set of elements and R is a set of
subsets of X . For an integer k ≥ 2 and a set of sets R,
defineRk∪ := {R1∪ ...∪Rk | R1, ..., Rk ∈ R}, the k-fold
union ofR. Then

VC(Rk∪) ≤ VC(R) · 2k log2(2ek).

We now prove Theorem 4.2.

Proof of Theorem 4.2. Let H,Φ be hypothesis classes as
stated in the theorem. Define H′,Φ′ ⊆ {0, 1}X×X∗×{0,1}
as follows:

H′ := {(x, x∗, y) 7→ `01
X (h(x), y) | h ∈ H}

and

Φ′ := {(x, x∗, y) 7→ `igX∗(φ(x∗), y) | φ ∈ Φ}.

In addition, let

F ′H,Φ := {(x, x∗, y) 7→ f(h,φ)((x, x
∗), y) | h ∈ H, φ ∈ Φ}.

It is easy to see that VC(H′) = VC(H), VC(Φ′) = VC(Φ),
and VC(F ′H,Φ) = VC(FH,Φ). In addition, for any h ∈
H, φ ∈ Φ, we have

{(x, x∗, y) | f(h,φ)((x, x
∗), y) = 1} =

{(x, x∗, y) | `01
X (h(x), y) = 1}

∪ {(x, x∗, y) | `igX∗(φ(x∗), y) = 1}.

Therefore, treating functions in {0, 1}X×X∗×{0,1} as sets,
we have f(h,φ) = h′ ∪ φ′, where h′ ∈ H′ and φ′ ∈ Φ′.
Letting R := H′ ∪ Φ′, it follows that F(H,Φ) ⊆ R2∪.
Therefore, VC(F) ≤ VC(R2∪). By Theorem 4.4 with
k = 2, it follows that VC(F) ≤ VC(R) · 4 log2(4e). In
addition, by Lemma 4.3, VC(R) = VC(H ∪ Φ) ≤ d +
d∗ + 1. Therefore, VC(F) ≤ 4 log2(4e)(d + d∗ + 1), as
claimed.

5 CAPACITY LIMITS OF PRIVILEGED
ERM

We now turn to study the convergence rate of the solution to
the optimization problem in Eq. (3), and derive conditions
on the VC dimension values that allow this bound to be
better than the known bound for regular ERM. We show that
for guaranteed generalization improvement, the VC dimen-
sion of the privileged information cannot be much larger

3In Blumer et al. (1989), the dependence on k was not specified
in the theorem statement; we extracted the exact constants from
the proof.

than the VC dimension of the non-privileged information,
thus limiting the usefulness of this approach in the case of
zero-one losses.

A guaranteed generalization improvement occurs if the error
guarantee of the optimization problem in Eq. (3) is smaller
than that of standard ERM generalization bounds. As shown
in previous works (e.g., Vapnik and Vashist, 2009), this re-
quires bounds that take into account the error with respect
to the hypothesis class: The advantage of privileged infor-
mation, when it exists, comes from the possibility of faster
convergence due to a smaller error rate. Boucheron et al.
(2005) provide tight error bounds that take into account the
error. Fixing m ∈ N, denote for d ∈ N, x ∈ [0, 1],

Rf(d) :=
8d log(m+ 1) + 4 log( 4

δ )

m

Rs(x, d) :=
√
x ·Rf(d),

where Rf stands for a fast rate an Rs stands for a slow
rate. By Boucheron et al. (2005, Corollary 5.2), denoting
by ĥERM the output of a standard ERM algorithm for the
hypothesis class H on the sample S, and its training error
by ε̂ERM := err(ĥERM, S), we have that with a probability
at least 1− δ,

err(ĥERM,D) ≤ ε̂ERM +Rs(ε̂ERM, d) +Rf(d) := BERM.

Based on this result, we derive an analogous upper bound
for the case of Privileged ERM. To provide the bound, we
first define some notations. Define an auxiliary loss function

`a(h,φ)(x, x
∗, y) := 1[h(x) 6= y ∧ φ(x∗) = 0]

and the loss class La(H,Φ) := {`a(h,φ) | h ∈ H, φ ∈ Φ}.
Denote da := VC(La(H,Φ)). By Theorem 4.2, da ≤
13.77(d+ d∗ + 1). The following lemma provides a lower
bound for da, leading to the conclusion that da = Θ(d+d∗).

Lemma 5.1. ForH, Φ such that d, d∗ > 1,

da ≥ d+ d∗ − 2.

Proof. Let CH = {x1, ..., xd} ⊆ X be a set of size d that
is shattered byH and CΦ = {x∗1, ..., x∗d∗} ⊆ X ∗ be a set of
size d∗ that is shattered by Φ. Define

C1 := {(xi, x∗d∗ , 0) | 1 ≤ i ≤ d− 1},
C2 := {(xd, x∗j , 0) | 1 ≤ j ≤ d∗ − 1},
CLa

(H,Φ)
:= C1 ∪ C2.

Note that |CLa
(H,Φ)
| = |C1|+ |C2| = d+ d∗ − 2. We now

show that CLa
(H,Φ)

is shattered by La.

Let L = (l1, ..., ld+d∗−2) ∈ {0, 1}d+d∗−2 be a potential
labeling of La. For every p = (x, x∗d∗ , 0) ∈ C1, let l(p)
be the label of p according to L. Let h ∈ H be such that
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for every p = (x, x∗d∗ , 0) ∈ C1, h(x) = l(p), and also
h(xd) = 1. Such an h ∈ H exists since CH is shattered
byH. Similarly, for every p∗ = (xd, x

∗, 0) ∈ C2, let l(p∗)
be the label of p∗ according to L. Let φ ∈ Φ be such that
for every p∗ = (xd, x

∗, 0) ∈ C2, φ(x∗) = 1 − l(p∗), and
also φ(x∗d∗) = 0. Such a φ ∈ Φ exists since CΦ is shattered
by Φ. We now claim that `a(h,φ) obtains the labeling L for
CLa

(H,Φ)
: For every p = (x, x∗d∗ , 0) ∈ C1,

`a(h,φ)(x, x
∗
d∗ , 0) = 1[h(x) 6= 0 ∧ φ(x∗d∗) = 0]

= 1[h(x) 6= 0] = l(p).

In addition, for every p∗ = (xd, x
∗, 0) ∈ C2,

`a(h,φ)(xd, x
∗, 0) = 1[h(xd) 6= 0 ∧ φ(x∗) = 0]

= 1[φ(x∗) = 0] = l(p∗).

We conclude that CLa
(H,Φ)

is shattered by La. Since
|CLa

(H,Φ)
| = d + d∗ − 2, VC(La(H,Φ)) ≥ d + d∗ − 2 as

claimed.

Denote by (ĥ, φ̂) some assignment that obtains the mini-
mum of the optimization problem in Eq. (3). Denote the
empirical ignored weight by

ε̂ig :=
1

m

∑
(x,x∗,y)∈S

1[φ̂(x∗) = 1].

This is the fraction of training examples that are ignored
due to the privileged information when minimizing the error
overH. Denote the empirical unexplained error by

ε̂u :=
1

m

∑
(x,x∗,y)∈S

1[`a
(ĥ,φ̂)

(x, x∗, y) = 1].

This is the fraction of training examples that were not ig-
nored by φ, but were still classified incorrectly by ĥ. The
following theorem gives a generalization error bound for
Privileged ERM.
Theorem 5.2. With a probability 1− 2δ over the random
choice of S ∼ Dm,

err(ĥ,D) ≤ ε̂ig + ε̂u +Rs(ε̂ig, d
∗) +Rs(ε̂u, da)

+Rf(d
∗) +Rf(da) := BPR.

Proof. Let D′ be a distribution over (X × X ∗ × Y)× {0}
such that the marginal over (X ×X ∗×Y) is D. Recall that
(ĥ, φ̂) are minimizers of Eq. (3). Decompose the error of ĥ
as follows:

err(ĥ,D) =

= P[ĥ(X) 6= Y ∧ φ̂(X∗) = 1]

+ P[ĥ(X) 6= Y ∧ φ̂(X∗) = 0]

≤ P[φ̂(X∗) = 1] + P[ĥ(X) 6= Y ∧ φ̂(X∗) = 0]

= err(φ̂,D′) + err(`a
(ĥ,φ̂)

,D′), (7)

Where we treat φ̂ as equivalent to (x, x∗, y) 7→ φ̂(x∗).

We will bound each of the terms on the RHS separately.

Given S = ( (xi, x
∗
i , yi) )i∈[m] ∼ Dm, let S0 :=

( ((xi, x
∗
i , yi), 0) )i∈[m], so that S0 is distributed as an

i.i.d. sample from D′. Then err(`a
(ĥ,φ̂)

, S0) = ε̂u and

err(φ̂, S0) = ε̂ig .

By Boucheron et al. (2005), Given a sample S̃ =
((a1, b1), . . . , (am, bm)) generated according to a distribu-
tion D̃ overA×{0, 1} and a hypothesis class J ⊆ {0, 1}A
with VC dimension d′, with probability at least 1 − δ, for
all g ∈ J , if ε̂ = err(g, S̃), then

err(g, D̃) ≤ ε̂+Rs(ε̂) +Rf(d
′). (8)

Assigning D̃ := D′, J := LaH,Φ, S̃ := S0, it follows that

err(`a
(ĥ,φ̂)

,D′)≤ ε̂u +Rs(ε̂u, da) +Rf(da). (9)

In addition, assigning D̃ := D′, F := Φ, S̃ := S0, Eq. (8),
we get

err(φ̂,D′) ≤ ε̂ig +Rs(ε̂ig, d
∗) +Rf(d

∗). (10)

Combining Eq. (9) and Eq. (10) with Eq. (7) and using the
union bound, with probability at least 1− 2δ,

err(ĥ,D) ≤ ε̂ig +Rs(ε̂ig, d
∗) +Rf(d

∗)

+ ε̂u +Rs(ε̂u, da) +Rf(da),

as claimed.

The upper bound in Theorem 5.2 is derived using known
upper bounds for ERM under bounded agnostic error. While
these upper bounds are known to be tight for the zero-one
loss, there does not exist an equivalent result for the loss we
use for the predictions of Φ. The following theorem shows
that nonetheless, the classical agnostic uniform convergence
upper bound is tight also for this loss. The proof is provided
in Appendix A.1.

Theorem 5.3. Let Φ be a hypothesis class with VC(Φ) =
d∗. For all ε ∈ (0, 1) and δ < 1/128, if the sample
size is m < (d∗ − 1)/(1280 · ε2), then there exists a
distribution D such that with a probability larger than δ,
∃φ ∈ Φ such that P[φ(X) = 1]− P̂[φ(X) = 1] > ε, where
P̂ denotes the empirical probability based on a random
i.i.d. sample of size m.

We wish to derive conditions under which BPR < BERM.
However, each of these bounds uses different empirical
measures. Our next lemma links the two sets of measures,
by showing that regardless of the set of examples that are
ignored, the empirical error of an ERM algorithm is smaller
than the value of the minimization of Eq. (3).
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Lemma 5.4. For any S′ ⊆ S and for any h ∈ H,

m · ε̂ERM ≤
∑

(xi,yi)∈S\S′
1[h(xi) 6= yi] + |S′|.

It follows that ε̂ERM ≤ ε̂u + ε̂ig.

Proof. Let h ∈ H and S′ ⊆ S. By definition, we have
ε̂ERM ≤ err(h, S). In addition,

m · err(h, S) =
∑

(xi,yi)∈S

1[h(xi) 6= yi]

=
∑

(xi,yi)∈S\S′
1[h(xi) 6= yi] +

∑
(xi,yi)∈S′

1[h(xi) 6= yi]

≤
∑

(xi,yi)∈S\S′
1[h(xi) 6= yi] + |S′|.

This proves the claim.

This lemma is crucial for the comparison of BPR and BERM,
as it implies that the only way to get BPR < BERM is to
have smaller convergence terms in BPR compared to BERM.

Next, we derive a sufficient condition for having BPR ≤
BERM. This condition considers is a best-case scenario,
in the sense that it requires the privileged information to
cause the ERM to ignore exactly the examples that cannot
be classified correctly using H. Under this scenario, the
privileged learning bound is smaller than the ERM bound if
the unexplained error is sufficiently small. This theorem is
proved in Appendix A.2.
Theorem 5.5. Suppose that ε̂ERM = ε̂ig + ε̂u. Assume that
δ is fixed and d, d∗, da are large. Then, if√
ε̂u ≤√
ε̂ERM ·Θ(

√
d−
√
d∗√

da
)−

√
log(m)

m
·Θ(

da + d∗ − d√
da

),

then BPR ≤ BERM.

Note that by Lemma 5.1, the second term is necessarily
positive.

The sufficient condition above is stricter when the empirical
error is smaller. In particular, in the realizable case, where
ε̂ERM = 0, this sufficient condition never holds. In addition,
the sufficient condition can only hold if d∗ ≤ d (in addition
to a small sample size). Therefore, this does not allow a
privileged class Φ of a large capacity. Indeed, the following
result shows that in general, d∗ cannot be much larger than
d while still allowing BPR ≤ BERM.
Theorem 5.6. For any fixed δ ∈ (0, 1), if BPR ≤ BERM

then
d∗ ≤ 2.25 · d+ o(1).

The convergence of the last term is with respect to the growth
of d, d∗ together and/or of m.

This theorem is proved in Appendix A.3.

6 DISCUSSION

Our work shows that the Privileged ERM approach for privi-
leged learning suffers an inherent capacity limit on the privi-
leged information class in the case of the zero-one loss. This
analysis is relevant when ERM can be accurately executed
and pertains to the statistical benefits of privileged learning.
However, when surrogate losses are used, the situation may
be quite different. In these cases, privileged learning may
have a computational advantage, as it may be possible to use
privileged information to make the computational problem
of minimizing the true loss easier. For instance, if privileged
information allows identifying outliers, and thus helps to
ignore some training examples in a way that would make
the optimization objective of the surrogate loss closer to that
of the true target loss, the resulting training error could be
lower, leading to a lower true error. We plan to study this
promising direction in future work.

We further note that our analysis only provides a limita-
tion on the dimension of the privileged information under
worst-case analysis and within a specific privileged-ERM
framework. Studying other variants of this framework may
lead to less restrictive results.
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A DEFERRED PROOFS

Below, we provide deferred proofs for theorems stated above. Appendix A.1 provides the proof of the lower bound,
Theorem 5.3, Appendix A.2 provides the proof of the sufficient condition, Theorem 5.5 and Appendix A.3 provides the
proof of the necessary condition, Theorem 5.6.

A.1 Proof Of The Lower Bound For The Privileged Learning Loss

Proof of Theorem 5.3. This proof is an adaptation of the proof of the lower bound for the zero-one loss given in Anthony
and Bartlett (2009, Theorem 5.2) to our setting. The main challenge is constructing a set of distributions that can only be
distinguished using a worst-case number of samples. This is achieved using the following new construction.

Since Φ has VC-dimension d∗ , there is a set C = {x∗1, ..., x∗d∗} of d∗ examples that is shattered by Φ. For simplicity,
assume that d∗ is an even number. If d∗ is odd, then the proof below holds for d∗ − 1. We partition the set C into d∗/2 pairs
{(ai, bi)}i∈[d∗/2]. Consider the class of all distributions D over X × Y with the following properties:

• D assigns a zero probability to all sets not intersecting C × {0, 1}.

• For x ∈ X , denote D(x) = P(X,Y )∼D[X = x]. Set α := 8ε
(1−8δ) . For each i = 1, 2, ..., d∗/2 and a pair (ai, bi) in the

partition of C, either:

◦ D(ai) = 1+α
d∗ and D(bi) = 1−α

d∗ , or
◦ D(bi) = 1+α

d∗ and D(ai) = 1−α
d∗ .

Let Φ′ ⊆ Φ be the set including all hypotheses φ such that for each pair (ai, bi), φ maps one of the elements in the pair to 0
and the other to 1.

Given D, Let φ∗ ∈ Φ′ be the function such that for each pair (ai, bi), φ∗(ai) = 1 if and only if D(ai) = 1−α
d∗ . Then,

P[φ∗(X) = 1] =

d∗/2∑
i=1

1− α
d∗

=
1− α

2
.

Furthermore, for any φ ∈ Φ′, we have

P[φ(X) = 1] =

d∗/2∑
i=1

(
1 + α

d∗
1[φ(ai) 6= φ∗(ai)] +

1− α
d∗

1[φ(ai) = φ∗(ai)]) = P[φ∗ = 1] +
2α

d∗

d∗/2∑
i=1

1[φ(ai) 6= φ∗(ai)].

For any sample S ∈ Sm, let N(S) = (N1(S), ..., Nd∗/2(S)), where Ni(S) is the number of occurrences of either ai or bi
in S. Then, letting L be a learning algorithm for Φ′, we have that for φ̂ := L(S),

E[
2

d∗

d∗/2∑
i=1

1[φ̂(ai) 6= φ∗(ai)]] =
2

d∗
E[

d∗/2∑
i=1

1[φ̂(ai) 6= φ∗(ai)]]

=
2

d∗

∑
N

d∗/2∑
i=1

P[φ̂(ai) 6= φ∗(ai) | N(S) = N ] · P[N(S) = N ].

where N = (N1, ..., Nd∗/2) ranges over the set of d∗/2-tuples of positive integers with
d∗/2∑
i=1

Ni = m.

Similarly to the proof of Anthony and Bartlett (2009, Theorem 5.2), we can conclude that if m < d∗

320·ε2 , then with a
probability larger than 1/64 over samples S ∼ Dm, P[φ̂(X) = 1] − P[φ∗(X) = 1] > ε. In particular, this holds for
φ̂ = argminφ∈Φ′ P̂[φ(X) = 1].

Let m < d∗

1280·ε2 . By the conclusion above, we have that with a probability larger than δ over samples S ∼ Dm,
P[φ̂(X) = 1]− P[φ∗(X) = 1] > 2ε.

We now claim that at least one of the following holds with a probability larger than δ:



On the Capacity Limits of Privileged ERM

• |P[φ̂(X) = 1]− P̂[φ̂(X) = 1]| > ε;

• |P[φ∗(X) = 1]− P̂[φ∗(X) = 1]| > ε.

Assume in contradiction that each of these inequalities holds with a probability at most δ. Then, with a probability at least
1− 2δ,

P[φ̂(X) = 1]− ε < P̂[φ̂(X) = 1

and
P̂[φ∗(X) = 1] < P[φ∗(X) = 1] + ε.

Also, from the definition of φ̂, we have P̂[φ̂(X) = 1] ≤ P̂[φ∗(X) = 1]. We get that with a probability at least 1 − 2δ,
P[φ̂(X) = 1]− P[φ∗(X) = 1] < 2ε. Since δ < 1/128 and m < d∗

1280·ε2 , this contradicts the lower bound above. It follows
that at least one of the assumed inequalities above holds, which proves the claim.

A.2 Proof Of The Sufficient Condition

We now prove Theorem 5.5. We derive a sufficient condition for the following inequality to hold:

BPR = ε̂ig + ε̂u +Rs(ε̂ig, d
∗) +Rs(ε̂u, da) +Rf(d

∗) +Rf(da) ≤ ε̂ERM +Rs(ε̂ERM, d) +Rf(d) = BERM.

Under the assumption that ε̂ERM = ε̂ig + ε̂u, it suffices to have

Rs(ε̂ig, d
∗) +Rs(ε̂u, da) +Rf(d

∗) +Rf(da) ≤ Rs(ε̂ERM, d) +Rf(d).

This is equivalent to√
ε̂igRs(1, d

∗) +
√
ε̂uRs(1, da) +Rf(d

∗) +Rf(da) ≤
√
ε̂ERMRs(1, d) +Rf(d).

Since ε̂ig ≤ ε̂ERM, it suffices to have√
ε̂ERMRs(1, d

∗) +
√
ε̂uRs(1, da) +Rf(d

∗) +Rf(da) ≤
√
ε̂ERMRs(1, d) +Rf(d),

which is equivalent to √
ε̂u ≤

√
ε̂ERM ·

Rs(1, d)−Rs(1, d
∗)

Rs(1, da)
+
Rf(d)−Rf(d

∗)−Rf(da)

Rs(1, da)
.

For a fixed δ and large d, d∗, da, this is equivalent to

√
ε̂u ≤

√
ε̂ERM ·Θ(

√
d−
√
d∗√

da
)−

√
log(m)

m
·Θ(

da + d∗ − d√
da

),

as claimed.

A.3 Proof Of The Necessary Condition

We now prove Theorem 5.6. First, we prove an additional lemma that provides a necessary condition for BPR ≤ BERM.

Lemma A.1. For any fixed δ ∈ (0, 1), if BPR ≤ BERM then

√
ε̂u ≤

√
ε̂ERM ·

√
d√
da
−
√
ε̂ig ·

√
d∗√
da

+ o(1),

The convergence of the last term is with respect to the growth of d, d∗ together and/or of m.

Proof. By the assumption of the lemma, BPR ≤ BERM. Thus, by definition,

ε̂ig + ε̂u +Rs(ε̂ig, d
∗) +Rs(ε̂u, da) +Rf(d

∗) +Rf(da) ≤ ε̂ERM +
√
ε̂ERMRs(1, d) +Rf(d).
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This is equivalent to:

ε̂ig + ε̂u +
√
ε̂igRs(1, d

∗) +
√
ε̂uRs(1, da) +Rf(d

∗) +Rf(da) ≤ ε̂ERM +
√
ε̂ERMRs(1, d) +Rf(d).

Therefore,√
ε̂uRs(1, da) ≤ ε̂ERM − (ε̂ig + ε̂u) +

√
ε̂ERMRs(1, d)−

√
ε̂igRs(1, d

∗) +Rf(d)−Rf(da)−Rf(d
∗)

≤
√
ε̂ERMRs(1, d)−

√
ε̂igRs(1, d

∗) +Rf(d)−Rf(d
∗)−Rf(da).

The last inequality follows since by Lemma 5.4, ε̂ERM ≤ ε̂ig + ε̂u.

Now, from the definition of Rf , we have

Rf(d)−Rf(d
∗)−Rf(da) = 8

log(m+ 1)

m
(d− d∗ − da)−

4 log(4
δ )

m
.

By Lemma 5.1, da ≥ d+ d∗ − 2. Thus, d− d∗ − da < 0. It follows that Rf(d)−Rf(d
∗)−Rf(da) < 0. Therefore,√

ε̂uRs(1, da) ≤
√
ε̂ERMRs(1, d)−

√
ε̂igRs(1, d

∗).

It follows that √
ε̂u ≤

√
ε̂ERMRs(1, d)−

√
ε̂igRs(1, d

∗)

Rs(1, da)
=

√
ε̂ERM(d+A)−

√
ε̂ig(d∗ +A)

√
da +A

,

Where A := log(4/δ)/(2 log(m+ 1)). Thus,

√
ε̂u ≤

√
ε̂ERM ·

√
d√
da
−
√
ε̂ig ·

√
d∗√
da

+ o(1),

where convergence of the last term is with respect to the growth of d, d∗ together and/or of m.

Next, we prove the theorem using the two lemmas above.

Proof of Theorem 5.6. Assume that BPR ≤ BERM. By Lemma A.1,

√
ε̂u ≤

√
ε̂ERM ·

√
d√
da
−
√
ε̂ig ·

√
d∗√
da

+ o(1).

Denote α := d∗/d. Suppose that α ≥ 1 (otherwise the statement in the theorem clearly holds). We have

√
ε̂u ≤

√
d√
da
· (
√
ε̂ERM −

√
α ·
√
ε̂ig) + o(1).

Here, the convergence is under a fixed α with growing d, d∗ or m. Since da ≥ d∗ + d− 2 = (1 + α) · d− 2, we have√
ε̂u ≤

1√
1 + α

· (
√
ε̂ERM −

√
α ·
√
ε̂ig) + o(1). (11)

Since
√
ε̂u ≥ 0, we have √

ε̂ERM −
√
α ·
√
ε̂ig + o(1) ≥ 0.

Thus, ε̂ig ≤ ε̂ERM/α+ o(1). Combining with Lemma 5.4, we get

ε̂ERM ≤ ε̂ig + ε̂u ≤ ε̂ERM/α+ ε̂u + o(1).

Combining this with Eq. (11), it follows that√
(1− 1

α
) · ε̂ERM ≤

√
ε̂u ≤

1√
1 + α

· (
√
ε̂ERM −

√
α ·
√
ε̂ig) + o(1).
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Rearranging, we get
√

1 + α · (1− 1

α
) ≤ 1−

√
α ·

√
ε̂ig√

ε̂ERM

+ o(1).

This leads to

√
α

√
ε̂ig√

ε̂ERM

≤ 1−
√

1 + α · (1− 1

α
) + o(1).

Since 0 ≤
√
ε̂ig√

ε̂ERM
, it must hold that

√
1 + α · (1− 1

α ) ≤ 1 + o(1). Solving for α, we obtain that α ≤ 2.25 + o(1).

Since α = d∗/d, we conclude that d∗ ≤ 2.25 · d+ o(1), as claimed.
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