
Distributed Offline Policy Optimization Over Batch Data

Han Shen⋆ Songtao Lu† Xiaodong Cui† Tianyi Chen⋆
⋆ Rensselaer Polytechnic Institute † IBM T. J. Watson Research Center

Abstract

Federated learning (FL) has received increasing
interests during the past years, However, most
of the existing works focus on supervised learn-
ing, and federated learning for sequential deci-
sion making has not been fully explored. Part
of the reason is that learning a policy for se-
quential decision making typically requires re-
peated interaction with the environments, which
is costly in many FL applications. To overcome
this issue, this work proposes a federated offline
policy optimization method abbreviated as Fe-
dOPO that allows clients to jointly learn the opti-
mal policy without interacting with environments
during training. Albeit the nonconcave-convex-
strongly concave nature of the resultant max-min-
max problem, we establish both the local and
global convergence of our FedOPO algorithm.
Experiments on the OpenAI gym demonstrate that
our algorithm is able to find a near-optimal pol-
icy while enjoying various merits brought by FL,
including training speedup and improved asymp-
totic performance.

1 Introduction

Federated Learning (FL) is a machine learning setting where
clients collaboratively train a model under the coordination
of a central server while keeping their data private (McMa-
han et al., 2017). FL was motivated by the growing need
of training with the massive amount of data generated at
different local devices, while mitigating the privacy risks
and costs resulting from centralized training.

In recent years, FL has achieved tremendous success in nu-
merous applications such as healthcare (Chen et al., 2020),
finance (Liu et al., 2020b), IoT (Zhang et al., 2021b), prod-
uct personalization (Hard et al., 2019). Although FL has

Proceedings of the 26th International Conference on Artificial Intel-
ligence and Statistics (AISTATS) 2023, Valencia, Spain. PMLR:
Volume 206. Copyright 2023 by the author(s).

proved to be an effective paradigm for a wide range of real-
world tasks, existing works have been largely focusing on
supervised learning settings, while applying other machine
learning techniques in FL paradigm, such as reinforcement
learning (RL), has not been widely studied (et al., 2021).
Part of the reason is that learning a policy in RL typically
requires frequent deployment of new policies in the envi-
ronment to acquire online experiences. However, in many
potential applications of federated RL such as healthcare
(Murphy et al., 2001), finance (Liu et al., 2020b) and energy
management (Li et al., 2021), deployment of new policy is
costly or even impossible (Matsushima et al., 2020). For
example, in healthcare, an unreliable treatment policy may
have side-effects on patients. Or in power systems, a sub-
optimal energy management policy may result in severe
economic loss, and is not favored by end users.

To overcome this challenge, we propose an offline feder-
ated policy optimization method named FedOPO, which
allows multiple clients to jointly train a policy with data sets
distributed over local clients. The data set of each client is
collected by unknown client-customized behavior polices
prior to the training phase, and no data collection is needed
during training. Therefore, FedOPO requires no online
sampling and thus mitigates the costs of online policy de-
ployment. Moreover, we show that compared to the case
where each client trains a policy locally, FL brings sev-
eral theoretical merits including training speedup, improved
asymptotic performance and better data coverage.

1.1 Related works

To put our work in context, we review prior art that we
group in the following categories.

Federated learning. Ever since the introduction of FL
in (Konečný et al., 2016; McMahan et al., 2017), it has
been extensively studied in semi-supervised learning setting
(Papernot et al., 2017, 2018); hierarchical setting (Liu et al.,
2020a; Briggs et al., 2020); non-iid data setting (Zhao et al.,
2018; Hsieh et al., 2020); continual learning(Yoon et al.,
2021); multi-task setting (Smith et al., 2018). The major
concerns in FL include the communication efficiency (Seide
et al., 2014; Stich et al., 2018; Chen et al., 2018; Wang and
Joshi, 2018; Yu et al., 2019) and data privacy (Huang et al.,
2021; Jin et al., 2021). For a complete survey of FL, see e.g.,

Distributed Offline Policy Optimization Over Batch Data

(et al., 2021). Though most of the works on FL focus on
the supervised learning settings, there are a few works that
study a restrictive class of RL problems (see e.g., (Liu et al.,
2019a; Lee and Choi, 2020)). However, they are restricted
on specific tasks that allow online sampling. Recently, Jin
et al. (2022) studied a general federated RL method in an
online setting. A provably-convergent offline federated RL
method that can be applied to a wider range of tasks is,
however, missing in the literature.

Model-based offline RL. Offline RL has gained growing in-
terests recently thanks to its importance in safety-critical ap-
plications. Offline RL can be tackled either through model-
based or model-free approaches. The model-based methods
leverage the techniques from supervised learning and un-
certainty quantification to learn a reliable Markov decision
process (MDP) model, and then utilize the planning algo-
rithms to solve the problem. MOPO regularizes the learnt
MDP by penalizing the reward function with an uncertainty
term (Tu et al., 2020). MOReL strictly discourages the tar-
get policy from visiting the uncertain domains via reward
shaping (Kidambi et al., 2020). While COMBO, inspired
by (Kumar et al., 2020), takes another approach by conser-
vatively updating the Q function in out-of-support domain
without needing uncertainty quantification (Yu et al., 2021).
Recently, representation learning-based approaches have
also been developed in (Lee et al., 2021).

Model-free offline RL. A closer line of research to our work
is the model-free offline RL methods that use conservative
policy updates either via incorporating implicit regulariza-
tion into objective function or imposing explicit constraints
on the problem. Such methods include the conservative Q-
learning (Kumar et al., 2020); Q-learning with uncertainty
quantification (Kumar et al., 2019; Siegel et al., 2020; Wu
et al., 2019) or explicit constraints on the state-action do-
main (Liu et al., 2020c); the importance weighted offline
policy gradient (PG) methods (Nachum et al., 2019b; Liu
et al., 2019b; Imani et al., 2018). Many offline PG methods
originate from the logged actor-critic (Off-PAC) algorithm
(Degris et al., 2012). The policy gradient in off-PAC is
computed with logged samples, which renders Off-PAC not
provably convergent to the optimal policy. To resolve this
issue, a popular approach is to reweight the logged update
with correction ratios, see e.g., (Imani et al., 2018; Gelada
and Bellemare, 2019; Zhang et al., 2019b; Liu et al., 2019b,
2018). However, these works all require the information on
the behavior policy, which is often unknown in practice.

In another line of work, (Nachum et al., 2019a; Zhang et al.,
2020) considered the offline behavior-agnostic setting and
proposed offline policy evaluation methods, which were
unified as the DICE family (Yang et al., 2020). With similar
techniques, Nachum et al. (2019b) proposed the first offline
behavior-agnostic policy optimization termed AlgaeDICE.
AlgaeDICE improves over previous works by solving the
distribution mismatch issue in behavior-agnostic setting.

1.2 Main contributions

In this context, we propose an offline federated policy opti-
mization method that we term FedOPO. Our contributions
can be summarized as follows.

C1) A new federated learning framework. We broaden
the application of FL from supervised learning to sequential
decision making, where the goal is to learn a policy that
repeatedly takes actions based on states. We are interested
in settings where online sampling is prohibited, and mul-
tiple clients aim to learn the optimal policy with locally
distributed logged data generated by behavior polices dif-
ferent from the updating policy. Our algorithm corrects the
offline policy update with the so-called density ratio, which
is learnt by optimizing a max-min-max objective function
with clients’ data. Due to the offline nature of our method,
it can be applied to a general class of federated RL tasks,
including those that require little to none online policy de-
ployment.

C2) Quantifiable benefits of FedOPO. We show both
theoretically and empirically that the marriage of FL and
offline PG brings two major benefits: 1) Run-time speedup.
The synchronized parallel computing architecture inherent
to FL speeds up the optimization process, which is in dire
need as the max-min-max objective is particularly hard to
optimize in practice. Our analysis shows that linear speedup
is achieved, i.e. the convergence rate increases at a rate
of Θ(N), where N is the number of clients. 2) Better
asymptotic performance. FL is able to utilize the combined
information provided by all clients while protecting data
privacy. The shared data collection reduces the statistical
error at a rate of Θ(1/N), thus improves the asymptotic
performance. Numerical experiments are provided to verify
our theoretical results.

C3) Improved analysis of offline PG. By settingN=1, our
analysis reduces to the offline PG method. In this case, our
work improves over the analysis of offline PG with density-
ratio correction in (Huang and Jiang, 2021) in the following
aspects: i) The algorithm in (Huang and Jiang, 2021) runs a
double-loop manner where the inner-loop performs density
ratio estimation and the outer loop performs the PG update.
While our analysis allows a practical single-loop structure
where the PG update and density ratio update are performed
simultaneously. Albeit the single-loop structure is more dif-
ficult to analyze and often has slower convergence rate, we
give an improved analysis that achieves the state-of-art rate
of O(1√

NK
). ii) The Assumption C in (Huang and Jiang,

2021) is stronger than Assumption 1 in this work. Specif-
ically, we show that the second bounded ratio assumption
adopted in (Huang and Jiang, 2021) is not needed, relaxing
the requirement on the batch data.

Han Shen⋆, Songtao Lu†, Xiaodong Cui†, Tianyi Chen⋆

2 Preliminaries

In this section, we will define basic notations regarding the
Markov decision process and then give a general formula-
tion of the RL problem.

RL problems are often modeled as an MDP described by
M = {S,A,P, r, γ}, where S is the state space, A is the
action space, P(s′|s, a) is the probability of transitioning
to s′ ∈ S given current state s ∈ S and action a ∈ A, and
r(s, a) is the reward associated with the state-action pair
(s, a), and γ ∈ [0, 1) is a discount factor. Without loss of
generality, we assume the reward r(s, a) ∈ [0, 1] for any
(s, a) ∈ S×A. A policy π : S → ∆(A) is defined as a map-
ping from the state space S to the probability distribution
over the action space A.

Considering discrete time t in an infinite horizon, a policy π
generates a trajectory (s0, a0, s1, a1, . . .) with at ∼ π(·|st)
and st+1 ∼ P(·|st, at). Given a policy π, we define the
state and state-action value functions as

Vπ(s) := E

[∞∑
t=0

γtr(st, at) | s0 = s

]
;

Qπ(s, a) := E

[∞∑
t=0

γtr(st, at) | s0 = s, a0 = a

]
(1)

where E is taken over the trajectory (s0, a0, s1, a1, . . .) gen-
erated under policy π. With the above definitions, the ad-
vantage function is Aπ(s, a) := Qπ(s, a) − Vπ(s). With
ρ denoting the initial state distribution, the discounted
state visitation measure induced by policy π is defined as
dπ(s) := (1 − γ)

∑∞
t=0 γ

tP(st = s | s0 ∼ ρ, π). We
overload the notation and define the discounted state action
visitation measure as dπ(s, a) = (1 − γ)

∑∞
t=0 γ

tP(st =
s | s0 ∼ ρ, π)π(a|s). In the case where π is parametrized
by θ, we use dθ as shorthand notations for dπθ .

The goal of RL is to find an optimal policy π∗ defined
as π∗ ∈ argmaxπ J(π) := (1 − γ)Es∼ρ[Vπ(s)]. We de-
fine the optimal return as J∗ := maxπ J(π). When the
state and action spaces are large, finding the optimal policy
π becomes computationally intractable. To overcome the
inherent difficulty of learning a function, the policy gradi-
ent methods search the best performing policy over a class
of parametrized policies. We parametrize the policy with
θ ∈ Rd, and solve the following problem

max
θ∈Rd

J(θ) :=(1−γ)Es∼ρ[Vπθ (s)]=Es,a∼dπθ [r(s, a)]. (2)

To penalize degenerate policies or utilize prior knowledge,
it is common to augment the objective function with a regu-
larization, given by

Jτ (θ) := J(θ) + τ Es∼ηp
[
−DKL(πp(·|s)|πθ(·|s))

]︸ ︷︷ ︸
R(θ):=

(3)

where τ ≥ 0 is a regularization constant, ηp is a prior state
distribution, and πp is a prior policy. The regularization
R(θ) encourages πθ to imitate πp within the support of
ηp, incorporating prior knowledge into training. When πp
and ηp are set as uniform distributions, the regularization
term is reduced to the relative-entropy regularization widely
analyzed in the literature (Agarwal et al., 2020; Bhandari
and Russo, 2019; Zhang et al., 2021a). Moreover, the reg-
ularization prevents degenerate solutions that can lead to
the pitfall of certain policy parametrization (Bhandari and
Russo, 2019).

3 FedOPO: A Federated Offline Policy
Optimization Algorithm

In this section, we will first derive a tractable objective
function for federated offline PG, and then introduce our
algorithm FedOPO.

3.1 Federated offline policy optimization

In an offline federated RL setting, we have N clients aim-
ing to learn the optimal policy of the same MDP. In data
collection phase prior to training process, each client n
uses a possibly unknown behavior policy πnβ to collect
batch data. Following the convention in offline RL liter-
ature, we abbreviate the behavior visitation distribution
dπnβ (s, a) as dnD(s, a), and define the averaged distribution

as d̄D(s, a) := 1
N

∑N
n=1 d

n
D(s, a).

To find the optimal policy that maximizes J(θ), θ is updated
using the policy gradient given by (Sutton et al., 2000)

∇J(θ) = Es,a∼dπθ [Qπθ (s, a)ψθ(s, a)] , (4)

where the score function is defined as ψθ(s, a) :=
∇ log πθ(a|s). For a given target policy πθ, running the
policy gradient (4) is challenging in the offline RL setting,
because samples from the distribution dπθ in (4) cannot be
obtained without interacting with the environment via πθ.
A natural thought is to encourage dπθ to stay close to the
more accessible distribution d̄D which can be estimated by
the batch data collected by clients. To this end, we augment
Jτ (θ) with a regularizer DX 2

(
dπθ ||d̄D

)
, that is

max
θ∈Rd

Fλ(θ) :=Jτ (θ)−λDX 2

(
dπθ ||d̄D

)
, (5)

where DX 2 is the X 2− divergence and λ > 0 is a regu-
larization constant. It is worth noting that the regularizer
in (5) serves different purpose than that in (3). The regu-
larizer in (3) prevents degenerate solutions or incorporates
prior knowledge, while the one in (5) encourages the on-
policy visitation distribution dπθ to stay close to the aver-
aged logged visitation distribution 1

N

∑N
n=1 d

n
D, and thus

encourages conservative policy updates. The relative tem-
perature between the two regularizers is controlled by τ, λ.

Distributed Offline Policy Optimization Over Batch Data

To ensure the tractability of our problem, we make the
following assumption which is common in previous works
on offline RL (Zhang et al., 2020; Nachum et al., 2019a).

Assumption 1 (exploratory federated RL data). For all
eligible θ, if dπθ (s, a) > 0, there exists a client n whose
dnD(s, a) > 0 for this particular pair (s, a). There exists a
constant Cd such that ∥dπθ

dD
∥∞ ≤ Cd.

As we show in the remark below, our assumption is weaker
than those in (Nachum et al., 2019b; Huang and Jiang, 2021;
Zhang et al., 2020; Nachum et al., 2019a).

Remark 1. Suppose πnβ is chosen randomly with at least

probability p > 0 such that ∥dπθdnD ∥ < ∞, then it is im-
mediate that Assumption 1 holds with probability at least
1−(1−p)N . Then for a federated system with large enough
number of workers N , Assumption 1 holds with a proba-
bility sufficiently close to 1. Moreover, by definition of dnD,
we have dnD(s, a) ≥ (1− γ)ρ(s)πnβ (a|s). If ρ(s) > 0, and
we select πnβ within the subset of stochastic policies, i.e.
πnβ (a|s) > 0 for any (s, a), then we have dnD > 0 with
probability p=1. In this case, Assumption 1 is guaranteed
to hold. In addition, it is worth noting that our assump-
tion is weaker than that of Huang and Jiang (2021) when
N = 1, as we do not need the second inequality assumption
in (Huang and Jiang, 2021, Assumption C).

3.2 Federated max-min-max reformulations

Accessing dπθ in (5) requires sampling via πθ, which is
changing during learning process. Hence, the objective
function Fλ(θ) is still hard to optimize in the federated RL
setting. Inspired by the change of variable trick and the
fenchel duality trick in (Nachum et al., 2019b,a), we will
consider an equivalent form of (5) in the following lemma.

Lemma 1. Under Assumption 1, the problem defined in (5)
is equivalent to

max
θ∈Rd

min
v∈RS×A

max
µ∈RS×A

Fλ(θ, v, µ) :=
1

N

N∑
n=1

Fnλ (θ, v, µ) (6)

with Fnλ (θ, v, µ) := (1− γ)E s0∼ρ
a0∼πθ

[
v(s0, a0)

]
+Es,a∼dnD

[(
Bπθv−v

)
(s, a)µ(s, a)− λ

2
µ(s, a)2

]
+τR(θ)

where the Bellman operator is defined as Bπθv(s, a) :=
r(s, a) + γEs′∼P(·|s,a),a′∼πθ(·|s′)[v(s

′, a′)].

We term Fλ(θ, v, µ) as the population-level offline feder-
ated RL objective function. By introducing v and µ in (6),
our new objective function no longer depends on the inacces-
sible distribution dπθ , instead it depends on {dnD}Nn=1 and
ρ which can be estimated by clients’ logged data. Given θ,
define (v∗θ , µ

∗
θ) := argminvmaxµ Fλ(θ, v, µ). Using the

Server

𝜃𝑛, 𝑣𝑛, 𝜇𝑛

Data~𝜋𝛽
𝑛

𝜃𝑛 ← 𝜃

𝜃, 𝑣, 𝜇

𝑣𝑛 ← 𝑣

𝜇𝑛 ← 𝜇

Figure 1: The framework of FedOPO.

optimality condition of Fλ(θ, v, µ) with respect to µ(s, a),
we have

µ∗
θ(s, a) =

1

λ

(
Bπθv∗θ − v∗θ

)
(s, a) =

dπθ (s, a)
1
N

∑N
n=1 d

n
D(s, a)

.

(7)
Given d̄D, we can use the so-called density ratio µ∗

θ to obtain
the distribution dπθ . Recalling the definition of Bπθ , we can
solve (7) with respect to v∗θ and obtain

v∗θ(s, a) = (8)

Eπθ
[∞∑
t=0

γt
(
r(st, at)−λ

dπθ
d̄D

(st, at)
)∣∣∣s0=s, a0=a].

The definition of v∗θ is akin to the Q-function of a vir-
tual MDP M̃ = {S,A,P, r̃, γ} with reward function
r̃(s, a) := (r − λ

dπθ
d̄D

)(s, a). Hence, solving v and µ in
(6) can be viewed as the critic problem for estimating the
actor gradient. We formalize this intuition next.

Lemma 2. Suppose the critic variables are optimized, i.e.
v = v∗θ and µ = µ∗

θ , then it holds that

∇θFλ(θ, v
∗
θ , µ

∗
θ)=Edπθ [v

∗
θ(s, a)ψθ(s, a)]+τ∇R(θ).

=Edπθ [(µ
∗
θ · v∗θ)(s, a)ψθ(s, a)]+τ∇R(θ) (9)

Compared with the policy gradient in (4), (9) is the regular-
ized policy gradient corresponding to the virtual MDP M̃.
The virtual reward function r̃(s, a) penalizes πθ when it
visits the less supported state-action space, thus encourages
conservative policy updates. Moreover, when λ is cho-
sen properly small, we have that v∗θ ≈ Qπθ , and therefore
∇θFλ(θ, v

∗
θ , µ

∗
θ) ≈ ∇Jτ (θ). In this sense, ∇θFλ(θ, v, µ)

is an estimate of the regularized policy gradient given by
the critic variable v, µ.

3.3 Algorithm development

To optimize Fλ(θ, v, µ), one needs to sample from
{dnD}Nn=1 and ρ. This sampling process can be approx-
imated by sampling from local data sets Dn and Dn

0 ,
where Dn contains transition tuples {(si, ai, s′i)}Mi=1 with
each tuple drawn from dnD ⊗ P , e.g., (si, ai) ∼ dnD and

Han Shen⋆, Songtao Lu†, Xiaodong Cui†, Tianyi Chen⋆

Algorithm 1 Federated Offline Policy Optimization
1: global initialize: Step sizes α and β. Communication

interval I .
2: client initialize: Initial policy πθnk . Initial vnk and µnk

parametrized by ωnv,k and ωnµ,k.
3: for k = 1, 2, . . . ,K, do:
4: each client n ∈ {1, 2, . . . , N} do:
5: Obtain samples following (11) and (13).
6: Update the local model via (12) and (15).
7: if k mod I:
8: Clients upload local parameters.
9: Server averages local parameters via (16).

10: Broadcast averaged parameters to clients.
11: end if
12: end for

s′i ∼ P(·|si, ai), and Dn
0 contains initial state samples

{si0}Mi=1 ∼ ρ. For simplicity of notations, we assume the
data set of every client contains M samples. Denote the
empirical distribution of initial state samples in Dn

0 as ρ̂n,
and the empirical distribution of state-action pairs in data
set Dn as d̂nD. Then we can define the empirical version of
Fλ(θ, v, µ) as

F̂λ(θ, v, µ) :=
1

N

N∑
n=1

F̂nλ (θ, v, µ) (10)

with F̂nλ (θ, v, µ) :=(1−γ)Es0∼ρ̂n
a0∼πθ

[
v(s0, a0)

]
+τR(θ)+

Es,a,s′∼d̂nD
a′∼πθ

[(
r(s, a)+γv(s′, a′)−v(s, a)

)
µ(s, a)− λ

2
µ(s, a)2

]
.

Due to privacy concerns in FL, clients cannot access each
other’s data, and thus cannot directly optimize the global
objective function F̂λ. We introduce FedOPO in Algorihtm
1, and summarize it next.

Local offline critic update. Consider the setting where
each client n stores local models θn, vn and µn, with vn
and µn being parametrized by ωnv and ωnµ respectively. At
each iteration k, client n first uniformly samples transitions
from Dn and initial states from Dn

0 . This sampling process
can be written as

s0 ∼ ρ̂n, a0 ∼ πθn
k
(·|s0); (s, a, s′) ∼ d̂nD, a′ ∼ πθn

k
(·|s′) (11)

where πθnk is its local policy model, and the subscription
k, n on samples are omitted for notation simplicity.

With the samples, the client can compute the stochastic gra-
dient of local objective function F̂nλ (θ

n
k , v

n
k , µ

n
k) w.r.t. ωnv,k

and ωnµ,k. We denote the gradients as ∇̂ωnv
F̂nλ (θ

n
k , v

n
k , µ

n
k)

and ∇̂ωnµ
F̂nλ (θ

n
k , v

n
k , µ

n
k), then given step size β, the update

of vn and µn can be written as

ωnv,k+1=ω
n
v,k−β∇̂ωnv

F̂nλ (θ
n
k , v

n
k , µ

n
k),

ωnµ,k+1=ω
n
µ,k+β∇̂ωnµ

F̂nλ (θ
n
k , v

n
k , µ

n
k). (12)

Local offline actor update. Before the policy update, we
first do the actor sampling via

(s̃, ã) ∼ d̂nD; sp ∼ ηp, ap ∼ πp(·|sp). (13)

To update policy, a natural thought is to do gradient ascent
with an unbiased estimator of ∇θnk

F̂nλ (θ
n
k , v

n
k+1, µ

n
k+1). In-

stead of this natural choice of gradient, we use an estimator
based on Lemma 2:

p̂nk :=µ
n
k+1(s̃, ã)v

n
k+1(s̃, ã)ψθnk (s̃, ã)+τψθnk (sp, ap) (14)

The actor gradient defined in (14) can be viewed as a lo-
cal estimation of ∇θFλ defined in (9). By Lemma 2, the
expected global average of the two candidates ∇θnk

F̂nλ , p̂
n
k

behave similarly when the critic is close to the optimal
regime. Compared to ∇θnk

F̂nλ , p̂nk requires less sampling
and computation is thus preferred. After the client obtains
p̂nk , it then updates its local policy model with step size α:

θnk+1 = θnk + αp̂nk . (15)

Periodic global average. For every I iterations, the server
averages clients’ model parameters via

ω̄v,k+1 = ΠRv

(1

N

N∑
n=1

ωnv,k+1

)
(16)

ω̄µ,k+1 = ΠRµ

(1

N

N∑
n=1

ωnµ,k+1

)
, θ̄k+1 =

1

N

N∑
n=1

θnk+1

where ΠR projects a vector to a L2 ball with radius R. The
projection guarantees the stability of our algorithm and has
also been adopted in (Nachum et al., 2019a; Huang and
Jiang, 2021). The averaging operation intrinsically allows
knowledge sharing among clients, making it possible to
optimize F̂λ.

4 Theoretical Results

In this section, we will first establish the local convergence
of FedOPO with the general policy parametrization and its
global convergence with the softmax policy parametrization.

4.1 General local convergence result

Due to space limitation, we will provide an error decompo-
sition then present the theoretical results. We defer presen-
tation of the full proof in the supplementary document.

Matrix-vector reformulation. Denote ϕ(·) : S×A 7→ Rd1
as the feature vector. Suppose v and µ are parametrized
linearly, e.g., v(s, a) = ϕ(s, a)⊤ωv and µ(s, a) =
ϕ(s, a)⊤ωµ, and define

Anθ := Es,a,s′∼d̂nD,a′∼πθ
[
(γϕ(s′, a′)− ϕ(s, a))ϕ(s, a)⊤

]
,

bnθ := (1− γ)Es0∼ρ̂n,a0∼πθ [ϕ(s0, a0)],
Cn := Es,a∼d̂nD [ϕ(s, a)ϕ(s, a)

⊤],

hn := Es,a∼d̂nD [r(s, a)ϕ(s, a)]. (17)

Distributed Offline Policy Optimization Over Batch Data

Let Aθ := 1
N

∑N
n=1A

n
θ , bθ := 1

N

∑N
n=1 b

n
θ , C :=

1
N

∑N
n=1 C

n and h := 1
N

∑N
n=1 h

n. Then the empirical
objective defined in (10) can be written as

F̂λ(θ, ωv, ωµ)=b
⊤
θ ωv+ω

⊤
v Aθωµ+ω

⊤
µ h−

λ

2
ω⊤
µ Cωµ. (18)

We also denote the stationary point of F̂λ(θ, ωv, ωµ) with
respect to ωv and ωµ as ω̂∗

v(θ) and ω̂∗
µ(θ). By the first-order

optimality condition, we have

Aθω̂
∗
µ(θ)+bθ=0,−λCω̂∗

µ(θ)+Aθ
⊤ω̂∗

v(θ)+h=0. (19)

To present our convergence result, we first make the follow-
ing standard assumptions:

Assumption 2. For any (s, a) ∈ S ×A, the feature vector
∥ϕ(s, a)∥2 ≤ 1. For any eligible θ, the smallest singular
value of the matrixAθ is lower bounded by σinf > 0. Matrix
C is positive-definite and its smallest eigenvalue is lower
bounded by η > 0.

This assumption is standard in the literature (Nachum et al.,
2019a; Huang and Jiang, 2021). Under Assumption 2,
we know from (19) that ω̂∗

v(θ) and ω̂∗
µ(θ) are unique and

there exist constants Rv, Rµ such that ∥ω̂∗
v(θ)∥2 ≤ Rv and

∥ω̂∗
µ(θ)∥2 ≤ Rµ, which also justifies the projection chosen

in Algorithm 1.

Assumption 3. For any θ, θ′ ∈ Rd, there exist constants Cψ ,
Lψ and Lπ such that: i) ∥ψθ(s, a)∥2 ≤ Cψ; ii) ∥ψθ(s, a)−
ψθ′(s, a)∥2 ≤ Lψ∥θ − θ′∥2; iii) |πθ(a|s)− πθ′(a|s)| ≤
Lπ∥θ − θ′∥2.

Assumption 3 is common in analyzing policy gradient-type
algorithms, which has also been made by e.g., (Zhang et al.,
2019a; Agarwal et al., 2020). This assumption holds for
many popular policy parametrization methods such as soft-
max policy (Agarwal et al., 2020), Gaussian policy (Doya,
2000) and Boltzmann policy (Konda and Borkar, 1999).

Error decomposition. To gain more insights into the con-
vergence of FedOPO, we provide the error decomposition
of the actor gradient below. With the short-hand notation
p̂nk := p(θnk , v

n
k+1, µ

n
k+1), we have

∥∥∥ 1

N

N∑
n=1

E[p̂nk]−∇Jτ (θ̄k)
∥∥∥

≤ 1

N

N∑
n=1

E
∥∥∥p(θnk , vnk+1, µ

n
k+1)− p(θ̄k, v̄k+1, µ̄k+1)

∥∥∥
+

1

N

N∑
n=1

E
∥∥∥p(θ̄k, v̄k+1, µ̄k+1)− p(θ̄k, v

∗
θ̄k
, µ∗
θ̄k
)
∥∥∥

+
∥∥∥ 1

N

N∑
n=1

E[p(θ̄k, v∗θ̄k , µ
∗
θ̄k
)]−∇Jτ (θ̄k)

∥∥∥ (20)

where v̄k and µ̄k are the averaged critic models parametrized
by ω̄v,k and ω̄µ,k respectively, and the expectation is taken
over the actor samples at iteration k. The first term in (20)
is due to the difference between local models and the global
model, which can be controlled by communication interval
I . The last term is due to the difference between: i) d̂D and
d̄D (statistical error); and, ii) v∗

θ̄k
and Qπθ̄k (regularization

error). The second term is the critic error of v̄ and µ̄. Using
the critic error of v̄k as an example, we have

∥v̄k+1 − v∗θ̄k∥ ≤ ∥v̄k+1 − v̂∗θ̄k∥+ ∥v̂∗θ̄k − v∗θ̄k∥. (21)

Given θ̄k, v̂∗
θ̄k

is the optimal solution of the empirical objec-

tive F̂λ defined in (18). The first term in (21) is the critic
optimization error. Different from usual convergence analy-
sis where the optimal solution is stationary, in our case the
optimal solution v̂∗

θ̄k
is drifting with the change of {θnk}Nn=1

at every iteration k. However, by exploiting the smoothness
of v̂∗θ , we are able to show the relative stationery of v̂∗

θ̄k
and prove the convergence of v̄. The second term in (21) is
introduced by the difference between (18) and (6), which
results in both statistical and function approximation errors.

With the insights provided by the error decomposition above,
we are ready to give our local convergence result.

Theorem 1. Consider Algorithm 1 with linear parametriza-
tion of vn and µn. Suppose Assumptions 1-3 hold. Choose
α =

√
N/K, and β = Θ(α). Assume I4N3 = O(K),

then for large enough K, it holds with probability at least
1− δ that

1

K

K∑
k=1

E
∥∥∇Jτ (θ̄k)∥∥22 (22)

= O
(1√

NK

)
+ Õ

(√
log 3

δ

NM

)
+O

(
ϵapp

)
+O

(
ϵλ
)

where ϵλ :=
(
λ
CψCd
1−γ

)2

is the regularization error and ϵapp
is the function approximation error of vn and µn.

The first term in the right hand side of (22) is the error
of optimizing the empirical problem (10); the second term
corresponds to the statistical error induced by the finite
number of samples in the empirical problem (22); the third
term ϵapp is the function approximation error introduced
by the limited expressive power of the parametrization of
vn and µn; and the last term is the error introduced by the
regularization term in (5). We can achieve ϵapp = 0 if the
optimal solution {v∗θ , µ∗

θ} falls in the span of the features.

In Theorem 1, we consider the optimality of Jτ (θ) instead
of Fλ(θ, v, µ) since Fλ(θ, v, µ) is essentially formulated to
facilitate maximizing Jτ (θ) in an offline setting. In addition,
observe that F̂λ(θ, ωv, ωµ) is generally non-concave with
respect to θ, and is convex-strongly concave with respect
to ωv and ωµ. To our best knowledge, the convergence of

Han Shen⋆, Songtao Lu†, Xiaodong Cui†, Tianyi Chen⋆

such an objective has not been established in the literature.
Therefore, our optimization result is of independent interest.

Remark 2 (linear speedup & reduced statistical error). The-
orem 1 implies a convergence rate of O(1√

NK
). As number

of clients N increases, the convergence rate grows at a
rate of Θ(N), implying the speedup grows linearly w.r.t.
N . Moreover, the statistical error decreases at a rate of
O(N− 1

2M− 1
2), indicating that federated learning also im-

proves asymptotic performance.

4.2 Global convergence result

Since J(θ) is a generally non-concave w.r.t. θ, the gradient
ascent type algorithm FedOPO can only guarantee local
convergence. However, inspired by recent advances on the
global convergence of PG (Agarwal et al., 2020; Bhandari
and Russo, 2019; Zhang et al., 2019a; Mei et al., 2020),
under special policy parametrizations, we are able to show
the global convergence of FedOPO along with the benefits
like speedup and improved asymptotic performance.

Specifically, we consider the class of MDP which has fi-
nite state space and action space. Suppose the policy is
parametrized by the a natural softmax policy πθ(a|s) =

exp θs,a∑
s,a exp θs,a

, where θs,a is the element corresponding to

(s, a) pair of the parameter vector θ ∈ R|S||A|. It is known
that the softmax policy class cannot represent deterministic
policies with finite θ. To avoid driving θ to infinity, it is
crucial to penalize the deterministic policies with the regu-
larization termR(θ). To do so, we set τ > 0, and choose the
priors ηp and πp as uniform distribution on the state-action
space, i.e. ηp = 1

|S| and πp = 1
|A| .

Define the feature matrix Φ ∈ R|S||A|×d1 :

Φ := [ϕ(s1, a1), ϕ(s2, a2), . . . , ϕ(s|S|, a|A|)]⊤. (23)

In the following assumption, we view the optimal solutions
µ∗
θ and v∗θ as vectors in R|S||A| space.

Assumption 4 (Linear realizable case). For any eligible θ,
there exist ω̃∗

µ ∈ Rd1 and ω̃∗
v ∈ Rd1 such that Φω̃∗

µ(θ) = µ∗
θ

and Φω̃∗
v(θ) = v∗θ .

Assumption 4 ensures the optimal solutions of Fλ(θ, v, µ)
w.r.t. v, µ can be accurately approximated by linear func-
tions. For the assumption to hold, it suffices to select a
squared full-rank feature matrix Φ. It is worth noting that
when this assumption does not hold, our result in Theo-
rem 2 holds with an extra error term, which is the function
approximation error ϵapp.

Theorem 2. Consider Algorithm 1 with linear parametriza-
tion of vn, µn and natural softmax parametrization of poli-
cies πθn . Suppose Assumptions 1, 2 and 4 hold. Choose
α =

√
N/K, and β = Θ(α). Assume I4N3 = O(K),

then for large enough K, it holds with probability greater

than 1− δ that

J∗− 1

K

K∑
k=1

E
[
J(θ̄k)

]
= O

(1√
NK

)
+Õ

(√
log 3

δ

NM

)
+O

(
ϵτ
)

(24)

where ϵτ :=
τC2

d

(1−γ)2 +τ
∥∥∥dπ∗

ρ

∥∥∥
∞

is the regularization error.

The first term in (24) corresponds to the optimization error
which diminishes at a rate of O(1√

NK
). This implies linear

speedup as discussed in Remark 2. When N = 1, the
decay rate of optimization error matches the best-known
rate Õ(1√

K
) for stochastic PG (Zhang et al., 2021a). The

second term in (24) is the statistical error, which can be
reduced by introducing more clients or using larger data
sets. The last term is the regularization error.

5 Numerical Experiments

In this section, we provide numerical tests of FedOPO in
the OpenAI Gym environments. We empirically demon-
strate the advantage of training collaboratively over training
locally, and also showcase the training speedup brought by
FedOPO. All test results are generated by 5 Monte-carlo
runs. The hyperparameters are decided by a grid search.

Generating logged RL data. In all the following tests, the
data of client n is generated by its behavior policy: πnβ =
ξnπuniform+(1−ξn)πexpert, where ξn ∈ [0, 1] is the mixing
factor and πexpert is a greedy policy given by the online
actor-critic algorithm (Mnih et al., 2016).

We first test the performance of FedOPO and compare
it with the performance of its local version and a base-
line optimal policy. The optimal policy is given by the
online actor-critic algorithm. In these tests, client n’s be-
havior policy is generated with a random mixing constant
ξn∼U(0.1, 0.7) (navigation); ξn∼U(0.3, 0.6) (cartpole);
ξn∼U(0, 0.2) (frozenlake) respectively. Observing from
Figure 2, FedOPO is able to achieve near-optimal perfor-
mance. Furthermore, training in a federated system has a
clear advantage over training locally due to two reasons:
1) Federated learning intrinsically shares the information
of each local data set, and therefore can better capture the
dynamic of the MDP. This corresponds to the reduced sta-
tistical error in our theoretical analysis. 2) As argued in
the discussion of Assumption 1, federated learning enables
the usage of a collection of diverse behavior polices, and is
therefore more likely to have better data coverage.

Then we test the training speedup of FedOPO with differ-
ent numbers of clients. In these tests, a data set is generated
with mixing factor ξ and is then equally distributed to each
client. The mixing factor ξ=0.4, 0.45, 0.2 for navigation,
cartpole and frozenlake respectively. Observing from Fig-
ure 3, federated learning effectively speeds up the training
process with a larger number of clients. The key enabler

Distributed Offline Policy Optimization Over Batch Data

Figure 2: FedOPO compared with local optimization. The baseline optimal policy is given by the soft actor-critic method.

Figure 3: Training speedup test. The speedup plot is given by the iterations to reach a certain reward. The baseline optimal
policy is given by the soft actor-critic method.

Figure 4: Tests on the communication interval I .

is that more clients result in enlarged effective batch size
growing linearly with N , and thus we can safely choose
more aggressive step size or gradient clipping bounds.

We also conduct tests on the communication efficiency of
our method. Due to space limitation, we defer the results in
the supplementary material.

5.1 Tests on communication efficiency

In this section, we provide an additional test on the com-
munication efficiency of our algorithm. We change the
communication interval I and observe how our algorithm
performs under different I . As shown in Figure 4, an ap-
propriately chosen communication interval can decrease
the total number of communication rounds needed to reach

Han Shen⋆, Songtao Lu†, Xiaodong Cui†, Tianyi Chen⋆

certain reward, while a too greedy choice will hinder the
convergence too much, which results in additional commu-
nication rounds instead.

6 Conclusions

This paper considers the offline policy optimization in RL
from behavior-agnostic batch data that are distributed over a
set of clients. Leveraging recent advances on offline policy
evaluation, we formulate the problem as a distributed max-
min-max problem and propose a federated offline policy op-
timization algorithm that we term FedOPO. The proposed
algorithm allows clients to jointly learn the optimal policy
without sharing logged RL data. Albeit the nonconcave-
strong convex-concave nature of the problem, we quantify
the convergence rate of FedOPO, and establish its global
convergence for a class of offline RL problems. We conduct
numerical experiments on the OpenAI gym environment to
verify its effectiveness.

Acknowledgment

The work of H. Shen and T. Chen was partially supported
by and the Rensselaer-IBM AI Research Collaboration
(http://airc.rpi.edu), part of the IBM AI Hori-
zons Network (http://ibm.biz/AIHorizons) and
National Science Foundation 2047177.

References

A. Agarwal, S. M. Kakade, J. D. Lee, and G. Mahajan. Op-
timality and approximation with policy gradient methods
in markov decision processes. In Proc. of Thirty Third
Conference on Learning Theory, 2020.

J. Bhandari and D. Russo. Global optimality guarantees
for policy gradient methods. arXiv preprint:1906.01786,
2019.

C. Briggs, Z. Fan, and P. Andras. Federated learning with
hierarchical clustering of local updates to improve train-
ing on non-iid data. In International Joint Conference on
Neural Networks, 2020.

T. Chen, G. Giannakis, T. Sun, and W. Yin. LAG: Lazily ag-
gregated gradient for communication-efficient distributed
learning. In Proc. of Advances in Neural Information
Processing Systems, 2018.

T. Chen, Y. Sun, and W. Yin. Tighter analysis of alternating
stochastic gradient method for stochastic nested problems.
In Proc. of Advances in Neural Information Processing
Systems, 2021.

Y. Chen, J. Wang, C. Yu, W. Gao, and X. Qin. Fedhealth:
A federated transfer learning framework for wearable
healthcare. IEEE Intelligent Systems, 35(4):83–93, 2020.

T. Degris, M. White, and R.S. Sutton. Off-policy actor-critic.
arXiv preprint:1205.4839, 2012.

K. Doya. Reinforcement learning in continuous time and
space. Neural Computation, 12(1):219–245, 2000.

S. Du, J. Chen, L. Li, L. Xiao, and D. Zhou. Stochastic
variance reduction methods for policy evaluation. arXiv
preprint:1702.07944, 2017.

P. et al., Kairouz. Advances and open problems in federated
learning. Foundations and Trends in Machine Learning,
4:1–210, 2021.

C. Gelada and M. G. Bellemare. Off-policy deep reinforce-
ment learning by bootstrapping the covariate shift. In
Proc. of AAAI Conference on Artificial Intelligence, 2019.

A. Hard, K. Rao, R. Mathews, S. Ramaswamy, F. Beaufays,
S. Augenstein, H. Eichner, C. Kiddon, and D. Ramage.
Federated learning for mobile keyboard prediction. arXiv
preprint:1811.03604, 2019.

D. Haussler. Sphere packing numbers for subsets of the
boolean n-cube with bounded vapnik-chervonenkis di-
mension. Journal of Combinatorial Theory, Series A, 69
(2):217–232, 1995.

K. Hsieh, A. Phanishayee, O. Mutlu, and P. B. Gibbons. The
non-iid data quagmire of decentralized machine learning.
In Proc. of International Conference on Machine Learn-
ing, 2020.

J. Huang and N. Jiang. On the convergence rate of off-policy
policy optimization methods with density-ratio correction.
arXiv preprint:2106.00993, 2021.

Y. Huang, S. Gupta, Z. Song, K. Li, and S. Arora. Evaluat-
ing gradient inversion attacks and defenses in federated
learning. In Proc. of Advances in Neural Information
Processing Systems, 2021.

E. Imani, E. Graves, and M. White. An off-policy policy
gradient theorem using emphatic weightings. In Proc.
of Advances in Neural Information Processing Systems,
2018.

H. Jin, Y. Peng, W. Yang, S. Wang, and Z. Zhang. Federated
reinforcement learning with environment heterogeneity.
In Proc. of International Conference on Artificial Intelli-
gence and Statistics, 2022.

X. Jin, P. Chen, C. Hsu, C. Yu, and T. Chen. Cafe: Catas-
trophic data leakage in vertical federated learning. In
Proc. of Advances in Neural Information Processing Sys-
tems, 2021.

R. Kidambi, A. Rajeswaran, P. Netrapalli, and T. Joachims.
Morel: Model-based offline reinforcement learning. In
Proc. of Advances in Neural Information Processing Sys-
tems, 2020.

V. Konda and V. Borkar. Actor-critic–type learning algo-
rithms for markov decision processes. SIAM Journal on
Control and Optimization, 38(1):94–123, 1999.

http://airc.rpi.edu
http://ibm.biz/AIHorizons

Distributed Offline Policy Optimization Over Batch Data

J. Konečný, H. B. McMahan, D. Ramage, and P. Richtárik.
Federated optimization: Distributed machine learning for
on-device intelligence. arXiv preprint:1610.02527, 2016.

A. Kumar, J. Fu, G. Tucker, and S. Levine. Stabilizing
off-policy q-learning via bootstrapping error reduction.
In Proc. of Advances in Neural Information Processing
Systems, 2019.

A. Kumar, A. Zhou, G. Tucker, and S. Levine. Conservative
q-learning for offline reinforcement learning. In Proc.
of Advances in Neural Information Processing Systems,
2020.

B. Lee, J. Lee, and K. Kim. Representation balancing
offline model-based reinforcement learning. In Proc. of
International Conference on Learning Representations,
2021.

S. Lee and D. Choi. Federated reinforcement learning for
energy management of multiple smart homes with dis-
tributed energy resources. IEEE Transactions on Indus-
trial Informatics, 18(1):488–497, 2020.

Y. Li, X. Li, G. Li, , and Z. Li. Privacy protection in pro-
sumer energy management based on federated learning.
IEEE Access, 9(1):16707–16715, 2021.

B. Liu, L. Wang, and M. Liu. Lifelong federated reinforce-
ment learning: A learning architecture for navigation in
cloud robotic systems. IEEE Robotics and Automation
Letters, 4(4):4555–4562, 2019a.

L. Liu, J. Zhang, S. H. Song, and K. B. Letaief. Client-edge-
cloud hierarchical federated learning. In Proc. IEEE
International Conference on Communications, 2020a.

Q. Liu, L. Li, Z. Tang, and D. Zhou. Breaking the curse
of horizon: Infinite-horizon off-policy estimation. arXiv
preprint:1810.12429, 2018.

Y. Liu, A. Swaminathan, A. Agarwal, and E. Brunskill.
Off-policy policy gradient with stationary distribution
correction. In Proc. of Conference on Uncertainty in
Artificial Intelligence, 2019b.

Y. Liu, S. Sun, Z. Ai, S. Zhang, Z. Liu, and H. Yu. Fedcoin:
A peer-to-peer payment system for federated learning.
arXiv preprint:2002.11711, 2020b.

Y. Liu, A. Swaminathan, A. Agarwal, and E. Brunskill.
Provably good batch reinforcement learning without great
exploration. arXiv preprint:2007.08202, 2020c.

T. Matsushima, H. Furuta, Y. Matsuo, O. Nachum,
and S. Gu. Deployment-efficient reinforcement learn-
ing via model-based offline optimization. arXiv
preprint:2006.03647, 2020.

H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and
B. A. Arcas. Communication-efficient learning of deep
networks from decentralized data. In Proc. of Interna-
tional Conference on Artificial Intelligence and Statistics,
2017.

J. Mei, C. Xiao, C. Szepesvari, and D. Schuurmans. On the
global convergence rates of softmax policy gradient meth-
ods. In Proc. of International Conference on Machine
Learning, 2020.

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap,
T. Harley, D. Silver, and K. Kavukcuoglu. Asynchronous
methods for deep reinforcement learning. In Proc. of
International Conference on Machine Learning, 2016.

S. A. Murphy, Mark J van der Laan, J. M. Robins, and
Conduct Problems Prevention ResearchGroup. Marginal
mean models for dynamic regimes. Journal of the Ameri-
can Statistical Association, 96(456):1410–1423, 2001.

O. Nachum, Y. Chow, B. Dai, and L. Li. Dualdice: Behavior-
agnostic estimation of discounted stationary distribution
corrections. In Proc. of Advances in Neural Information
Processing Systems, 2019a.

O. Nachum, B. Dai, I. Kostrikov, Y. Chow, L. Li, and
D. Schuurmans. Algaedice: Policy gradient from ar-
bitrary experience. arXiv preprint:1912.02074, 2019b.

X. Nguyen, M. J. Wainwright, and M. I. Jordan. Estimating
divergence functions and the likelihood ratio by convex
risk minimization. IEEE Transactions on Information
Theory, 56(11):5847–5851, 2010.

N. Papernot, M. Abadi, U. Erlingsson, I. Goodfellow, and
K. Talwar. Federated semi-supervised learning with inter-
client consistency and disjoint learning. In Proc. of Inter-
national Conference on Learning Representations, 2017.

N. Papernot, S. Song, I. Mironov, A. Raghunathan, K. Tal-
war, and U. Erlingsson. Scalable private learning with
pate. In Proc. of International Conference on Learning
Representations, 2018.

D. Pollard. Convergence of stochastic processes. Springer-
Verlag Berlin and Heidelberg GmbH and Co. KG, 1984.

F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu. 1-bit stochas-
tic gradient descent and its application to data-parallel
distributed training of speech dnns. In Proc. Interspeech,
2014.

N. Y. Siegel, J. T. Springenberg, F. Berkenkamp, A. Ab-
dolmaleki, M. Neunert, T. Lampe, R. Hafner, N. Heess,
and M. Riedmiller. Keep doing what worked: Behavioral
modelling priors for offline reinforcement learning. In
Proc. of International Conference on Learning Represen-
tations, 2020.

V. Smith, C. Chiang, M. Sanjabi, and A. Talwalkar. Fed-
erated multi-task learning. arXiv preprint:1705.10467,
2018.

S. U Stich, J. Cordonnier, and M. Jaggi. Sparsified sgd with
memory. In Proc. of Advances in Neural Information
Processing Systems, 2018.

R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour.
Policy gradient methods for reinforcement learning with

Han Shen⋆, Songtao Lu†, Xiaodong Cui†, Tianyi Chen⋆

function approximation. In Proc. of Advances in Neural
Information Processing Systems, 2000.

T. Tu, G. Thomas, L. Yu, S. Ermon, J. Zou, S. Levine,
C. Finn, and T. Ma. Mopo: Model-based offline policy
optimization. In Proc. of Advances in Neural Information
Processing Systems, 2020.

J. Wang and G. Joshi. Cooperative sgd: A unified framework
for the design and analysis of communication-efficient
sgd algorithms. arXiv preprint:1806.00582, 2018.

Y. Wu, G. Tucker, and O. Nachum. Behavior regularized of-
fline reinforcement learning. arXiv preprint:1911.11361,
2019.

M. Yang, O. Nachum, B. Dai, L. Li, and D. Schuurmans.
Off-policy evaluation via the regularized lagrangian. In
Proc. of Advances in Neural Information Processing Sys-
tems, 2020.

J. Yoon, W. Jeong, G. Lee, E. Yang, and S. J. Hwang. Feder-
ated continual learning with weighted inter-client transfer.
In Proc. of International Conference on Machine Learn-
ing, 2021.

H. Yu, S. Yang, and S. Zhu. Parallel restarted sgd with faster
convergence and less communication: Demystifying why
model averaging works for deep learning. In Proc. of
AAAI Conference on Artificial Intelligence, 2019.

T. Yu, A. Kumar, R. Rafailov, A. Rajeswaran, S. Levine,
and C. Finn. Combo: Conservative offline model-based
policy optimization. arXiv preprint:2102.08363, 2021.

J. Zhang, J. Kim, B. Donoghue, and S. Boyd. Sample
efficient reinforcement learning with reinforce. In Proc.
of AAAI Conference on Artificial Intelligence, 2021a.

K. Zhang, A. Koppel, H. Zhu, and T. Başar. Global con-
vergence of policy gradient methods to (almost) locally
optimal policies. SIAM Journal on Applied Mathematics,
58(6):3586–3612, 2019a.

R. Zhang, B. Dai, L. Li, and D. Schuurmans. Gendice: Gen-
eralized offline estimation of stationary values. In Proc.
of International Conference on Learning Representations,
2020.

S. Zhang, W. Boehmer, and S. Whiteson. Generalized off-
policy actor-critic. In Proc. of Advances in Neural Infor-
mation Processing Systems, 2019b.

W. Zhang, Q. Lu, Q. Yu, Z. Li, Y. Liu, S. K. Lo, S. Chen, and
L. Xu, X.and Zhu. Blockchain-based federated learning
fordevice failure detection in industrial iot. IEEE Internet
of Things Journal, 8(7):5926 – 5937, 2021b.

Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chan-
dra. Federated learning with non-iid data. arXiv
preprint:1806.00582, 2018.

Distributed Offline Policy Optimization Over Batch Data

Supplementary Material for
“Distributed Offline Policy Optimization Over Logged Data"

A Preliminary

A.1 Proof of Lemma 1

Proof. With Assumption 1, we can use the variational form of DX 2

(
dπθ ||d̄D

)
(Nguyen et al., 2010) by introducing a dual

variable x ∈ RS×A and rewrite (5) as

max
θ∈Rd

min
x∈RS×A

F̃λ(θ, x) := Es,a∼dπθ [r(s, a)] + τR(θ)

+
λ

2
Es,a∼d̄D [x(s, a)

2]− λEs,a∼dπθ [x(s, a)] (25)

where given πθ, the optimal solution for x is given by x∗θ(s, a) := dπθ (s, a)/d̄D(s, a).

By defining the Bellman operator Bπθv(s, a) := r(s, a)+γEs′∼P(·|s,a),a′∼πθ(·|s′)[v(s
′, a′)], we can use a change of variable

x(s, a) = 1
λ (Bπθv − v)(s, a) to rewrite (25) as

max
θ∈Rd

min
v∈RS×A

Fλ(θ, v) := (1− γ)Es0∼ρ,a0∼πθ
[
v(s0, a0)

]
+
λ

2
Es,a∼d̄D

[(
(Bπθv − v)(s, a)/λ

)2]
+ τR(θ). (26)

However, Fλ(θ, v) still is not easy to optimize due to the expectation inside the quadratic function, which will cause the
so-called double sampling problem when trying to obtain the unbiased gradient of Fλ(θ, v).

To tackle this problem, we can use the convex conjugate technique: Any convex function f(x) can be written as f(x) =
maxµ µx+ f∗(µ) where f∗ is the convex conjugate of f . With the fact that the conjugate of f(x) = 1

2x
2 is itself, we can

rewrite the quadratic term in (26) and obtain an equivalent objective

max
θ∈Rd

min
v∈RS×A

max
µ∈RS×A

Fλ(θ, v, µ) :=
1

N

N∑
n=1

Fnλ (θ, v, µ) (27)

with Fnλ (θ, v, µ) := (1− γ)E s0∼ρ
a0∼πθ

[
v(s0, a0)

]
+ Es,a∼dnD

[(
Bπθv − v

)
(s, a)µ(s, a)− λ

2
µ(s, a)2

]
+ τR(θ).

Using the optimality condition of Fλ(θ, v, µ) with respect to µ(s, a), we have

µ∗
θ(s, a) =

1

λ

(
Bπθv∗θ − v∗θ

)
(s, a)︸ ︷︷ ︸

x∗
θ(s,a)

=
dπθ (s, a)

1
N

∑N
n=1 d

n
D(s, a)

. (28)

Solving (28) with respect to v∗θ gives

v∗θ(s, a) = Eπθ
[∞∑
t=0

γt
(
r(st, at)−λ

dπθ
d̄D

(st, at)
)∣∣∣s0=s, a0=a]. (29)

This completes the proof.

A.2 Proof of Lemma 2

To prove Lemma 2, we first give a useful lemma on the fixed point equation of the visitation distribution as follows.

Lemma 3. Given policy π, suppose dπ is its visitation distribution under initial distribution ρ and transition kernel P . For
any Z : S ×A −→ Rd s.t. ∥Z∥ <∞, we have

Es,a∼dπ
[
Z(s, a)

]
= (1− γ)Es0∼ρ,a0∼π(·|s0)

[
Z(s0, a0)

]
+ γEs,a∼dπ,s′∼P(·|s,a),a′∼π(·|s′)

[
Z(s′, a′)

]
. (30)

Han Shen⋆, Songtao Lu†, Xiaodong Cui†, Tianyi Chen⋆

Proof. Expanding the expectation in the second term in RHS of (30) gives

γEs,a∼dπ,s′∼P(·|s,a),a′∼π(·|s′)

[
Z(ds′, da′)

]
= (1− γ)

∫
s∈S

∫
a∈A

∞∑
t=0

γt+1P(st = ds, at = da)

∫
s′∈S

∫
a′∈A

P(ds′|ds, da)π(da′|ds′)Z(ds′, da′)

= (1− γ)

∫
s′∈S

∫
a′∈A

∞∑
t=0

γt+1

∫
s∈S

∫
a∈A

P(st+1 = ds′, at+1 = da′, st = ds, at = da)Z(ds′, da′)

= (1− γ)

∫
s′∈S

∫
a′∈A

∞∑
t=1

γtP(st = ds′, at = da′)Z(ds′, da′), (31)

where the first equality is due to the definition of dπ , and the second equality is due to the interchangeability of integral.

Expanding the expectation in the first term in RHS of (30) gives

(1− γ)Es0∼ρ,a0∼π(·|s0)
[
Z(s0, a0)

]
= (1− γ)

∫
S

∫
A
γ0P(s0 = ds, a0 = da)Z(ds, da). (32)

Adding (31) and (32) together gives

(1− γ)Es0∼ρ,a0∼π(·|s0)
[
Z(s0, a0)

]
+ γEs,a∼dπ,s′∼P(·|s,a),a′∼π(·|s′)

[
Z(s′, a′)

]
=

∫
S

∫
A
(1− γ)

∞∑
t=0

γtP(st = ds, at = da)Z(ds, da) = Es,a∼dπ
[
Z(s, a)

]
(33)

which completes the proof.

Now we are ready to give the proof of Lemma 2.

Proof. By reversing the derivation of (27) to (26), we have Fλ(θ, v∗θ , ζ
∗
θ) = Fλ(θ, v

∗
θ). Then we have

∇θFλ(θ, v
∗
θ , ζ

∗
θ) = ∇θFλ(θ, v

∗
θ)

= (1− γ)∇θEs0∼ρ,a0∼πθ
[
v∗θ(s0, a0)

]
+∇θEs,a∼d̄D

[1
λ
(Bπθv∗θ − v∗θ)(s, a)∇θBπθv∗θ(s, a)

]
+ τ∇θR(θ)

= (1− γ)∇θEs0∼ρ,a0∼πθ
[
v∗θ(s0, a0)

]
+ Es,a∼dπθ

[
∇θBπθv∗θ(s, a)

]
+ τ∇θR(θ)

= (1− γ)Es0∼ρ,a0∼πθ
[
v∗θ(s0, a0)ψθ(s0, a0)

]
+ Es,a∼dπθ ,s′∼P,a′∼πθ

[
v∗θ(s

′, a′)ψθ(s
′, a′)

]
+ τ∇θR(θ)

(34)

where the third equality follows from (28), and the last equality is obtained by using the so-called log-trick:

∇θπθ(a|s) = πθ(a|s)ψθ(s, a). (35)

Applying Lemma 3 to (34) gives

∇θFλ(θ, v
∗
θ , ζ

∗
θ) = Es,a∼dπθ

[
v∗θ(s, a)ψθ(s, a)

]
+ τ∇R(θ) (36)

which completes the proof.

A.3 Definitions

With the definition in (17), F̂nλ (θ, v, µ) with linear parametrization of v and µ can be written as

F̂nλ (θ, ωv, ωµ) = bnθωv + ω⊤
v A

n
θωµ + ω⊤

µ h
n − λ

2
ω⊤
µ C

nωµ − τR(θ). (37)

Distributed Offline Policy Optimization Over Batch Data

We then define Gnθ which will later be used in proof of Theorem 4:

Gnθ :=

[
0

√
φAnθ

−√
φ(Anθ)

⊤ φλCn

]
. (38)

We also define d̂D := 1
N

∑N
n=1 d̂

n
D and ρ̂ = 1

N

∑N
n=1 ρ̂

n. The distribution d̂D and ρ̂ can be respectively viewed as the
empirical distribution of samples in {Dn}Nn=1 and {Dn

0 }Nn=1, which aggregate the data from all clients. Then we have the
empirical surrogation of the global objective function Fλ(θ, v, µ) can be written as

F̂λ(θ, ωv, ωµ) = bθωv + ω⊤
v Aθωµ + ω⊤

µ h− λ

2
ω⊤
µ Cωµ − τR(θ), (39)

where Aθ, bθ, C and h are respectively the average of Anθ , bnθ , Cn and hn for n ∈ {1, 2, . . . , N}:

Aθ :=
1

N

N∑
n=1

Anθ = Es,a,s′∼d̂D,a′∼πθ
[
(γϕ(s′, a′)− ϕ(s, a))ϕ(s, a)⊤

]
(40a)

bθ :=
1

N

N∑
n=1

bnθ = (1− γ)Es0∼ρ̂,a0∼πθ [ϕ(s0, a0)] (40b)

C :=
1

N

N∑
n=1

Cn = Es,a∼d̂D [ϕ(s, a)ϕ(s, a)
⊤] (40c)

h :=
1

N

N∑
n=1

hn = Es,a∼d̂D [r(s, a)ϕ(s, a)]. (40d)

Then we can also define the averaged matrix Gθ

Gθ :=
1

N

N∑
n=1

Gnθ =

[
0

√
φAθ

−√
φ(Aθ)

⊤ φλC

]
. (41)

We define the linear function classes Fv := {ϕ(·)⊤ωv|ωv ∈ Rd1 , ∥ωv∥2 ≤ Rv} and Fµ := {ϕ(·)⊤ωµ|ωµ ∈
Rd1 , ∥ωµ∥2 ≤ Rµ}. Given πθ, define v̂∗θ , µ̂

∗
θ := argminv∈Fv maxµ∈Fµ F̂λ(θ, v, µ). Under linear parametrization,

v̂∗θ(s, a) = ϕ(s, a)⊤ω̂∗
v(θ) and µ̂∗

θ(s, a) = ϕ(s, a)⊤ω̂∗
µ(θ). We also define ṽ∗θ , µ̃

∗
θ ∈ argminv∈Fv maxµ∈Fµ Fλ(θ, v, µ).

Under linear parametrization, ṽ∗θ(s, a) = ϕ(s, a)⊤ω̃∗
v(θ) and µ̃∗

θ(s, a) = ϕ(s, a)⊤ω̃∗
µ(θ).

Lastly, we define the concatenated critic variable as ω := [ωv,
1√
φωµ]

⊤ ∈ R2d1 and ω̂∗(θ) := [ω∗
v(θ),

1√
φω

∗
µ(θ)]

⊤ is

the optimal ω of the empirical objective function F̂λ(θ, v, µ). Similarly, define ω̄ := [ω̄v
1√
φ ω̄µ]

⊤ as the concatenated
client-averaged critic variable.

B Proof of Theorem 1

B.1 Main proof

We first give a proposition regarding the Lτ -Lipschitz of the policy gradient under Assumption 3, which has been shown by
(Agarwal et al., 2020; Zhang et al., 2019a).

Proposition 1. Suppose Assumption 3 holds. For any θ, θ′ ∈ Rd, we have ∥∇Jτ (θ)−∇Jτ (θ′)∥2 ≤ Lτ∥θ − θ′∥2, where
Lτ is a positive constant.

Now we begin to consider Algorithm 1. Recall the policy update takes the following form

θnk+1 = θnk + αp̂nk , (42)

Recall the policy gradient estimation p̂nk is defined as

p̂nk := µnk+1(s̃, ã)v
n
k+1(s̃, ã)ψθnk (s̃, ã) + τψθnk (sp, ap), (43)

Han Shen⋆, Songtao Lu†, Xiaodong Cui†, Tianyi Chen⋆

where (s̃, ã) ∼ d̂nD, sp ∼ ηp and ap ∼ πp(·|sp). Note that the random samples in (43) is obtained by client n at iteration k,
but we omit the subscriptions k, n on samples for ease of notation.

Define the client-averaged expected gradient as pk := E
[

1
N

∑N
n=1 p̂

n
k

∣∣Fk], where Fk := {µnk+1, v
n
k+1, θ

n
k}Nn=1. Then it is

easy to verify that ∥p̂nk∥2 ≤ Cp := CµCvCψ + τCψ and ∥pk∥2 ≤ Cp, where Cv, Cµ are respectively the upper bound of
∥ωnv,k∥2 and ∥ωnµ,k∥2 as shown in Lemma 7

Now we are ready to give the convergence proof.

Proof. By Proposition 1, we have

Jτ (θ̄k+1) ≥ Jτ (θ̄k) +
〈
∇Jτ (θ̄k), θ̄k+1 − θ̄k

〉
− Lτ

2

∥∥θ̄k+1 − θ̄k
∥∥2
2
. (44)

The second term can be bounded as

E[
〈
∇Jτ (θ̄k), θ̄k+1 − θ̄k

〉
] = αE

〈
∇Jτ (θ̄k),

1

N

N∑
n=1

p̂nk

〉
= αE

〈
∇Jτ (θ̄k), pk

〉
=
α

2
E
[∥∥∇Jτ (θ̄k)∥∥22 + ∥∥pk∥∥22 − ∥∥∇Jτ (θ̄k)− pk

∥∥2
2

]
(45)

where the second equality is due to the towering property of expectation. Taking expectation on both sides of (44) and
substituting the above bound into it yield

E
[
Jτ (θ̄k+1)] ≥ E[Jτ (θ̄k)] +

α

2
E
∥∥∇Jτ (θ̄k)∥∥22 + α

2
E
∥∥pk∥∥22 − α

2
E
∥∥∇Jτ (θ̄k)− pk

∥∥2
2

− Lτ
2
E
∥∥θ̄k+1 − θ̄k

∥∥2
2
. (46)

Define a Lyapunov function Lk := −Jτ (θ̄k) +
∥∥ω̄k − ω̂∗

k

∥∥2
2
, where ω̂∗

k is the shorthand notation for ω̂∗(θ̄k). Then we have

E[Lk+1 − Lk] = −E
[
Jτ (θ̄k+1)− Jτ (θ̄k)] + E

∥∥ω̄k+1 − ω̂∗
k+1

∥∥2
2
− E

∥∥ω̄k − ω̂∗
k

∥∥2
2

≤ −α
2
E
∥∥∇Jτ (θ̄k)∥∥22 − α

2
E
∥∥pk∥∥22 + α

2
E
∥∥∇Jτ (θ̄k)− pk

∥∥2
2

+
Lτ
2
E
∥∥θ̄k+1 − θ̄k

∥∥2
2
+ E

∥∥ω̄k+1 − ω̂∗
k+1

∥∥2
2
− E

∥∥ω̄k − ω̂∗
k

∥∥2
2

(47)

where the last inequality follows from (46).

Applying Theorem 4 and Lemma 4 to the last inequality gives

E[Lk+1 − Lk] ≤ −α
2
E
∥∥∇Jτ (θ̄k)∥∥22 − α

4
E
∥∥pk∥∥22 + (

1 + (4L2
ω + C2

ψC
2
v,µ + 1)α

)
∥ω̄k+1 − ω̂∗

k∥22 − E
∥∥ω̄k − ω̂∗

k

∥∥2
2

+
Lτ + 2L2

ω

2
E
∥∥θ̄k+1 − θ̄k

∥∥2
2
+
(C1

2
+
C4
pL

2
ω,2

2

)
(I − 1)2α3 +

C2

2
(I − 1)2αβ2 + αϵ

≤ −α
2
E
∥∥∇Jτ (θ̄k)∥∥22 − (α

4
− Lτ + 2L2

ω

2
α2

)
E
∥∥pk∥∥22 + (

1 + (4L2
ω + C2

ψC
2
v,µ + 1)α

)
∥ω̄k+1 − ω̂∗

k∥22

− E
∥∥ω̄k − ω̂∗

k

∥∥2
2
+
(C1

2
+
C4
pL

2
ω,2

2

)
(I − 1)2α3 +

C2

2
(I − 1)2αβ2 +

(Lτ + L2
ω)C

2
p

N
α2 + αϵ (48)

where ϵ = Õ
(√

log 3
δ

NM

)
+O

(
ϵapp

)
+O

(
ϵλ
)

is an error term. The last inequality follows from

E
∥∥θ̄k+1 − θ̄k

∥∥2
2
= α2E

∥∥∥ 1

N

N∑
n=1

p̂nk

∥∥∥2
2
= α2

(
E
∥∥∥ 1

N

N∑
n=1

(
p̂nk − E

[
p̂nk

∣∣Fk])∥∥∥2
2
+ E

∥∥pk∥∥22)

= α2

(
1

N

N∑
n=1

E
∥∥p̂nk − E

[
p̂nk

∣∣Fk]∥∥22 + E
∥∥pk∥∥22)

Distributed Offline Policy Optimization Over Batch Data

≤ α2
(2C2

p

N
+ E

∥∥pk∥∥22), (49)

where the second equality follows from the basic equation E∥Z∥2 = E∥Z − E[Z]∥2 + ∥E[Z]∥2, and the third equality is
due to the fact that p̂nk − E

[
p̂nk

∣∣Fk] has zero mean and is conditionally independent across n ∈ {1, 2, . . . , N} given Fk.

In the following proof, we will hide some unimportant constants with O(·) for brevity. We assume K is large enough such
that α ≤ 1. Then applying (87b) in Theorem 4 to (48) gives

E[Lk+1 − Lk]

≤ −α
2
E
∥∥∇Jτ (θ̄k)∥∥22 − (α

4
− Lτ + 2L2

ω

2
α2

)
E
∥∥pk∥∥22

+
((

1 + (4L2
ω + C2

ψC
2
v,µ + 1)α

)(
1− Cλβ + C ′

6β
2
)
− 1

)
E
∥∥ω̄k − ω̂∗

k

∥∥2
2

+O
(
(I − 1)2α3

)
+O

(
(I − 1)2αβ2

)
+O

(
(I − 1)2β3

)
+O

(α2 + β2

N

)
+ αϵ. (50)

Choose α =
√

N
K , and β =

2(4L2
ω+C

2
ψ+C

2
v,µ+1)

Cλ
α. Then for K ≥ max{4(Lτ +2L2

ω)
2, 16(4L2

ω+C
2
φ+C

2
v,µ+1)2/C4

λ}N ,
we have that

α

4
− Lτ + 2L2

ω

2
α2 ≥ 0, (51)(

1 + (4L2
ω + C2

ψC
2
v,µ + 1)α

)(
1− Cλβ + C ′

6β
2
)
≤ 1. (52)

Then dropping the negative term in RHS of (50) and rearranging give

α

2
E
∥∥∇Jτ (θ̄k)∥∥22 ≤ E[Lk − Lk+1] +O

(
(I − 1)2α3

)
+O

(
(I − 1)2αβ2

)
+O

(
(I − 1)2β3

)
+O

(α2 + β2

N

)
+ αϵ. (53)

Assume I4N3 = O(K), then by the choice of step sizes, the last inequality implies

1

K

K∑
k=1

E
∥∥∇Jτ (θ̄k)∥∥22 = O

(1√
NK

)
+ Õ

(√
log 3

δ

NM

)
+O

(
ϵapp

)
+O

(
ϵλ
)

(54)

which completes the proof.

B.2 Bounding the gradient bias

Let v̄k and µ̄k be parametrized by the averaged parameters ω̄v,k and ω̄µ,k respectively. We first give the theorem regarding
the convergence of v and µ, which will help us prove Lemma 4.

Theorem 3. Consider Algorithm 1. Suppose vn and µn are parametrized linearly, i.e. vn(s, a) = ϕ(s, a)⊤ωnv and
µn(s, a) = ϕ(s, a)⊤ωnµ . Suppose Assumption 1-3 hold, then with probability greater than 1− δ we have∥∥∥Ê[µ̄k+1(s, a)v̄k+1(s, a)ψθ̄k(s, a)

]
− Ē

[
µ∗
θ̄k
(s, a)v̂∗θ̄k(s, a)ψθ̄k(s, a)

]∥∥∥2
2

≤ 2C2
ψC

2
v,µ∥ω̄k+1 − ω̂∗(θ̄k)∥22 + Õ

(√
log 3

δ

NM

)
+O

(
ϵapp(Fv,Fµ)

)
, (55a)

and

E
[(
v̂∗θ̄k(s, a)− v∗θ̄k(s, a)

)2]
= Õ

(√
log 3

δ

NM

)
+O

(
ϵapp(Fv)

)
+O

(
ϵapp(Fµ)

)
, (55b)

where ϵapp(Fv), ϵapp(Fµ) and ϵapp(Fv,Fµ) are function approximation errors.

Han Shen⋆, Songtao Lu†, Xiaodong Cui†, Tianyi Chen⋆

Given Theorem 3, we are ready to bound the gradient bias.

Lemma 4 (Estimation error of policy gradient). Consider Algorithm 1. Under the same conditions of Theorem 1, it holds
with probability at least 1− δ that

E
∥∥∇Jτ (θ̄k)− pk

∥∥2
2
≤ 2C2

ψC
2
v,µ∥ω̄k+1 − ω̂∗(θ̄k)∥22 + C1(I − 1)2α2 + C2(I − 1)2β2

+ Õ
(√

log 3
δ

NM

)
+O

(
ϵapp

)
+O

(
ϵλ
)
, (56)

where Cv,µ, C1, C2 are some positive constants.

Proof. We first define the virtual stochastic gradient with averaged parameters as

p̄nk := µ̄k+1(s̃, ã)v̄k+1(s̃, ã)ψk(s̃, ã) + τψk(sp, ap), (57)

where and ψk is the shorthand notations for ψθ̄k . Note that random samples in (57) is the same as that in p̂nk . We slightly
abuse the notation and omit the subscriptions k, n on samples.

We then define the client averaged expectation of p̄nk

p̄k := E
[1

N

N∑
n=1

p̄nk

∣∣∣Fk]
= Es,a∼d̂D

[
µ̄k+1(s, a)v̄k+1(s, a)ψk(s, a)

]
+τ∇R(θ̄k). (58)

We also define the optimal p̄k as

p∗k := Es,a∼d̄D
[
µ∗
k(s, a)v

∗
k(s, a)ψk(s, a)

]
+τ∇R(θ̄k), (59)

where v∗k and µ∗
k are the shorthand notations for v∗

θ̄k
and µ∗

θ̄k
respectively. Recall v∗θ is defined in (8) and µ∗

θ = dπθ/d̄D.

We can decompose the policy gradient error as∥∥∇Jτ (θ̄k)− pk
∥∥2
2
≤ 3

∥∥∥pk − p̄k

∥∥∥2
2︸ ︷︷ ︸

I1

+3
∥∥p̄k − p∗k

∥∥2
2︸ ︷︷ ︸

I2

+3
∥∥∇Jτ (θ̄k)− p∗k

∥∥2
2︸ ︷︷ ︸

I3

. (60)

Consider I1 first. By definition of pk,

I1 =
∥∥∥E[1

N

N∑
n=1

p̂nk − p̄nk
∣∣Fk]∥∥∥2

2
≤ 1

N

N∑
n=1

E
[∥∥p̂nk − p̄nk

∥∥2
2

∣∣Fk]. (61)

Consider the term
∥∥p̂nk − p̄nk

∥∥2
2

in the last inequality. By definition we have∥∥p̂nk − p̄nk
∥∥2
2

≤ 4
∥∥∥µnk+1(s, a)

(
vnk+1(s, a)− v̄k+1(s, a)

)
ψk(s, a)

∥∥∥2
2
+ 4

∥∥∥µnk+1(s, a)v̄k+1(s, a)
(
ψθnk (s, a)− ψk(s, a)

)∥∥∥2
2

+ 4
∥∥∥(µnk+1(s, a)− µ̄k+1(s, a)

)
v̄k+1(s, a)ψk(s, a)

∥∥∥2
2
+ 4

∥∥∥τψθ̄k(sp, ap)− τψθnk (sp, ap)
∥∥∥2
2

≤ 4C2
µC

2
ψ

∥∥ωnv,k+1 − ω̄nv,k+1

∥∥2
2
+ 4(C2

µC
2
v + τ2)

∥∥θnk − θ̄k
∥∥2
2
+ 4C2

vC
2
ψ

∥∥ωnµ,k+1 − ω̄µ,k+1

∥∥2
2
, (62)

Substituting (62) into (61) gives

I1 ≤ 4C2
µC

2
ψ

∥∥ωnv,k+1 − ω̄nv,k+1

∥∥2
2
+ 4(C2

µC
2
v + τ2)

∥∥θnk − θ̄k
∥∥2
2
+ 4C2

vC
2
ψ

∥∥ωnµ,k+1 − ω̄µ,k+1

∥∥2
2

≤ C1(I − 1)2α2 + C2(I − 1)2β2, (63)

where the last inequality follows from Lemma 5, C1 = 8(C2
µC

2
v + τ2)C2

p , and C2 = 8(C2
v + C2

µ)C
2
ψC

2
q .

Distributed Offline Policy Optimization Over Batch Data

Term I2 can be further decomposed as

∥∥p̄k − p∗k
∥∥2
2
≤ 2

∥∥∥∥Ê[µ̄k+1(s, a)v̄k+1(s, a)ψk(s, a)
]
− Ē

[
µ∗
k(s, a)v̂

∗
k(s, a)ψk(s, a)

]∥∥∥∥2
2

+ 2

∥∥∥∥Ē[µ∗
k(s, a)

(
v̂∗k − v∗k

)
(s, a)ψk(s, a)

]∥∥∥∥2
2

≤ 2

∥∥∥∥Ê[µ̄k+1(s, a)v̄k+1(s, a)ψk(s, a)
]
− Ē

[
µ∗
k(s, a)v̂

∗
k(s, a)ψk(s, a)

]∥∥∥∥2
2

+ 2C2
dC

2
ψĒ

[(
v̂∗k − v∗k

)2
(s, a)

]
(64)

where we use Ê and Ē as shorthand notations for Es,a∼d̂D and Es,a∼d̄D respectively.

Applying Theorem 3 yield

E[I3] = 2C2
ψC

2
v,µ∥ω̄k+1 − ω̂∗(θ̄k)∥22 + Õ

(√
log 3

δ

NM

)
+O

(
ϵapp

)
(65)

which holds with probability greater than 1 − δ, and function approximation error ϵapp := ϵapp(Fv) + ϵapp(Fµ) +
ϵapp(Fv,Fµ).

Now we consider I4. By the definition of µ∗
θ , we have

p∗k = Es,a∼dπk
[
v∗k(s, a)ψk(s, a)

]
+ τ∇R(θ̄k), (66)

then we have ∥∥∇Jτ (θ̄k)− p∗k
∥∥2
2
=

∥∥∥Es,a∼dπk [(v∗k −Qπk
)
(s, a)ψk(s, a)

]∥∥∥2
2

=

∥∥∥∥Es,a∼dπk[E[∞∑
t=0

γtλ
dπk
d̄D

(st, at)
∣∣∣s0 = s, a0 = a

]
ψk(s, a)

]∥∥∥∥2
2

≤ ϵλ =

(
λ
CψCd
1− γ

)2

. (67)

Taking expected running average of both sides of (60), then substituting the upper bounds in (63), (65) and (67) into (60)
gives

E
∥∥∇Jτ (θ̄k)− pk

∥∥2
2
= 2C2

ψC
2
v,µ∥ω̄k+1 − ω̂∗(θ̄k)∥22 + C1(I − 1)2α2 + C2(I − 1)2β2

+ Õ
(√

log 3
δ

NM

)
+O

(
ϵapp

)
+O

(
ϵλ
)

(68)

which holds with probability greater than 1− δ. This completes the proof.

B.3 Bounding the consensus error

The following lemma bounds the difference between local sequences and their average.

Lemma 5. Under linear parametrization of vn and µn, consider Algorithm 1 under Assumption 2. For any iteration k, it
holds that

∥θnk − θ̄k∥22 ≤ 2(I − 1)2C2
pα

2 (69a)

∥ωnv,k − ω̄v,k∥22 ≤ 2(I − 1)2C2
qβ

2 (69b)

∥ωnµ,k − ω̄µ,k∥22 ≤ 2(I − 1)2C2
qβ

2. (69c)

Han Shen⋆, Songtao Lu†, Xiaodong Cui†, Tianyi Chen⋆

Proof. At any iteration k, the server update in Algorithm 1 guarantees that there exists a iteration number k0 ∈ [k− I+1, k]
such that θnk0 = θ̄k0 . Then we have

∥θnk − θ̄k∥22 =

∥∥∥∥θnk0 + k−1∑
i=k0

αp̂ni − θ̄k0 −
1

N

N∑
n=1

k−1∑
i=k0

αp̂ni

∥∥∥∥2
2

=

∥∥∥∥ k−1∑
i=k0

α

(
p̂ni − 1

N

N∑
n=1

p̂ni

)∥∥∥∥2
2

≤ (k − k0)

k−1∑
i=k0

∥∥∥∥α(p̂ni − 1

N

N∑
n=1

p̂ni

)∥∥∥∥2
2

≤ (k − k0)

k−1∑
i=k0

2α2C2
p ≤ 2(I − 1)2C2

pα
2 (70)

where the last inequality follows from k0 ∈ [k − I + 1, t]. Similarly, it can be proven that

∥ωnv,k − ω̄v,k∥22 ≤ 2(I − 1)2C2
qβ

2,

∥ωnµ,k − ω̄µ,k∥22 ≤ 2(I − 1)2C2
qβ

2, (71)

where Cq := max{2Cµ + 1, λCµ + 2Cv + rmax}.

C Analysis of critic

C.1 Proof of Theorem 3

In the proof, we write v̂∗
θ̄k

, v̄∗
θ̄k

and v∗
θ̄k

in short as v̂∗k, v̄∗k and v∗k respectively (and likewise for µ).

Proof. First we begin to prove (55a). We decompose the error as∥∥∥∥Ê[µ̄k+1(s, a)v̄k+1(s, a)ψk(s, a)
]
− Ē

[
µ∗
k(s, a)v̂

∗
k(s, a)ψk(s, a)

]∥∥∥∥2
2

≤ 4

∥∥∥∥Ê[µ̄k+1(s, a)v̄k+1(s, a)ψk(s, a)
]
− Ê

[
µ̂∗
k(s, a)v̂

∗
k(s, a)ψk(s, a)

]∥∥∥∥2
2︸ ︷︷ ︸

I1

+ 4

∥∥∥∥Ê[µ̂∗
k(s, a)v̂

∗
k(s, a)ψk(s, a)

]
− Ē

[
µ̂∗
k(s, a)v̂

∗
k(s, a)ψk(s, a)

]∥∥∥∥2
2︸ ︷︷ ︸

I2

+ 4

∥∥∥∥Ē[µ̂∗
k(s, a)v̂

∗
k(s, a)ψk(s, a)

]
− Ē

[
µ̃∗
k(s, a)v̂

∗
k(s, a)ψk(s, a)

]∥∥∥∥2
2︸ ︷︷ ︸

I3

+ 4

∥∥∥∥Ē[µ̃∗
k(s, a)v̂

∗
k(s, a)ψk(s, a)

]
− Ē

[
µ∗
k(s, a)v̂

∗
k(s, a)ψk(s, a)

]∥∥∥∥2
2︸ ︷︷ ︸

I4

. (72)

We will bound the terms one by one. The first term I1 can be bounded as

I1 ≤ Ê
∥∥∥µ̄k+1(s, a)v̄k+1(s, a)ψk(s, a)− µ̂∗

k(s, a)v̂
∗
k(s, a)ψk(s, a)

∥∥∥2
2

≤ 2Ê
∥∥∥(µ̄k+1 − µ̂∗

k

)
(s, a)v̄k+1(s, a)ψk(s, a)

∥∥∥2
2
+ 2Ê

∥∥∥µ̂∗
k(s, a)

(
v̄k+1 − v̂∗k

)
(s, a)ψk(s, a)

∥∥∥2
2

≤ 2C2
vC

2
ψÊ

[(
µ̄k+1(s, a)− µ̂∗

k(s, a)
)2]

+ 2R2
µC

2
ψÊ

[(
v̄k+1(s

′, a′)− v̂∗k(s
′, a′)

)2]

Distributed Offline Policy Optimization Over Batch Data

≤ 2C2
vC

2
ψφ

1

φ

∥∥ω̄µ,k+1 − ω̂∗
µ(θ̄k)

∥∥2
2
+ 2R2

µC
2
ψ

∥∥ω̄v,k − ω̂∗
v(θ̄k)

∥∥2
2

≤ 2C2
ψC

2
v,µ∥ω̄k+1 − ω̂∗(θ̄k)∥22, (73)

where Cv,µ := max{Cv
√
φ,Rµ}, and the last inequality uses the fact that

∥ω̄ − ω̂∗(θ)∥22 =
1

φ
∥ω̄v − ω̂∗

v(θ)∥22 + ∥ω̄µ − ω̂∗
µ(θ)∥22. (74)

The term I2 is introduced by the difference between d̂D and d̄D, which is essentially caused by finite data set. By Lemma
11, with probability greater than 1− δ/3 we have

I2 = Õ
(
log 3

δ

NM

)
. (75)

Now we consider I3. First we have

I3 =

∥∥∥∥Ē[µ̂∗
k(s, a)v̂

∗
k(s, a)ψk(s, a)

]
− Ē

[
µ̃∗
k(s, a)v̂

∗
k(s, a)ψk(s, a)

]∥∥∥∥2
2

≤ R2
vC

2
ψĒ

[(
µ̂∗
k(s, a)− µ̃∗

k(s, a)
)2] ≤ R2

vC
2
ψ

∥∥ω̂∗
µ(θ̄k)− ω̃∗

µ(θ̄k)
∥∥2
2
. (76)

We see that I3 is introduced by the difference between ω̄∗
µ and ω̂∗

µ, which is again due to finite data set. By the strong-
concavity of F̂λ(θ, v, µ) with respect to ωµ and the optimality condition of ω̂∗

µ(θ), we have for any θ ∈ Rd∥∥ω̂∗
µ(θ)− ω̃∗

µ(θ)
∥∥2
2
≤ 2

η

(
F̂λ(θ, v̂

∗
θ , µ̂

∗
θ)− F̂λ(θ, v̂

∗
θ , µ̃

∗
θ)
)

≤ 2

η

(
F̂λ(θ, v̂

∗
θ , µ̂

∗
θ)− min

v∈Fv
F̂λ(θ, v, µ̃

∗
θ)
)

≤ 2

η

(
F̂λ(θ, v̂

∗
θ , µ̂

∗
θ)− min

v∈Fv
F̂λ(θ, v, µ̃

∗
θ) + Fλ(θ, ṽ

∗
θ , µ̃

∗
θ)− min

v∈Fv
Fλ(θ, v, µ̂

∗
θ)
)
, (77)

where η is the smallest eigenvalue of matrix C.

With v(1) ∈ argminv∈Fv Fλ(θ, v, µ̂
∗
θ) and v(2) ∈ argminv∈Fv F̂λ(θ, v, µ̃

∗
θ), from (77), we have∥∥ω̂∗

µ(θ)− ω̃∗
µ(θ)

∥∥2
2
≤ 2

η

(
F̂λ(θ, v̂

∗
θ , µ̂

∗
θ)− Fλ(θ, v(1), µ̂

∗
θ) + Fλ(θ, ṽ

∗
θ , µ̃

∗
θ)− F̂λ(θ, v(2), µ̃

∗
θ)
)

≤ 2

η

(
F̂λ(θ, v(1), µ̂

∗
θ)− Fλ(θ, v(1), µ̂

∗
θ) + Fλ(θ, v(2), µ̃

∗
θ)− F̂λ(θ, v(2), µ̃

∗
θ)
)

≤ 4

η
sup

θ∈Rd,v∈Fv,µ∈Fµ

∣∣∣Fλ(θ, v, µ)− F̂λ(θ, v, µ)
∣∣∣ = Õ

(√
log 1

δ

NM

)
, (78)

where the last inequality follows from Lemma 12. Substituting the last inequality into (76) gives

I3 = Õ
(√

log 3
δ

NM

)
(79)

which holds with probability greater than 1− δ/3.

Next we bound I4 as

I4 =

∥∥∥∥Ē[µ̃∗
k(s, a)v̂

∗
k(s, a)ψk(s, a)

]
− Ē

[
µ∗
k(s, a)v̂

∗
k(s, a)ψk(s, a)

]∥∥∥∥2
2

≤ Ē
∥∥∥∥µ̃∗

k(s, a)v̂
∗
k(s, a)ψk(s, a)− µ∗

k(s, a)v̂
∗
k(s, a)ψk(s, a)

∥∥∥∥2
2

≤ R2
vC

2
ψĒ

[(
µ̃∗
k(s, a)− µ∗

k(s, a)
)2] ≤ R2

vC
2
ψϵapp(Fv,Fµ), (80)

Han Shen⋆, Songtao Lu†, Xiaodong Cui†, Tianyi Chen⋆

where ϵapp(Fv,Fµ) := supθ∈Rd Ēπθ
[(
µ̃∗
θ(s, a)− µ∗

θ(s, a)
)2]

is the function approximation error. Substituting the upper
bounds in (73), (75), (79) and (80) into (72) gives the convergence result of µ∥∥∥Ê[µ̄k+1(s, a)v̄k+1(s, a)ψk(s, a)

]
− Ē

[
µ∗
k(s, a)v̂

∗
k(s, a)ψk(s, a)

]∥∥∥2
2

= 2C2
ψC

2
v,µ∥ω̄k+1 − ω̂∗(θ̄k)∥22 + Õ

(√
log 3

δ

NM
+ ϵapp(Fv,Fµ)

)
, (81)

This completes the proof of (55a).

Finally, we begin to prove (55b). By the towering property of the expectation, we have

E
[(
v̂∗k(s, a)− v∗k(s, a)

)2]
= E

[
Es,a∼d̄D

[(
v̂∗k(s, a)− v∗k(s, a)

)2]]
≤ 2

λ
E
[
Fλ(θ̄k, v̂

∗
k)− Fλ(θ̄k, v

∗
k)
]

(82)

where the last inequality follows from the strong-convexity of Fλ(θ, v) with respect to v and the optimality condition of v∗k.
Term Fλ(θ̄k, v̂

∗
k)− Fλ(θ̄k, v

∗
k) is introduced by the difference between v̂∗k and v∗k, which is further introduced by statistical

error and function approximation error. In fact, Fλ(θ̄k, v̂∗k) − Fλ(θ̄k, v
∗
k) can be bounded by following the bounding of

J(v̂∗)− J(v∗) in section D.1 of (Nachum et al., 2019a). Without repeating the proof, the following inequality holds with
probability greater than 1− δ/3

E
[(
v̂∗k(s, a)− v∗k(s, a)

)2]
= Õ

(√
log 3

δ

NM
+ ϵapp(Fv) + ϵapp(Fµ)

)
. (83)

The ϵapp(Fv) and ϵapp(Fµ) are respectively the function approximation error of vn and µn:

ϵapp(Fv) := sup
θ∈Rd

inf
v∗F,θ

[
Ed̄D

∣∣∣(Bπθv∗F,θ − v∗F,θ
)
(s, a)−

(
Bπθv∗θ − v∗θ

)
(s, a)

∣∣∣
+ Es0∼ρ,a0∼πθ

∣∣v∗F,θ(s0, a0)− v∗θ(s0, a0)
∣∣] (84a)

ϵapp(Fµ) := sup
θ∈Rd

Ed̄D
∣∣µ∗

F,θ(s, a)− µ∗
v̂θ
(s, a)

∣∣ (84b)

where v∗F,θ ∈ argminv∈Fv Fλ(θ, v), µ
∗
F,θ ∈ argmaxµ∈Fµ Fλ(θ, v̂

∗
θ , µ) and µ∗

v̂θ
:= argmaxµ∈RS×A Fλ(θ, v̂

∗
θ , µ). This

completes the proof.

C.2 Convergence of critic

Given constant φ, with the concatenated variable ω = [ωv
1√
φωµ]

⊤, we can define the concatenated local gradient as

gnk (ω) :=

[
1 0
0 1√

φ

] [
0

√
φÂnk

−√
φ(Ânk)

⊤ φλĈnk

]
ω +

[
b̂nk
−ĥnk

]
, (85)

in which Ânθ,k, b̂nθ,k, Ĉnk and ĥnk are respectively the unbiased stochastic estimation of Anθnk , bnθnk , Cn and hn with the samples
at iteration k.

Then the local update in Algorithm 1 can be written as:

ωnk+1 = ωnk −Bgnk (ω
n
k), with B :=

[
1 0
0 1√

φ

]
β. (86)

Recall ω̂∗(θ) = [ω̂∗
v(θ)

1√
φ ω̂

∗
µ(θ)]

⊤ is the optimal ω, and ω̄k = [ω̄v,k
1√
φ ω̄µ,k]

⊤ is the concatenated client-averaged
variable.

In the following proof, We write ω̂∗(θ̄k) as ω̂∗
k for notation simplicity. Now we are ready to give the convergence proof.

Distributed Offline Policy Optimization Over Batch Data

Theorem 4. Consider Algorithm 1 with linear function parametrization of vn and µn. Under Assumption 2-3, it holds that

E
∥∥ω̄k+1 − ω̂∗(θ̄k+1)

∥∥2
2
≤

(
1 + (4L2

ω + 1)α
)
E
∥∥ω̄k+1 − ω̂∗(θ̄k)

∥∥2
2
+
α

4
E∥pk∥22 +

C4
pL

2
ω,2

2
α3

+ L2
ω∥θ̄k+1 − θ̄k∥22 (87a)

and

E
∥∥ω̄k+1 − ω̂∗(θ̄k)

∥∥2
2
≤ (1− Cλβ + C ′

6β
2)E

∥∥ω̄k − ω̂∗(θ̄k)
∥∥2
2
+ (I − 1)2C ′

4β
3

+ (I − 1)2C ′
5α

2β +
4C2

gCφ

N
β2 (87b)

where C ′
4, C ′

5, C ′
6, Cφ and Cλ are some positive constants.

Proof. First we have∥∥ω̄k+1 − ω̂∗
k+1

∥∥2
2
=

∥∥ω̄k+1 − ω̂∗
k + ω̂∗

k − ω̂∗
k+1

∥∥2
2

=
∥∥ω̄k+1 − ω̂∗

k

∥∥2
2
+
∥∥ω̂∗

k − ω̂∗
k+1

∥∥2
2
+ 2

〈
ω̄k+1 − ω̂∗

k, ω̂
∗
k − ω̂∗

k+1

〉
. (88)

By the non-expansiveness of the projection operator, we have

E
∥∥ω̄k+1 − ω̂∗

k

∥∥2
2
≤

∥∥∥∥ω̄k − 1

N

N∑
n=1

Bgnk (ω
n
k)− ω̂∗

k

∥∥∥∥2
2

≤ E
∥∥ω̄k − ω̂∗

k

∥∥2
2
+ 2Cφβ

2E
∥∥∥ 1

N

N∑
n=1

gnk (ω
n
k)
∥∥∥2
2
− 2E

〈
ω̄k − ω̂∗

k,
B

N

N∑
n=1

gnk (ω
n
k)
〉

(89)

where Cφ := (1 + 1
φ) is the upper bound of ∥B∥2. By Lemma 8, for some positive constants C4, C5, Cλ, Cg C̃4, C̃5 and

C̃6, we can bound the second and third term respectively as

E
∥∥∥ 1

N

N∑
n=1

gnk (ω
n
k)
∥∥∥2
2
≤

2C2
g

N
+ 3(I − 1)2(C̃2

4β
2 + C̃2

5α
2) + C̃6E

∥∥ω̄k − ω̂∗
k

∥∥2
2
, (90)

and

− E
〈
ω̄k − ω̂∗

k,
B

N

N∑
n=1

gnk (ω
n
k)
〉

≤ β(I − 1)
(
C4β + C5α)E

∥∥ω̄k − ω̂∗
k

∥∥
2
− CλβE

∥∥ω̄k − ω̂∗
k

∥∥2
2

≤ β
((I − 1)2C2

4

Cλ
β2 +

(I − 1)2C2
5

Cλ
α2 +

Cλ
2
E∥ω̄k − ω̂∗

k∥22
)
− CλβE∥ω̄k − ω̂∗

k∥22

≤ −Cλ
2
βE∥ω̄k − ω̂∗

k∥22 +
(I − 1)2C2

4

Cλ
β3 +

(I − 1)2C2
5

Cλ
α2β (91)

where the second inequality follows from Young’s inequality. Substituting (90) and (91) into (89), and using β ≤ Cβ to
simplify the inequality give

E
∥∥ω̄k+1 − ω̂∗

k

∥∥2
2
≤ (1− Cλβ + C ′

6β
2)E

∥∥ω̄k − ω̂∗
k

∥∥2
2
+ (I − 1)2C ′

4β
3 + (I − 1)2C ′

5α
2β. (92)

where C ′
4 :=

2C2
4

Cλ
+ 6CψC̃

2
4Cβ and C ′

5 :=
2C2

5

Cλ
+ 6CψC̃

2
5Cβ .

The third term in (88) can be bounded as

E
〈
ω̄k+1 − ω̂∗

k, ω̂
∗
k − ω̂∗

k+1

〉
= E

〈
ω̄k+1 − ω̂∗

k, ω̂
∗
k − ω̂∗

k+1 − ⟨∇ω̂∗(θ̄k), θ̄k+1 − θ̄k⟩
〉

Han Shen⋆, Songtao Lu†, Xiaodong Cui†, Tianyi Chen⋆

+ E
〈
ω̄k+1 − ω̂∗

k, ⟨∇ω̂∗(θ̄k), θ̄k+1 − θ̄k⟩
〉

≤ E
[∥∥ω̄k+1 − ω̂∗

k

∥∥
2

∥∥ω̂∗
k − ω̂∗

k+1 − ⟨∇ω̂∗(θ̄k), θ̄k+1 − θ̄k⟩
∥∥
2

]
+ E

〈
ω̄k+1 − ω̂∗

k, ⟨∇ω̂∗(θ̄k),E
[
θ̄k+1 − θ̄k|Fk

]
⟩
〉

≤ Lω,2
2

E
[∥∥ω̄k+1 − ω̂∗

k

∥∥
2
∥θ̄k+1 − θ̄k∥22

]
+ LωαE

[∥∥ω̄k+1 − ω̂∗
k

∥∥
2
∥pk∥

]
(93)

where the first inequality follows from the towering property of expectation, and last inequality follows from theLω-Lipschitz
and Lω,2-smoothness of ω̂∗(θ) shown in Lemma 6. Continuing from the last inequality, we have

E
〈
ω̄k+1 − ω̂∗

k, ω̂
∗
k − ω̂∗

k+1

〉
≤
Lω,2C

2
pα

2

2
E
[∥∥ω̄k+1 − ω̂∗

k

∥∥
2

]
+ LωαE

[∥∥ω̄k+1 − ω̂∗
k

∥∥
2
∥pk∥

]
≤
C4
pL

2
ω,2

4
α3 +

α

4
E∥ω̄k+1 − ω̂∗

k∥22 +
α

8
E∥pk∥22 + 2L2

ωαE∥ω̄k+1 − ω̂∗
k∥22

=
(
2L2

ω +
1

2

)
αE

∥∥ω̄k+1 − ω̂∗
k

∥∥2
2
+
α

8
E∥pk∥22 +

C4
pL

2
ω,2

4
α3. (94)

Lastly, the second term in (88) can be bounded as

∥ω̂∗
k − ω̂∗

k+1∥22 ≤ L2
ω∥θ̄k+1 − θ̄k∥22. (95)

Substituting the last inequality along with (92) into (88) gives

E
∥∥ω̄k+1 − ω̂∗

k+1

∥∥2
2
≤

(
1 + (4L2

ω + 1)α
)
E
∥∥ω̄k+1 − ω̂∗

k

∥∥2
2
+
α

4
E∥pk∥22 +

C4
pL

2
ω,2

2
α3

+ L2
ω∥θ̄k+1 − θ̄k∥22. (96)

This completes the proof.

C.3 Supporting lemmas

In this section, we give several supporting lemmas used to prove our main theorems.

C.3.1 Lipschitz continuity and smoothness of optimal solution

The following lemma proves the L-smoothness of ω̂∗(θ) w.r.t. θ, which is then used to prove Theorem 4. The idea is inspired
by (Chen et al., 2021).

Lemma 6. Suppose Assumption 2 and 3 hold, then there exist positive constants Lω and Lω,2 such that∥∥ω̂∗(θ1)− ω̂∗(θ2)
∥∥
2
≤ Lω

∥∥θ1 − θ2
∥∥
2
, (97a)

and ∥∥∇ω̂∗(θ1)−∇ω̂∗(θ2)
∥∥
2
≤ Lω,2

∥∥θ1 − θ2
∥∥
2
. (97b)

Proof. Under Assumption 2, the optimal solution of F̂λ(θ, ωv, ωµ) takes the following form

ω̂∗
µ(θ) = −A−1

θ bθ, ω̂∗
v(θ) = −(A⊤

θ)
−1(λCA−1

θ bθ + h). (98)

We write A1, A2 and b1, b2 as shorthand notations for Aθ1 , Aθ2 and bθ1 , bθ2 respectively. By definition of bθ, we have

b1 − b2 = Es0∼ρ̂,a0∼π1

[
ϕ(s0, a0)]− Es0∼ρ̂,a0∼π2

[
ϕ(s0, a0)]

≤ 2 sup
s0∈S,a0∈A

∥ϕ(s0, a0)∥dTV (ρ̂⊗ π1, ρ̂⊗ π2)

= 2dTV (ρ̂⊗ π1, ρ̂⊗ π2), (99)

Distributed Offline Policy Optimization Over Batch Data

in which

dTV (ρ̂⊗ π1, ρ̂⊗ π2) =
1

2

∑
s0∈D̂0

∫
A

∣∣ρ̂(s0)π1(da0|s0)− ρ̂(s0)π2(da0|s0)
∣∣

≤ 1

2
Lπ|A|

∥∥θ1 − θ2
∥∥
2

(100)

where the last inequality follow from the Lπ-lipschitz continuity of πθ. Thus we have

b1 − b2 ≤ Lπ|A|
∥∥θ1 − θ2

∥∥
2
. (101)

Similarly, we can prove that

A1 −A2 ≤ 2Lπ|A|
∥∥θ1 − θ2

∥∥
2
. (102)

By definition of ω̂∗
µ(θ), we have∥∥ω̂∗

µ(θ1)− ω̂∗
µ(θ2)

∥∥
2
=

∥∥−A−1
1 b1 +A−1

2 b2
∥∥
2
=

∥∥−A−1
1 (A2 −A1)A

−1
2 b1 +A−1

2 (b2 − b1)
∥∥
2

≤ 1

σ2
inf

∥A1 −A2∥2 +
1

σinf
∥b1 − b2∥

≤ L1

∥∥θ1 − θ2
∥∥
2

(103)

where the last inequality follows from (101) and (102), and L1 :=
(

2
σ2
inf

+ 1
σinf

)
Lπ|A|.

Observing that ω̂∗
v(θ) is in a similar form as ω̂∗

µ(θ), it can be proven that similar result holds for ω̂∗
v(θ)∥∥ω̂∗

v(θ1)− ω̂∗
v(θ2)

∥∥
2
≤ L2

∥∥θ1 − θ2
∥∥
2
, (104)

where L2 :=
(

2
(
rmax+

λ
σinf

)
σ2
inf

Lπ|A|+ L1

σinf

)
.

Given (103) and (104), we have

∥∥ω̂∗(θ1)− ω̂∗(θ2)
∥∥
2
=

√∥∥ω̂∗
v(θ1)− ω̂∗

v(θ2)
∥∥2
2
+

1

φ

∥∥ω̂∗
µ(θ1)− ω̂∗

µ(θ2)
∥∥2
2
≤ Lω

∥∥θ1 − θ2
∥∥
2

where Lω :=
√
L2
1 +

1
φL

2
2. Now we begin to prove (97b). Let ∇i be a shorthand notation for ∇θi where θi is the ith

element of θ. Then we have

∇iω̂
∗
µ(θ) = −A−1

θ ∇ibθ +A−1
θ ∇iAθA

−1
θ bθ. (105)

In order for ∇iω̂
∗
µ(θ1) to be lipschitz continuous, it suffices to show A−1

θ , bθ, ∇iAθ and ∇ibθ are bounded and lipschitz
continuous. By previous derivations (101)–(103), A−1

θ and bθ are indeed bounded lipschitz continuous. Thus it suffices to
check ∇iAθ and ∇ibθ.

∇ibθ = (1− γ)

∫
S
ρ̂(ds0)

∫
A
∇iπθ(da0|ds0)ϕ(ds0, da0). (106)

It is easy to check ∥∇ibθ∥ ≤ Cψ . It also holds that

∥∇ibθ1 −∇ibθ2∥ ≤ (1− γ)

∫
S
ρ̂(ds0)

∫
A

∥∥∇iπθ1(da0|ds0)−∇iπθ1(da0|ds0)
∥∥

≤ |A|(LπCψ + Lψ)∥θ1 − θ2∥ (107)

where the last inequality follows from∥∥∇iπθ1(a|s)−∇iπθ1(a|s)
∥∥ =

∥∥πθ1(a|s)ψθ1(s, a)− πθ2(a|s)ψθ2(s, a)
∥∥

≤ (LπCψ + Lψ)∥θ1 − θ2∥. (108)

Han Shen⋆, Songtao Lu†, Xiaodong Cui†, Tianyi Chen⋆

Thus we know ∇ibθ is bounded lipschitz continuous. Using similar technique, we can check that ∇iAθ is also bounded
lipschitz:

∥∇iAθ1 −∇iAθ2∥ ≤ 2|A|(LπCψ + Lψ)∥θ1 − θ2∥, ∥∇iAθ∥ ≤ 2Cψ. (109)

This makes ∇iω̂
∗
µ(θ) lipschitz continuous, which implies

∥∇ω̂∗
µ(θ)−∇ω̂∗

µ(θ)∥ ≤ L3∥θ1 − θ2∥ (110)

for some positive constant L3. Similarly, we have for some positive constant L4,

∥∇ω̂∗
v(θ)−∇ω̂∗

v(θ)∥ ≤ L4∥θ1 − θ2∥. (111)

The last two inequality implies (97b) with Lω,2 =
√
L2
3 + L2

4.

C.3.2 Bounding the critic bias and variance

Before we start to bound the critic bias and variance, we first give a lemma on the boundedness of critic variables under
projection.

Lemma 7. Consider running Algorithm 1 with linear function approximation of vn and µn. Under the same assumptions
as those of Theorem 3, there exist positive constants Cv and Cµ such that ∥ωnv,k∥2 ≤ Cv and ∥ωnµ,k∥2 ≤ Cµ.

Proof. To bound ∥ωnv,k∥ and ∥ωnµ,k∥, it suffices to bound the norm of the concatenated variable ωnk = [ωnv,k
1√
φω

n
µ,k]

⊤. By
the critic update in (86), we have

∥ωnk+1∥2 = ∥ωnk −Bgnk (ω
n
k)∥2 ≤ ∥ωnk ∥2 + ∥Bgnk (ωnk)∥2

≤ ∥ωnk ∥2 + β

√
1 +

1

φ

√
8φ+ φ2λ2∥ωnk ∥2 +

√
(1− γ)2 + 1. (112)

where the last inequality follows from

∥Bgnk (ωnk)∥2 ≤ β

∥∥∥∥ [1 0
0 1

φ

] ∥∥∥∥
2

∥∥∥∥ [0
√
φÂnk

−√
φ(Ânk)

⊤ φλĈnk

] ∥∥∥∥
2

∥ωk,n∥2 +
∥∥∥∥ [b̂nk

−ĥnk

] ∥∥∥∥
2

≤ β∥ωk,n∥2
√

1 +
1

φ

√
2φ

∥∥Ânk∥∥2F + φ2λ2
∥∥Ĉnk ∥∥2F +

√∥∥b̂nk∥∥22 + ∥∥ĥnk∥∥22
≤ β

√
1 +

1

φ

√
8φ+ φ2λ2∥ωnk ∥2 +

√
(1− γ)2 + 1. (113)

Because of the projection in Algorithm 1, for any k0−1 which are multiples of I , we have ∥ωnk0∥2 ≤
√
R2
v +

1
φR

2
µ. Then

by (112), it follows from induction that Lemma 7 holds for any k.

Now we are ready to give the Lemma that bounds the bias and variance of critic sequence, which is used in the proof of
Theorem 4.

Lemma 8. We choose φ = 8(γ+1)2

λ2η2 . Under the same conditions in Theorem 4, we have

E
〈
ω̄k − ω̂∗

k, BE
[1

N

N∑
n=1

gnk (ω
n
k)
∣∣Fk]〉 ≥ −β(I − 1)

(
C4β + C5α)E

∥∥ω̄k − ω̂∗
k

∥∥
2

+ CλβE
∥∥ω̄k − ω̂∗

k

∥∥2
2
, (114)

and

E
∥∥∥ 1

N

N∑
n=1

gnk (ω
n
k)
∥∥∥2
2
≤

2C2
g

N
+ 3(I − 1)2(C̃2

4β
2 + C̃2

5α
2) + C̃6E

∥∥ω̄k − ω̂∗
k

∥∥2
2

(115)

where C4, C5, Cλ, C̃4, C̃5 and C̃6 are some positive constants.

Distributed Offline Policy Optimization Over Batch Data

Proof. We first prove (114). We denote its LHS as I1. I1 can be decomposed as

I1 ≥ −
(
1 +

1
√
φ

)
βE

[∥∥∥ω̄k − ω̂∗
k

∥∥∥
2

∥∥∥E[1

N

N∑
n=1

gnk (ω
n
k)
∣∣Fk]− E

[1

N

N∑
n=1

gnk (ω̄k)
∣∣Fk]∥∥∥

2︸ ︷︷ ︸
I
(1)
1

]

−
(
1 +

1
√
φ

)
βE

[∥∥∥ω̄k − ω̂∗
k

∥∥∥
2

∥∥∥E[1

N

N∑
n=1

gnk (ω̄k)
∣∣Fk]− gk(ω̄k)

∥∥∥
2︸ ︷︷ ︸

I
(2)
1

]
+ E

〈
ω̄k − ω̂∗

k, Bgk(ω̄k)
〉

︸ ︷︷ ︸
I
(3)
1

(116)

where gk(ω) is defined as

gk(ω) :=
1

N

N∑
n=1

[
1 0
0 1√

φ

][
0

√
φAn

θ̄k
−√

φ(An
θ̄k
)⊤ λφCn

]
ω +

[
bn
θ̄k

−hn
]

=

[
1 0
0 1√

φ

] [
0

√
φAθ̄k

−√
φ(Aθ̄k)

⊤ φλC

]
︸ ︷︷ ︸

Gθ̄k

ω +

[
bθ̄k
−h

]
.

With Σ :=

[
1 0
0 1√

φ

]
, I(1)1 can be bounded as

I
(1)
1 ≤ 1

N

N∑
n=1

∥∥gnk (ωnk)− gnk (ω̄k)
∥∥
2
=

1

N

N∑
n=1

∥∥ΣGnθnk (ωnk − ω̄k)
∥∥
2

≤ CG
1

N

N∑
n=1

∥∥ωnk − ω̄k
∥∥
2

≤ C̃4(I − 1)β, (117)

where the last inequality follows from Lemma 5, CG :=
(
1 + 1√

φ

)√
8φ+ λ2φ2 is the upper bound of ∥ΣGnθ ∥2, and

C̃4 := 2
(
1 + 1

φ

)
CGCq .

I
(2)
1 can be bounded as

I
(2)
1 =

∥∥∥ 1

N

N∑
n=1

[
0

√
φ(Anθnk

−An
θ̄k
)

−(Anθnk
−An

θ̄k
)⊤ 0

]
ω̄k +

[
bnθnk

− bn
θ̄k

0

] ∥∥∥
2

≤ 1

N

N∑
n=1

(√
1 +

1

φ
Cω

∥∥Anθnk −Anθ̄k

∥∥
2
+
∥∥bnθnk − bnθ̄k

∥∥
2

)
, (118)

where the last inequality is due to the fact that ∥ω̄k∥2 ≤ 1
N

∑N
n=1 ∥ωnk ∥2 and ∥ωnk ∥2 ≤ Cω :=

√
C2
v +

1
φC

2
µ. It can be

easily verified by following the derivation of (101) that∥∥Anθnk −Anθ̄k

∥∥
2
≤ 2Lπ|A|∥θnk − θ̄k∥2,

∥∥bnθnk − bnθ̄k

∥∥
2
≤ Lπ|A|∥θnk − θ̄k∥2. (119)

Substituting the last inequality into (118) gives

I
(2)
1 ≤ 2Lπ|A|

N

N∑
n=1

(√
1 +

1

φ
Cω

∥∥θnk − θ̄k
∥∥
2
+

∥∥θnk − θ̄k
∥∥
2

)
≤ C̃5(I − 1)α, (120)

where the last inequality follows from Lemma 5 and C̃5 := 4Lπ|A|
(
1 +

√
1 + 1

φCω

)
Cp.

Han Shen⋆, Songtao Lu†, Xiaodong Cui†, Tianyi Chen⋆

To bound I
(3)
1 , we need to first bound the eigenvalues of Gθ. Let φ = 8(γ+1)2

λ2η2 , then it is easy to verify that φ ≥
8λmax(Aθ(λC)−1A⊤

θ)
λmin(λC) for any θ ∈ Rd, where λmin(·), λmax(·) denotes the minimum and maximum eigenvalue. Then by the

analysis in section A.1 and A.3 of (Du et al., 2017), we have λmin(Gθ) ≥ 8
9λmin(Aθ(λC)

−1A⊤
θ). Under Assumption 2, we

can also show that λmin(Aθ(λC)
−1A⊤

θ) ≥
σ2
inf

λ . This leads to λmin(Gθ) ≥ λinf :=
8
9
σ2
inf

λ .

By the optimality condition of ω̂∗
k, we have

I
(3)
1 =

〈
ω̄k − ω̂∗

k, B
(
gk(ω̄k)− gk(ω̂

∗
k)
)〉

= β
〈
ω̄k − ω̂∗

k,Σ
2Gθ̄k

(
ω̄k − ω̂∗

k

)〉
≥ βmin{1, 1

φ
}λinf

∥∥ω̄k − ω̂∗
k

∥∥. (121)

Substituting the lower bounds in (117), (120) and (121) into (116) gives

I1 ≥ −β(I − 1)
(
C4β + C5α)E

∥∥ω̄k − ω̂∗
k

∥∥
2
+ CλβE

∥∥ω̄k − ω̂∗
k

∥∥2
2

(122)

where Cλ := min{1, 1
φ}λinf , C4 :=

(
1 + 1√

φ

)
C̃4 and C5 :=

(
1 + 1√

φ

)
C̃5. This completes the proof of (114).

Now we prove (115).

E
∥∥∥ 1

N

N∑
n=1

gnk (ω
n
k)
∥∥∥2
2
=

1

N2
E
∥∥∥ N∑
n=1

(
gnk (ω

n
k)− E[gnk (ωnk)|Fk]

)∥∥∥2
2
+ E

∥∥∥ 1

N

N∑
n=1

E
[
gnk (ω

n
k)|Fk

]∥∥∥2
2

=
1

N2

N∑
n=1

E
∥∥∥gnk (ωnk)− E[gnk (ωnk)|Fk]

∥∥∥2
2
+ E

∥∥∥ 1

N

N∑
n=1

E
[
gnk (ω

n
k)|Fk

]∥∥∥2
2

≤
2C2

g

N
+ E

∥∥∥ 1

N

N∑
n=1

E
[
gnk (ω

n
k)|Fk

]∥∥∥2
2
, (123)

where the second equality is due to the zero mean of gnk (ω
n
k) − E[gnk (ωnk)|Fk] and its conditional independence across

clients n ∈ {1, 2, ..., N}, and the last inequality is due to ∥gnk (ωnk)∥2 ≤ Cg := CGCω +
√
r2max + 1.

We now consider the second term in (123).∥∥∥ 1

N

N∑
n=1

E
[
gnk (ω

n
k)|Fk

]∥∥∥2
2
≤ 3(I

(1)
1)2 + 3(I

(2)
1)2 + 3

∥∥∥gk(ω̄k)∥∥∥2
2

(124)

where the first and second term are bounded in (117) and (120). It suffices to just consider the last term, which can be
bounded as ∥∥∥gk(ω̄k)∥∥∥2

2
=

∥∥∥gk(ω̄k)− gk(ω̂
∗
k)
∥∥∥2
2
≤

(
1 +

1

φ

)
C2
G

∥∥ω̄k − ω̂∗
k

∥∥2
2
. (125)

Thus we have ∥∥∥ 1

N

N∑
n=1

E
[
gnk (ω

n
k)|Fk

]∥∥∥2
2
≤ 3(I − 1)2(C̃2

4β
2 + C̃2

5α
2) + 3

(
1 +

1

φ

)
C2
G

∥∥ω̄k − ω̂∗
k

∥∥2
2
. (126)

Substituting (126) into (123) completes the proof of (115).

C.3.3 Bounding the statistical errors

We first give a useful inequality which will be used to bound the statistical errors.
Lemma 9 (Pollard’s tail inequality (Pollard, 1984)). Let F : Z 7→ [−R,R] be a permissible class of functions. Let
{zi}Mi=1 ∈ Z be i.i.d samples from a distribution. For any ϵ > 0, we have

P
(
sup
f∈F

∣∣∣ 1
M

M∑
i=1

f(zi)− E
[
f(zi)

]∣∣∣) ≤ 8N1

(ϵ
8
,F , {zi}Mi=1

)
exp

(−Mϵ2

512R2

)
(127)

where N1(·) is the covering number.

Distributed Offline Policy Optimization Over Batch Data

The covering number can be bounded by the following inequality.

Lemma 10 (Haussler’s inequality (Haussler, 1995)). For any set Z , any points {zi}Mi=1 ∈ Z , any function class F on Z
taking values in [−R,R] with pseudo-dimension DF <∞, we have

N1

(
ϵ,F , {zi}Mi=1

)
≤ e(DF + 1)

(2eR
ϵ

)DF
. (128)

Now we can give the bound on statistical errors.

Lemma 11. Under the same conditions as that of Theorem 3, for any θ ∈ Rd, with at least probability 1− δ we have∥∥∥∥Ê[µ̂∗
θ(s, a)v̂

∗
θ(s, a)ψθ(s, a)

]
− Ē

[
µ̂∗
θ(s, a)v̂

∗
θ(s, a)ψθ(s, a)

]∥∥∥∥2
2

= O
(log(NM) + log(dδ)

NM

)
.

Proof. Define y(s, a) := µ(s, a)v(s, a)ψθ(s, a)] ∈ Fy , where v ∈ Fv and µ ∈ Fµ. For any θ ∈ Rd, we have∥∥∥∥Ê[µ̂∗
θ(s, a)v̂

∗
θ(s, a)ψθ(s, a)

]
− Ē

[
µ̂∗
θ(s, a)v̂

∗
θ(s, a)ψθ(s, a)

]∥∥∥∥2
2

≤ sup
y∈Fy

∥∥Es,a∼d̂D[y(s, a, s′)]− Es,a∼d̄D
[
y(s, a, s′)

]∥∥2
2
. (129)

where the last inequality is due to v̂∗θ ∈ Fv and µ̂∗
θ ∈ Fµ. With 1i ∈ Rd defined as the vector whose ith element is 1 and the

the rest elements are 0, we have

sup
y∈Fy

∥∥Es,a∼d̂D[y(s, a)]− Es,a∼d̄D
[
y(s, a)

]∥∥2
2

≤
d∑
i=1

sup
y∈Fy

(
Es,a∼d̂D

[
1⊤
i y(s, a)

]
− Es,a∼d̄D

[
1⊤
i y(s, a)

])2
(130)

For any i ∈ {1, 2, ..., d}, we have |1⊤
i y(s, a, s

′)| ≤ R1 := RµRvCψ . Denote Fyi as the function class of 1⊤
i y(s, a, s

′). By
Pollard’s tail inequality in Lemma 9, we have

P
(

sup
y∈Fy

∣∣∣∣Ed̂D[1⊤
i y(s, a)

]
− Ed̄D

[
1⊤
i y(s, a)

]∣∣∣∣ ≥ ϵ

)
≤ 8E

[
N1

(
ϵ

8
,Fyi , {Dn}Nn=1

)]
exp

(−NMϵ2

512R2
1

)
≤ 8C ′(i)

(
1

ϵ

)D(i)

. (131)

where the last inequality follows from Haussler’s inequality in Lemma 10. Constant R′(i) = e(D(i) +

1)2(2eR1)
D(i) and D(i) is pseudo-dimension of Fyi . Let ϵi =

√
R(i)(log(NM)+log dδ)

NM where R(i) =

max
(
(8R′(i))

2
D(i) , 512NMD(i), 512NM, 1

)
, with at least probability 1− δ/d we have

sup
y∈Fy

∣∣∣∣Ed̂D[1⊤
i y(s, a)

]
− Ed̄D

[
1⊤
i y(s, a)

]∣∣∣∣ ≤ ϵi. (132)

Let ϵ =
√

R̄(log(NM)+log dδ)

NM with R̄ = maxiR(i). Then, substituting (132) into (130) gives

sup
y∈Fy

∥∥Es,a∼d̂D[y(s, a)]− Es,a∼d̄D
[
y(s, a)

]∥∥2
2
≤ dϵ2 (133)

with probability at least 1− δ. This along with (129) completes the proof.

Lemma 12. Under the same conditions of that in Theorem 3, with probability at least 1− δ we have

sup
θ∈Rd,v∈Fv,µ∈Fµ

∣∣∣Fλ(θ, v, µ)− F̂λ(θ, v, µ)
∣∣∣ = O

(√
log(NM) + log(1δ)

NM

)
(134)

Han Shen⋆, Songtao Lu†, Xiaodong Cui†, Tianyi Chen⋆

Proof. Define function l(X) = Ea0∼πθ(·|s0)[v(s0, a0)]+
(
r(s, a)+γEa′∼πθ(·|s′)[v(s′, a′)]−v(s, a)

)
µ(s, a)− λ

2µ(s, a)
2 ∈

Fl, where X := (s0, s, a, s
′) and v ∈ Fv , µ ∈ Fµ. We have

sup
θ∈Rd,v∈Fv,µ∈Fµ

∣∣∣Fλ(θ, v, µ)− F̂λ(θ, v, µ)
∣∣∣

= sup
l∈Fl

∣∣∣Es0∼ρ,s,a,s′∼d̄D[l(X)
]
− Es0∼ρ̂,s,a,s′∼d̂D

[
l(X)

]∣∣∣. (135)

By Pollard’s tail inequality in Lemma 9

P
(
sup
l∈Fl

∣∣∣Eρ,d̄D[l(X)
]
−Eρ̂,d̂D

[
l(X)

]∣∣∣ ≥ ϵ

)
≤8E

[
N1

(
ϵ

8
,Fl, {Dn}Nn=1 ∪ {Dn

0 }Nn=1

)]
exp

(−NMϵ2

512R2
2

)
≤8R3

(
1

ϵ

)D1

(136)

where the last inequality follows from Haussler’s inequality in Lemma 10. Constant R3 = e(D1 + 1)2(2eR2)
D1 and D1

is pseudo-dimension of Fl. Let ϵ =

√
R4(log(NM)+log 1

δ)

NM where R4 = max
(
(8R3)

2
D1 , 512NMD1, 512NM, 1

)
, with

probability at least 1− δ, we have

sup
l∈Fl

∣∣∣Eρ,d̄D[l(X)
]
− Eρ̂,d̂D

[
l(X)

]∣∣∣ ≤ ϵ

which along with (135) completes the proof.

D Proof of Theorem 2

Before we proceed with the proof, we first introduce a gradient dominance type property of F (θ):

Proposition 2 ((Agarwal et al., 2020, Theorem 5.3)). Under softmax policy parametrization and uniform priors, if
∥∇Jτ (θ)∥ ≤ τ

2|S||A| , then J∗ − J(θ) ≤ 2τ
1−γ

∥∥dπ∗
ρ

∥∥
∞.

Now we are ready to prove Theorem 2.

Proof. It is known that the softmax policy satisfies Assumption 3, thus we immediately know that Theorem 1 holds.
Furthermore, by assumption 4, we have the optimal solution v∗θ and µ∗

θ falls in the linear function class with respect to the
feature, thus we know the function approximation error ϵapp disappears. By Theorem 1, the following inequality holds with
probability at least 1− δ

K∑
k=1

E
∥∥∇Jτ(θ̄k)∥∥22 = O

(√
K

N

)
+ Õ

(
K

√
log 3

δ

NM

)
+O

(
Kτ3

C2
d

(1− γ)2

)
(137)

where we have used the fact Cψ = 1 for softmax policy, and λ = τ
3
2 . We define an event Ek as ∥∇Jτ (θk)∥ ≤ τ

2|S||A| and
its complement Eck as ∥∇Jτ (θk)∥ > τ

2|S||A| . We use 1Ek to indicate whether the event happens or not, i.e. 1Ek = 1 if Ek
happens and 1Ek = 0 if Eck happens. Then we have for the optimality gap:

K∑
k=1

E
[
J∗ − J(θk)

]
=

K∑
k=1

E
[(
J∗ − J(θk)

)
1Ek

]
+

K∑
k=1

E
[(
J∗ − J(θk)

)
1Eck

]
≤ 2τ

1− γ

∥∥∥dπ∗

ρ

∥∥∥
∞

K∑
k=1

E
[
1Ek

]
+

K∑
k=1

E
[(
J∗ − J(θk)

)
1Eck

]
≤ 2τ

1− γ

∥∥∥dπ∗

ρ

∥∥∥
∞

K∑
k=1

E
[
1Ek

]
+

K∑
k=1

E
[
1Eck

]
≤ 2τ

1− γ

∥∥∥dπ∗

ρ

∥∥∥
∞
K +

K∑
k=1

E
[
1Eck

]
, (138)

Distributed Offline Policy Optimization Over Batch Data

where the first inequality follows from proposition 2, and the second inequality is due to the fact that supπ F (π) ≤
maxs,a r(s, a) ≤ 1.

Now it suffices to bound
∑K
k=1 E

[
1Eck

]
.

K∑
k=1

E∥∇Jτ (θk)∥2 ≥
K∑
k=1

E
[
∥∇Jτ (θk)∥21Eck

]
≥

K∑
k=1

τ2

4|S|2|A|2
E
[
1Eck

]
(139)

which along with (137) implies

K∑
k=1

E
[
1Eck

]
= O

(√
K

N

)
+ Õ

(
K

√
log 3

δ

NM

)
+O

(
Kτ

C2
d

(1− γ)2

)
. (140)

Substituting (140) into (138), and dividing both sides by K give that the following inequality holds with probability greater
than 1− δ that

1

K

K∑
k=1

E
[
J∗ − J(θk)

]
= O

(1√
NK

)
+ Õ

(√
log 3

δ

NM

)
+O

(
ϵτ
)
, (141)

which completes the proof.

E Additional experiment details

We first present our choice of hyperparameters in the tests. All the tests are conducted in system with a 16-core CPU, an
NVIDIA Geforce RTX 2080s, a Titan V and a NVIDIA Geforce RTX 3080.

Prior to training, we collect data with behavior policies that are described in Section 5. We use a data set size of 80000
(Navaigation), 100000 (cartpole) and 40000 (Frozenlake). In all tests, the critic functions v and µ are parametrized by a
3-layer neural network with a hidden dimension of 64× 64 and the ReLU activation. In the cartpole and frozenlake tests,
we use a 3-layer neural network with a 128× 128 hidden dimension; ReLU activation and a softmax output function. In the
navigation test, we use a natural softmax policy parametrization. All networks are initialized randomly using the glorot
uniform. To ensure the stability of our method, we clip the gradient element-wise within 1.0.

We select λ = 10−6 for all tests. In the tests of Figure 2, we select an initial step size of α = 0.0001, 0.00007, 0.00003,
β = 0.0001, 0.00007, 0.00005 for navigation, cartpole and frozenlake respectively. We set batch size as 1024 for each client
and the communication interval I=10. In the tests of Figure 3, we select an initial step size of α = 0.0001, 0.00007, 0.00002,
β = 0.0001, 0.00007, 0.00005 for navigation, cartpole and frozenlake respectively, and then scale it with

√
N for different

number of clients. The batch size is 1024 (navigation, cartpole); 512 (frozenlake) for each client and communication
interval I = 10. In the tests of Figure 4, we choose the same hyperparameters as that of speedup tests except for a varying
communication interval.

	Introduction
	Related works
	Main contributions

	Preliminaries
	FedOPO: A Federated Offline Policy Optimization Algorithm
	Federated offline policy optimization
	Federated max-min-max reformulations
	Algorithm development

	Theoretical Results
	General local convergence result
	Global convergence result

	Numerical Experiments
	Tests on communication efficiency

	Conclusions
	Preliminary
	Proof of Lemma 1
	Proof of Lemma 2
	Definitions

	Proof of Theorem 1
	Main proof
	Bounding the gradient bias
	Bounding the consensus error

	Analysis of critic
	Proof of Theorem 3
	Convergence of critic
	Supporting lemmas
	Lipschitz continuity and smoothness of optimal solution
	Bounding the critic bias and variance
	Bounding the statistical errors

	Proof of Theorem 2
	Additional experiment details

