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Abstract

Multi-armed bandit has been well-known for its
efficiency in online decision-making in terms of
minimizing the loss of the participants’ welfare
during experiments (i.e., the regret). In clini-
cal trials and many other scenarios, the statisti-
cal power of inferring the treatment effects (i.e.,
the gaps between the mean outcomes of different
arms) is also crucial. Nevertheless, minimizing
the regret entails harming the statistical power of
estimating the treatment effect, since the obser-
vations from some arms can be limited. In this
paper, we investigate the trade-off between effi-
ciency and statistical power by casting the multi-
armed bandit experimental design into a minimax
multi-objective optimization problem. We intro-
duce the concept of Pareto optimality to mathe-
matically characterize the situation in which nei-
ther the statistical power nor the efficiency can
be improved without degrading the other. We
derive a useful sufficient and necessary condi-
tion for the Pareto optimal solutions. Addition-
ally, we design an effective Pareto optimal multi-
armed bandit experiment that can be tailored to
different levels of the trade-off between the two
objectives.

1 Introduction

Multi-armed bandit (MAB), one of the most effective
frameworks for sequential decision making, is renowned
for its adaptability as more evidence becomes available.
The adaptive allocation has been demonstrated to be more
efficient than some traditional random experiments, such as
classical random control trials (RCTs), in Lai et al. (1985).
The current theoretical literature has studied MAB exten-
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sively, mainly focusing on understanding the best achiev-
able efficiency in the hope of minimizing the loss of the par-
ticipants’ welfare during experiments (i.e., the regret). The
minimax optimal regret of stochastic MAB has been well
understood to be Θ̃(log n), which can be achieved by the
famous upper confidence bound (UCB) based algorithms
(see, Lai et al. 1985) and Thompson sampling (TS) based
algorithms (see, Thompson 1933).

However, for many real-world problems, regret is not the
only metric that matters when conducting experiments.
Consider the following hypothetical scenario as a motivat-
ing example where a drug company is using the MAB to
evaluate the efficacy of a new drug. Regret measures the
overall loss of patients’ welfare, so we want to keep it to
a minimum. Especially, for rare or fatal diseases, it is ex-
pected to treat the patients within the trial as effectively as
possible. Additionally, it is always crucial to report what
kind of difference the new treatment can make compared
with the control, i.e., to infer the average treatment effect
(ATE) (see, e.g., Angrist and Imbens 1995). It is also of
great interest to understand the difference between any two
drugs if more than one is being tested simultaneously. Such
kind of inference can be quite instructive in that it may be
used to determine which alternative should be used when
the best drug is unavailable due to shortage, regulation or
some other factors. This illustrates the necessity of adap-
tive statistical inference of ATE while making online as-
signment decisions in MAB experiments.

Online decision-making and statistical inference of ATE
have been extensively investigated separately, but when
they are jointly considered, several new and crucial chal-
lenges arise. First, as MAB algorithms collect data adap-
tively and consequently, it is not appropriate to consider
the collected data as independent and identically distributed
(i.i.d.). This imposes extra challenges to conducting infer-
ence, and may harm the statistical power. For example,
using the sample average to estimate ATE (as practition-
ers usually do in RCTs) in some MAB algorithms includ-
ing UCB and TS creates a non-negligible bias, as pointed
out by much work in literature (see, e.g., Xu et al. 2013,
Luedtke and Van Der Laan 2016, Nie et al. 2018). A
recent stream of literature develops several offline, post-
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experiment analysis methods based on the adaptively col-
lected data (see, e.g., Kato et al. 2020, Hadad et al. 2021,
Chen et al. 2022). They all have specific constraints or as-
sumptions on the data collection process, which may usu-
ally reduce the efficiency of MAB algorithms. In other
words, MAB algorithms are effective in learning the op-
timal online decision-making policy, but lack statistical
power. In contrast, some existing well-established ATE es-
timation methods are recognized for their strong statistical
power, but will incur significant regrets. Specifically, since
a predetermined percentage of the population will be as-
signed to the suboptimal arm, the regret of a traditional
RCT will increase linearly with the number of samples.
Another commonly adopted assumption for adaptive ATE
estimators is “overlap”, which states that the probability
of playing all arms is lower bounded away from zero by
a universal constant over time (see, e.g., Khan and Ugan-
der 2021, Hahn et al. 2011). Then, the accumulative regret
is also linear because of the linear growth of the expected
times the suboptimal arms are played. One of our goals in
this paper is to design MAB experiments with both online
decision-making policies and adaptive inference for ATE
with finite sample guarantees by harnessing the efficiency
and statistical power from each side.

Moreover, the relationship between the two tasks, adap-
tive inference and online decision-making, may change
throughout the experiment. On the one hand, these two
tasks can complement one another, particularly in the initial
phase of the experiment. An accurate estimation of ATE
is undoubtedly informative for learning the best decision-
making policy. An efficient online decision-making algo-
rithm typically explores all arms actively including the sub-
optimal ones at the beginning explicitly or implicitly, in
order to gather enough information. This is advantageous
for inference as well. On the other hand, the success of
gauging ATE may be hindered by online decision-making,
which is only concerned about being able to identify the
best arm without considering how much better it is. To
be more precise, minimizing the regret requires the algo-
rithm to stop performing the suboptimal action as soon as
it gains enough confidence about the suboptimality. Due to
the potentially relatively few observations, it will make an
accurate estimation of the suboptimal arm virtually impos-
sible. However, since ATE is the difference, an accurate
inference heavily relies on the estimators of both arms, and
thus the statistical power of estimating ATE may be limited
by efficient online decision-making. Therefore, there exists
an important trade-off between these two tasks. In order to
describe such a trade-off, we introduce the term “Pareto
optimality” to characterize the circumstance where neither
regret nor estimating error of ATE can be made better off
without making the other worse off. How to statistically
quantify and practically achieve the Pareto optimality in
MAB experiments remains an open question.

1.1 Preliminaries

In stochastic MAB experiments, there is a finite set A of
arms (i.e., treatments or actions) a ∈ A with |A| = K.
Without loss of generality, the control can also be seen
as an action. n is the total number of experimental units
(or the time horizon). At each time t ≤ n, the environ-
ment generates a reward rt(a) for every arm a ∈ A. Af-
ter choosing arm at, only the reward of the chosen arm
rt := rt(at) can be observed. The expectation E[rt(a)] =
µa ∈ [−1, 1] where µa is the unknown true reward of arm
a which is disturbed by an i.i.d. noise to generate rt(a) ∈
[−1, 1]. A stochastic MAB instance can be denoted by
ν = (P1, · · · , PK), where Pi is the distribution of the re-
wards of arm i. The optimal arm is the arm with the maxi-
mum mean reward denoted by a∗ := argmaxa∈A µa, and
thus is also unknown. We define the gap between arm i and
arm j as ∆(i,j) := µi−µj , for any i ̸= j ∈ [K]. Among all
∆(i,j), we additionally define the difference between µa∗

and µa as the suboptimality gap, i.e., ∆(a) := µa∗ − µa

for a ∈ A\{a∗}. Specifically, when K = 2, we can de-
fine arm 1 to be the treatment of interest and arm 2 to be
a control, and thus ∆(1,2) is the ATE. From now on, we
only need to focus on ∆(i,j) as the ATE follows naturally
by the definition of each arm when designing the experi-
ments. In this paper, we will elaborate on |∆(i,j)| = Θ(1)
for all i ̸= j ∈ [K], which is arguably the most fundamen-
tal case. Denote all stochastic MAB instances satisfying
the mentioned assumptions to constitute a feasible set E0.
We will discuss the case where |∆(i,j)| is extremely small
i.e., |∆(i,j)| = O(n−p) for some p > 0 in Sec. 4.

At every time t, the decision maker observes the history
Ht = (a1, r1, · · · , at, rt). An admissible policy π =
{πt}t≥1 maps the history Ht−1 to an action at. Denote
the probability with which arm a is chosen at time t as
πt(a) = P(at = a | Ht−1) under policy π. To mea-
sure the efficiency of online learning, we use the accumu-
lative regret, defined as the expected difference between
the reward under the optimal policy and the policy π, i.e.,
R(n, π) = Eπ[nµa∗−

∑n
i=1 ri(ai)]. In addition, an admis-

sible adaptive estimator ∆̂(i,j) = {∆̂(i,j)
t }t≥1 maps the his-

tory Ht to an estimation of ∆(i,j) at each time t. We use the
error defined as the expected distance of ∆(i,j) and ∆̂

(i,j)
t ,

(i.e., e(t, ∆̂(i,j)) = E[|∆(i,j) − ∆̂
(i,j)
t |]) to measure the

quality of the estimation. We define ∆̂ := {∆̂(i, j)}i<j≤K

to represent all the estimators on the gap between any two
arms. A design of an MAB experiment can then be repre-
sented by an admissible pair (π, ∆̂). The optimal design
of MAB experiments in this paper is solving the following
minimax multi-objective optimization problem:

min
(π,∆̂)

max
ν∈E0

(
Rν(n, π), max

i<j≤K
eν(n, ∆̂

(i,j))

)
, (1)

where we use the subscript ν to denote the MAB instance.
Eq. (1) mathematically describes the two goals: minimiz-
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ing the regret and the inference error under the worst case.
For traditional MAB problems, minπ maxν∈E0 R(n, π) is
usually the only objective. The asymptotic behavior of ∆̂
is one of the central focuses of the existing ATE literature.
Note that π and ∆̂ are complicatedly correlated through the
history H, and thus the optimization problem (1) has some
implicit constraints on π and ∆̂. Such kinds of constraints
may lead to a complicated feasible region and thus impose
great challenges on solving the optimization problem.

In order to define the optimality and understand the struc-
ture of solutions, we start from the inner maximization over
all ν ∈ E0 problem in Eq. (1). Intuitively, under a given
(π, ∆̂), the pairs (Rν ,maxi<j≤K eν) for all ν ∈ E0 can
constitute an accessible region, and the front of the acces-
sible region can be defined to be the optimal values of the
inner maximum problem (see, Figure 1). Formally, we de-
fine the front of a given pair (π, ∆̂) as follows.

Definition 1 (Front). The front for (π, ∆̂), denoted by
F(π, ∆̂), consists of all pairs of (R, e) satisfying: (i) ∃ν ∈
E0, (Rν(n, π),maxi<j≤K eν(n, ∆̂

(i,j))) = (R, e); (ii)
∄ν ∈ E0, maxi<j≤K eν(n, ∆̂

(i,j)) > e and Rν(n, π) ≥
R; (iii) ∄ν ∈ E0, maxi<j≤K eν(n, ∆̂

(i,j)) ≥ e and
Rν(n, π) > R.

The first condition ensures the achievability of the front.
The second and the third conditions are describing that
there does not exist any instance that will incur no fewer
values on both objectives and a strictly larger value on at
least one. From now on, including in Definition 1, when
it comes to comparing regrets or errors, we only focus on
the order of n ignoring the universal constant and the log-
arithm terms, since n is usually relatively large. In Figure
1, the yellow region and its boundary are an example of the
accessible region and front, respectively. We also present
the traditional RCTs in Figure 1. Since |∆(i,j)| = Θ(1)
for the instance class E0, the RCTs will usually incur lin-
ear regrets, and thus the accessible region is a line. By the
theoretical results for RCTs (see, e.g., Wainwright 2019),
the best achievable accuracy is Θ(n− 1

2 ), and thus the front
for RCTs is at the point (n, n− 1

2 ) ignoring the constant in-
dependent of n and the logarithm terms. Additionally, the
well-known results in MAB tells that the worst-case regret
of any policy is no smaller than log(n), and thus any acces-
sible region will inevitably have some parts on or above the
log(n) line shown in Figure 1.
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Figure 1: Examples of acces-
sible regions and fronts.
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Figure 2: Examples of Pareto
dominance.

In order to define the optimality for our minimax objective
(1), we first define the Pareto dominace between two feasi-
ble solutions based on the definition of the front as follows.

Definition 2 (Pareto dominance). A feasible solution
(π1, ∆̂1) Pareto dominates another solution (π2, ∆̂2) if
∀(R1, e1) ∈ F(π1, ∆̂1), ∃(R2, e2) ∈ F(π2, ∆̂2), such
that at least one of the following two conditions holds: (i)
R1 ≤ R2 and e1 < e2 or (ii) R1 < R2 and e1 ≤ e2.

The definition formally describes that (π1, ∆̂1) is Pareto
better than (π2, ∆̂2) if for any point (R1, e1) on the front
of (π1, ∆̂1), there exists some point (R2, e2) on the front
of (π2, ∆̂2) such that (R1, e1) is no larger than (R2, e2) on
both coordinates and is strictly better on at least one coordi-
nate. In Figure 2, we present toy examples of the fronts of
three different solutions. By the definition, (πb, ∆̂b) Pareto
dominates (πa, ∆̂a), and (πc, ∆̂c) can neither Pareto dom-
inate nor be Pareto dominated by (πa, ∆̂a) or (πb, ∆̂b).
Based on such Pareto dominance, we can have the defi-
nition of the crucial concept in the paper Pareto optimality.

Definition 3 (Pareto Optimality). An admissible pair of
(π∗, ∆̂∗) is Pareto optimal in terms of the dependence on n,
if it is not Pareto dominated by any other solution. Pareto
frontier denoted as P is the envelop of the fronts of all the
Pareto optimal solutions.

That a pair (π∗, ∆̂∗) is Pareto optimal does not mean it
can Pareto dominate every other policy, and thus there may
exist a group of admissible pairs that are all Pareto optimal.
The reason why we emphasize that our Pareto optimality is
in terms of the dependence on n is that in Definitions 1 and
2 we focus on the dependence of n ignoring the constants
and the logarithm terms.

In general, designing Pareto optimal MAB experiments is
in the center of this work. The first natural research ques-
tion is how to solve the minimax multi-objective optimiza-
tion problem to get the Pareto optimal solutions. The first
challenge stems from the multiple objectives, which are ar-
guably more challenging to tackle than solving the single
objective optimization problem like the traditional MAB
problems. Moreover, π and ∆̂ have the measurability con-
straints and are highly correlated through the history Ht,
which are hard to explicitly integrate into the optimiza-
tion problem and endow the feasible region with compli-
cated structures. Furthermore, finding only one Pareto op-
timal solution is always not enough. It is important to de-
sign experiments flexibly under different requirements for
the trade-off between these two objectives. This is indeed
asking how to obtain the optimal Pareto optimal solutions
given different levels of trade-off in these two objectives.

1.2 Contributions and Main Results

The main contribution of this paper is the Pareto opti-
mal design of MAB experiments, especially the statisti-
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cal understanding of the trade-off between online decision-
making and adaptive inference in MAB experiments. To
the best of our knowledge, this work is the first to jointly
consider the efficiency and statistical power in the experi-
mental design literature. We are also the first to introduce
the minimax multi-objective optimization framework to ex-
perimental designs. It also greatly generalizes the existing
minimax optimization framework in MAB literature. We
next summarize our main results from two folds.

First, we find a sufficient and necessary condition for the
Pareto optimal solutions of the minimax multi-objective
optimization problem (1). Specifically, an admissible pair
(π∗, ∆̂∗) is Pareto optimal if and only if

max
ν∈E0

[(
max

i<j≤K
eν(n, ∆̂

∗(i,j))

)√
Rν(n, π∗)

]
= Õ(1).

Compared with the definition of Pareto optimality, this con-
dition seems more straightforwards to interpret and eas-
ier to verify. Technically, we establish an information-
theoretical minimax lower bound to portray the trade-off
between these two objectives. Specifically,

inf
(π,∆̂)

max
ν∈E0

[(
max

i<j≤K
eν(n, ∆̂

(i,j))

)√
Rν(n, π)

]
= Ω(1).

This lower bound tells that no solution can do better on
(maxi<j≤K eν(n, ∆̂

(i,j)))
√

Rν(n, π) than a constant or-
der in the worst case. Particularly, since UCB/TS algo-
rithms have the regret upper bound of O(log n), then any
ATE estimator based on the UCB/TS algorithm cannot
avoid an error of Ω( 1√

logn
) in the worst case. This explic-

itly shows the lack of statistical power of UCB/TS algo-
rithms on ATE inference. On the other hand, we construct
a series of Pareto optimal policies that can Pareto dominate
any policy violating the condition to show its necessity. We
also show that the Pareto frontier is the curve that satisfies
(maxi<j≤K eν(n, ∆̂

(i,j)))
√
Rν(n, π) = Θ̃(1).

Second, we propose an efficient Pareto optimal algorithm
for stochastic MAB experiments which can adapt to differ-
ent levels of trade-off between the two objectives. Specif-
ically, we combine the well-known EXP3 algorithm (see,
e.g., Auer et al. 2002a, Seldin et al. 2013) and the idea of
extra forced exploration which means that the algorithm
purposely plays the other arms after it identifies the best
one. For any given α ∈ [0, 1] as input, we prove that the
regret of our algorithm is Õ(n1−α) and the estimation er-
ror of ATE is Õ( 1√

t1−α
) for all t ≤ n, showing its Pareto

optimality. Note that α balances the two objectives. If α
is large, the practitioners emphasize the control of regret.
Small α will lead to a more accurate ATE estimation. Tech-
nically, a common practice when using the EXP3 algorithm
is to estimate the expected rewards of each arm with inverse
propensity weighted (IPW) estimators, which imposes the
challenge on careful variance control.

Notably, most of the existing results on adaptive estimators
in the inference literature are typically in the style of cen-
tral limit theorem bounds which are asymptotic in nature,
whereas all our bounds are finite in nature.

1.3 Related Work

Learning Efficiency in MABs. A main body of liter-
ature in MABs has focused on the online learning effi-
ciency, i.e., minimizing regret (see, e.g., Lai et al. 1985,
Sutton and Barto 2018, Lattimore and Szepesvári 2020).
Two representative classes of algorithms that can provide
optimal regret bounds, i.e., Θ(log n) regret bounds, are
UCB-based algorithms (see, e.g., Lai et al. 1985, Agrawal
1995, Auer 2002, Auer et al. 2002a, Garivier and Moulines
2011, Garivier and Cappé 2011, Carpentier et al. 2011) and
TS-based algorithms (see, e.g., Thompson 1933, Chapelle
and Li 2011, Kaufmann et al. 2012, Russo and Van Roy
2016). Both UCB/TS algorithms have been extended to
the setting where contextual information of actions exists
(see, e.g., Filippi et al. 2010, Chu et al. 2011, Russo and
Van Roy 2014, Russo and Van Roy 2016, Li et al. 2017).
Fan and Glynn (2021) and Simchi-Levi et al. (2022) re-
veal that efficiency-optimized bandit algorithms may suffer
from serious heavy-tailed risk. In this paper, our design is
based on the idea of EXP3, which was initially designed
for adversarial MABs Auer et al. (2002b). Recently, it has
gradually gained its own popularity in the stochastic setting
(Seldin et al. 2011, Seldin et al. 2012, Seldin et al. 2013)
and the mixed stochastic-adversarial setting (see, Bubeck
and Slivkins 2012). The version of Bernstein’s inequality
we used is inspired by Seldin et al. (2013). These men-
tioned works only focus on minimizing the regret. Another
growing body of MAB literature is aiming at identifying
the best arm (see, e.g., Jennison et al. 1982, Mannor and
Tsitsiklis 2004, Chan and Lai 2006, Gabillon et al. 2012,
Garivier and Kaufmann 2016, Agrawal et al. 2021, Kato
and Ariu 2021). Zhong et al. (2021) carefully study the
trade-off between regret minimization and best-arm identi-
fication, which is different from our objective. An emerg-
ing field is the multitasking bandit, where minimizing re-
gret is not the only objective (see, e.g., Yang et al. 2017,
Yao et al. 2021, Deshmukh et al. 2017). Erraqabi et al.
(2017) also want to balance the trade-off between regret
and estimation error. They redefine a new reward function
based on the observed rewards and the error bounds. By
such a new reward to guide online decision-making, they
formulate the problem into a single objective optimization,
integrating the two objectives into one. In this way, they
do not explicitly capture the trade-off as we do, and thus
cannot describe the optimality of their design.

Adaptive experimental design. Experimental design is
becoming more and more popular in operations research,
econometrics, and statistics (see, e.g., Johari et al. 2015,
Eckles et al. 2017, Aronow and Samii 2017, Athey et al.



David Simchi-Levi, Chonghuan Wang

2018, Xiong et al. 2019, Bojinov et al. 2020, Wager and
Xu 2021, Bojinov et al. 2021, Johari et al. 2022, Farias
et al. 2022b). Adaptive experimental design is the area
that is most pertinent to this work (Hahn et al. 2011, Atan
et al. 2019, Offer-Westort et al. 2021, Kasy and Sautmann
2021, Bhat et al. 2020). MAB itself can also be seen as
a type of adaptive experimental design, but here we focus
on the designs different from traditional MAB. Kato et al.
(2020) investigate adaptive experiments for ATE when con-
texts can be observed. Glynn et al. (2020) propose a theo-
retical model to study optimal experimental design when
temporal interference exists by transforming it into to a
Markov decision problem. Adusumilli (2021) investigates
the asymptotic Bayes and minimax risk for bandit exper-
iments. Farias et al. (2022a) combine synthetic control
and MAB to study the settings where experimental units
are coarse due to interference or other concerns. Different
from our stationary treatment effect, Qin and Russo (2022)
investigate bandit experiments where a potentially nonsta-
tionary sequence of contexts influences arms’ performance.

Inference in MABs. The work from Villar et al. (2015)
is a pioneer work in revealing that MAB algorithms offer
significant advantages in assigning more patients to bet-
ter treatments, and severe limitations on resulting statisti-
cal power from an empirical perspective. We statistically
describe and quantify such a issue. There is a substantial
literature on post-experiment inference from logged adap-
tively collected data (see, e.g., Zhang et al. 2020, Zhang
et al. 2021, Bibaut et al. 2021). One of the central tasks
along this line is the evaluation of a new policy given his-
toric/observational data which cannot be seen as i.i.d. sam-
ples (see, e.g., Dudı́k et al. 2011, Dudı́k et al. 2014, Swami-
nathan and Joachims 2015, Li et al. 2015, Wang et al. 2017,
Kallus and Zhou 2018, Farajtabar et al. 2018, Athey and
Wager 2021, Zhan et al. 2021, Zhou et al. 2022, Hadad
et al. 2021, Chen et al. 2022). Bareinboim et al. (2015)
study the issue of unobserved confounding in MAB, and
consider how the observational data can be used to em-
power TS algorithms. Dimakopoulou et al. (2021) focus on
conducting inference on the true mean of each arm based
on data collected by stochastic MAB so far at each step.
They incorporate the adaptively weighted doubly robust
estimator into TS algorithms, which is proved to achieve
the optimal regret and has outstanding empirical perfor-
mances. Dimakopoulou et al. (2017) and Dimakopoulou
et al. (2019) consider the case where context exists and es-
timate the conditional expectation of each action’s reward
under different contexts.

Finally, we remark that the full version of this paper (con-
taining additional theoretical results, computational exper-
iments, and missing proofs) is available at https://
ssrn.com/abstract=4224969.

2 MAB Experimental Design for K = 2

In this section, we focus on K = 2 to illustrate our ideas.
We first establish the crucial lower bound and the sufficient
condition for the Pareto optimality. Then, we propose a
series of Pareto optimal designs and show the necessity of
the condition based on the constructed Pareto optimal solu-
tions. For brevity, we adopt the ∆ instead of ∆(1,2), since
there is no ambiguity when K = 2.

2.1 A Lower Bound and A Sufficient Condition

In this subsection, we start with establishing an lower
bound for (eν(n, ∆̂))

√
Rν(n, π). In the following theo-

rem, we establish an important minimax lower bound.

Theorem 1. For any admissible pair (π, ∆̂n), there always
exists a hard instance ν ∈ E0 that eν(n, ∆̂n)

√
Rν(n, π) is

no less than a constant order, i.e.,

inf
(π,∆̂n)

max
ν∈E0

[
eν(n, ∆̂n)

√
Rν(n, π)

]
= Ω(1). (2)

Theorem 1 states that for any admissible pair (π, ∆̂n), there
usually exists a challenging instance ν ∈ E such that the
product of estimation error and regret is lower-bounded by
np for some positive value of p. This mathematically high-
lights the trade-off between the two objectives. A small
regret will inevitably have a large error on the ATE estima-
tion. Roughly speaking, the expected error is almost lower
bounded by the inverse of the square root of the regret in
the worst case, i.e., eν(n, ∆̂n) = Ω( 1√

Rν(n,π)
). In par-

ticular, since Rν(n, π) = O(log(n)) for UCB and TS al-
gorithms, no estimators can not achieve smaller error than
the order Ω( 1√

log(n)
) consistently over all the possible in-

stances. Although log(n) increases with n, the speed is
rather slow which explicitly shows the limitation of regret-
optimal policies in terms of statistical power for estimating
the ATE.

In Theorem 1, we have shown that no solution can
perform better than a constant order in terms of
eν(n, ∆̂n)

√
Rν(n, π) in the worst case. The following

theorem states one policy is Pareto optimal if it can achieve
the constant order on eν(n, ∆̂n)

√
Rν(n, π) in terms of the

dependence on n.

Theorem 2. An admissible pair (π, ∆̂) is Pareto optimal if

max
ν∈E0

[
eν(n, ∆̂)

√
Rν(n, π)

]
= Õ(1). (3)

Together with Theorem 1, if Eq. (3) is satisfied, we can
directly draw the conclusion that (π, ∆̂) is optimal in terms
of the metric maxν∈E0

[eν(n, ∆̂)
√
Rν(n, π)]. However,

whether the optimality on such a metric can guarantee the
Pareto optimality is what we want to answer in Theorem
2. Comparing with the definition of Pareto optimality, Eq.

https://ssrn.com/abstract=4224969
https://ssrn.com/abstract=4224969
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(3) seems relatively more straightforwards and practical to
verify. For example, consider the traditional RCTs where
a half of experimental units are treated and controlled, re-
spectively. For any ν ∈ E0, eν(n, ∆̂RCT) = Õ(1/

√
n) and

Rν(n, πRCT) = Θ(n), and thus they are Pareto optimal.

2.2 An Algorithm and A Necessary Condition

Although the RCTs are Pareto optimal, they can not be eas-
ily adapted to different levels of trade-off between the two
objectives. In this subsection, we propose a flexible algo-
rithm satisfying Eq. (3) for K = 2 with the analysis of
the regret upper bound and the error bound for inference.
Then, we will prove that the condition (3) is necessary.

2.2.1 Algorithm and regret upper bound

We adopt the idea of the famous EXP3 algorithm for ad-
versarial MAB (see, e.g., Seldin et al. 2013, Auer et al.
2002a), together with the idea to force the algorithm to ac-
tively explore the suboptimal arm, to design our EXP3 with
exploration (EXP3E) algorithm shown in Algorithm 1.

We first define a set of random variables R̂t(a) for a ∈
{1, 2} based on inverse propensity score weight (IPW)
as: R̂t(a) = R̂t−1(a) + Rt

πt(a)
Ia=At

, which can pro-
vide an unbiased estimation of µa after being divided
by t, i.e., E[R̂t(a)] = µat. We also define R̂max

t as
maxa∈{1,2} R̂t(a). One may think a more straightfor-
ward way to estimate µa is the simple sample average∑t

s=1 Ia=AtRt∑t
s=1 Ia=At

. However, such an estimator is neither un-
biased nor asymptotically normal because whether we take
action a at time t is highly correlated with the past history
as is pointed by the recent works (see, e.g., Xu et al. 2013,
Luedtke and Van Der Laan 2016, Hadad et al. 2021, Nie
et al. 2018, Zhang et al. 2020). Thus, the ATE based on the
simple sample average will inevitably be biased. The first
phase of our algorithm is aiming at identifying the best arm
with well-controlled regret. In this phase, the algorithm is
adaptively polishing its decision policy to gain confidence
about which arm is the optimal one, according to the esti-
mated reward R̂t(a). There are many ways to map R̂t(a)
into probabilities, among which a popular choice is expo-
nential weighting as πt(a) =

eεt−1R̂t−1(a)∑
a∈A eεt−1R̂t−1(a)

. Note that

the decision maker knows the exactly πt(a), different from
the classical offline ATE inference. If at time t there ex-
ists an arm a such that R̂t(a) is larger than the other by
at least Ω(

√
t), the algorithm believes a is the optimal arm

and eliminates the other arm. Formally, our elimination
rule is At+1 = At\{a ∈ At : R̂max

t − R̂t(a) > 2
√
Ct},

where C is a constant defined in Algorithm 1. Note that
when the first phase ends is a stopping time with respect to
the history Ht. We define two stopping times as τ(a) =
max{t : a ∈ At} for a ∈ {1, 2}, and then the first phase
ends after mina∈{1,2} τ(a) periods. By a careful analysis,

the length of the first phase can be shown in the order 1/∆2.

Algorithm 1: EXP3 with exploration for K = 2
(EXP3E)

1 Input: α and δ

2 Initialization: A1 = {1, 2}, R̂0(a) = 0 for a ∈ {1, 2},
ε0 = 0, C = 4(e2 + 2)2(log( 2

δ
))2

3 for t = 1, 2, · · · , n do
4 εt =

1√
Ct

, αt =
1

2tα
;

5 if |At| = 2 : // Phase 1

6 πt(a) =
e
εt−1R̂t−1(a)

e
εt−1R̂t−1(1)

+e
εtR̂t−1(2)

for a ∈ {1, 2};

7 else: // Phase 2
8 πt(a) = 1− αt if a ∈ At; otherwise πt(a) = αt ;
9 Select At according to πt;

10 Observe reward Rt;
11 ∀a ∈ {1, 2}: R̂t(a) = R̂t−1(a) +

Rt
πt(a)

Ia=At ;

12 At+1 = At\{a ∈ At : R̂
max
t − R̂t(a) > 2

√
Ct};

13 Output: ∆̂t =
1
t
(R̂t(1)− R̂t(2));

14 end for

After eliminating the suboptimal arm, EXP3E operates into
the second phase. The algorithm is forced to play the arm
which was identified as the suboptimal one in the first phase
with a carefully controlled probability αt = 1

2tα . α is an
important input parameter that balances our two tasks. In
the following, we will see soon that a small α can help the
algorithm to have a more accurate estimator of ∆, while
sacrificing the regret.

Theorem 3. Let Algorithm 1 runs with any given α ∈ [0, 1]
and δ = 1

2n2 . The regret is

O
(
log(n)

∆
+ n1−α∆ log(n)

)
. (4)

The regret bound in Theorem 3 decreases with α, which
is consistent with our intuition that a large α restricts the
probability to play the suboptimal arm in the second phase.
When α = 1, the regret bound in Theorem 3 becomes
O( log(n)∆ +∆ log(n)), which matches with the optimal re-
gret bound of MAB in current literature (see, e.g., Latti-
more and Szepesvári 2020) up to logarithmic factors. This
means that if minimizing the accumulative regret is the
only objective (i.e., ignoring the inference task), by set-
ting α = 1, the performance of our EXP3E is unimprov-
able in terms of the dependency on the learning horizon
n. Another extreme case is when α = 0, the regret upper
bound grows linearly with the learning horizon T . When
α is set to be 0, in the second phase, the exploration prob-
ability remains to be 1

2 . This indicates that in the second
phase EXP3E is doing random control trials. Moreover, if
|∆| = Θ(1), Theorem 3 has an immediate corollary.

Corollary 1. With any given α ∈ [0, 1], δ = 1
2n2 and |∆| =

Θ(1), the regret of Algorithm 1 is Õ(n1−α).
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2.2.2 Inference for ATE

Now, we are going to focus on the problem of inference of
∆. Since we have shown E[R̂t(a)] = µat, we can define a
set of martingales as Ma

t = R̂t(a) − µat for a ∈ A, and
M

(1,2)
t := M1

t −M2
t = t∆̂t − t∆. We can directly have,

Theorem 4. For t ∈ [n], ∆̂t is unbiased, i.e., E[∆̂t] = ∆.

Then, how well our ∆̂t can estimate ∆ becomes the cen-
tral problem that we need to solve. For any t ∈ [n],
the martingale difference of M

(1,2)
t can be bounded by

|M (1,2)
t − M

(1,2)
t−1 | = 2 + 1/πt(1) + 1/πt(2). More-

over, the variance of the martingale M (1,2)
t can be bounded

as
∑n

t=1 E[(
Rt

πt(1)
IAt=1 − Rt

πt(2)
IAt=2 − ∆)2 | Ht−1] ≤∑n

t=1
1

πt(1)
+ 1

πt(2)
. A common concern about IPW-based

method is its large variance, especially when πt(a) is small
(e.g., Dimakopoulou et al. 2021). The blessing of online
learning is that we can control the propensity score. How-
ever, it also imposes an important challenge. Assigning a
small probability to the suboptimal arm can bring us a small
regret but a large variance of the estimators which may
harm the inference. In the second phase of our EXP3E,

1
πt(1)

+ 1
πt(2)

≤ 2tα by the design of our algorithm. As for
the first phase, from the proof of Theorem 3, our elimina-
tion rules contribute to securing 1

πt(a)
≤ 1 + e2 for a ∈ A.

In this way, we control the variance of M (1,2)
t . By Bern-

stein’s inequality (Freedman 1975), we can have the fol-
lowing theorem.

Theorem 5. If Algorithm 1 runs with α ∈ [0, 1] and δ <
2/e, with probability at least 1− δ, for all t ∈ [n],

∣∣∣∆̂t −∆
∣∣∣ ≤ (8e2 + 16) log 2

δ√
t1−α

. (5)

Furthermore, since we can take δ = 1
2n2 , e(n, ∆̂) =

E[|∆̂n −∆|] = Õ( 1√
n1−α

).

Different from most existing results on adaptive estima-
tors in the inference literature that are asymptotic in na-
ture, Theorem 5 is a finite sample properties which has its
own advantages when the number or samples are relatively
small. Another important difference with offline inference
lies in that Theorem 5 is an any-time bound since it holds
for all t ∈ [n]. In addition, the RHS of Eq. (5) increases
with the value of α. Intuitively, when α is small, EXP3E
is more likely to explore during the second phase of our al-
gorithm, which will help to estimate of the reward of the
suboptimal arm, and thus improve our inference. However,
there is no free lunch. In contrast, the regret upper bound
in Theorem 3 will be large. Such observations illustrate the
role that α plays in balancing online learning and inference.

Together with Corollary 1 and Theorem 5, we can safely
draw the following statement.

Corollary 2. For any instance ν ∈ E0 and α ∈ [0, 1], Algo-
rithm 1 can guarantee eν(n, ∆̂)

√
Rν(n, π) = Õ(1). Fur-

thermore, by Theorem 1, Algorithm 1 achieves the Pareto
optimality for any α ∈ [0, 1].

For simplicity, we denote the online decision-making pol-
icy and ATE estimator with input parameter α in Algorithm
1 as (πα, ∆̂α). By Theorem 1, the front of (πα, ∆̂α) is
F(πα, ∆̂α) = {(n1−α, 1√

n1−α
)}. With different input of

α ∈ [0, 1], the front of our (πα, ∆̂α) will cover the line
e(n, ∆̂)

√
Rν(n, π) = 1, which is the Pareto frontier. The

front for α = 0 coincides with that of RCTs.

2.2.3 The sufficient and necessary condition

Based on the series of (πα, ∆̂α), the following theorem il-
lustrates the necessity of the condition (3).The main idea is
that any policy violating condition (3) will be Pareto dom-
inated by (πα, ∆̂α) for some α, and thus can not be Pareto
optimal.

Theorem 6. Any Pareto optimal (π∗, ∆̂∗) satisfies

maxν∈E0

[
eν(n, ∆̂

∗)
√

Rν(n, π∗)
]
= Õ(1).

Together with Theorems 2 and 6, we formally confirm the
condition (3) is sufficient and necessary for the Pareto op-
timal solutions for K = 2.

Corollary 3. The admissible pair (π∗, ∆̂∗) is Pareto opti-
mal to the minimax multi-objective optimization (1) if and
only if maxν∈E0

[
eν(n, ∆̂

∗)
√
Rν(n, π∗)

]
= Õ(1).

In Figure 3, we present several examples of the possible
fronts of the admissible policies. First, the lower bound in
Eq. (2) tells that the front of any admissible policy has in-
tersection of the region R(n, π) ≳ 1/(e(n, ∆̂))2 (the blue
region). The sufficient and necessary condition indicates
that the Pareto optimal solutions will only intersect with
the blue region on the boundary R(n, π) ≃ 1/(e(n, ∆̂))2.
In turn, any policy that intersects with the region on the
boundary are Pareto optimal. The red curve is non Pareto
optimal, since it partly falls into the interior of the region.

𝑛

𝑛! ⁄# $

log 𝑛

𝑙𝑜𝑔 𝑛 ! ⁄# $

ℛ 𝑛, π
Front for RCT
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Pareto optimal

Non Pareto optimal

𝑒 𝑛, )Δ

ℛ 𝑛, π ≃
1

𝑒 𝑛, 1Δ
$

Figure 3: Examples of Pareto (non)optimal solutions.
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3 Extension to General K

In this section, we extend our model, algorithm and anal-
ysis to a general K ≥ 2. The main ideas of EXP3EG in
Algorithm 2 follow from those of EXP3E. However, since
the suboptimal arms are usually unlikely to be eliminated at
the same time, EXP3EG can not be divided into two phases
explicitly anymore. Following the same notatition as be-
fore, we assign a ̸∈ At a time-varying but fixed probability
αt = 1

Ktα to be played. For a ∈ At, we assign the prob-

ability (1 − |Ac
t |αt)

eεt−1R̂t−1(a)∑
a′∈At

eεt−1R̂t−1(a′) . The elimination

rule is still At+1 = At\{a : R̂max
t − R̂t(a) > 2

√
Ct}.

Moreover, notably, EXP3EG is powerful enough to output
∆̂i,j for all i ̸= j ∈ [K] at the same time, which means
EXP3EG does not need to know which ∆i,j is of interest in
advance. We can have the following theorem on regret.

Theorem 7. Let Algorithm 2 run with α ∈ [0, 1]

and δ = 1
2n2 . The regret is O(

∑
a∈[K]/{a∗}

log(n)
∆(a) +

∆(a)n1−α log(n)).

When α = 1, the regret upper bound in Theorem 7 matches
with the minimax lower bounds for MAB problems up to
a logarithmic factor. Also, since we mainly care about
|∆(a)| = Θ(1), the regret bounds becomes Õ(n1−α). In
Theorem 7, the regret upper bound is only dependent on
the gaps with the optimal arm ∆(a) instead of all |∆(i,j)|.
Intuitively, ∆(a) has a more important role than |∆(i,j)|,
since the regret is defined to compete with the optimal arm.

For inference, following the notation defined in Section 2.2,
we introduce a series of martingales M (i,j)

t := M i
t − M j

t

for any i ̸= j ∈ [K], where recall that M i
t = R̂t(i) −

µit. An immediate result is unbiasedness, i.e., E[∆̂(i,j)
t ] =

∆(i,j) for t ∈ [n]. We extend the result in Theorem 5 as
following to a fixed pair of i, j.

Algorithm 2: EXP3E for general K (EXP3EG)

1 Input: α and δ

2 Initialization: A1 = {1, 2, · · · ,K}, R̂0(a) = 0 for
a ∈ {1, · · · ,K}, C = (4K2(e2 + 1) + 2)2(log( 2

δ
))2

3 for t = 1, 2, · · · , n do
4 εt =

1√
Ct

, αt =
1

Ktα
;

5 ∀a ∈ At: πt(a) = (1− |Ac
t |αt)

e
εt−1R̂t−1(a)∑

a′∈At
e
εt−1R̂t−1(a′) ;

6 ∀a ̸∈ At: πt(a) = αt;
7 Select At according to πt;
8 Observe reward Rt;
9 ∀a ∈ {1, · · · ,K}: R̂t(a) = R̂t−1(a) +

Rt
πt(a)

Ia=At ;

10 At+1 = At\{a : R̂max
t − R̂t(a) > 2

√
Ct};

11 Output: For i ̸= j ∈ [K]: ∆̂(i,j)
t = 1

t
(R̂t(i)− R̂t(j));

12 end for

Theorem 8. If Algorithm 2 runs with α ∈ [0, 1], for any
fixed i, j ∈ [k], i ̸= j, and δ < 2/e, with probability at

least 1− δ, for all t ∈ [n],

|∆̂(i,j)
t −∆(i,j)| ≤

4(2 + 2K2(1 + e2)) log 2
δ√

t1−α
. (6)

Particularly, after taking δ = 1
2n2 , we can derive

maxi<j≤K e(n, ∆̂
(i,j)
n ) = O( 1√

n1−α
).

Then, together with Theorem 7, (maxi<j≤K eν(n, ∆̂
(i,j)
n ))√

Rν(n, π) = Õ(1) holds for any ν ∈ E0. Taking i∗

and j∗ to be the best and the second best arm respectively,
we always have maxi<j≤K e(n, ∆̂

(i,j)
n ) ≥ e(n, ∆̂

(i∗,j∗)
n ).

By such a fact, we can reduce the problem with K > 2
to K = 2. Theorem 2 can be easily generalized, and
thus the sufficient condition for Pareto optimality can be
maxν∈E0(maxi<j≤K eν(n, ∆̂

(i,j)
n ))

√
Rν(n, π) = Õ(1).

Hence, Algorithm 2 is Pareto optimal for all α ∈ [0, 1].
Then the necessity of the condition follows similarly from
Theorem 6. We can naturally extend Corollary 3 as follows.

Theorem 9. The admissible pair (π∗, ∆̂∗) is Pareto op-
timal to the optimization problem (1) if and only if
max
ν∈E0

[( max
i<j≤K

eν(n, ∆̂
∗(i,j)
n ))

√
Rν(n, π∗)] = Õ(1).

4 Discussion

In the previous sections, we restrict ourselves to the in-
stance class E0, where ∆(i,j) = Θ(1) for all i, j ∈ [K],
which is usually referred to as the “well-separated” in-
stance class (see, e.g., Kalvit and Zeevi 2021). Such an
instance class allows us to see the magnitude of ∆(i,j) as
a universal constant independent of n and ignore its in-
fluence when deriving the necessary and sufficient condi-
tion for Pareto optimality. In this section, we first discuss
about the case where ∆(i,j) is extremely small comparing
with the time horizon n or can even shrink with n (i.e.,
∆(i,j) = O(n−p) for some strictly positive p > 0). For
simplicity, we will focus on K = 2 since K > 2 naturally
follows.

Case 1: ∆ = O(n−1/2). As known in current literature
(see, e.g., Lattimore and Szepesvári 2020 and Kalvit and
Zeevi 2021), approximately 1

∆2 samples are unavoidable
to distinguish between two distributions with means sepa-
rated by ∆. This indicates that if ∆ = O(n−1/2), even the
most efficient adaptive algorithm which only cares about
the regret rate will spend Θ(n) samples on the suboptimal
arm and thus the regret is doomed to be roughly n∆. No
one can expect to increase the statistical power by sacri-
ficing the online decision-making efficiency, which itself
has no room to be sacrificed. Therefore, the main question
becomes what level the estimation error can be controlled.
By slight modifications of the proof of Theorem 5, we can
show our estimator ∆̂ can achieve e(n, ∆̂) = Õ(n−1/2)
when ∆ = O(n−1/2), which can not be further improved
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either. In this case, we have the strongest statistical power
and an unavoidably large regret.

Case 2: ∆ = Ω(n−1/2) and ∆ = O(n−(1−α)/2). Recall
that α is the input of EXP3E controlling the trade-off
between the two objectives. In this case, the regret upper
bound in Theorem 3 reduces to Õ( log(n)∆ ), which is not
influenced by α and matches with the regret lower bound
in the worst case (see, e.g., Lattimore and Szepesvári
2020). This means that when n−1/2 ≲ ∆ ≲ n−(1−α)/2,
our EXP3E always has the optimal efficiency in online
decision-making. Note that Theorem 5 still holds here,
i.e., e(n, ∆̂) = Õ(n−(1−α)/2). We want to point out that
by a simple modification of Lemma ??, in this case one
feasible lower error bound is Ω(

√
∆

log(n) ), which we do not
match with. Such kind of mismatch may be caused by the
large variance of IPW-based estimator, especially during
the second phase of the algorithm. It is also possible that
Ω(

√
∆

log(n) ) underestimates the difficulty of the problem

with n−1/2 ≲ ∆ ≲ n−(1−α)/2. We leave this issue to our
future research.

Case 3: ∆ = Ω(n−(1−α)/2) and ∆ < Θ(1). In this case,

Theorem 3 offers a regret upper bound of Õ(n1−α∆),
whose proof inplies that the algorithm plays the subopti-
mal arm exact Θ(n1−α) times. And thus, by an easy exten-
sion of Lemma ??, the Õ(n−(1−α)/2) error bound offered
by Theorem 5 is rate optimal. The problem here is that
since we do not know the order of the magnitude of ∆ in
advance, we can hardly control the regret to the level that
we want in the order of n. That is the price for the strong
statistical power when ∆ = Ω(n−(1−α)/2).

Up till now, we have discussed that EXP3E is somewhat
optimal in some other senses under different orders of the
small ∆. However, what is the sufficient and necessary
condition for the desired Pareto optimal for extremely small
∆ is still unknown and we leave it to our future work.

The second aspect to consider is the neglect of constants
and logarithm terms in defining Pareto optimality. While
this is a common practice in MAB, ignoring these terms
can be significant, especially in cases where sample col-
lection is costly or the number of samples is limited. Ad-
mittedly, such a simplification is another limitation of our
work. It is very challenging to get optimal rates on the de-
pendence of both constant and n. Even for the traditional
MAB problem without the added complexity of inference,
there is a lack of research addressing the best achievable
dependence on constants. Another important consideration
is the choice of the parameter α, which plays a crucial role
in our design. Choosing the appropriate α can be chal-
lenging in some cases, and there may be scenarios where
a dynamic α would be more appropriate, especially in ex-
periments that have a long duration. Understanding how
people make decisions about choosing α is also important,

but it is outside the scope of this work. Finally, a crucial
next step is extending our work to continuous arm bandit
problems, as our design and analysis are currently limited
to discrete arms.

5 Concluding Remarks

In this paper, we statistically investigate the trade-off be-
tween efficiency in decision-making and statistical power
of ATE in MAB experiments. We novelly introduce the
general minimax multi-objective optimization framework
and Pareto optimality to formally describe and theoretically
analyze such a trade-off. Moreover, we derive a useful suf-
ficient and necessary condition for Pareto optimal designs,
i.e., (maxi<j≤K eν(n, ∆̂

∗(i,j)))
√
Rν(n, π∗) = Õ(1) for

any instance ν ∈ E0. Additionally, we propose an efficient
Pareto optimal design with maxi<j≤Keν(n, ∆̂

(i,j)) =
O(n−(1−α)/2) and Rν(n, π) = O(n1−α) for any give
α ∈ [0, 1] controlling the desired level of trade-off.
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Lattimore, T. and Szepesvári, C. (2020). Bandit algorithms.
Cambridge University Press.

Li, L., Lu, Y., and Zhou, D. (2017). Provably optimal algo-
rithms for generalized linear contextual bandits. In Pro-
ceedings of the 34th International Conference on Ma-
chine Learning-Volume 70, pages 2071–2080. JMLR.
org.

Li, L., Munos, R., and Szepesvári, C. (2015). Toward min-
imax off-policy value estimation. In Artificial Intelli-
gence and Statistics, pages 608–616. PMLR.

Luedtke, A. R. and Van Der Laan, M. J. (2016). Statistical
inference for the mean outcome under a possibly non-
unique optimal treatment strategy. Annals of statistics,
44(2):713.

Mannor, S. and Tsitsiklis, J. N. (2004). The sam-
ple complexity of exploration in the multi-armed ban-
dit problem. Journal of Machine Learning Research,
5(Jun):623–648.

Nie, X., Tian, X., Taylor, J., and Zou, J. (2018). Why adap-
tively collected data have negative bias and how to cor-
rect for it. In International Conference on Artificial In-
telligence and Statistics, pages 1261–1269. PMLR.

Offer-Westort, M., Coppock, A., and Green, D. P. (2021).
Adaptive experimental design: Prospects and applica-
tions in political science. American Journal of Political
Science, 65(4):826–844.

Qin, C. and Russo, D. (2022). Adaptivity and confound-
ing in multi-armed bandit experiments. arXiv preprint
arXiv:2202.09036.

Russo, D. and Van Roy, B. (2014). Learning to optimize
via posterior sampling. Mathematics of Operations Re-
search, 39(4):1221–1243.

Russo, D. and Van Roy, B. (2016). An information-
theoretic analysis of thompson sampling. The Journal
of Machine Learning Research, 17(1):2442–2471.

Seldin, Y., Auer, P., Shawe-taylor, J., Ortner, R., and Lavio-
lette, F. (2011). Pac-bayesian analysis of contextual ban-
dits. Advances in neural information processing systems,
24.

Seldin, Y., Cesa-Bianchi, N., Auer, P., Laviolette, F., and
Shawe-Taylor, J. (2012). Pac-bayes-bernstein inequality
for martingales and its application to multiarmed ban-
dits. In Proceedings of the Workshop on On-line Trading
of Exploration and Exploitation 2, pages 98–111. JMLR
Workshop and Conference Proceedings.
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