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Abstract

In this work, we consider the problem of im-
balanced data in a regression framework when
the imbalanced phenomenon concerns continu-
ous or discrete covariates. Such a situation can
lead to biases in the estimates. In this case, we
propose a data augmentation algorithm that com-
bines a weighted resampling (WR) and a data
augmentation (DA) procedure. In a first step, the
DA procedure permits exploring a wider support
than the initial one. In a second step, the WR
method drives the exogenous distribution to a tar-
get one. We discuss the choice of the DA proce-
dure through a numerical study that illustrates the
advantages of this approach. Finally, an actuarial
application is studied.

1 INTRODUCTION

Many real world forecasting problems are based on predic-
tive models in a supervised learning framework. Most of
these algorithms fail when the variable of interest is im-
balanced. This situation also occurs when the population
observed is significantly different from the true population.
This is the case when certain parts of the support are ob-
served less than in theory or are even not observed. We
may face unrepresentative training data due to sampling
noise or due to the sampling method, even for large sam-
ples. Such selection bias or sampling bias, could affect
the models and impact the results, by biasing the estimates.
We naturally find this problem in clinical trial data (Mor-
gan and Rubin (2012), Friede (2006), Kahan et al. (2015),
Ciolino et al. (2011), Ciolino et al. (2013)) and in survey
sampling theory (Yang et al. (2021b),Gupta et al. (2022),
Tillé (2022)). We also have such an issue in Regression
Discontinuity (Caughey and Sekhon (2011), Peng and Ning
(2019), Frölich and Huber (2019), Cattaneo et al. (2021)).
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This problem also appears in actuarial science as illustrated
in our application.

This kind of situation can strongly impact standard learn-
ing algorithms, particularly if the rarely observed (or unob-
served) values are the most relevant for the modeling. The
learning from imbalanced data concerns many problems
with numerous applications in different fields, with still
some open issues and challenges (Krawczyk (2016)). This
research topic, very active, has mostly focused on solving
classification tasks where many solutions have been dis-
cussed (Branco et al. (2016a), Fernández et al. (2018a),
Fernández et al. (2018b)).

However, very few works exist in a regression framework.
One of the best solutions currently proposed is to use the
concept of utility-based regression defining the notion of
relevance for a continuous target variable (Torgo et al.
(2015), Branco et al. (2016b), Branco (2018), Ribeiro and
Moniz (2020)). Yang et al. (2021a) propose to use distri-
bution smoothing to handle this issue. All these different
techniques offer specific treatments to deal with the imbal-
anced distribution of variables of interest. Several sampling
techniques for regression models (Pair Bootstrap, Stratified
Bootstrap, Residuals Resampling - Wild Bootstrap, etc.)
have already been proposed in order to improve learning
or get/reduce confidence intervals, without directly deal-
ing with the imbalanced phenomenon Horowitz (2019),
Flachaire (2001). There also exists some sample adjust-
ment techniques that can be used to create a synthetic
dataset with statistical similarities to the true population of
interest Templ et al. (2017) but the covariates considered
are categorical or discrete.

Finally, there does not seem to be any work handling
specifically the case of imbalanced continuous covariates
and no method proposes to adjust the sample according to
a continuous target covariate distribution.

In this work, we consider the problem of imbalanced con-
tinuous covariates in a regression context and we propose
two solutions: first, a weighted resampling (WR), driving
the distribution of the covariates to the target one; second, a
two-step data augmentation algorithm that combines a data
augmentation (DA) procedure, exploring a wider support
than the initial one, with the WR procedure. Interestingly,
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that method is valid for continuous, or discrete, as well as
categorical covariates. A numerical study illustrates the ad-
vantages of combining this method with six different DA
approaches through measures of predictive performance in-
dicators in regression. As a particular case, we also study
the WR method which corresponds to a one-step version of
the algorithm.

The main contributions of this paper are: i) analyzing the
potential impact of an imbalance of a covariate in a re-
gression context; ii) introducing a WR method to deal with
this phenomenon; and iii) presenting a combination of this
method with several data generators to avoid an overfitting
phenomenon and try to improve the regression. The paper
is organized as follows: In Section 2 we describe the WR
procedure and we introduce the DA-WR algorithm. Sec-
tion 3 contains simulation results and Section 4 presents
an analysis of a dataset from the literature. The perspec-
tives of this work are presented in Section 5. Code, data
and results are available at: https://github.com/
sstocksieker/DAIR.

2 WR AND DA-WR ALGORITHMS

2.1 Notation

Consider a sequence of iid random variables
{(X1, Y1), · · · , (Xn, Yn)}, which are realizations of
(X, Y ), where the variable of interest Y is univariate and
the covariates X ∈ X is a p-dimensional vector. X and Y
are supposed to be continuous or discrete and we consider
the regression framework where the objective is to explain
and predict Y according to the following structure:

E(Y |X) = m(X),

for some function m, parametric or not. Here we consider a
random design where X = (X1, · · · , Xp) has an unknown
joint cumulative distribution function (cdf) F with proba-
bility P. We assume a target distribution F0, which can be
the distribution function of X in the true population, which
can be known, or a distribution of interest.

When the observations of X are far from the target distri-
bution we call this situation an imbalanced covariates re-
gression, or simply an imbalanced regression here. This is-
sue is slightly different from the imbalanced situation in a
regression framework, in literature, because it handles one
or more covariates (X) and not the target variable (Y ). This
case allows us to easily get a target distribution to drive
the data generation (for example, from the population in
survey analyses). More precisely, we should say that the
imbalanced phenomenon occurs when F ̸= F0. To mea-
sure the degree of imbalance we can denote by F̂ and P̂
the empirical estimators and we propose the following def-
inition: we face a (α, β)-imbalanced regression problem
if there is a set χ ⊂ X with P0(X ∈ χ) ≥ β such that

| P̂(X∈χ)
P0(X∈χ) − 1| > α. In other words, an imbalanced regres-

sion means having a sample significantly different from the
target population for at least a significant part of the support
of X . Clearly, the larger the values of (α, β), the greater
the degree of imbalance. This problem also depends of the
sample size. If F and F0 have the same support, then the
phenomenon will diminish with n. On the other hand, if a
part of the support of X is never observed then the problem
may persist even for large n.

To handle this situation, we want to draw a n∗-
sample, {(X∗

i , Y
∗
i )i=1,··· ,n∗} from the initial n-sample

{(Xi, Yi)i=1,··· ,n}, such that the cdf F ∗ of X∗ converges
to the target F0 with associated probability P0.

We consider here the case where the random vector X is
composed of discrete or continuous variables and in both
cases, we denote by f its joint probability density function
(pdf) or probability mass function. For simplicity of nota-
tion, we consider the case p = 1 and from now on we then
write X instead of X . The method can be extended to the
multivariate case p > 1 by using joint density estimators.
Moreover, the case where X is qualitative could be treated
in exactly the same way.

2.2 WR algorithm

We consider a classical kernel estimator of f

f̂(x) =
1

nhn

n∑
j=1

K
(
Xj − x

hn

)
,

with an appropriate bandwidth hn. To avoid unstable nu-
merical results we add a trimming sequence en, such that
en → 0, as n → ∞. Write

f̂en = max(f̂ , en) and fen = max(f, en),

and we now consider f̂en instead of f̂ . We write f0 the
target probability density function associated to F0.

Define
- ωi =

f0(Xi)

f̂en (Xi)
the drawing weight of observation i, and

- qi = ωi∑
j ωj

the normalized drawing weight of observation

i such that
∑

i qi = 1

The weighted resampling is inspired by Smith and Gelfand
(1992) and consists in sampling the observations according
to their drawing probabilities qi. This variant of the clas-
sical Bootstrap Efron (1982) is close to the Monte Carlo
method Sampling Importance Resampling Rubin (1988).
We draw a random variable X∗ from X1, · · · , Xn using
the probabilities qi; that is P(X∗ = Xi) = qi. By con-

https://github.com/sstocksieker/DAIR
https://github.com/sstocksieker/DAIR
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struction the cdf of X∗ given X1, · · · , Xn is

F ∗(x) = P(X∗ ≤ x)

=

n∑
i=1

P(X∗ = Xi)1[−∞,x](Xi)

=

n∑
i=1

qi1[−∞,x](Xi).

Clearly, X∗ and F ∗ depend on the sample size n but we
omit the index n in the notation.

We introduce a classical assumption

(C) : hk
n + log(n)

nhn
= O(e2n) holds and f ∈ Ck (k times

derivable) for some k ∈ N∗.

PROPOSITION 1. Assume that (C) holds and that the sup-
port of F contains the support of F0. Then for all x ∈ X ,
the cdf F ∗(x) of X∗ converges in probabilities to F0(x) as
n → +∞.

Proof. We recall a result of Collomb (1984):

LEMME 1 (Collomb, G. 1984). Assume that f ∈ Ck, then
we have

sup
x

|f̂(x)− f(x)| = OP(h
k
n + log(n)/(nhn))

We have ∀x ∈ R :

F ∗(x) =

n∑
i=1

qi1[−∞,z](Xi)

=
1
n

∑n
i=1 ωi1[−∞,x](Xi)

1
n

∑n
i=1 ωi

=

1
n

∑n
i=1

f0(xi)

f̂en (Xi)
1[−∞,x](Xi)

1
n

∑n
i=1

f0(Xi)

f̂en (Xi)

:=
ûn

v̂n
,

where

ûn =
1

n

n∑
i=1

f0(Xi)

f̂en(Xi)
1[−∞,x](Xi)

v̂n =
1

n

n∑
i=1

f0(Xi)

f̂en(Xi)
> 0.

Write

un =
1

n

n∑
i=1

f0(Xi)

f(Xi)
1[−∞,x](Xi)

vn =
1

n

n∑
i=1

f0(Xi)

f(Xi)
> 0.

We want to prove that

ûn − un →P 0 and v̂n − vn →P 0.

We can write

ûn − un =
1

n

n∑
i=1

f0(xi)1[−∞,x](Xi)
( 1

f̂en(Xi)
− 1

f(Xi)

)
.

Noting that 1
f̂en

= 1
f +

f−fen
fenf +

fen−f̂en
fen f̂en

= 1
f +

f−en
fenf 1{f<en} +

fen−f̂en
fen f̂en

, and that |fen(x) − f̂en(x)| ≤

|f(x)− f̂(x)| we obtain

|ûn − un| ≤
1

n

n∑
i=1

|f0(Xi)1[−∞,x](Xi)||
1

f̂en(Xi)
− 1

f(Xi)
|

≤ 1

n

n∑
i=1

|f0(Xi)1[−∞,x](Xi)| ×
{

| f(Xi)− en

f(Xi)f̂(Xi)
1f(Xi)<en |+

|fen(Xi)− f̂en(xi)|
f̂en(Xi)fen(Xi)

}
:= A+B.

We have

A ≤ 1

n

n∑
i=1

|g0(Xi)1[−∞,x](Xi)|
en

f2(Xi)
1f(Xi)<en

≤ 1

n

n∑
i=1

|f0(Xi)1[−∞,x](Xi)|
1

f2(Xi)
en

= An en →P 0, as n → ∞,

since An converges by the Law of Large Numbers and
en → 0. We now consider B

B ≤ 1

n

n∑
i=1

|f0(Xi)1[−∞,x](Xi)||
f̂en(Xi)− fen(Xi)

f̂en(Xi)fen(Xi)
|

≤ 1

n

n∑
i=1

|f0(Xi)1[−∞,x](Xi)|
sup |f̂(x)− f(x)|

e2n

= Bn
sup |f̂(x)− f(x)|

e2n

which converges to zero in probabilities since Bn con-
verges by law of large numbers, and by Lemma 1 com-
bined with Assumption (C). Finally, we deduce that |ûn −
un| →P 0. Similar considerations apply to |v̂n − vn| and
we conclude that

F ∗(x)− un

vn
=

ûn

v̂n
− un

vn
→P 0, as n → ∞.

The study of un

vn
is done in Smith and Gelfand (1992)

where the authors proved that it converges to F0(x), which
achieves the proof.
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The use of the WR procedure in regression yields a new
sample with X∗ which tends to the target distribution. This
oversampling can be applied with the following algorithm.

Algorithm 1 Weighted Resampling (WR) algorithm

Input : data {(Xi, Yi)i=1,··· ,n}; synthetic sample size
n∗ (= n if not specified); target density f0; kernel K
(including trimming en and hn)
Weighted Resampling :
wi = f0(Xi)/f̂en(Xi); i = 1 · · · , n
qi = wi/sum(wi); i = 1 · · · , n
Draw (X∗, Y ∗) from (X1, Y1), · · · , (Xn, Yn) with
probabilities q1, · · · , qn
Output : (X∗, Y ∗)

With this method, the cdf of X∗ converges to the target
one from Proposition 1. The conditional distribution of Y
given X remains unchanged since the drawing is done on
the whole observation. It is important to note that if there
are auxiliary variables, they are drawn as Y .

The particularity of the WR algorithm is that it generates on
the same support as the observations, which is imbalanced.
Indeed, with a finite sample size, bootstrap procedures nat-
urally return the same values as the sample. There is thus
an important risk of over-fitting for the segments poor in
observations with a high draw weight.

2.3 DA-WR algorithm

We propose to combine the previous WR algorithm with a
method of DA generating synthetic data. This artificial data
simulation allows to extend the support of the distribution
and possibly reduces the risk of over-fitting associated with
oversampling.

In order to enlarge the support of the covariates, we apply
the DA first. We obtain the following algorithm, adding a
DA step to the previous WR algorithm.

Algorithm 2 Data Augmentation - Weighted Resampling
(DA-WR) algorithm

Input : data {(Xi, Yi)i=1,··· ,n}; DA sample size N ;
synthetic sample size n∗; target density f0; kernel K (in-
cluding trimming en and hn); DA generator
DA step :
{(Xs

j , Y
s
j )}j=1,··· ,N = DA({(Xi, Yi)}i=1,··· ,n)

WR step :
wi = f0(X

s
i )/f̂en(X

s
i ); i = 1 · · · , N

qi = wi/sum(wi); i = 1 · · · , N
Draw (X∗, Y ∗) from (Xs

1 , Y
s
1 ), · · · , (Xs

N , Y s
N ) with

probabilities q1, · · · , qN
Output : (X∗, Y ∗)

As we can see, this approach does not require complex pa-

rameterization: only a target distribution for the covariate
of interest and a density estimator for the empirical density
(e.g kernel density estimate). In practice, a preliminary step
of WR can be used to increase the performance of the DA-
WR algorithm that becomes a WR-DA-WR algorithm. The
last step of the algorithm must be a WR step to bring closer
the synthetic distribution to the target one. It is important
to note that if there are auxiliary variables then they are
generated and drawn as Y . Note that the result of Propo-
sition 1 now depends on the DA procedure and additional
conditions are needed to get the convergence to the target
distribution. We give here an illustration (the proof is rel-
egated in the Supplement) by considering X ′

i the new data
obtained from the DA procedure, for i = 1 · · · , N = n,
respectively, and by assuming that for all x ∈ X ,

(C’) : maxi=1,··· ,n |IXi≤x − IX′
i≤x| = o(1/n)

(C”) : maxi=1,··· ,n |qi − q′i| = o(1/n),

where qi and q′i denote the weights associated with the ini-
tial and the augmented dataset, respectively.

PROPOSITION 2. Assume that (C)-(C”) hold and that the
support of F contains the support of F0. Then for all x ∈
X , the cdf resulting from the DA-WR algorithm converges
in probabilities to F0(x) as n → +∞.

For the DA step, we consider the following six approaches:

• Perturbation approaches:
- Gaussian Noise, inspired by Lee and Sauchi (2000):
GN
- ROSE, a Smoothed Boostrap inspired by Menardi
and Torelli (2014): ROSE
- Smoothed Boostrap, another Smoothed Boostrap:
KDE

• Interpolation approaches: k Nearest Neighbors in-
spired by Chawla et al. (2002): SMOTE

• Latent structure model approaches:
- Gaussian Mixture Models: GMM
- Factor Analysis: FA

• Copula approach: Gaussian Copula Model Patki et al.
(2016): Copula

• Deep Learning approach: Conditional Generative Ad-
versarial Networks Xu et al. (2019): GAN

• Machine Learning approach: Ramdom forest Nowok
et al. (2016): RF

More details on these generators are given in A in the Sup-
plement. All these methods have been used as synthetic
data generators, that is, to construct samples with only arti-
ficial data. This choice has the advantage of defining the
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original observations as a test sample and it also avoids
the loss of information by separating learning and testing.
In our study, this allows us to compare the different tech-
niques. The existing algorithms in imbalanced regression
cannot be applied in this context because they do not fo-
cus on the covariate distribution. More precisely, they do
not propose to manage the selection bias although our WR
algorithm tries to correct the lack of representativeness of
the sample compared to the population (convergence to the
target distribution).

All these generators were tested before and after a cluster-
ing (via a Gaussian Mixture Model) in order to eventually
improve the accuracy of the data generation. Typically, this
means performing a cluster-conditioned learning. Indeed,
the structure (variance, dependence, etc.) of the data can be
different according to certain subparts of the data space. It
can be relevant to apply a resampling by cluster rather than
on the whole sample.

3 NUMERICAL ILLUSTRATION

We illustrate our approach numerically by first showing the
different generated data obtained with the WR and the DA-
WR algorithms. Then, we analyze the impact of bias selec-
tion in regression when an imbalanced sample is used for
training the learning model. At last, we measure the benefit
obtained with both WR and DA-WR algorithms and com-
pare the results obtained by the different generators. In this
illustration, the algorithms are intentionally evaluated on a
complicated case with two inflection points on the border
of the observed support to get a strong impact on the re-
gression in order to assess the method.

3.1 Dataset design

We consider a bi-dimensional initial population Dp =
(Xp, Y p), of size np = 10, 000 such that X ∼ F0 :=
B(5, 5) and Y ∼ N (sin(7X − 0.5) + 10, 0.1), where B
denotes the Beta distribution and N denotes the Gaussian
distribution.

From this population, we uniformly draw a test sample
Dt. From the remaining population, Dp \Dt, we uniformly
draw a balanced sample Db, supposed to be representative
of the population. Finally, we draw an imbalanced sample
Di from this remaining population. The draw weights to
construct this imbalanced sample are defined by the distri-
bution F = B(9, 9). The test, balanced, and imbalanced
samples are all of size n = 1, 000.

Figure 1a shows the empirical densities of X in the popula-
tion and in the imbalanced sample Di. Figure 1b shows the
scatter plot (X,Y ) from Di. As we can see, the imbalanced
sample is more centered than the population and poorly
covers the whole support of X: there is less data on the
sides and Y is different on these parts of the space. We face

an imbalanced regression: a (α, β)-imbalanced problem

with, for example, | P̂(X∈χ)
P0(X∈χ) − 1| > α when χ := [0, 0.3]

or χ := [0.7, 1] and (α ≤ 0.59, β ≤ 0.09). Here we are
in the situation where F and F0 have the same support and
the imbalanced problem will be less with n large.

(a) Histograms of X and density estimation from population and
imbalanced sample

(b) scatterplot (X,Y ) from population and imbalanced sample

Figure 1: Histograms and density estimations of balanced
(in grey) and imbalanced (in red) populations.

3.2 Data generation and resampling analysis

The aim is to build a new sample D∗ :=
{(X∗

i , Y
∗
i )i=1,··· ,n∗} having a cdf F ∗ close to the

target one F0, as observed in Figure 5a in the Supplement.
We define n∗ = n = 1, 000. We therefore want to obtain a
wider distribution with more observations on the sides.

3.2.1 WR algorithm

We first use the one-step WR algorithm. The draw weights
calculated by the WR are represented in Figure 5b in the
Supplement. Figure 2 shows the distribution of X in the
WR sample D∗ which is closer to the target distribution
than the initial one. The values on the sides, quite rare,
are naturally often drawn. We see there are still some
parts of the support without observation, especially on the
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right side. This situation could lead to an overfitting phe-
nomenon because the same observations are replicated sev-
eral times and could lead to an over-fitting effect.

Figure 2: Histogram of X obtained with weighted resam-
pling method vs target distribution

3.2.2 DA-WR algorithm

The different data generators are applied directly on the im-
balanced sample or by a clustering obtained with a Gaus-
sian Mixture Model (GMM) in order to generate synthetic
observations within each cluster. The results of this clus-
tering on the initial sample Di are presented in Figure 6 in
the Supplement.

Figure 3a shows the histograms of X obtained both with
WR and DA-WR algorithms (with a Gaussian Noise
method). As expected, the observations are more extended
on the sides and cover more the support with Da-WR:
some initial parts without observations are filled in. We
also observe that the DA-WR distribution is closer to the
target one than the WR sample. Figure 3b presents the
scatterplot(X∗, Y ∗) obtained with a generator versus the
initial (or with the weighted resampling that draws the same
samples).

To compare the effect of the different generators, we an-
alyze the histogram of X from D∗, called ”new” in the
figures. The comparison is made according to the target
distribution F0 (7 in the Supplement) and also according
to the histogram of X obtained with the weighted resam-
pling (8 in the Supplement). Figure 13 in the Supplement
represents the Kolmogorov-Smirnov distance between the
distributions of X for the balanced sample and the differ-
ent samples. It confirms that the augmented samples are
closer to the balanced sample. At last, we analyze the scat-
ter plot (X∗, Y ∗) from the sample D∗ that we compare to
the imbalanced one from Di (9 in the Supplement). We
can see in Figure 7 in the Supplement that all obtained dis-
tributions are quite close to the target one. In Figure 8 in
the Supplement, we see that the DA-WR algorithm does
not necessarily improve the WR one: with the random for-

(a) Histogram of X obtained with Gaussian Noise method vs WR

(b) Scatterplot (X∗, Y ∗) obtained with Gaussian Noise method vs
WR

Figure 3: Comparison between the WR and DA-WR algo-
rithms

est it provides the same values of X; with copulas, Smote,
or Smote-GMM, it generates values within the observed
range. This is a drawback in our illustration since we need
to get more values on the sides.

About Y generation, we observe in Figure 9 in the Sup-
plement that the generations obtained with the clustering
are closer to the initial values. As previously, the copula,
Smote, Smote-GMM approaches generate within the ob-
served range. Random forests generate the same values for
X while the GAN and ROSE generation are disappointing:
the Y values are too extended and scattered.

3.3 Predictive performance analysis

We evaluate the impacts of the WR and DA-WR algorithms
on three learning models: Generalized Additive Models
(GAM), Random Forest (RF) and Multivariate Adaptative
Regression Splines (MARS). More details on these algo-
rithms are given in the supplement. We evaluate the predic-
tion results of these three models on the test sample through
Root Mean Square Error (RMSE). The different smoothed
predictions on the test dataset (Dt) are shown in Figures
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10- 12 in the Supplement, for each learning model. The
stability of the results for the different generators is ana-
lyzed by applying the method on several training samples
(Figures 14- 16 in the Supplement).

3.3.1 Impact of an imbalanced dataset

Compared to the balanced training dataset (Db), we ob-
serve, on the different figures, that the predictions with the
imbalanced sample (Di) are quite far from the real values
on the sides, whatever the model. In addition, we can see
the increase of RMSE in Table 1.

3.3.2 Effect of the DA-WR algorithm

Compared to the imbalanced training dataset (Di), we ob-
serve that the predictions with a rebalanced training sam-
ple are closer to the real values on the sides except when
the random forest is used. Indeed, the random forest al-
gorithm with only one covariate is actually a bagging al-
gorithm. This algorithm generally offers good predictive
performance but the predictions on the test sample are con-
stant on the sides and they are not better than the initial.

Based on the RMSE given in Table 1, it can be observed
that, with GAM and MARS models, some approaches
provide better results, especially WR, GN-GMM, ROSE,
ROSE-GMM, KDE-GMM and Smote-GMM. However,
some other approaches give worse results than the im-
balanced sample: Copula at first, KDE (without GMM),
GAN, RF and ROSE whatever the model. Others are
slightly worse than the imbalanced sample for one of the
two models: GN, GMM, Smote and FA-GMM. The clus-
tering seems to improve the results. Even if the interpo-
lation approaches give good results, their data generation
technique could be a drawback because of their limit. Fi-
nally, the perturbations approach, with a kernel, seems to
be effective.

Figures 10- 12 in the Supplement confirm the previous
comments: with some generators, we manage to adjust the
sample to provide better predictions, closer to the real val-
ues. However, with others, our methodology does not give
the expected results.

To avoid a sampling effect and give more robustness to the
results, we test our method on 100 imbalanced samples.
Figures 14- 16 in the Supplement shows the RMSE boxplot
for these multiple simulations. The purpose is to provide
a better RMSE (median and range) than the imbalanced
sample. We can see that with the GAM model, the WR,
GN-GMM, ROSE-GMM, KDE-GMM and Smote-GMM
are really well and confirm the previous analysis. The GAN
generator is the worst. KDE and copula are also pretty bad.
The others are not significantly better than the imbalanced
sample. We obtain the same behavior with MARS model
but Smote, RF and ROSE are also better than the imbal-
anced. The results with the RF model confirm these pre-

Table 1: RMSE (x100) on the test sample and gain or loss
(%) with respect to the RMSE for the imbalanced sample.
From green to red we go from the best to the worst results.

viously obtained with a single simulation: the combined
weighted resampling methods do not provide better results
on prediction.

4 APPLICATION

4.1 Dataset design

We test our approach on a portfolio of automobile insur-
ance described in a dataset of driver telematics from (So
et al. (2021)). This dataset contains np = 100,000 observa-
tions considered as the whole population. The covariates
are the driver’s characteristics and some telematic infor-
mation. Traditional non-life pricing is based on estimating
the claims frequencies which represent here our dependent
variable Y .

The imbalanced dataset replicates a real case of sampling
bias observed in insurance data, especially by the impact
of the imbalanced covariate on the target variable Y . Typi-
cally, the distribution of the covariate in this application is
quite asymmetric and we make the tail of the distribution
poorer, just by removing some rare observations. We have
thus intentionally applied a sampling bias on the datasets in
order to obtain a significant impact of the imbalance on the
regression.

As in the illustration, we construct different samples as fol-
lows. From the initial population, we construct a test sam-
ple, denoted by Dt, with a uniform draw. In order to have a
training sample independent of the test one, the imbalanced
sample, Di is drawn from the remaining population. The
methodology of this drawing is given in the Supplement.
We also draw, uniformly, a balanced sample, denoted by
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Db, from the remaining population to measure the impact
of the imbalanced sample on the predictions.

We aim to obtain a new sample D∗, from the imbalanced
one, providing best predictions on Dt. The covariate of
interest, that we wish to rebalance, is the total miles driven
per year, denoted by X . The others covariates are the age
of the car, the credit score and the years without a claim.
We consider the duration as an offset in our model.

At first, the remaining population is used to estimate the
claim frequencies on the test sample. These estimates can
be considered as reference values. Next, the claim frequen-
cies are estimated on Dt from the different training sam-
ples, the aim being to get as close as possible to the refer-
ence values. We evaluate the prediction results on the test
sample with the Root Mean Square Error (RMSE) relative
to the reference values.

Figure 17 in the Supplement shows the estimated effect of
X on Y by the model (based on the whole population). We
can observe that this effect increases until around 10,000
miles then becomes slightly constant. We used this infor-
mation to construct our imbalanced sample.

We can observe in Figure 4 the distribution of X in the
imbalanced sample is not as wide as the population. We
can see there are fewer observations over 10,000 miles in
the imbalanced sample than population.

Figure 4: Histograms of X from population and imbal-
anced sample

4.2 Data generation analysis

We defined the target distribution from the population with
a kernel density estimator. Figure 18a in the Supplement,
compares the distribution of X in Di with the target dis-
tribution. The drawing weights obtained by the WR algo-
rithm are given in Figure 18b in the Supplement. We can
see that the weights increase with X .

We can compare the WR method with the DA-WR method.
Only the generators with the best results are considered.
This comparison is done by the different histograms of X

in D∗ versus the target distribution (19 in the Supplement).
We also compare these histograms versus the histogram of
X obtained from the WR algorithm (20 in the Supplement).
We note that the data augmentation extends the distribu-
tion of X (except for the random forest generator) which is
closer to the target one. For the distributions of X , it can
be observed on Figure 22 that D∗ is much closer to Db than
Di.

4.3 Predictive performance analysis

The performance of both WR and DA-WR algorithms are
compared on three learning models: a Generalized Addi-
tive Model with a Zero-Inflated Poisson distribution for Y
(noted GAM-ZIP), a Generalized Additive Model with a
Poisson distribution for Y (noted GAM-P) and a Random
Forest (RF). For the first two models, we apply a regression
spline on the insured driver’s age and X .

The different predictions obtained with the GAM-ZIP are
shown in Figure 21 in the Supplement. Table 4 in the Sup-
plement shows the RMSE for the balanced, imbalanced,
WR and best DA-WR samples. These results are summa-
rized in Table 2.

Table 2: RMSE relative to the reference values (x100) on
the test sample and gain or loss (%) with respect to the
RMSE for the imbalanced sample

4.3.1 Impact of an imbalanced dataset

The predictions on Dt obtained from Di are shown in Fig-
ure 21 in the Supplement. We can see that the predictions
obtained from the imbalanced sample are further from the
observed values and that the confidence interval is larger in
the distribution tail, whatever model. This result is quan-
tified in Table 4 where it can be observed that the RMSE
with Di is strongly affected compared to Db.

4.3.2 Effect of the DA-WR algorithm

The WR and DA-WR samples yield much better predic-
tions than Di. We can also see that the confidence intervals
are reduced and that RMSE is reduced for the three models.

5 DISCUSSION AND PERSPECTIVES

The DA-WR algorithm is a new approach to balancing a
training sample in an imbalanced regression context. This
approach could be used: i) with other types of continuous
distributions (e.g multimodal); ii) with multivariate distri-
butions; iii) with other covariates, which would then be
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treated as the variable of interest Y , as in the application.
The WR can easily be used with categorical covariates but
the DA-WR approach depends on the capacity of the DA
generator to handle such variables.

Through the illustration and the application, we have seen
the potential impacts of an imbalanced sample for predic-
tion with various learning algorithms. The WR algorithm
can improve the learning and so the prediction by adjusting
the sample to a target distribution. However, the results of
the DA-WR approach are naturally dependent of the choice
of the data generator. Some of the proposed generators do
not provide the expected results. This may be due to the
fact that both variables X and Y are generated simultane-
ously under the imbalanced phenomenon. A local approach
based on generators restricted on local parts of the support
could certainly improve the DA step, considering more lo-
cal relation between X and Y and annihilating the imbal-
anced effect locally.

Moreover, the analyses of the results from multiple simula-
tions show that some generators seem quite sensitive. Then
the approach could also be improved by adding a treatment
for large values, that is for the extremities of the support of
X , to avoid an extrapolation of atypical observations.

Eventually, the DA-WR algorithm can be extended to bal-
ance simultaneously several covariates, by specifying a
multivariate target distribution. It can also be extended
to a conditional approach, that is applying this technique
within different subpopulations. It could also be extended
to mixed data (with possibly a restatement of categorical
covariates to get a multivariate target distribution for the co-
variates of interest) using a DA method dedicated to mixed
data.
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Data Augmentation for Imbalanced Regression:
Supplementary Materials

A SYNTHETIC DATA GENERATORS

We use the following notations for generators (in the same dorder as on the figures):

• WR: Weighted Resampling

• GN: Gaussian Noise

• GN - GMM: GN applied on GMM clusters

• ROSE: Smoothed Bootstrap, using the proposal of the algorithm ROSE for the bandwidth matrix (Bowman and Azza-
lini (1999))

• ROSE - GMM: ROSE applied on GMM clusters

• KDE: Smoothed Bootstrap, using the R-package KernelBoot, The bandwidth matrix being defined according to Sil-
verman’s proposal (Silverman (1986))

• KDE - GMM: KDE applied on GMM clusters

• GMM: Gaussian Mixture Model, using the R-package MCLUST

• FA - GMM: Factor Analysis, using the python-package Scikit-learn, applied on GMM clusters

• Copula: Gaussian Copula Model, using the python-package Synthetic Data Vault

• GAN: Conditional Generative Adversarial Networks, using the python-package Synthetic Data Vault

• RF: Random Forest, using the R-package SynthPop

• RF - GMM: RF applied on GMM clusters

• SMOTE: interpolation by k nearest neighboors, using the proposal of the algorithm SMOTE

• SMOTE - GMM: SMOTE applied on GMM clusters

Other generators used but not selected because not relevant: SMOTER, SMOGN, some techniques adapted for regression
tasks from the R-package Branco et al. (2016b), by defining the weights resampling as relevance function and some
previous methods applied on GMM clusters or values of Y = 0, 1, 2 in the application. More details on these approaches
are given on F.
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B ILLUSTRATION RESULTS

B.1 On a single simulation

For the illustration, we chose a trimming sequence en = 1
10×n

B.1.1 Imbalanced sample

(a) Histogram of X in the imbalanced sample (red) vs the target
distribution f0 (green)

(b) Weights of X on the imbalanced sample obtained with
weighted resampling method

Figure 5: Comparison between the imbalanced sample vs the target distribution and associated WR weights

Figure 6: GMM Clustering on imbalanced sample
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B.1.2 Data Generation

Histogram of X obtained in new samples vs target

(a) GN (b) GN - GMM (c) ROSE

(d) ROSE - GMM (e) KDE - GMM (f) GMM

(g) FA - GMM (h) Copula (i) GAN

(j) RF (k) SMOTE (l) SMOTE - GMM

Figure 7: Histogram of X obtained in new samples (new) vs target (f0)
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Histogram of X obtained in new samples vs WR

(a) GN (b) GN - GMM (c) ROSE

(d) ROSE - GMM (e) KDE - GMM (f) GMM

(g) FA - GMM (h) Copula (i) GAN

(j) RF (k) SMOTE (l) SMOTE - GMM

Figure 8: Histogram of X obtained in new samples (new) vs WR
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Scatterplot (X,Y ) obtained in new samples vs imbalanced sample

(a) GN (b) GN - GMM (c) ROSE

(d) ROSE - GMM (e) KDE - GMM (f) GMM

(g) FA - GMM (h) Copula (i) GAN

(j) RF (k) SMOTE (l) SMOTE - GMM

Figure 9: Scatterplot (X,Y ) obtained in new samples (new) vs imbalanced sample (imb)
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B.1.3 Predictions

Generalized Additive Model predictions

(a) Db (b) Di (c) WR

(d) GN (e) GN - GMM (f) ROSE

(g) ROSE - GMM (h) KDE - GMM (i) GMM

(j) FA - GMM (k) Copula (l) GAN

(m) RF (n) SMOTE (o) SMOTE - GMM

Figure 10: Smoothed predictions with GAM
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Random Forest predictions

(a) Db (b) Di (c) WR

(d) GN (e) GN - GMM (f) ROSE

(g) ROSE - GMM (h) KDE - GMM (i) GMM

(j) FA - GMM (k) Copula (l) GAN

(m) RF (n) SMOTE (o) SMOTE - GMM

Figure 11: Smoothed predictions with RF
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Multivariate Adaptative Regression Splines predictions

(a) Db (b) Di (c) WR

(d) GN (e) GN - GMM (f) ROSE

(g) ROSE - GMM (h) KDE - GMM (i) GMM

(j) FA - GMM (k) Copula (l) GAN

(m) RF (n) SMOTE (o) SMOTE - GMM

Figure 12: Smooth predictions with MARS
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B.2 Analysis of distribution of X

Figure 13: Kolmogorv-Smirnov distance between the distribution of X in the balanced sample and train samples

B.3 On multiple simulations

Figure 14: RMSE boxplots on test datasets prediction with GAM
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Figure 15: RMSE boxplots on test datasets prediction with RF

Figure 16: RMSE boxplots on test datasets prediction with MARS

Note: the results for the GAN is slightly worse than for the single simulation because of the lower epoch parameter.
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C APPLICATION

For the application, we chose a trimming sequence en = 1
10×n

C.1 Dataset details

Table 3 provides a brief description of the variables in the dataset, extracted from So et al. (2021).

Type Variable Description
Traditional Duration Duration of the insurance coverage of a given policy, in days

Insured.age Age of insured driver, in years
Insured.sex Sex of insured driver (Male/Female)

Car.age Age of vehicle, in years
Marital Marital status (Single/Married)
Car.use Use of vehicle: Private, Commute, Farmer, Commercial

Credit.score Credit score of insured driver
Region Type of region where driver lives: rural, urban

Annual.miles.drive Annual miles expected to be driven declared by driver
Years.noclaims Number of years without any claims

Territory Territorial location of vehicle
Telematics Annual.pct.driven Annualized percentage of time on the road

Total.miles.driven Total distance driven in miles
Pct.drive.xxx Percent of driving day xxx of the week: mon/tue/. . . /sun
Pct.drive.xhrs Percent vehicle driven within x hrs: 2hrs/3hrs/4hrs
Pct.drive.xxx Percent vehicle driven during xxx: wkday/wkend

Pct.drive.rushxx Percent of driving during xx rush hours: am/pm
Avgdays.week Mean number of days used per week
Accel.xxmiles Number of sudden acceleration 6/8/9/. . . /14 mph/s per 1000miles
Brake.xxmiles Number of sudden brakes 6/8/9/. . . /14 mph/s per 1000miles

Left.turn.intensityxx Number of left turn per 1000miles with intensity 08/09/10/11/12
Right.turn.intensityxx Number of right turn per 1000miles with intensity 08/09/10/11/12

Response NB Claim Number of claims during observation
AMT Claim Aggregated amount of claims during observation

Table 3: Variable names and descriptions

Figure 17 shows the effect of X , total miles driven, on the claim frequency estimated by a GAM model. We can see that,
with this model, the claim frequency increases with X to about 10,000 miles then becomes quite constant.

Figure 17: Regression spline for X with GAM-ZIP based on population
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As with the illustration, we defined three samples from population Dp of size np = 100, 000: balanced, imbalanced
and test, all of a size n = 10, 000. The test sample Dt is uniformly drawn such as all observations in population have
the same drawing weight ( 1

np ). The balanced sample is then drawn uniformly (with a probability equal to 1
np−n ) from

the remaining population (Dp \Dt). The imbalanced sample is defined according to X , total miles driven, such as: the
larger X is the smaller the drawing weight is. We want to get a more asymmetric distribution than the population with
fewer observations after 10,000 miles. More precisely, the proposed drawing weight to construct the imbalanced sample
is defined by a Gaussian distribution N (2000, 6000). As we can see on Figure 4, the distribution obtained has very few
values above 10,000 miles.

C.2 Imbalanced sample

(a) Histogram of X in the imbalanced sample (red) vs the target
distribution f0 (green) (b) Weights of X obtained with weighted resampling method

Figure 18: Comparison between the imbalanced sample vs the target distribution and associated WR weights

C.3 Data Generation

Histogram of X obtained in new samples vs target

(a) WR (b) GN (c) GN - GMM

(d) ROSE (e) KDE (f) RF - GMM

Figure 19: Histogram of X obtained in new samples (new) vs target (f0)

Histogram of X obtained in new samples vs WR
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(a) GN (b) GN - GMM (c) ROSE

(d) KDE (e) RF - GMM

Figure 20: Histogram of X obtained in new samples (new) vs WR

C.4 Predictions

Generalized Additive Model predictions

(a) Db (b) Di (c) WR

(d) GN (e) GN - GMM (f) ROSE

(g) KDE (h) RF - GMM

Figure 21: Smoothed predictions with GAM-ZIP



Data Augmentation for Imbalanced Regression

RMSE results

Table 4: RMSE on test dataset prediction, relative to the reference values

C.5 Analysis of distribution of X

Figure 22: Kolmogorv-Smirnov distance between the distribution of X in the balanced sample and train samples
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D PROOF OF PROPOSITION 2

Proof. Writing F ∗ and F ∗∗ the cdf associated to the WR and DA-WR procedures, respectively. We have:

lim
n→∞

|F ∗(x)− F ∗∗(x)|

≤
n∑

i=1

qi|1Xi≤x − 1X′
i≤x +

n∑
i=1

|qi − q′i|1X′
i≤x|

≤ n max
i=1,··· ,n

1Xi≤x − 1X′
i≤x|+ n max

i=1,··· ,n
|qi − q′i|,

which tends to zero and the result follows from Proposition 1.

E LEARNING ALGORITHMS AND EVALUATION METRICS

We evaluate the impacts of the DA-WR algorithm by analysing the predictions of the test sample with three learning
algorithms (only the first two for the application): one parametric and two non-parametric:

• GAM: Generalized Additive Models
GAM represent the model class that generalizes the Generalized Linear Models approaches by extending the relation-
ship between the covariates X1, · · · , Xp and variable of interest Y via functions such as E(Y |X) = β0 + f1(X1) +
· · ·+ fp(Xp). The links between X and Y are thus adjusted. We used the function gam of the R-package MGCV (the
function zeroinfl of the R-package PSCL was also tested).

• RF: Random Forest
RF is a natural generalization of Classification And Regression Trees (CART). We used the function randomForest of
the R-package randomForest.

• MARS: Multivariate Adaptative Regression Splines
MARS define a relationship between X and Y using hinge functions in order to capture the non-linear links and
variable interactions. Indeed, hinge functions can break the range of X into bins. Then, for each bins, an effect is
estimated (by coefficient). We can write that model as: g(E(Y |X)) = β0+β1B1(X)+ · · ·+βdBd(X). d is the knot
number. Bj(X) is a hinge function of X and take the following form: max(0, x − k) or max(0, k − x), k being a
knot (constant). But it can be a product of two or more hinge functions, for example Bj(X) := Bl(X)×Bm(X) for
two degrees of interaction. MARS automatically define variables and knot values of the hinge functions. We used the
function earth of the R-package earth.

We evaluate the prediction results of the test sample through the performance indicator Root Mean Square Error (RMSE):

RMSE(Y, Ŷ ) :=
(∑n

i=1(yi−ŷi)
2

n

)1/2

. For the illustration, yi is observed on the test sample and ŷi is the yi prediction
obtained with the training sample. For the application, ŷi is actually an estimate of E(Y |X) prediction. So, we preferred
used the estimate of E(Y |X) obtained with using the remaining population as yi and the estimate of E(Y |X) obtained with
using the training sample as ŷi.

F DATA GENERATION METHODS

Below, we briefly describe the different generators used in the illustration and the application.

• Perturbation approaches: Gaussian Noise and Smoothed Boostrap
The idea of these methods is to simulate N synthetic data by adding a noise on the initial observations. At first, an
initial observation (x.,i, yi), i = 1, · · · , n, called seed, is selected from the WR sample (or from the imbalanced sam-
ple by weighting the observations according to the WR method). Then, a synthetic data (x∗

.,m, y∗m),m = 1, · · · , N
is generated as follows: x∗

.,m = x.,i + ϵ(i)xm, y∗m = yi + ϵ(i)ym. The both methods are slightly different in the
generation of the ϵ(i)m. The Gaussian Noise method assumes ϵ(i)xm ∼ Np(0, δ × Σp), δ being set by the user
and Σp = diag(σ̂2

1 , · · · , σ̂2
p) a diagonal matrix p × p, σ̂2

j being the estimated variance of Xj in the initial sample.
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We have ϵ(i)ym ∼ N (0, δ × σ2
Y ). The Smoothed Boostrap method suggests to define ϵ(i)m according to a multi-

variate kernel density estimate KH(., xi) centered on the seed. The bandwidth matrix H is defined according to

the proposal of Bowman and Azzalini (1999), H = diag

((
4

(p+2)n

) 1
p+4

σ̂j

)
or the proposal of Silverman (1986),

H =

((
4

(p+2)n

) 1
p+4

Σ̂

)
, Σ̂ being the empirical covariance matrix from the initial sample.

• The interpolation approaches: k Nearest Neighbors inspired by Chawla et al. (2002)
The purpose of this kind of methods is to create N synthetic data by interpolation between two nearest neighbors. At
first, an initial observation (x.,i, yi), i = 1, · · · , n is selected from the WR sample. One of the k nearest neighbors
of this seed is then drawn uniformly from the sample: (x.,j , yj). A synthetic data (x.,m, ym) is generated as follows:
x.,m := x.,i + λ× (x.,j − x.,i), ym := yi + λ× (yj − yi), λ ∼ U([0, 1]).

• The latent structure approaches: Gaussian Mixture Models, Factor Analysis
As the kernel density estimate, the Gaussian Mixture Models method suggests to estimate the density and it can
be used as a generative data model. The model assumes that the distribution of observations can be specified by a
multivariate density defined as a mixture model G of: f(zi,Φ) =

∑G
g πgfg(zi, θg) where zi = (x.,i, yi) ; Φ =

π1, · · · , πG, θ1, · · · , θG. The mixture model parameters are such as πg > 0,∀g = 1, · · · , G and
∑

g πg = 1 ;
θg = (µg,Σg) the parameter of the Gaussian distribution fg . As the method GMM, the Factor Analysis technique
allows to obtain a generative data model. This extension of the probabilistic model of principal component analysis
proposes to decompose the observations Z = (X,Y ) such as zi = Whi + µ + ϵ where the vector hi is a latent
vector supposed to be Gaussian: h ∼ N (0, I) ; µ the paramter of the position (mean) ; ϵ the noise term distributed
according to a centered Gaussian with a covariance matrix Φ = diag(ϕ1, · · · , ϕn) i.e. ϵ ∼ N (0,Φ) ; W the ”
factor loading matrix” allowing to link the latent factor and the data. This model gives the following density form: z:
f(z) := N (µ,WWT +Φ).

• A copula approach: Gaussian Copula Model Patki et al. (2016)
The Gaussian copula is a distribution function defined on the unit hypercube and built from the multivariate Gaussian
distribution. A copula C allows to describe the joint distribution function of several random variables F (x1, · · · , xp)
based on the dependence of the marginal distributions F1, · · · , Fp such as F (x1, · · · , xp) = C(F1(x1), · · · , Fp(xp)).
This model allows also to generate some data from the copula: C(u1, · · · , up) = ΦR(Φ

−1(u1), · · · ,Φ−1(up)) where
Φ−1 is the inverse distribution function of the univariate standard Gaussian distribution ; ΦR the joint distribution
function of a centered Gaussian and covariance matrix equal to the correlation matrix R.

• A Conditional Generative Adversarial Networks approach Xu et al. (2019)
A GAN is a technique based on the competition between two networks: the generator, trying to replicate the observa-
tions as close as possible, and its adversary, the discriminator, trying to detect if the observations are real or simulated.
The competition process allows them to improve their respective behaviors. The CGAN allows to apply the method
conditionally to a variable.

• A Ramdom forest approach Nowok et al. (2016)
The method Ramdom forest consists to train several decision trees on various sets of observations and variables. This
technique can be used to generate synthetic observations.
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