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Abstract

Many dynamical systems in the real world are
naturally described by latent states with intrinsic
ordering, such as “ally”, “neutral”, and “enemy”
relationships in international relations. These
latent states manifest through countries’ coop-
erative versus conflictual interactions over time.
State-space models (SSMs) explicitly relate the dy-
namics of observed measurements to transitions in
latent states. For discrete data, SSMs commonly
do so through a state-to-action emission matrix
and a state-to-state transition matrix. This paper
introduces the Ordered Matrix Dirichlet (OMD)
as a prior distribution over ordered stochastic ma-
trices wherein the discrete distribution in the kth

row is stochastically dominated by the (k+1)th,
such that probability mass is shifted to the right
when moving down rows. We illustrate the OMD
prior within two SSMs: a hidden Markov model,
and a novel dynamic Poisson Tucker decomposi-
tion model tailored to international relations data.
We find that models built on the OMD recover
interpretable ordered latent structure without
forfeiting predictive performance. We suggest
future applications to other domains where
models with stochastic matrices are popular (e.g.,
topic modeling), and publish user-friendly code.

1 INTRODUCTION

In many modeling settings and application domains, some
aspect of the observation space has intrinsic ordering. For
example, in international relations, observed interactions be-
tween countries can be ordered on a conflict-to-cooperation
axis, ranging from “provide aid” to “fight” (Goldstein, 1992;
Schrodt, 2008). This ordering should ideally be reflected in
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Figure 1: Action types in international relations data are or-
dered along a cooperation-to-conflict axis. Our model infers
latent states with an ordering that reflects the ordering in
observed actions. Emission matrix: more conflictual actions
(indexed by higher a), are generated by more conflictual la-
tent states (higher k). Transition matrix: latent states transi-
tion to neighboring ones. CDFs: The Ordered Matrix Dirich-
let enforces that the CDF of the kth discrete distribution is
always greater than the (k+1)th, so that probability mass in
the stochastic matrix shifts right when moving down rows.

any state space used to summarize or describe observed in-
teractions. For example, more conflictual actions like “fight”
or “threaten” might be more likely between countries in an
“enemy” state than those in an “ally”state (Schrodt, 2006).
In this example, the latent states represent relationship
statuses between countries, ordered from “ally” to “enemy”,
and reflect the conflict-to-cooperation ordering of the ob-
served actions. We might expect states to transition to other
states over time in a way that also reflects their intrinsic
ordering. Allies rarely become enemies from one moment
to the next, but rather (de-)escalate gradually, passing first
through intermediate states (Davis and Stan, 1984a).
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State-space models (SSMs) are statistical models that explic-
itly relate time-varying measurements to latent states, such
that patterns and trends in the observed space are attributable
to transitions between states over time. For discrete data,
the canonical form of such models is based on two stochas-
tic matrices: the emission matrix, which describes how
latent states generate observations, and the transition ma-
trix, which describes how states transition to other states
over time. This general formulation does not intrinsically
promote any ordering of the latent states, whose indices are
arbitrary and subject to “label switching” (Richardson and
Green, 1997; Stephens, 2000).

To promote some sense of ordering in the state space, re-
searchers sometimes constrain the transition matrix to take
only banded or “left-right-left” forms (Schrodt, 2006; Netzer
et al., 2008; Randahl and Vegelius, 2022), whereby states
only transition to adjacent states. This constraint substan-
tially restricts the expressiveness of the model while still
not ensuring a well-defined ordering of the latent states that
reflects the ordering in the observation space.

This paper introduces a novel prior distribution over stochas-
tic matrices, the Ordered Matrix Dirichlet (OMD), and
demonstrates it as a key ingredient in SSMs with well-
ordered state spaces. An OMD random variable is a stochas-
tic matrix whose rows are discrete distributions that sum
to 1, and whose kth row is stochastically dominated by
the (k+1)th, so that probability mass shifts to the right
when moving down the matrix (Fig. 1). We define the
OMD distribution implicitly via a stick-breaking construc-
tion that ensures the desired ordering property by sorting
Beta-distributed auxiliary variables. As we show, when the
OMD is selected as a prior over both emission and transition
matrices in an SSM, the inferred latent states have an intrin-
sic ordering that reflects ordering in the observation space.

To demonstrate and evaluate the OMD as a prior, we con-
struct and apply two different SSMs—(1) a simple hidden
Markov model (HMM) that we apply to synthetic data where
the ground-truth latent structure is known, and (2) a novel
dynamic version of Bayesian Poisson Tucker decomposi-
tion (Schein et al., 2016b), which we apply to international
relations data of country-to-country interactions.

We compare each of these models to a baseline that differs
only in its prior over the transition and emission matrices—
instead of the OMD, it makes the standard assumption
of rows being independently Dirichlet-distributed, which
we term the Standard Matrix Dirichlet (SMD). We find
that the models based on the OMD are more readily
interpretable than those based on the SMD while still
performing comparably and sometimes better in forecasting
and imputation tasks. In synthetic experiments, the OMD
model is much more effective at recovering ground-truth
latent structure, while on international relations data, the
OMD model exhibits superior forecasting performance

over both the SMD model and an additional baseline we
introduce that constrains the transition matrix to be banded.

After setting up notation and providing background on
SSMs in §2, we formally introduce the OMD in §3 and
motivate it as a prior within SSMs. In §4 we discuss poste-
rior inference for OMD models using Pyro (Bingham et al.,
2018). We then provide results from a suite of synthetic data
experiments in §5, and present a case study on international
relations data in §6. Finally, we discuss broader connections
in §7, and summarize our conclusions in §8.

2 STATE-SPACE MODELS

State-space models (SSMs) describe the evolution of time-
indexed measurements y(t) in terms of corresponding latent
states λ(t) (Kalman, 1960). SSMs assume that patterns and
trends in the observed measurements, typically only noisily
realized, are attributable to transitions between latent states.

Basic Form This paper considers a subset of SSMs
frequently used to model discrete or non-negative data.
Consider a non-negative vector-valued measurement
y(t) ∈ RA

+ at discrete time step t. Using the international
relations example in the introduction, y(t) might measure
the counts of A different action types taken between some
pair of countries during time step t. We use a ∈ [A] to
index into this vector, so that y(t)a is an entry, and refer to
a as an action or action type throughout.

The SSMs we consider connect observed measurements to
vector-valued, non-negative latent states λ(t) ∈ RK

+ under
the following assumption:

E[y(t)a ] ∝
K∑

k=1

λ
(t)
k φka︸︷︷︸

emission

(1)

where φka ∈ [0, 1] is an entry in the discrete distribution φk

which sums to one over actions
∑A

a=1 φka=1 and is itself
the kth row of the state-to-action emission matrix Φ.

The states then evolve over time under the assumption

E[λ
(t)
k ] ∝

K∑
k′=1

λ
(t−1)
k′ πk′k︸︷︷︸

transition

(2)

where πk′k ∈ [0, 1] is an entry in the discrete distribution
πk′ which is itself the (k′)th row of the state-to-state transi-
tion matrix Π ∈ [0, 1]K×K .

Many SSMs follow this basic form in (1) and (2), such
as hidden Markov models (HMMs), discrete dynamical
systems (Schein et al., 2016a), or more complex SSMs as
presented in §6.2. The key feature of these models is that
they involve an emission Φ and transition matrix Π which
are both (row-)stochastic matrices.
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What is a “State”? There are differences in the SSM lit-
erature on whether the “state” at time step t is the vector
λ(t), or whether each element λ(t)k of the vector describes
the relevance of one of k ∈ [K] “states”. These two inter-
pretations coincide when λ(t) is a one-hot vector, placing
non-zero mass on only one element, as in HMMs. However,
these interpretations diverge in more general settings. We
adopt both senses of the word “state” in this paper, referring
to λ(t) as the complex “state” of the overall system at t but
also understanding it as a mixture over K simple “states”.

Dirichlet Priors Researchers often place prior distribu-
tions over model parameters either as a way to encode
structural assumptions about the state space or to fit models
using Bayesian inference (or both). The conventional prior
for row-stochastic matrices assumes that rows are indepen-
dently Dirichlet distributed, what we will refer to as the Stan-
dard Matrix Dirichlet (SMD). A draw φ ∼ Dir(α) from a
Dirichlet distribution with concentration parameterα ∈ RA

+

is a discrete distribution over A categories,
∑A

a=1 φa=1.

Banded Constraints One commonly-used constraint
is that the transition matrix is banded along its diagonal,
such that πk′k = 0 if |k − k′| > b for some bandwidth
b (often set to 1); see the middle plot of Fig. 2. This
constraint encodes the assumption that states only excite
or transition to nearby states at subsequent time steps.
Such an assumption is motivated, for example, when the
desired state space represents ordered stages of escalation in
international conflict (Schrodt, 2006; Randahl and Vegelius,
2022). For purposes of comparison, we introduce a prior
distribution called the Banded Matrix Dirichlet (BMD) that
enforces this constraint (App. B.2).

3 THE ORDERED MATRIX DIRICHLET

Many dynamical systems in the real world are naturally
described by latent states with intrinsic ordering, such as
in international relations, where the relationship status of
two countries might escalate from “ally” to “enemy” only
gradually, first passing through intermediate states like
“neutral”. In addition to constraining how states transition
over time, this ordering may further reflect ordering in
the observed actions between countries, with countries in
more conflictual latent states (e.g., “enemy”) taking more
conflictual actions towards each other (e.g., “fight”), and
countries in more cooperative states (e.g., “ally”) taking
more cooperative actions (e.g., “provide aid”).

The state space in the basic model formulation given in
Eq. (1) and Eq. (2) is not intrinsically ordered. Specifically,
the row indices k ∈ [K] of the emission and transition ma-
trices are arbitrary and bear no intrinsic information. As
mentioned in the previous section, constraining the transi-
tion matrix to be banded does impart some information to
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Figure 2: Stochastic matrices sampled from the Standard
Matrix Dirichlet (SMD), Banded Matrix Dirichlet (BMD)
and Ordered Matrix Dirichlet (OMD). Neither the SMD
nor the BMD adhere to the stochastic dominance property
in Eq. (3), as evidenced by overlapping CDFs.

the index k. However, its interpretation is circular: k is
some state that transitions to other states {k′ : |k−k′| ≤ b},
whose interpretation is similarly defined with respect to k.
Moreover, while banding the transition matrix promotes
some ordering of latent states, it does not promote one that
necessarily reflects the ordering in observed actions.

To overcome these limitations, this section introduces
a novel prior over the transition and emission matrices
that ensures an intrinsically well-ordered state space, one
that both reflects the ordering in observed actions and the
ordering in latent state transitions. We first operationalize
our notion of ordering in terms of stochastic dominance,
and then construct a probability distribution with support
over the subset of stochastic matrices that obey this notion.

3.1 Ordering by Stochastic Dominance

Considering first the emission matrix, each row φk

represents a discrete distribution over ordinal actions types.
Intuitively, we might say the rows are well-ordered if
probability mass shifts to the right when moving down
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rows, or equivalently, when the kth distribution places
more weight on earlier action types than the (k+1)th.
This intuition is formalized by the notion of stochastic
dominance (Davidson, 2017). Define the cumulative
distribution function (CDF) for the kth discrete distribution
to be CDFk(a) ,

∑a
a′=1 φka′ . Then, the kth distribution

is stochastically dominated by the (k+1)th if

CDFk(a) ≥ CDFk+1(a) for all a (3)

We refer to a stochastic matrix as well-ordered if Eq. (3)
holds for all rows k. For the K × A emission matrix, this
means higher rows place more mass on earlier actions types.
For the K ×K transition matrix, this notion encapsulates
many but not all banded structures (see Fig. 2), while
further allowing for much more flexible “down-and-right”
transition shapes (see Fig. 4).

3.2 Ordered Matrix Dirichlet (OMD) Distribution

We now introduce a new probability distribution that has
support over only the matrices described above. The OMD
distribution is defined by two parameters, concentration
α ∈ RA

+ and height K. An OMD random variable
Φ ∼ OMD(K,α) is a K ×A matrix that is row-stochastic
and well-ordered, as shown in Proposition 3.1.

We define the OMD distribution implicitly via Algorithm 1,
which generates OMD variates. This algorithm builds on
the stick-breaking construction of the standard Dirichlet dis-
tribution (Gelman et al., 2013, p. 583). A Dirichlet random
variable φ ∼ Dir(α) can be generated iteratively, one entry
at a time, via Beta auxiliary variables. First, draw φ1 ∼
Beta(α1,

∑
a>1 αa). Then for a = 2, . . . , A−1 draw βa ∼

Beta(αa,
∑

a′>a αa′) and set φa ← βa (1 −
∑

a′<a φa′).
Finally, set φA ← 1 −

∑
a′<A φa′ . Intuitively, this con-

struction iteratively “breaks” off some amount of remaining
probability mass (the “stick”), where the Beta variables
determine the size of the breaks.

Algorithm 1 iteratively constructs K discrete distributions
over A categories using the same basic idea. For each
category a in succession, it samples K Beta variables (lines
3 and 8) to determine the size of the “breaks” in the K
“sticks”. However, it further sorts the Beta variables (lines 5
and 10), so that the largest “break” of the remaining “stick”
is always taken by the first “stick” (k = 1), the second
largest is always taken by the second “stick” (k = 2), and
so on. In so doing, it generates a well-ordered stochastic
matrix, as stated below.
Proposition 3.1 (OMD random variables are well-ordered).
The OMD has support over only row-stochastic matrices
that obey the ordering property given beneath Eq. (3), such
that for any two rows k < k′ and any a∑

a′≤a

φka′ ≥
∑
a′≤a

φk′a′ (4)

Proof: See App. B.1.

Algorithm 1 Ordered Matrix Dirichlet

1: Input: height K, concentration α ∈ RA
+

2: for k = 1, . . . ,K do
3: φ̃k1 ∼ Beta

(
α1,
∑A

a=2 αa

)
4: end for
5: (φ11, . . . , φK1)← SORT

(
(φ̃11, . . . , φ̃K1)

)
6: for a = 2, . . . , A− 1 do
7: for k = 1, . . . ,K do
8: β̃ka ∼ Beta

(
αa,
∑A

a′=a+1 αa′

)
9: end for

10: (β1a, . . . , βKa)← SORT
(

(β̃1a, . . . , β̃Ka)
)

11: for k = 1, . . . ,K do
12: φka ←

(
1−

∑a−1
a′=1 φka′

)
βka

13: end for
14: end for
15: for k = 1, . . . ,K do
16: φkA ← 1−

∑A−1
a′=1 φka′

17: end for
18: Output: OMD variate Φ ∈ RK×A

+

Lack of Analytic Form We define the OMD implicitly by
construction and do not (yet) know any analytic form for its
probability density function (PDF), which involves integrat-
ing over products of Beta order statistics. We leave further
investigation into the OMD’s PDF, moments, and other an-
alytic properties for the future. As we show in the next
section though, its lack of analytic form does not hamper
posterior inference with modern probabilistic programming.

What is “Dirichlet” about the OMD? The OMD’s
name reflects its definition as a minimal modification to
the stick-breaking construction of the Standard Matrix
Dirichlet—if we remove the blue lines (5 and 10), then Al-
gorithm 1 corresponds exactly to the SMD, which simply
generates K independent Dirichlet variates (with no order-
ing). The name reflects this alone—it is not the case (to
our knowledge) that the K discrete distributions, which
are dependent under the OMD via the sort operation, are
marginally or conditionally Dirichlet distributed.

Concentration Parameter The OMD is parameterized
by its concentration α ∈ RA

+. Fig. 3 visualizes OMD
samples Φ for different settings of α. For symmetric
α = (α0, . . . , α0), one might expect samples Φ to dis-
tribute probability mass across the matrix evenly. However,
we observe otherwise, that mass often skews to the right,
particularly for larger α0; we speculate this relates to
the sorting operation. Although unappealing, this does
not mean the OMD is inherently asymmetric, but rather
that non-trivial settings of α may be required to promote
symmetry in the prior. Despite this, in practice, we find that
samples from the posterior are often symmetric.
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concentration
[0.1, 0.1, 0.1]
column mean: 
[0.33, 0.25, 0.41]

concentration
[1.0, 1.0, 1.0]
column mean: 
[0.34, 0.30, 0.37]

concentration
[10.0, 10.0, 10.0]
column mean: 
[0.33, 0.33, 0.34]

Figure 3: Heatmaps: Averages of 10 samples from the Ordered Matrix Dirichlet with varying concentration α ∈ RA
+.

“Column mean” refers to φa = 1
K

∑K
k=1 φka and shows that probability mass is asymmetric to the right. Simplex plots:

Each point is a discrete distribution over A = 3 classes. The K = 3 points ( , , ) connected by a line represent one
sample from the OMD. We observe ordered transitions from the lower left [1, 0, 0] to the top [0, 0, 1] corner of the simplex.
In Fig. 12 in App. C, we present unordered sample trajectories from the SMD in comparison.

Label Switching The problem of “label switching”
(Stephens, 2000; Murphy, 2012, p. 841) arises in
(ad)mixture models when the indices k of latent states are
arbitrary, such that permuting them gives the same joint
probability under the model. This issue can hamper interpre-
tation and prevents one from averaging parameters across
posterior samples without first aligning the states (e.g., using
the Hungarian matching algorithm (Kuhn, 1955)). The mod-
els we have discussed, which place an OMD prior over the
emission matrix, have intrinsically ordered states that are not
prone to label switching (see Fig. 11 in App. C). Although
we do not view this as the main benefit of the OMD, it is a
welcome side effect that facilitates easier interpretation and
permits direct averaging of posterior parameters without
post-hoc, potentially error-prone alignment methods.

4 MCMC INFERENCE WITH PYRO

The OMD integrates nicely with modern probabilistic
programming frameworks like Pyro (Bingham et al., 2018;
Phan et al., 2019).1 Although we do not have an analytic
form for its PDF, we are able to build and perform efficient
gradient-based MCMC on a range of OMD-based models
by implementing Algorithm 1. We regard the OMD
as a modeling motif that blends white- and black-box
approaches in a way that was only recently made feasible
by advances in scientific computing.

We use Pyro’s implementation of the No-U-Turn Sampler
(NUTS, Hoffman and Gelman, 2014), a variant of Hamil-
tonian Monte Carlo (HMC, Duane et al., 1987), to perform
approximate posterior inference in OMD-based models. As
with any MCMC method, this returns a set of S posterior
samples of model parameters {Π(s),Φ(s), . . . }Ss=1 which
collectively approximate the posterior distribution. In prac-
tice, we take S =1000 samples after 200 burn-in samples.

1We open-source our code with tutorials and examples at
https://github.com/niklasstoehr/ordered-matrix-dirichlet

NUTS relies on first-order gradient information of the
model’s unnormalized log joint density. Our implementa-
tion in Pyro takes gradients of the OMD density implicitly
via backpropagation through the stick-breaking construction.
Although the sort operation is not fully differentiable, it is
piece-wise linear and sub-differentiable (Boyd and Vanden-
berghe, 2004; Blondel et al., 2020; Tim Vieira, 2021). We
can view sort as a combination of two operations: first the
non-differentiable argsort obtains permutation indices,
then the differentiable gather applies the permutation.
In the backward pass, the permutation of indices is simply
reversed to match their original positions, obviating the
need to differentiate through argsort. For this reason, the
sorting of Beta variates in the construction of the OMD does
not hinder gradient-based MCMC methods for inference.

5 SYNTHETIC DATA EXPERIMENTS

We conduct experiments with synthetic data to better under-
stand and evaluate the behavior of SSMs with OMD priors.
In particular, we generate datasets using hidden Markov
models (HMMs) with roughly diagonal emission matrices
and a range of stylized transition matrices—i.e., “banded”,
“bonbon” and “triangle”, all displayed in the left column of
Fig. 4. The “bonbon”, for instance, represents a realistic sce-
nario for political event data, where “neutral” states fluctuate
but “ally” and “enemy” states are nearly absorbing. To each
of these datasets, we fit an HMM with OMD priors and com-
pare its performance to a baseline HMM with SMD priors.

We generate multiple datasets for each parameter setting
using 10 random seeds, where each dataset comprises N =
10,000 sequences of length T = 10, and where a single
observation takes one of A = 10 ordinal values. We further
consider two settings: one with all N = 10,000 sequences
and a few-shot setting where models are fit to onlyN = 100.
We also generate random train-test splits to evaluate two
different forms of prediction:

https://docs.pyro.ai/en/stable/
https://docs.pyro.ai/en/stable/_modules/pyro/infer/mcmc/nuts.html
https://github.com/niklasstoehr/ordered-matrix-dirichlet
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Ground Truth
Transition Matrix

Emission: SMD
Transition: SMD

Forecasting Task Forecasting Task
Observed States Latent States

Emission: OMD
Transition: OMD

Figure 4: SMD versus OMD at forecasting. Column 1: Stylized ground-truth transition matrices. Columns 2-3: OMD
recovers the transition matrices while the SMD suffers from label switching. Columns 4: OMD is better at forecasting than
SMD but worse at imputation. Columns 5: OMD recovers the latent states while the SMD suffers from label switching.

(1) Imputation: We mask a random 30% of all observations
which models impute during inference.

(2) Forecasting: We designate the first 70% of time steps
for training and the latter 30% for testing. Models are fit to
the training set, then used to forecast the test observations.

Qualitative Results. We first compare how well the two
models recover known ground-truth latent structure. As
expected, the OMD model reliably recovers the shape of
the true transition matrix while the SMD model does not,
often exhibiting label switching; see the first 3 columns
of Fig. 4 for examples. As a simple quantitative measure of
this, we can also calculate the mean absolute error (MAE)
between the true latent states and the inferred ones. The
last column of Fig. 4 reports the error on forecasting future
latent states where the OMD model is substantially better;
this is unsurprising and simply confirms that the OMD’s
states are well-ordered while the SMD’s are label-switched.

Predictive Results. The 4th column of Fig. 4 reports
MAE on forecasting future observations. The OMD model
performs at least as well as the SMD model in all settings,

and sometimes substantially better, as when the true transi-
tion matrix is banded (1st row). By contrast, the imputation
results in Fig. 13 in App. C show the OMD model perform-
ing substantially worse than the SMD model in most settings.
We speculate that the strong inductive bias imparted by the
OMD prior helpfully regularizes the model’s forecasts while
overly restricting its imputation ability. Intriguingly, the one
setting where the OMD model has superior imputation per-
formance is when the true transition matrix is banded, which
accords with the forecasting results.

6 CASE STUDY: POLITICAL EVENTS

In this section, we give a case study on building an OMD-
based SSM to analyze international relations event data.

6.1 ICEWS Political Events Data

We consider political event data from the Integrated Crisis
Early Warning System (ICEWS) dataset (Boschee et al.,
2015). ICEWS event data comprise millions of micro-
records of the form “country i took action a to country

https://dataverse.harvard.edu/dataverse/icews
https://dataverse.harvard.edu/dataverse/icews
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2015
2016

2017
2018

2019
2020

time step t

7.0: provide aid
6.0: material coop

5.0: yield
4.0: intent coop

3.5: diplomatic coop
3.0: appeal
1.0: consult

0.0: public statement
-2.0: investigate
-2.0: disapprove

-4.0: reject
-4.0: reduce relations

-5.0: demand
-6.0: threaten

-6.5: protest
-7.0: coerce

-7.2: force posture
-9.0: assault

-10.0: fight
-10.0: mass violence

event countsArmenia – Azerbaijan

100

101

102

Figure 5: ICEWS event data showing interactions between
ARMENIA and AZERBAIJAN over monthly time steps.

j at time t” that are machine-extracted from digital news
archives. The country actors i and j and action types a are
coded to follow the Conflict and Mediation Event Observa-
tions (CAMEO) ontology (Schrodt, 2012).

Ordered Actions CAMEO specifies 20 high-level action
types, depicted in Fig. 5, that are naturally ordered on a
conflictual-to-cooperative axis—specifically, they are each
assigned a value on the expert-elicited Goldstein scale (Gold-
stein, 1992), where the most cooperative action, “provide
aid”, has a value of +7.0, and the most conflictual action,
“use unconventional mass violence”, has a value of −10.0.

4-mode Count Tensor Following Schein et al. (2016b),
we represent the data as a count tensor Y ∈ NV×V×A×T

0 ,
where an element y(t)

i
a−→j

is the number of times country i

took action a to country j during time step t. We consider
V = 249 countries, A = 20 action types (ordered by Gold-
stein values), and T = 72 months. The A × T slice of
this tensor corresponding to all interactions between i ≡
ARMENIA and j ≡ AZERBAIJAN is visualized in Fig. 5.

6.2 Dynamic Poisson Tucker model

Our model assumes each count y(t)
i

a−→j
is Poisson distributed:

y
(t)

i
a−→j
∼ Pois

δa δ(t) K∑
k=1

λ
(t)

i
k−→j

φka︸︷︷︸
emission

 (5)

where φka is an entry in the state-to-action emission ma-
trix, the parameters δa and δ(t) are action- and time-scaling
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Figure 6: Imputation and forecasting evaluation on held-out
ICEWS data, over 10 runs with random seed. We fit the
DPT model with different parametrizations (SMD, BMD,
OMD) of the emission Φ and transition Π matrix. We find
that OMD does not significantly reduce predictive results
suggesting that the imposed constraints fit the given data.

coefficients, and λ(t)
i

k−→j
represents how well the kth state

describes the relationship (i → j) at time t. Eq. (5) con-
forms to the basic form given in Eq. (1), where here the
measurements and states are specifically tensor-valued.

Our model further assumes that λ(t)
i

k−→j
decomposes so that

K∑
k=1

λ
(t)

i
k−→j
φka ≡

C∑
c1=1

ψc1i

C∑
c2=1

ψc2j

K∑
k=1

λ
(t)

c1
k−→c2

φka (6)

where ψc1i and ψc2j represent the rate at which countries
i and j participate in latent communities c1 and c2, respec-
tively, and λ(t)

c1
k−→c2

then represents how well the kth state

describes the inter-community relationship (c1 → c2) at
time t. The multilinear form in Eq. (6) corresponds to a
Tucker decomposition Tucker (1964), where the λ(t)

c1
k−→c2

values collectively form the core tensor Λ(t) ∈ RC×C×K
+ at

time t. In this setting, the core tensor can also be interpreted
as a tensor-valued state (of the whole system).

We then model the evolution of the core tensor over time as

λ
(t)

c1
k−→c2
∼ Gam

τ0 K∑
k′=1

λ
(t−1)

c1
k′−→c2

πk′k︸︷︷︸
transition

, τ0

 (7)

which follows the form of Poisson–Gamma Dynamical Sys-
tems (Schein et al., 2016a) while conforming to Eq. (2).

We place non-informative gamma priors over the parame-
ters δa, ψc1i, ψc2j

iid∼ Gam(α0, α0), a dynamic prior over
δ(t) ∼ Gam(τ0δ

(t−1), τ0), and set τ0 = α0 = 1.

https://parusanalytics.com/eventdata/cameo.dir/CAMEO.09b6.pdf
https://parusanalytics.com/eventdata/cameo.dir/CAMEO.09b6.pdf
https://parusanalytics.com/eventdata/cameo.dir/CAMEO.SCALE.txt
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D
E

A B C

Figure 7: Posterior mean of parameters of Dynamic Poisson Tucker model fitted to ICEWS subset of 2020. (A) The
latent matrix Ψ indicates country-community activity. ARMENIA and AZERBAIJAN are standing out as they are involved
mostly in one community (B) Interactions between latent communities. We find that communities c = 1, c = 3 and c = 4
predominantly interact between themselves. (C) Selected community interactions over time: c1 = 4 → c2 = 4 are in
conflict, while c1 = 2 → c2 = 5 are mostly neutral. (D) Latent emission matrix Φ representing global state-to-action
probabilities. Thanks to the ordering, we know that state k = 3 represents conflictual relationships. (E) Latent transition
matrix Π representing smooth state-to-state transition probabilities.

Finally, with all of the aforementioned structure the same,
we then consider three different settings for the priors over
the transition Π and emission Φ matrices: (1) OMD+OMD,
where both are drawn from the OMD, (2) SMD+SMD,
where both are drawn from the SMD, and (3) SMD+BMD,
where Φ is drawn from the SMD and Π is drawn from the
Banded Matrix Dirichlet (BMD), as defined in App. B.2.

6.3 Experiments and Results

To further understand and evaluate the OMD we fit the
three above-mentioned versions of the Dynamic Poisson
Tucker (DPT) model to ICEWS data and compare their
qualitative and predictive performance. We use the same
hyperparameters for all models with C = 5 and K = 3.

Predictive Evaluation Following the design in §5, we
create 10 train-test splits that randomly mask observations
for imputation and withhold later time steps for forecasting.
In addition to MAE, we evaluate performance using scaled
pointwise predictive density (SPPD), a measure between 0
and 1 where higher is better, which we define in App. B.3.

Fig. 6 reports the imputation and forecasting results for
each of the three models. As in the synthetic experiments,
we see that the OMD model is better than the SMD at
forecasting but worse at imputation. Similarly, the BMD
model is also better than the SMD at forecasting but

worse at imputation. This strengthens our belief that the
OMD’s inductive bias regularizes its forecasts while overly
restricting its imputation ability, since the BMD exhibits
the same pattern, and their two inductive biases are similar.
That being said, the OMD is much more flexible than the
BMD, which may explain why it outperforms the BMD in
both forecasting and imputation.

Qualitative Exploration To qualitatively inspect its in-
ferred latent structure, we fit the OMD model to the fully-
observed dataset. Fig. 7 visualizes the posterior mean of
inferred model parameters for the time period of 2020. Since
the model is not prone to label switching, we can inspect the
posterior mean, as opposed to inspecting single (often ar-
bitrary) sample. Fig. 7A visualizes the country-community
matrix Ψ. We observe that ARMENIA and AZERBAIJAN are
predominantly involved in community c = 4. By visualiz-
ing a slice of the core tensor in Fig. 7B, we see that this com-
munity mostly interacts with itself. By visualizing in Fig. 7C
the slice λ(t)

4
k−→4

, we see which states k best describe com-

munity c = 4’s self-interactions over time. In mid 2020, the
most active state is k = 3. We immediately know it repre-
sents a conflictual relationship since its index k is high. This
is confirmed by the emission matrix in Fig. 7D where we see
that state k = 3 places most of its mass on “fight”. Finally,
we visualize the transition matrix in Fig. 7E and find that, un-
fortunately, transitioning out of state k = 3 seems unlikely.
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We also visualize inferred latent structure from a DPT model
withK = 6 and C = 20 fitted to ICEWS data from a longer
time range 2015–2020 and present the results in Fig. 9.

7 DISCUSSION

International Relations As alluded to throughout,
this work was largely motivated by datasets, modeling
approaches, and core concepts in the field of international
relations (IR). The notion of escalation—that countries
only gradually transition to conflict through an orderly
sequence of intermediate states—is fundamental to how
scholars organize and understand political events (Davis
and Stan, 1984b). Theoretical accounts for why countries
fight attempt to characterize a sequence of intermediate
states that rational actors would transition through on their
way to war (Snyder, 1984; Fearon, 1995; Jervis, 2017).
A similar perspective underlies empirical approaches.
The earliest attempts to digitize international affairs into
“event data” were explicitly couched in the framework of
escalation—the very first sentence of Azar (1980) reads:
“As students of politics and political science, we should and
we do care about the events which lead to war...”

The principal challenge in the data-intensive study of inter-
national relations is the inherent sparsity and missingness
of event data, which provide only a scattered glimpse at the
underlying structures we seek to reason about. This paper
follows an empirical tradition of encoding strong inductive
biases into statistical models of event data which encourage
their inferred structure to accord with theoretical notions,
like “escalation” (Schrodt, 2006; Anders, 2020; Randahl
and Vegelius, 2022). While much of the previous work fo-
cuses on constraining (specifically, banding) the transition
structure between “states” to encourage orderly dynamics,
the key idea in this paper is to draw further on the ordinal
nature of observed action types. There is a steadily-growing
literature on models for dyadic event data that has made
exciting advances while still mostly treating action types
as unordered (O’Connor et al., 2013; Schein et al., 2015;
Minhas et al., 2016). In parallel, there has been recent work
on inferring latent intensity scales Terechshenko (2020);
Stoehr et al. (2022) that imbue actions with a richer or more
data-driven sense of ordering. We are eager for these threads
to continue to cross, as they have in this work.

Other Models and Other Domains The Ordered Matrix
Dirichlet as a modeling motif is applicable beyond inter-
national relations and SSMs. We include in App. C a brief
exploration of other OMD-based models we have built, with
illustrative results on other datasets. Building these models
in Pyro is easy, often only requiring a few lines of code,
which facilitates this exploration. Fig. 8 summarizes four
different models, all of which (and more) are available in
the code we have open-sourced; we describe them here too.

(1) We build an ordered form of Poisson–Gamma Dynami-
cal Systems (PGDS) (Schein et al., 2016a) placing an OMD
prior over the transition and emission matrices. PGDS
was originally introduced to model ICEWS data, but treats
actions as unordered.

(2) We use an HMM with OMD-distributed emission and
transition matrices to model the observed global change of
temperature. In this model, noisy temperature changes are
related to ordered latent states indicative of “warming” and
“cooling” periods that transition gradually.

(3) Even simpler, we experiment with a Markov chain
model consisting of a single state-to-state transition matrix
to model sleep cycles. Sleep cycles typically transition
step-by-step from wake (W) to rapid eye movement (REM)
stages (Pan et al., 2012).

(4) We modify Latent Dirichlet Allocation (LDA) (Blei
et al., 2003) to place an OMD prior over the topic-word ma-
trix. While word types are canonically viewed as unordered,
we imbue them with ordering by sorting them on “semantic
axes” (An et al., 2018), for instance from negative to positive
words. The model then infers ordered topics that reflect this
semantic axis, similar to the model of Stoehr et al. (2023).

We can imagine many more applications that motivate
well-ordered state-space models, like modeling product life
cycles (Arvidsson, 2019) or customer-company relation-
ships (Netzer et al., 2008). Beyond SSMs, admixture mod-
els, like LDA, are fundamentally based on stochastic matri-
ces and used in population genetics (Pritchard et al., 2000),
stochastic block models (Airoldi et al., 2008), recommender
systems (Gopalan et al., 2015), among many other areas.

8 CONCLUSION

This paper introduced the Ordered Matrix Dirichlet (OMD)
distribution as a prior distribution over well-ordered stochas-
tic matrices in state-space models (SSMs). Models built
on the OMD have intrinsically ordered states that reflect
ordering in the observed data. These models are more read-
ily interpretable and usable, as they are not prone to label
switching, while still being competitive on predictive tasks.
The OMD integrates nicely with modern probabilistic pro-
gramming frameworks, making it easy to build and fit OMD-
based models. While this paper’s motivation is rooted in
the concepts and data of international relations, the motifs
presented here have broad applicability to domains with
ordinal data and models based on stochastic matrices.
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A IMPACT STATEMENT

We emphasize that our models are intended for research purposes and empirical insights. They should not be blindly
deployed for automated decision-making processes. The used ICEWS data may contain biases that are potentially reinforced
by our modeling assumptions. The experiments with real-world event data in §6.3 were conducted on an NVIDIA TITAN
RTX GPU. The experiments with synthetically generated data in §5 can be run on a local M1 CPU with 64 GB of RAM in
less than 10 minutes. Limiting factors are the selected hyperparameter sizes for the latent states K and communities C, as
well as the number of time series N and their length T . We discuss further model limitations in §8 and §3.

B SUPPLEMENTARY TECHNICAL DETAILS

B.1 Proof of Proposition 3.1

Proposition B.1 (OMD random variables are well-ordered). The OMD has support over only row-stochastic matrices that
obey the ordering property given beneath Eq. (3), such that for any two rows k < k′ and any a∑

a′≤a

φka′ ≥
∑
a′≤a

φk′a′ (8)

Proof: For a = 1, φk1 > φk′1 is true by construction (line 5 of Algorithm 1). For a = 2, by the definition in line
12, φk2 = (1 − φk1)βk2, and therefore the CDF at a = 2 equals φk1 − φk1βk2 + βk2. It suffices to show that φk1 −
φk1βk2 + βk2 > φk′1 − φk′1βk′2 + βk′2, since the remaining a > 2 then follow by induction. Re-arranging terms,
(φk1−φk′1) + (βk2−βk′2) > (φk1βk2 − φk′1βk′2), which follows since we know by construction that βk2 > βk′2 (line 10),
and all terms φk1, φk′1, βk2, βk′2 are between 0 and 1.

B.2 Details of the Banded Matrix Dirichlet (BMD)

In this section, we elaborate on the Banded Matrix Dirichlet (BMD). For simplicity, we consider a square matrix Π ∈
[0, 1]K×K , but the BMD can be non-square as well. We assume that the kth state can only be excited by its directly
neighboring states, (k − 1)th and (k + 1)th, as well as by itself (Schrodt, 2006; Randahl and Vegelius, 2022). This results in
a matrix whose non-zero elements are banded along the diagonal following:

πkk′ =


π(↗)

k if k′ = k + 1 (escalating)
π(↘)

k if k′ = k − 1 (descalating)
π(◦)
k if k′ = k (steady)

0 otherwise

(9)

Finally, we place a Dirichlet prior over the three non-zero elements in each kth row

(π(↗)

k , π(↘)

k , π(◦)
k ) ∼ Dir(α(↗)

0 , α(↘)

0 , α(◦)
0 ) (10)

Moreover, we can consider a wider bandwidth b ≥ 1 so that components k′ ∈ {k − b, . . . , k + b} all excite k. An example
of the full vector might then look like

πk = (0, . . . , 0, π(↘)

k , π(◦)
k , π(↗)

k , 0, . . . , 0) (11)

B.3 Details on the Scaled Pointwise Predictive Density

Scaled pointwise predictive density (SPPD) is defined as

SPPD = exp
(

1
|I|

∑
i∈I

log
[
1
S

S∑
s=1

Pois
(
yi; µ

(s)
i

)])
(12)

where i is the multi-index of an entry yi in the tensor—e.g., i = (i, j, a, t)—and I is the set multi-indices corresponding to
all entries in the test set. The term µ

(s)
i is the Poisson rate in Eq. (5) as given by the sth posterior sample of model parameters.

SPPD is the same as LPPD (Gelman et al., 2014), but scaled by 1
|I| and exponentiated so it is always between 0 and 1, where

higher is better.



Niklas Stoehr, Benjamin J. Radford, Ryan Cotterell, Aaron Schein

B.4 Relevant Links

Code accompanying this paper
https://github.com/niklasstoehr/ordered-matrix-dirichlet
Integrated Crisis Early Warning System (ICEWS)
https://dataverse.harvard.edu/dataverse/icews
Goldstein Scale
https://parusanalytics.com/eventdata/cameo.dir/CAMEO.SCALE.txt
Conflict and Mediation Event Observations (CAMEO)
https://parusanalytics.com/eventdata/cameo.dir/CAMEO.09b6.pdf

C SUPPLEMENTARY PLOTS

Poisson Gamma 
Dyn. Sys PGDS

Hidden Markov 
Model HMM

Markov Chain MC

Latent Dirichlet 
Allocation LDA

Dir

Dir

Dir

Dir

Dir

Dir

Dir

Dir

Model Data Example SMD OMD

Figure 8: Different models with Dirichlet-sampled latent matrices fitted on data exhibiting ordinal dynamics. The Latent
Dirichlet Allocation (LDA) has no temporal dimension, but similarly comprises a stochastic matrix describing word
distributions per latent topic. If we order the observed vocabulary of words by the words’ sentiment score, the Ordered
Matrix Dirichlet (OMD) can recover topics representative of sentiment levels. In all settings, we find that the OMD yields
more easily interpretable stochastic matrices than the Standard Matrix Dirichlet (SMD).

https://github.com/niklasstoehr/ordered-matrix-dirichlet
https://dataverse.harvard.edu/dataverse/icews
https://parusanalytics.com/eventdata/cameo.dir/CAMEO.SCALE.txt
https://parusanalytics.com/eventdata/cameo.dir/CAMEO.09b6.pdf
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Figure 9: Posterior mean of parameters of Dynamic Poisson Tucker model, with K = 6 latent states and C = 20 latent
communities, fitted to full temporal range (2015-2020) of ICEWS data. We find that the probability mass of the transition
matrix is centered along the diagonal revealing step-wise (de-)escalatory dynamics. There is high probability of staying in
state k = 6 indicating that conflictual relationships may be hard to escape. The country-community affiliation matrix Ψ
provides no information on whether communities represent allies or enemies per se. To obtain this information, we interact
the country-community matrix with the core tensor ψ(→)

c1i

∑C
c2=1

∑V
j=1 ψ

(←)
c2j

λ
(t)

c1
k−→c2

for specific choice of k and t.
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Figure 10: Descriptive statistics showing total number of
interactions between countries in ICEWS data from 2015 to
2020. The rows and columns are sorted by the total number
of actions a country is involved in. Note that we omit self-
targeted actions as indicated by the blank diagonal.
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Dirichlet distribution. This can result in label switching
making the latent states (topics) difficult to interpret. This
is particularly problematic if states are ordinal, e.g., repre-
senting “ally”, “neutral” and “enemy” relations.
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Figure 12: Samples from the Standard Matrix Dirichlet (SMD). Each point in the triangle plot represents a sample from a
Dirichlet over A = 3 classes. The K = 3 points connected by a line represent an (unordered) sample from the SMD.
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Figure 13: Imputation results of synthetic data experiments.
As discussed in §5, we generate time series with different
ground truth transition structures: “banded”, “bonbon”, “tri-
angle”. We fit a Hidden Markov Model (HMM) to a train
set of these data and evaluate imputation performance on a
test set. In contrast to the forecasting experiments (Fig. 4),
SMD + SMD outperforms OMD + OMD in two out of three
cases on observed states. In contrast to forecasting, impu-
tation does not necessarily require a model with temporal
dynamics and the ordered transition matrix does not help.
As expected, OMD + OMD performs better at imputing
latent states because it circumvents label switching.

action type
a

action
name

Goldstein
value

0 provide aid 7.0
1 engage material cooperation 6.0
2 yield 5.0
3 express intent cooperate 4.0
4 engage diplomatic cooperation 3.5
5 appeal 3.0
6 consult 1.0
7 make public statement 0.0
9 investigate -2.0

10 disapprove -2.0
11 reject -4.0
12 reduce relations -4.0
13 demand -5.0
14 threaten -6.0
15 protest -6.5
16 coerce -7.0
17 exhibit force posture -7.2
18 assault -9.0
19 fight -10.0
20 unconventional mass violence -10.0

Figure 14: Ordered CAMEO action types with assigned
Goldstein values. We order action types by Goldstein value
first and, in case of a tie, by CAMEO ID second.

http://data.gdeltproject.org/documentation/CAMEO.Manual.1.1b3.pdf
https://parusanalytics.com/eventdata/cameo.dir/CAMEO.SCALE.txt
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