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Abstract

The Schrödinger bridge is a stochastic process
that finds the most likely coupling of two mea-
sures with respect to Brownian motion, and is
equivalent to the popular entropically regular-
ized optimal transport problem. Motivated by
recent applications of the Schrödinger bridge to
trajectory reconstruction problems, we study the
problem of sampling from a Schrödinger bridge
in high dimensions. We assume sample access
to the marginals of the Schrödinger bridge pro-
cess and prove that the natural plug-in sampler
achieves a fast statistical rate of estimation for
the population bridge in terms of relative entropy.
This sampling procedure is given by computing
the entropic OT plan between samples from each
marginal, and joining a draw from this plan with
a Brownian bridge. We apply this result to con-
struct a new and computationally feasible estima-
tor that yields improved rates for entropic opti-
mal transport map estimation.

1 INTRODUCTION

Finding a meaningful and computationally tractable
method of comparing and interpolating high-dimensional
probability distributions is a problem of major scientific
significance which arises in generative modeling, trans-
fer learning, cellular biology, and beyond Arjovsky et al.
(2017); Wilson and Cook (2020); Schiebinger et al. (2019).
A popular approach to this problem is called optimal trans-
port (OT), and seeks to find a coupling of two distribu-
tions that minimizes a given energy criterion Villani (2003,
2008). OT offers practitioners a geometrically meaning-
ful and flexible means of working with complex data and
has been been applied in a wide array of scientific disci-
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plines including economics, graphics, and the aforemen-
tioned fields Peyré and Cuturi (2018).

To introduce the OT problem let µ, ν ∈ P2(Rd) be proba-
bility measures on Rd with finite second moment. Then the
OT problem is

min
π∈Π(µ,ν)

Eπ[∥x− y∥2], (1.1)

where ∥ · ∥ denotes the Euclidean ℓ2 norm, and Π(µ, ν) de-
notes the set of all probability measures on Rd × Rd with
marginals µ and ν. A rich theory exists for this problem,
including precise characterizations of the optimizer as sup-
ported on the graph of a function T (x), called the OT map,
and the Riemannian-like geometry of the induced metric
space, and has led to major developments in pure mathe-
matics Villani (2008); Ambrosio et al. (2008).

1.1 Curse of Dimensionality for un-Regularized OT

Unfortunately, recent work has shown that OT has lim-
ited applicability in practice for high-dimensional data.
Namely, to estimate the value of (1.1) in general requires
a number of samples exponential in the dimension d, and
similar rates hold for the optimizer itself Weed and Berthet
(2019); Hütter and Rigollet (2019). While this curse
of dimensionality can be mitigated somewhat by making
smoothness assumptions on µ and ν, developing compu-
tationally feasible methods which achieve improved rates
is an area of ongoing research Pooladian and Niles-Weed
(2021); Muzellec et al. (2021).

1.2 Entropic Optimal Transport

When solved in practice, however, the OT problem is typ-
ically regularized with a relative entropy term, and dubbed
entropic OT. The entropic OT problem is thus defined for a
regularization parameter η > 0 as

min
π∈Π(µ,ν)

Eπ[∥x− y∥2] + 1

η
KL(π ∥µ⊗ ν), (1.2)

Rather than use entropic OT as an approximation for un-
regularized OT, in this work we instead study entropic OT
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on its own. In particular, we treat η > 0 as a fixed pa-
rameter throughout the paper. We denote the optimum and
optimizer of (1.2) by S⋆ and π⋆, respectively. In fact, the
entropic OT problem is of great interest on its own Chen
et al. (2021b), even beyond its use as an approximation of
OT, because it possesses a number of attractive properties
and connections with diverse areas, which we now discuss.

First, this entropy-regularized OT problem is practical to
solve: the famous Sinkhorn’s algorithm is a simple and
easy to implement algorithm which converges in time lin-
ear in the input size and inverse linear in the error Sinkhorn
(1964); Sinkhorn and Knopp (1967); Dvurechensky et al.
(2018). Indeed, the usual purpose of introducing entropic
regularization into the OT problem is just that it permits the
use of Sinkhorn’s algorithm Cuturi (2013).

Second, entropic OT has much better statistical perfor-
mance than un-regularized OT in high dimension. A re-
cent line of work has shown that entropic OT has statisti-
cal rates of estimation of the form ηd/2/

√
n, transferring

the curse of dimensionality from n, the sample size to η,
the regularization parameter Genevay et al. (2019); Mena
and Niles-Weed (2019); Luise et al. (2019), and in fact
that fully-dimension free rates hold albeit with exponential
dependence on the regularization parameter Rigollet and
Stromme (2022).

Third, the entropic OT problem has connections to stochas-
tic processes and optimal control through an equiva-
lent dynamical formulation known as the Schrödinger
bridge Schrödinger (1931); Schrödinger (1932). Let Rη be
the law of reversible Brownian motion with diffusion 1/2η
(namely the variance of each increment is rescaled by a fac-
tor of 1/2η). Then the Schrödinger bridge is the solution
of

min
D : D0=µ, D1=ν

KL(D ∥Rη), (1.3)

where the minimization is over probability measures on
the Wiener space D ∈ P(C([0, 1];Rd)), and for such
a stochastic process D the notation D0, D1 refers to its
marginals at times 0, 1, respectively. (Additional details
are provided in section 2.) We write the optimizer of (1.3)
as D⋆. The solution D⋆ of (1.3) is connected to the solu-
tion π⋆ of the entropic OT problem (1.2) in the following
manner: take (x, y) ∼ π⋆ and draw a Brownian bridge Rxy

η

joining x to y; then the law of Rxy
η is D⋆ Léonard (2014).

In other words, π⋆ is the joint distribution on the endpoints
of D⋆, and the full stochastic process D⋆ is generated by
joining endpoints with a Brownian bridge. In the η → ∞
limit, this stochastic process becomes deterministic and re-
covers the dynamical form of un-regularized optimal trans-
port Léonard (2012); Chen et al. (2016).

1.3 Trajectory Reconstruction

There has recently been a great deal of interest in apply-
ing the dynamical form of entropic OT, as well as its un-
regularized cousin, to the problem of trajectory reconstruc-
tion Pavon et al. (2021); Lavenant et al. (2021); Bunne et al.
(2022b). In the trajectory reconstruction problem, one ob-
serves iid samples x1, . . . , xn ∼ µ and y1, . . . , yn ∼ ν,
thought to be snapshots of a population evolving in time,
and wishes to infer the population trajectory at intermedi-
ate times, but with the crucial condition that the observa-
tions at initial and final times are un-coupled, so one does
not know which particle went to which location.

When applying OT-based methods to trajectory reconstruc-
tion, one generally uses OT to couple the observations and
then interpolates between coupled points. This procedure
was famously applied to the problem of single-cell RNA
sequencing, where practitioners wish to track the evolution
of a population of cells but must destroy a cell to observe
its RNA Schiebinger et al. (2019). However, the direct use
of un-regularized OT for trajectory reconstruction is diffi-
cult for high-dimensional data such as that in scRNA se-
quencing, due to un-regularized OT’s curse of dimension-
ality. Most approaches to trajectory reconstruction with OT
use some form of regularization, most often entropic reg-
ularization Schiebinger et al. (2019); Chizat et al. (2022);
Bunne et al. (2022a); Scarvelis and Solomon (2022).

1.4 Contributions

Motivated by the problem of trajectory reconstruction and
the growing body of work that uses the Schrödinger bridge
to solve it, we consider the problem of sampling from the
Schrödinger bridge. To isolate the difficulty of sampling
the Schrödinger bridge from the difficulty of sampling from
its marginals µ and ν, we assume sample access to µ and
ν, and study the most natural means of solving this prob-
lem: take samples of size n from each of µ and ν, form the
entropic OT plan between these empirical measures, take a
sample from this plan, and then connect this sample with a
Brownian bridge.

The resulting process is denoted D̂n, and our main re-
sult controls the relative entropy between D̂n and the true
Schrödinger bridge D⋆. To state this result, we suppress
constants that only depend on the dimension d with the
notation A ≲ B. Corollary 6 states that, if µ and ν are
σ2-sub-Gaussian and have finite entropy, then

KL(D̂n ∥D⋆) ≲
(
1 + σ⌈5d/2⌉+6 · η⌈5d/4⌉+3

)
· 1√

n

We apply this result to propose and analyze an estimator T̄n

for the entropic OT map T⋆(x) := Eπ⋆ [y |x]. We assume
that µ, ν have support of diameter at most R and finite en-
tropy, and show in Theorem 7 that given samples X and
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Y of size n from µ and ν respectively, T̄n achieves sub-
exponential dependence on the regularization parameter η
and the statistical rate n−1/3, namely

EX ,Y [∥T̄n − T⋆∥2L2(µ)] ≲

R2
(
1 +R⌈5d/2⌉+6 · η⌈5d/4⌉+3

)
· 1

n1/3
.

We remark here that for entropic OT map estimation, the
dependence ηCd for a constant C is necessary, since other-
wise we could use this estimator to estimate un-regularized
OT maps faster than known minimax lower bounds Hütter
and Rigollet (2019).

1.5 Related Work

Various methods have been proposed for trajectory recon-
struction with OT. An early work fits a deep neural network
to predict the trajectory with entropic OT loss Hashimoto
et al. (2016). Several methods directly use the OT cou-
plings from empirical data to couple and then interpolate
either deterministically Chewi et al. (2021); Schiebinger
et al. (2019), or stochastically Lavenant et al. (2021);
Chizat et al. (2022). Another work jointly optimizes the
dual OT objective with respect to a Riemannian manifold
and the metric of the Riemannian manifold Scarvelis and
Solomon (2022). The work Bunne et al. (2022b) pro-
posed using the JKO scheme parametrized by an input-
convex neural network. And performing the entropic OT
coupling with respect to a data-driven reference process
other than Brownian motion was studied in Bunne et al.
(2022a). Other methods based on iterating optimal con-
trol formulations were proposed in Vargas et al. (2021);
Pavon et al. (2021); Chen et al. (2021a). There have been
some works using Schrödinger bridge to sample from one
of its marginals Bernton et al. (2019); Huang et al. (2021).
Schrödinger bridge has also been applied to generative
modeling, see for example De Bortoli et al (2021).

The statistical theory of un-regularized optimal transport
is largely established, with nearly optimal minimax rates
known for cost Niles-Weed and Rigollet (2019) and map
estimation Hütter and Rigollet (2019), both of which have
a curse of dimensionality. For the entropic OT problem,
non-parametric statistical rates were first shown for the
cost Genevay et al. (2019); Mena and Niles-Weed (2019).
The entropic problem has been the subject of several cen-
tral limit theorems del Barrio et al. (2022); Goldfeld et al.
(2022a,b); Gonzalez-Sanz et al. (2022).

The most relevant works to this paper are finite sample
results for the entropic OT map, density, and dual poten-
tials Luise et al. (2019); del Barrio et al. (2022); Rigol-
let and Stromme (2022); Masud et al. (2021). However,
these works do not apply to our situation because we con-
sider producing a sample rather than estimation of popu-
lation quantities. Other works which are closely related

study the stability of the entropic OT plan to changes in its
marginal are given asymptotically Ghosal et al. (2021) and
quantitatively in W2 Carlier et al. (2022) and W1 Deligian-
nidis et al. (2021). Because these results measure stability
with respect to Wasserstein distances they are inadequate
for yielding statistical rates for plug-in estimators without
a curse of dimensionality in the sample size n.

2 PRELIMINARIES

2.1 Notation and Definitions

Given probability measures P,Q on some measure space
(X,A), the relative entropy is defined as∞ if P ̸≪ Q and
otherwise as

KL(P ∥Q) :=

∫
log

dP

dQ
dP (x).

We also consider the KL divergence when Q is not a proba-
bility measure, in particular when Q is the law of reversible
Brownian motion. In that case we use the same formula
and refer to Leonard (2014) for a precise definition of its
meaning. We let Ld denote the Lebesgue measure on Rd.

We use the notation A ≲ B to indicate that there exists a
constant C = C(d) depending only on the dimension such
that A ⩽ CB. Given a Borel-measurable f : Rk → Rl and
Borel probability measure β on Rk, the L2 norm is defined
as

∥f∥L2(β) := Ez∼β [∥f(z)∥2]1/2,

and the set L2(β) is the set of those f for which
∥f∥L2(β) < ∞ (the co-dimension will be clear from con-
text), modulo β-almost everywhere equivalence. For a
function f ∈ L2(β), we let β(f) := Ex∼β [f(x)]. The
set [k] for k ∈ N is the set of positive integers at least 1
and no more than k. By µ ⊗ ν we mean the joint law of
(x, y) when x ∼ µ and y ∼ ν. We frequently work with
iid samples x1, . . . , xn ∼ µ and y1, . . . , yn ∼ ν, and for
convenience write the entire samples X := (x1, . . . , xn)
and Y := (y1, . . . , yn). The empirical distributions on X
and Y are written µ̂n and ν̂n, and defined as

µ̂n :=
1

n

n∑
i=1

δxi
, ν̂n :=

1

n

n∑
j=1

δyj
.

We always fix a regularization parameter η > 0, and the
corresponding optimum of (1.2) and its optimizer are writ-
ten S⋆ and π⋆, respectively. Existence of S⋆ and existence
and uniqueness of π⋆ follows from our assumption of finite
second moment (see below for a formal statement of our
assumptions) Csiszar (1975). The empirical analog to (1.2)
is written

min
π∈Π(µ̂n,ν̂n)

Eπ[∥x− y∥2] + 1

η
KL(π ∥ µ̂n ⊗ ν̂n), (2.1)
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and its optimum and optimizer are denoted Ŝn and π̂n, re-
spectively, and similarly uniquely exist due to their finite
second moment.

For a stochastic process D ∈ P(C([0, 1];Rd)) its end-
point distribution, namely the distribution of (ω(0), ω(1))
for ω ∼ D is written D01. The distribution of ω(0) for
ω ∼ D is written D0, and likewise for D1. Its distribution
conditional on paths which start at x at time t = 0 and end
at y at time t = 1 is written as Dxy .

2.2 Duality for Entropic Optimal Transport

For background on OT, we refer the reader to the book Vil-
lani (2008). As in un-regularized OT, the entropic OT prob-
lem has a dual which plays an important role in its theory.
For the population problem, the dual is

max
(f,g)

µ(f) + ν(g)− 1

η
(µ⊗ ν)(eη(f+g−∥x−y∥2)), (2.2)

where the maximum runs over (f, g) ∈ L1(µ) × L1(ν).
Under our assumption that µ, ν have finite second mo-
ment, the optimum is attained Csiszar (1975) by (f⋆, g⋆) ∈
L1(µ) × L1(ν) unique up to the translation (f⋆, g⋆) 7→
(f⋆ − c, g⋆ + c) for c ∈ R. Moreover, the primal and dual
solutions are related in the following manner

p⋆(x, y) :=
dπ⋆

d(µ⊗ ν)
(x, y) = eη(f⋆(x)+g⋆(y)−∥x−y∥2).

(2.3)
And the value of the primal problem has the following re-
lationship with the value of the dual problem

S⋆ = µ(f⋆) + ν(g⋆). (2.4)

The empirical dual problem is defined analogously by

max
(f,g)

µ̂n(f) + ν̂n(g)−
1

η
(µ̂n ⊗ ν̂n)(e

−η(f+g−∥x−y∥2)),

(2.5)
where the maximum runs over (f, g) ∈ L1(µ̂n)× L1(ν̂n).
We denote the optimizers of (2.5) by (f̂n, ĝn) which are
again unique up to the translation (f̂n, ĝn) 7→ (f̂n+c, ĝn−
c) for c ∈ R. Also, the primal and dual solutions to the
empirical problem are related in the following manner

pn(x, y) :=
dπ̂n

d(µ̂n ⊗ ν̂n)
(x, y) = eη(f̂n(x)+ĝn(y)−∥x−y∥2).

(2.6)
And the value of the empirical primal problem has the fol-
lowing relationship with the value of the dual problem

Ŝn = µ̂n(f⋆) + ν̂n(g⋆). (2.7)

Finally, we use the marginal constraints π̂n ∈ Π(µ̂n, ν̂n) to
write the following constraints for pn: for all i, j ∈ [n], we
have

1

n

n∑
k=1

pn(xi, yk) = 1,
1

n

n∑
k=1

pn(xk, yj) = 1. (2.8)

2.3 Background on the Schrödinger Bridge

For background on Brownian motion we refer to Dur-
rett (2019), and for background on the the Schrödinger
bridge and its connections with entropic OT, we refer to the
survey Leonard (2014). We let W (t) denote the standard
Wiener process on Rd, and let Wη(t) := W (t/

√
2η). A

Brownian bridge Rxy
η from x to y is a sample from Brown-

ian motion (with appropriate variance) conditioned to be x
at time t = 0 and y at time t = 1. It can be written in terms
of the Wiener process as

Rxy
η (t) = (1− t)x+ ty +Wη(t)− tWη(1). (2.9)

We let Rη be the law of reversible Brownian motion,
namely the Wiener process Wη but with the Lebesgue mea-
sure as its initial distribution. The Schrödinger bridge D⋆ is
then the solution of (1.3), which is guaranteed to exist un-
der our assumptions (stated formally below) that µ, ν have
have finite second moments and finite entropy (Léonard,
2014, Prop. 2.5).

We use the following basic facts from Leonard (2014).

Proposition 1 (Equivalence of Schrödinger bridge and en-
tropic OT). The Schrödinger bridge process D⋆ and the
entropic OT plan π⋆ from µ to ν are related in the follow-
ing manner. First, the endpoint marginal distribution of D⋆

is π⋆, namely (D⋆)01 = π⋆. Second, D⋆ can be described
as Brownian bridges connecting draws from π⋆, namely for
all ω ∈ C([0, 1];Rd),

D⋆(ω) =

∫
Rxy

η (ω)dπ⋆(x, y).

Proposition 2 (Entropy additivity formula). Let P,Q ∈
P(C([0, 1];Rd)). Then

KL(P ∥Q) = KL(P01 ∥Q01)

+

∫
KL(P xy ∥Qxy)dQ01(x, y).

2.4 Previous Result on Empirical Entropic OT Cost

The following result gives the best known rates for the er-
ror of using the empirical entropic OT cost Ŝn for its pop-
ulation counterpart S⋆, and will be used as a main step in
our arguments. Recall that a probability distribution µ is
said to be σ2-subGaussian Vershynin (2018), if for all unit
vectors v ∈ Rd and t ⩾ 0, Ex∼µ[exp(t⟨x − E[x], v⟩)] ⩽
exp(σ2t2/2),

Theorem 3 (Corollary 1 in Mena and Niles-Weed (2019)).
Suppose µ and ν are both σ2-subGaussian, then

EX ,Y [|Ŝn − S⋆|] ≲
1

η

(
1 + σ⌈5d/2⌉+6 · η⌈5d/4⌉+3

)
· 1√

n
.
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2.5 Assumptions

We assume throughout that µ, ν each have finite second
moment, and each have finite entropy:

KL(µ ∥Ld), KL(ν ∥Ld) <∞.

3 MAIN RESULTS

3.1 Sampling From a Schrödinger Bridge

In this section, we propose an estimator D̂n for the
Schrödinger bridge D⋆ from µ to ν.

Algorithm 1 Schrödinger Bridge Sampler.
1: Input: Sample access to probability distributions µ, ν.

Sample size n and regularization parameter η.
2: Output: Random path whose law is approximately

that of Schrödinger bridge.
3: procedure SCHRÖDINGERSAMPLER(µ, ν, n, η)
4: draw X ∼ µ⊗n

5: draw Y ∼ ν⊗n

6: µ̂n ← 1
n

∑n
i=1 δxi

7: ν̂n ← 1
n

∑n
j=1 δyj

8: π̂n ← SINKHORN(µ̂n, ν̂n, η)
9: draw (x, y) ∼ π̂n

10: return Brownian bridge joining x to y, Rxy
η

11: end procedure

Definition 4 (Estimator D̂n). We let D̂n be the law of the
output of Algorithm 1.

We emphasize that each draw of D̂n uses fresh samples
X ,Y from µ, ν; indeed, if this were not the case, the term
KL(D̂n ∥D⋆) would be infinite because D̂n would have a
finitely supported endpoint distribution. In fact, it is not
hard to see that (D̂n)0 = µ and (D̂n)1 = ν.

We also remark that D̂n is practical to compute, given sam-
ple access to µ and ν. Indeed, given the output of Algo-
rithm 1, for any N ∈ N and set of times t1, . . . , tN ∈ [0, 1],
the joint distribution of (ω(t1), . . . ω(tN )) for ω ∼ R

xiyj
η

is Gaussian with mean and covariance given by equa-
tion (2.9), and so is practical to sample from.

Our main result bounds the KL divergence between this
process D̂n and the true Schrödinger bridge D⋆, by the ex-
pected bias of the entropic OT cost when using the empiri-
cal measures µ̂n, ν̂n for samples X ,Y .
Theorem 5. Recall that Ŝn and S⋆ are the empirical and
population entropic OT cost, namely the values of (2.1)
and (1.2), respectively. We have the bound

KL(D̂n ∥D⋆) ⩽ ηEX ,Y [Ŝn − S⋆].

Using the bias bound given in Mena and Niles-
Weed (2019), which we include herein as Theorem 3, we

get the following Corollary.

Corollary 6. Suppose µ, ν are σ2-subGaussian. Then

KL(D̂n ∥D⋆) ≲
(
1 + σ⌈5d/2⌉+6 · η⌈5d/4⌉+3

)
· 1√

n
.

This result states that if we have sample access to distri-
butions µ, ν, which are σ2-subGaussian and have finite en-
tropy, then we can nearly sample from D⋆ using D̂n and
incur error of order n−1/2.

We remark that we can also derive a 1/n rate from
Theorem 5 for compactly supported µ, ν by employing
the improved bias bounds from the works Rigollet and
Stromme (2022) and del Barrio et al. (2022), but we avoid
this consequence because it introduces an exponential de-
pendence on the regularization parameter η.

In the next section, we apply this result to give improved
estimators for entropic OT maps.

3.2 Improved Estimators for Entropic OT Maps

We remind the reader that for the un-regularized OT prob-
lem from µ to ν, the OT plan is a deterministic coupling
(x, T (x)), where T (x) is known as the OT map from µ to
ν Villani (2008). In many applications of OT such as do-
main adaptation or trajectory reconstruction, the OT map
T is more important than the OT cost, since it provides
a means of coupling one distribution to another. Unfor-
tunately, recent work has established that the OT map T
suffers from a curse of dimensionality Hütter and Rigollet
(2019).

The entropic OT map is the entropically-regularized analog
of the OT map T , and defined to be T⋆(x) := Eπ⋆

[y |x],
also known as the barycentric projection of π⋆. In the un-
regularized case the OT map encodes all the information
of the OT plan, but in contrast, the entropic OT plan π⋆

is not deterministic given x: as can be seen from equa-
tion (2.3), π⋆(· |x) is not a point mass. While T⋆ does not
push forward µ to ν as its un-regularized analog does, it still
provides a useful summary of π⋆(· |x), and was recently
studied as a computationally efficient estimator of the un-
regularized OT map Pooladian and Niles-Weed (2021). In
this section, we consider the problem of estimating T⋆ it-
self.

Given samples X ,Y from µ, ν of size n each, the most nat-
ural way of estimating T⋆ is through its plug-in estimator,
which is defined as, for x ∈ X ,

T̂n(x) :=
1

n

n∑
j=1

yjpn(x, yj).

It was recently shown that, unlike the un-regularized OT
map, the entropic OT map T⋆ can be estimated by its
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empirical plug-in estimator with no curse of dimension-
ality Rigollet and Stromme (2022). In particular, it was
shown that when µ, ν are compactly supported, a certain
canonically extended version of T̂n achieves the rate

EX ,Y [∥T̂n − T⋆∥2L2(µ)] ≲ eCη · 1
n
,

where C is a constant depending on the diameter of the sup-
port of µ, ν. While this result provides a compelling 1/n
rate of estimation for T⋆, it has limited practical meaning
because of the exponential dependence on the regulariza-
tion parameter η.

In this section we propose and analyze a new estimator,
distinct from the plug-in estimator T̂n, which removes the
exponential dependence on η, at the cost of a worse rate in
n. Our estimator is based on solving the empirical entropic
OT problem on many small problem instances and then re-
combining those instances to obtain an estimator of T⋆.

Suppose we are given samples X = (x1, . . . , xn) ∼ µ⊗n

and Y = (y1, . . . , yn) ∼ ν⊗n. Our goal is to create a
function T̄n which maps x 7→ T̄n(x) such that EX ,Y [∥T̄n−
T⋆∥L2(µ)] is small. To that end, fix an integer m ∈ [n] such
that m divides n evenly, and let x ∈ Rd. For k ∈ [n/m],
let

Xk(x) := (x, x(k−1)m+1, x(k−1)m+2, . . . , xkm−1),

and

Yk := (y(k−1)m, . . . , ykm−1).

For k ∈ [n/m], let π̂x
n,k be the entropic OT plan between

the empirical distributions supported onXk(x) and Yk, and
put ȳk(x) := Eπ̂x

n,k
[y |x]. Then set

T̄n(x) :=
m

n

n/m∑
k=1

ȳk(x).

In brief, T̄n(x) is defined to be the average of indepen-
dent draws of the plug-in estimator T̂m, or equivalently,
Eπ̂m

[y |x], where the sample from µ has x as its first en-
try. The purpose of constructing T̄n is to yield an estimator
for T⋆ with sub-exponential dependence on the regulariza-
tion parameter η, but an incidental benefit of T̄n is that each
ȳk can be computed in parallel. Even without paralleliza-
tion, computing T̄n(x) involves solving n/m entropic OT
problems on discrete measures with support each size m,
so (ignoring approximations resulting from partially solv-
ing for π̂n) takes time O((n/m)m2) = O(nm). Our main
result on estimation T⋆ is as follows.

Theorem 7. Suppose µ, ν have compact supports of diam-
eter no more than R. Let T̄n be the previously described
estimator with parameter m = n2/3 and suppose m is an

integer. Then

EX ,Y [∥T̄n − T⋆∥2L2(µ)] ≲

R2
(
1 +R⌈5d/2⌉+6 · η⌈5d/4⌉+3

)
· 1

n1/3
.

Note that for simplicity we have not fully optimized the
choice of m to take into account the regularization param-
eter, which would reduce the exponent of η in the bound to
slightly less than ηd.

4 PROOF OF THEOREM 5

For ease of notation, put π̃n := (D̂n)01, namely its joint
distribution on endpoints.

By Propositions 1, 2, and 9, as well as the definition of D̂n,
we have

KL(D̂n ∥D⋆) = KL(π̃n ∥π⋆)

+

∫
KL((D̂n)

xy ∥Dxy
⋆ )dπ⋆(x, y)

= KL(π̃n ∥π⋆).

Thus, to prove Theorem 5, it suffices to show the following
Lemma.
Lemma 8. Let π̃n := (D̂n)01. Then

KL(π̃n ∥π⋆) ⩽ ηEX ,Y [Ŝn − S⋆].

To this end, we give a precise description of π̃n here.
Proposition 9. The measure π̃n is absolutely continuous
with respect to µ⊗ ν, and has Radon-Nikodym derivative

dπ̃n

d(µ⊗ ν)
(x, y) =

1

n2

n∑
i,j=1

EX ,Y [pn(xi, yj) | (xi, yj) = (x, y)].

We prove this Proposition below, but first use it in our proof
of Lemma 8.

For ease of notation, recall our definitions of the density p⋆
of π⋆ with respect to µ⊗ν in (2.3) and pn of π̂n with respect
to µ̂n ⊗ ν̂n in (2.3). We similarly introduce the notation

p̃n(x, y) :=
dπ̃n

d(µ⊗ ν)
(x, y).

Applying this notation, Proposition 9, and using Jensen’s
inequality twice yields

KL(π̃n ∥π⋆) = E(x,y)∼µ⊗ν

[
p̃n(x, y) · ln

p̃n(x, y)

p⋆(x, y)

]
⩽

1

n2

n∑
i,j=1

E(x,y)∼µ⊗ν

[
EX ,Y [pn(xi, yj) ln

pn(xi, yj)

p⋆(x, y)
| (xi, yj) = (x, y)]

]
.
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We then observe that becauseX andY are iid samples from
µ and ν, this double expectation can be re-written as

EX ,Y
[
pn(xi, yj) ln

pn(xi, yj)

p⋆(xi, yj)

]
.

Applying the definitions of p⋆ and pn, from (2.3) and (2.6)
respectively, we can write this as

KL(π̃n ∥π⋆) ⩽
η

n2

n∑
i,j=1

EX ,Y
[
pn(xi, yj)(f̂n(xi)

− f⋆(xi) + ĝn(yj)− g⋆(yj))
]
.

We now apply the marginal constraints from (2.8) to sim-
plify the previous equation to

KL(π̃n ∥π⋆) ⩽
η

n
EX ,Y

[ n∑
i=1

f̂n(xi)− f⋆(xi)

+

n∑
j=1

ĝn(yj)− g⋆(yj)
]
.

Finally, we observe that the sum of f̂n and ĝn terms are
exactly Ŝn by (2.7). Also, for any i, j ∈ [n] we have
EX ,Y [f⋆(xi)] = µ(f⋆) and EX ,Y [g⋆(yj)] = ν(g⋆), since
X ,Y are iid samples from µ, ν. Therefore, the f⋆, g⋆ terms
can be written as S⋆ by (2.4), so that in fact

KL(π̃n ∥π⋆) ⩽ ηEX ,Y [Ŝn − S⋆].

This concludes the proof of Lemma 8.

The only remaining element is to prove Proposition 9.

Proof of Proposition 9. To this end, fix a Borel measurable
function ϕ on Rd × Rd. Then

π̃n(ϕ) = EX ,Y,(xi0 ,yj0 )∼π̂n
[ϕ(xi0 , yj0)]

=

n∑
i,j=1

EX ,Y,(xi0 ,yj0 )∼π̂n
[ϕ(xi, yj)1[(i0, j0) = (i, j)]]

=
1

n2

n∑
i,j=1

EX ,Y [ϕ(xi, yj)pn(xi, yj)]

= E(x,y)∼µ⊗ν

[
ϕ(x, y)

· 1

n2

n∑
i,j=1

EX ,Y [pn(xi, yj) | (xi, yj) = (x, y)]
]
.

Since this is true for any such ϕ, Proposition 9 follows by
definition of the Radon-Nikodym derivative.

5 PROOF OF THEOREM 7

Throughout this section, we work in the setting, and with
the notation, of subsection 3.2. To prove Theorem 7, we
argue that the expectation of ȳk(x) on each sub-problem is
1/
√
m from to T⋆(x), a result encapsulated in the follow-

ing Lemma.

Lemma 10. Let π̃m be the measure (D̂m)01. For each
k ∈ [n/m], we have

∥EXk(x),Yk
[ȳk]− T⋆∥2L2(µ) ⩽ R2 KL(π̃m ∥π⋆). (5.1)

Given this Lemma, the proof of Theorem 7 follows quickly.
Indeed, we can expand the error as follows

EX ,Y [∥T̄n − T⋆∥2L2(µ)] =
m2

n2

n/m∑
k=1

EX ,Y [∥ȳk − T⋆∥2L2(µ)]

+
m2

n2

∑
k ̸=ℓ

EX ,Y [⟨ȳk − T⋆, ȳℓ − T⋆⟩L2(µ)].

For the first term, we bound it using the assumption that
µ, ν are supported in a set of diameter at most R, so that

m2

n2

n/m∑
k=1

EX ,Y [∥ȳk − T⋆∥2L2(µ)] ⩽
m

n
R2.

For the second term, we recognize that the inner product
terms are independent, so we can pass the expectation in-
side and observe that

m2

n2

∑
k ̸=ℓ

EX ,Y [⟨ȳk − T⋆, ȳℓ − T⋆⟩L2(µ)]

=
m2

n2

∑
k ̸=ℓ

⟨EXk(x),Yk
[ȳk]− T⋆,EXℓ(x),Yℓ

[ȳℓ]− T⋆⟩L2(µ).

Because the samplesX and Y are iid, each of these terms is
equivalent to the LHS of (5.1), so we can apply Lemma 10
to yield

m2

n2

∑
k ̸=ℓ

EX ,Y [⟨ȳk−T⋆, ȳℓ−T⋆⟩L2(µ)] ⩽ R2 KL(π̃m ∥π⋆).

Since x ∼ µ and y ∼ ν are contained in a set of diameter
at most R, they are sub-Gaussian with variance proxy ≲
R2 Vershynin (2018), and thus we can apply Corollary 6 to
give

m2

n2

∑
k ̸=ℓ

EX ,Y [⟨ȳk − T⋆, ȳℓ − T⋆⟩L2(µ)]

≲ R2(1 +R⌈5d/2⌉+6η⌈5d/4⌉+3) · 1√
m
.

Combining this with the bound on the first term and plug-
ging in our choice of m = n2/3 yields Theorem 7.

Hence Lemma 10 is sufficient to prove Theorem 7, and we
now turn to its proof.

Proof of Lemma 10. Fix an x ∈ Rd, let y0 be distributed
according to the conditional distribution π̃m(· |x), and
let y1 be distributed according to the conditional distri-
bution π⋆(· |x). We first observe that EX ,Y [ȳk(x)] =
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Eπ̃m(· | x)[y0], by definition of ȳk and π̃m. Also,
Eπ⋆(· |x)[y1] = T⋆(x), by definition. Thus,

∥EXk(x),Yk
[ȳk(x)]− T⋆(x)∥2

= ∥Eπ̃m(· | x)[y0]− Eπ⋆(· |,x)[y1]∥
2. (5.2)

We now make the following observation about bounded
distributions, proved at the end of this section.

Proposition 11. Suppose P and Q are distributions with
support contained in a set of diameter at most R. Then

∥Ez0∼P [z0]− Ez1∼Q[z1]∥2 ⩽
R2

2
KL(P ∥Q).

Applying Proposition 11 to (5.2) yields

∥EXk(x),Yk
[ȳk(x)]− T⋆(x)∥2

⩽
R2

2
KL(π̃m(· |x) ∥π⋆(· |x)).

Now, note that π⋆ ∈ Π(µ, ν), so has x-marginal µ. But we
claim that, additionally, π̃m ∈ Π(µ, ν). This is because π̃m

always outputs a draw from µ in its first coordinate and a
draw from ν in its second coordinate. Therefore,

∥EXk(x),Yk
[ȳk]− T⋆∥2L2(µ)

⩽
R2

2
Ex∼µ[KL(π̃m(· |x) ∥π⋆(· |x))]

=
R2

2
KL(π̃m ∥π⋆).

This concludes the proof of Lemma 10.

Proof of Proposition 11. This proposition is proved by let-
ting π0 be a W1-optimal coupling for P to Q, and observ-
ing that

∥Ez0∼P [z0]− Ez1∼Q[z1]∥ = ∥E(z0,z1)∼π0
[z0 − z1]∥

⩽ W1(P,Q).

We then use Villani Theorem 6.15 (2008) to compare to
total variation distance and Pinsker’s inequality to con-
clude.

6 CONCLUSION

In this work, we studied the problem of sampling from
the Schrödinger bridge process given sample access to its
marginals. We showed that the natural plug-in process
achieves the rate n−1/2 in Corollary 6. We applied this
result to analyze a novel estimator for the entropic OT
map, and prove that it achieves an n−1/3 rate with a sub-
exponential dependence on the regularization parameter in
Theorem 7. We emphasize that both of our estimation pro-
cedures are computationally practical.

While these statistical rates show that the Schrödinger
bridge can be efficiently learned in high dimensions, there
remain questions about scalability of specific estimators
used for trajectory reconstruction, and in particular our re-
sults crucially use the fact that we are comparing to Brow-
nian motion, rather than another reference process as is
sometimes considered in the literature Bunne et al. (2022a);
De Bortoli et al. (2021). We thus propose that future work
consider generalizing these results to reference processes
beyond Brownian motion. We also propose that future
work study how these results, in particular Theorem 7, can
be extended to general Monte Carlo estimation for integrals
of the form Eπ⋆ [h(y) |x] for h : Rd → Rk.
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Schrödinger, E. (1931). Über die Umkehrung der Naturge-
setze. Angewandte Chemie, 44(30):636–636. 2

Schrödinger, E. (1932). Sur la théorie relativiste de
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