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Abstract

Many crucial problems in deep learning and sta-
tistical inference are caused by a variational gap,
i.e., a difference between model evidence (log-
likelihood) and evidence lower bound (ELBO).
In particular, in a classical VAE setting that in-
volves training via an ELBO cost function, it is
difficult to provide a robust comparison of the ef-
fects of training between models, since we do
not know a log-likelihood of data (but only its
lower bound). In this paper, to deal with this
problem, we introduce a general and effective up-
per bound, which allows us to efficiently approx-
imate the evidence of data. We provide exten-
sive theoretical and experimental studies of our
approach, including its comparison to the other
state-of-the-art upper bounds, as well as its ap-
plication as a tool for the evaluation of models
that were trained on various lower bounds.

1 INTRODUCTION

Many important models in deep learning (Bayer et al.,
2021; Burda et al., 2015; Kingma and Welling, 2013), rein-
forcement learning (Duo, 2021; Todorov, 2008; Toussaint
and Storkey, 2006) and statistical inference (Gao et al.,
2017; Khan et al., 2020) suffer from the existence of a vari-
ational gap1, which means a difference between the evi-
dence and its lower bound (which follows from Jensen’s
inequality), i.e.:

variational gap = f(EX)− Ef(X), (1)

where X is a random variable and f is a concave function.
A simple visualization of this effect can be delivered us-

1In fact, in such a general context it is rather known as Jensen’s
gap, but here and henceforth we call it consequently the varia-
tional gap.
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ing the concave function f(x) = −x2 to transform Gaus-
sian random variable X ∼ N (0, 1). Indeed, in this case
f(EX) = 0 > −1 = Ef(X) (note that −f(X) ∼ χ2(1)).

Table 1: Estimated size of various variational gap bounds
for the evidence of data (lower is better), calculated for
VAE, IWAE-5, and IWAE-10 models, previously trained
on MNIST, SVHN, and CelebA datasets. All computations
were averaged over 3 collections of 216 latent samples, and
over the test dataset.
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IWAE-5 0.004 1.32 2.24 12.38 6.19 2.48 1.24 0.25
IWAE-10 0.01 1.54 2.55 18.03 9.01 3.61 1.80 0.36

SV
H

N VAE 0.44 3.16 4.84 21.08 10.54 4.22 2.11 0.42
IWAE-5 0.31 2.74 4.30 28.82 14.41 5.76 2.88 0.58
IWAE-10 0.28 2.83 4.40 32.00 16.00 6.40 3.20 0.64

C
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eb
A VAE 1.12 3.25 4.92 45.45 22.73 9.09 4.55 0.91

IWAE-5 1.23 3.40 5.14 85.41 42.70 17.08 8.54 1.71
IWAE-10 0.72 3.22 4.86 75.46 37.73 15.09 7.55 1.51

In machine learning literature, where typically f = log,
various approximations of the true evidence f(EX) were
proposed (see Section 2 and references therein), but are
often difficult to efficiently use in a deep neural network
architecture. One of the reasons for this is that we train
such models on mini-batches, and therefore the standard
assumption is that the cost function factorizes as the sum
over the input data set. In the other words, deep net-
works are designed to maximize (over network parameters)
Ef(X), rather than f(EX), which admits respective sam-
ple mean (unbiased) estimator.

However, there often naturally appear situations where
maximization of f(EX) is an actual goal. Probably the
most important such case is the variational autoencoder
(VAE) (Kingma and Welling, 2013; Rezende et al., 2014),
which is one of the most popular autoencoder-based gen-
erative models. Precisely, VAE uses an encoder network
q(z|x), which reduces the dimension of data and pro-
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duces their latent codes (forced to follow approximately
a given latent prior distribution p(z)), and a decoder net-
work p(x|z) that transforms the latent codes back to the
data space. Both networks are jointly trained to maximize
a variational lower bound for the log-likelihood (the evi-
dence) of data:

evidence = logEz∼q(·|x)
p(x|z)p(z)

q(z|x) , (2)

which is known as evidence lower bound or (briefly)
ELBO:

ELBO = Ez∼q(·|x) log
p(x|z)p(z)

q(z|x) . (3)

The use of ELBO, instead of a direct value of log-
likelihood, seems to be a fundamental problem in VAE.
In practice, such optimization can lead to learning sub-
optimal parameters (Burda et al., 2015), when we mean
that our final goal is an approximation of data distribution.
Hence, estimating, bounding, and reducing a difference be-
tween the evidence and ELBO, i.e., the variational gap, be-
came important issues investigated so far by many authors
from the machine learning community (see Section 2 for
a respective overview of the literature). Moreover, such
problems are (in a general context) strictly related to those
concerning (reversed) Jensen’s inequality, which is a sub-
ject of studies in various fields of pure and applied mathe-
matics, including statistical inference (Brnetic et al., 2015;
Horváth, 2021; Saeed et al., 2022; Dragomir, 2013; Jebara
and Pentland, 2001; Nielsen, 2010), reinforcement learn-
ing (Dayan and Hinton, 1997; Williams et al., 2017), or
even biological studies (Ruel and Ayres, 1999).

Our work provides a comprehensive theoretical approach
regarding the variational gap. Most of all, we construct
novel upper bounds for f(EX) (and hence also for the size
of variational gap), which are given as expected values of
some random variables that depend on X , and then, in-
spired by (Burda et al., 2015), combine them with the tech-
nique of importance sampling, to derive tight bounds for
the exact value of f(EX). Additionally, as an application
in the field of deep learning, we use these general results for
precisely estimating the log-likelihood of data for genera-
tive models, which are designed to learn only some lower
bounds. Consequently, we obtain a method that allows
comparing the effectiveness of the training process, which
we examine using a few different experimental settings in-
volving VAE-like architectures, i.e., the classical (Gaus-
sian) VAE and two variants of the importance-weighted
(Gaussian) autoencoder (IWAE) (Burda et al., 2015), all
trained on MNIST, SVHN, and CelebA datasets.

Our contribution can be summarized as follows:

• we introduce novel upper bounds for the variational
gap, based on the importance sampling technique,
which allows us to calculate a tight approximation of
f(EX) for any concave function f , and provide their
formal (mathematical) justification,

• we apply these results for f = log, to provide pre-
cise estimates for the evidence (log-likelihood) of data,
which we treat as a practical method for validating the
effects of training in generative models involving lower
bound optimization, and remark both benefits and limi-
tations of our approach,

• we perform experiments that confirm our (theoretical)
claims and prove the superiority of the proposed bound
estimations for the variational gap (see Table 1), in
comparison to the other state-of-the-art techniques (we
recall them briefly in Section 2, see also Appendix B).

2 RELATED WORK

One of the most popular generative, autoencoder-based
models is variational autoencoder (VAE) (Kingma and
Welling, 2013; Rezende et al., 2014), which aims to maxi-
mize the log-likelihood of data. However, since this likeli-
hood is intractable, the main idea which stays behind esti-
mating it is to calculate and optimize evidence lower bound
(ELBO) instead, which results in appearing the variational
gap.

One of the problems with the variational gap is its behavior
since it can be tiny or tremendous, depending on the model
distribution. The importance of taking care of gaps and
their possible offending effects were mentioned in (Bayer
et al., 2021). There are several techniques to deal with the
variational gap, such as its direct estimation (Abramovich
and Persson, 2016) or finding an upper or lower bound,
to know how much we can lose. For example, Nowozin
(2018) and Maddison et al. (2017) create lower bounds us-
ing big-O notation. Bounds for the variational gap were
also derived in (Khan et al., 2020) and later used for de-
riving new inequalities (e.g., bounding Csiszár divergence
or converse of the Hölder inequality), as well as in (Grosse
et al., 2015), where bidirectional Monte Carlo simulations
were involved.

To our best knowledge, approaches the most related to
the results of the present paper were introduced in (Di-
eng et al., 2017), where the authors proposed the χ upper
bound (CUBO) for the evidence of the data, which was ex-
pressed in terms of the χ-divergence, and in (Ji and Shen,
2019), where the evidence upper bound (EUBO), involving
the Kulback-Leibler divergence, was defined and explored.
Following Masrani et al. (2019), it should be noticed that
both EUBO and its generalization, i.e., an upper bound
variant of the thermodynamic variational objective (TVO),
can be derived as the right Riemann sum approximation of
the log-likelihood of data expressed via thermodynamic in-
tegration method. Thus, we henceforth concentrate on the
mentioned bounds when validating our approach, and (for
readers’ convenience) in Appendix B we provide basic in-
formation concerning them. Nevertheless, we would like to
emphasize that, unlike the others, our approach possesses a
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more general theoretical background that does not exclude
it from other potential applications2.

On the other hand, we can find a broad usage of variational
inference not only in the context of generative models (to
which we limit our considerations). For example, Tous-
saint and Storkey (2006) use it to present the expectation-
maximization algorithm (EM) for computing optimal poli-
cies by solving Markov decision processes. Furthermore,
Botvinick and Toussaint (2012) say that people use proba-
bilistic inference when they plan, Levine (2018) uses vari-
ational inference to derive a new view of reinforcement
learning, where decision-making is an inference problem
represented in a type of graphical model, and Duo (2021)
proposes a policy optimization algorithm in the context of
variational inference.

3 THEORETICAL STUDY

In this section, we present the main theoretical results of
the paper. In the first subsection, in Theorem 1 we derive
a general condition which, under the assumption of con-
cavity, enables us to find an upper bound for the evidence.
In the second subsection, inspired by (Burda et al., 2015),
we describe the importance sampling technique that allows
us to decrease the size of the gap by replacing the random
variable with the mean of its independent copies. The third
subsection contains the crucial results of the paper (Theo-
rems 3 and 4), in which we provide a large class of upper
bounds for the evidence. By respectively, choosing a suit-
able parameter C in Theorem 4, this allows us to obtain for
the map f = log much tighter estimations than those given
directly by Corollary 3 (see Theorem 5 and the experimen-
tal results supplied in Section 4). In the last subsection,
we try to answer the question of where the evidence lies in
the interval given by the lower bound and the upper bound.
In particular, we show in Theorem 7 that for an important
class of log-normal distributions, it is located in the middle
of that interval.

3.1 Variational Gap

Let X be a random variable. By the classical Jensen in-
equality, for every concave function f we have f(EX) ≥
Ef(X). The aim of this subsection is to obtain (under the
above general assumptions) an upper bound for f(EX),
which requires computing only the expected value of some
random variable that depends on X . (Note that such an
additional supposition ensures the additivity of the bound
when applied for solving optimization problems by ma-
chine learning algorithms.) This easily follows from the
following theorem, which can also be found in (Dragomir,
2013) in a more general form. Nevertheless, for complete-
ness, we include the proof in Appendix A.

2We treat this as motivation for our future work.

Theorem 1. Let f be a smooth concave function. Then

f(EX) ≤ E(f(X) + (Y −X)f ′(X)), (4)

where X and Y are two independent random variables
with the same distribution.

Theorem 1 and Jensen’s inequality imply that the value of
f(EX) is enclosed in the interval

[Ef(X), Ef(X) + E((Y −X)f ′(X))]. (5)

Thus, the size of the variational gap is bounded from above
by the length of the interval (5), i.e., by the value of
E[(Y −X)f ′(X)].

Proceeding to the most important case of f = log, we di-
rectly obtain the following corollary.

Corollary 1. We have

E logX ≤ logEX ≤ E logX + E Y
X − 1, (6)

where X and Y are independent random variables with the
same distribution.

Remark 1. Consider, for example3, the random variable
X ∼ Gamma(a, θ) and the concave function f = log.
Then 1/X ∼ Inv-Gamma(a, 1/θ). Therefore, assuming
a > 1, we can calculate that

E Y
X − 1 = EY E 1

X − 1 = aθ
θ(a−1) − 1 = 1

a−1 , (7)

which means that in this case, we cannot bound the vari-
ational gap effectively when a approaches 1. Taking into
account the properties of the Gamma distribution, this phe-
nomenon means that when we sample from X , we obtain
arbitrarily small (positive) values more and more likely. In
practice, such a situation may appear in a VAE setting, es-
pecially when we are dealing with outliers, which is a di-
rect motivation for the improvement introduced in the next
subsection.

3.2 Reducing Variational Gap

In this subsection, addressing the problem outlined in Re-
mark 1, we describe how to apply the importance sampling
technique to obtain a tighter (additive) approximation of
f(EX). It comes down to using (instead of X) the random
variable

Xk = 1
k (X1 + . . .+Xk), (8)

representing the mean of a k-sample from X (consisting of
k independent copies of X). Clearly, EXk = EX , which
implies that f(EXk) = f(EX). The following theorem
is (in fact) a part of Theorem 1 from (Burda et al., 2015),
restated in a general setting. However, for completeness,
we include novel and independent proof.

3Here and henceforth, Gamma(a, θ) and Inv-Gamma(a, θ)
denote Gamma and Inverse-Gamma distributions with the shape
parameter a > 0 and the scale parameter θ > 0, respectively.
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Theorem 2. Let X be a random variable and f be a con-
tinuous concave function. Then for every k > 0 we have

Ef(Xk) ≤ Ef(Xk+1). (9)

Moreover, f(Xk) converges to f(EX) almost surely, and

lim
k→∞

Ef(Xk) = f(EX), (10)

provided that the support of X is contained in some com-
pact interval lying in the domain of f .

Proof. Let (Ω, µ) be a probabilistic space and X : Ω → R
be a random variable. By the concavity of f we directly
conclude that

f
(

1
k+1

∑k+1
i=1 xi

)
= f

(
1

k+1

∑k+1
i=1

1
k

∑k+1
j=1,j ̸=i xj

)
≥ 1

k+1

∑k+1
i=1 f

(
1
k

∑k+1
j=1,j ̸=i xj

)
.

(11)
Then by monotonicity and linearity of the expected value,
we obtain

Ef(Xk+1) ≥ 1
k+1

∑k+1
i=1 Ef( 1k

∑k+1
j=1,j ̸=i Xj) = Ef(Xk),

(12)
where X1, . . . , Xk+1 are independent copies of X . This
gives the first assertion of the theorem.

Now consider the random variable Xk. From the strong
law of large numbers, it follows that Xk converges to EX
almost surely. Since f is continuous, this is also the case for
f(Xk) and f(EX). Hence, we conclude that Ef(Xk) →
f(EX) as k → ∞, whenever the support of X is contained
in some compact interval lying in the domain of f , which
completes the proof.

Assuming bounded support for X in Theorem 2 we fol-
lowed (Burda et al., 2015), where the respective theory be-
hind the use of the importance sampling technique is based
on this assumption and illustrates the underlying case in a
simplified setting. Although, in some cases, the theorem is
tending to “survive” without this restriction (see, e.g, Re-
mark 2), the proof of a more general version would, how-
ever, cause some technical difficulties, resulting in reducing
the clarity of the presentation.

Applying (5) to the random variable Xn, we conclude that

f(EX) ∈ [Ef(Xk),Ef(Xk) + E((Y k −Xk)f
′(Xk))],

(13)
where X and Y are independent random variables with the
same distribution, and X1, . . . , Xk and Y1, . . . , Yk are in-
dependent copies of X and Y , respectively. By Theorem 2,
the left end of the above interval converges to f(EX).
Hence, a natural question arises, whether the same happens
for the right end. In the following corollary, we show that
this is the case.

Corollary 2. Let X be a random variable and f be a con-
cave function. Assume also that (m− x)f ′(x) is convex in
the support of X for arbitrary constant m that belongs to
the support of X . Then the width of the interval given in
(13), i.e., E((Y k −Xk)f

′(Xk)), is a decreasing sequence
with k. Moreover, if the support of X is contained in the
closed bounded interval lying in the domain of f ′, then the
limit is 0.

Proof. It is enough to apply Theorem 2 for the concave
function: (x− EX)f ′(x).

Now let us get back to the case of f = log, where we
directly obtain the following corollary.
Corollary 3. We have

E logXk ≤ logEX ≤ E logXk + E Y k

Xk
− 1. (14)

Moreover, E Y k

Xk
is a decreasing sequence with k, which

converges to 1, provided that the support of X lies in some
compact interval contained in (0,∞).

Remark 2. As we have already outlined, in some cases
we can use Theorem 2 (and hence Corollaries 2 and 3) to
make the size of a variational gap arbitrarily small, even if
we cannot respectively bound values of X almost surely.
Indeed, if we return to the example from Remark 1, we
easily see that Xk ∼ Gamma(ka, θ/k) and 1/(Xk) ∼
Inv-Gamma(ka, k/θ). Therefore, assuming ka > 1, we
can calculate that

E Y k

Xk
− 1 = aθk

θ(ka−1) − 1 = 1
ka−1

k→∞−−−−→ 0. (15)

However, note that even though this means that we can find
k large enough to decrease a variational gap sufficiently,
we also see that when the value of a approaches 0, we may
be forced to wait for such an effect quite a long while in-
creasing the value of k. This is a direct motivation for the
improvement introduced in the next subsection.

3.3 Improved Bounds for Variational Gap

In this subsection, we provide another technique, which is
crucial in the estimation of the size of the variational gap
and addresses the problem described in Remark 2. Al-
though we start with a general proposition, the idea of
which lies in generalizing the bounds obtained by the con-
cavity, we eventually fix our attention on the case f = log.
Proposition 1. Assume that f , g, and h are arbitrary func-
tions such that

f(a) ≤ g(x) + ah(x) for every a and x. (16)

Then
f(EX) ≤ E(g(X) + Y h(X)), (17)

where X and Y are two independent random variables
with the same distribution.
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Proof. The proof follows the same lines as the proof
of Theorem 1 (see Appendix A). We consider the prob-
abilistic space (Ω, µ) and independent random variables
X,Y : Ω → R with the same distribution. We use the no-
tation

m = EX =
∫
Ω
X dµ. (18)

Clearly EX = EY . Observe that, by the assumptions, for
every ω ∈ Ω we have

f(m) ≤ g(X(ω)) +mh(X(ω)). (19)

Integrating the above formula over all ω ∈ Ω, we get

f(EX) =
∫
Ω
f(m) dµ ≤

∫
Ω
g(X(ω)) +mh(X(ω)) dµ

= Eg(X) + EY Eh(X) = E(g(X) + Y h(X)),
(20)

which ends the proof.

Now we focus our attention on the case when f = log.
We prove that given an arbitrary function g, we can easily
compute the optimal h.

Lemma 1. Let g : (0,∞) → R be an arbitrary function.
Then

log a ≤ g(x) + a exp(−g(x)− 1) for all a, x > 0.
(21)

Moreover, for any function h : (0,∞) → R satisfying

log a ≤ g(x) + ah(x), (22)

we have
h(x) ≥ exp(−g(x)− 1). (23)

Proof. Consider an arbitrary function h. Let x > 0 be
fixed. We are going to find an equivalent condition for h so
that

log a ≤ g(x) + ah(x) for all a > 0. (24)

Note that verifying (24) is equivalent to checking whether

h(x) ≥ log a−g(x)
a for all a > 0, (25)

or, equivalently,

h(x) ≥ supa>0
log a−g(x)

a . (26)

One can easily check that if w : (0,∞) → R is a function
defined as

w(a) = log a−g(x)
a , (27)

then w′(a) = 1−(log a−g(x))
a2 . Consequently, w reaches the

maximal value at ax = exp(1 + g(x)). Thus, the equiva-
lent condition for h to satisfy (24) is

h(x) ≥ w(ax) = exp(−1− g(x)), (28)

which proves all assertions.

As a direct consequence of Proposition 1 and Lemma 1 we
obtain the following theorem.

Theorem 3. Let g be an arbitrary function. Then

logEX ≤ E(g(X) + Y exp(−g(X)− 1)), (29)

where X and Y are two positive independent random vari-
ables with the same distribution.

Now consider a one-parameter family of functions

gC(x) = log x− 1 + C (C ∈ R). (30)

Then by applying any function gC as g in Proposition 1, we
obtain the following theorem.

Theorem 4. Let C be arbitrarily chosen. Then

E logX ≤ logEX ≤ E logX − 1 + C + exp(−C)E Y
X ,

(31)
where X and Y are two independent positive random vari-
ables with the same distribution.

Observe that increasing C decreases the last component of
the right-hand side formula in (31). Hence, the optimal
value of C (i.e., minimizing the upper bound for logEX)
can be obtained as the one that minimizes the function
W (C) = C + exp(−C)E Y

X . This easily leads us to the
following corollary.

Corollary 4. Under the assumptions of Theorem 4, the op-
timal value of C is C = logE Y

X , which gives the following
estimates:

E logX ≤ logEX ≤ E logX + logE Y
X . (32)

Note that although the upper bound for logEX provided
by (32) does not have an additive form, it tells us about
the most optimal estimation we can obtain. Moreover, in
this case, we can also apply the importance sampling tech-
nique resulting in reducing the variational gap, which is an
immediate consequence of Corollaries 3 and 4.

Theorem 5. We have

E logXk ≤ logEX ≤ E logXk + logE Y k

Xk
. (33)

Moreover, logE Y k

Xk
is a decreasing sequence with k, which

converges to 0, provided that the support of X lies in some
compact interval contained in (0,∞).

Remark 3. Continuing the example involving the Gamma
distributed random variable X (see Remarks 1 and 2),
which goes beyond the assumptions of Theorem 5, when
ka > 1 we have

logE Y k

Xk
= log ka

ka−1

k→∞−−−−→ 0. (34)

This means that in this case, the last conclusion of Theo-
rem 5 “survives”, too.
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3.4 Quality of Estimations

We have already proved (see (5)) that for any concave func-
tion f we have

f(EX) ∈ [Ef(X),E(f(X) + (Y −X)f ′(X))], (35)

where X and Y are independent random variables with the
same distribution. In this section, we are going to show
that the optimal choice for an approximation of f(EX) is
the middle of the above interval.

Let us start with the following general result, which relates
to a special case of the delta method (Bickel and Doksum,
2015, Section 5.3.1). For completeness, we include the
proof in Appendix A.

Theorem 6. Assume that f is a smooth function. Let X
and Y be independent random variables with the same dis-
tribution, which attain only values ε-close to EX , where
ε > 0 is small. Then

f(EX) = Ef(X) + 1
2E((Y −X)f ′(X)) + o(ε2).

(36)

Even though the assumptions of Theorem 6 are somewhat
unrealistic, it was formulated to improve readers’ intuition.
Note that the importance sampling technique leads to ran-
dom variables being more and more concentrated around
their means, which we utilize in our experiments using suf-
ficiently large samples.

Now we proceed to the case when f = log and we are
going to apply the bounds for Xk. Clearly, by the central
limit theorem, for large k the distribution of Xk can be
considered Gaussian. However, this approximation is not
satisfactory from our point of view, since we are limited
to the class of positive random variables (which are proper
arguments for the log function). Based on the results of
(Mouri, 2013), it is known that typically the distribution of
the mean of independent positive random variables can be
better approximated by the log-normal distribution LN . In
the other words, we can write Xk ≈ LN (m,σ). In the
following theorem, we prove that for a log-normal random
variable X , the value of logEX lies exactly in the middle
of the interval given by Corollary 4.

Theorem 7. Let X and Y be independent random vari-
ables with the same log-normal distribution. Then

logEX = E logX + 1
2 logE

Y
X . (37)

Proof. Let X ∼ LN (m,σ), which means that logX ∼
N (m,σ2). Then EX = exp(m+σ2/2) and, consequently,

logEX = m+ σ2

2 , E logX = m. (38)

Moreover, 1/X ∼ LN (−m,σ) and hence

logE Y
X = logEY + logE 1

X = m+ σ2

2 −m+ σ2

2 = σ2.
(39)

By applying (38) and (39) in (37), we obtain the conclu-
sion.
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Figure 1: Estimated size of various variational gap bounds
for the evidence of data (lower is better), calculated for
VAE, IWAE-5, and IWAE-10 models, previously trained
on MNIST, SVHN, and CelebA datasets, vs. the number
of latent samples. All computations were averaged over 3
collections of samples, and over the test dataset.

4 EXPERIMENTS

In this section, we consider variational generative models
(like VAE). Let us first establish some standard notation.
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By p(x) we denote the distribution induced by the model
on the input space X = RN . By p(z) we denote the prior
distribution on the latent space Z , while q(z|x) denotes the
variational encoder and p(x|z) denotes the variational de-
coder.

Now, given a point x ∈ RN , its model log-likelihood (evi-
dence) is expressed as follows:

log p(x) = logEz∼q(·|x)
p(x|z)p(z)

q(z|x) . (40)

To simplify the notation, we put

R(x, z) = p(x|z)p(z)
q(z|x) . (41)

In the classical VAE, we maximize

ELBO = Ez∼q(·|x) logR(x, z), (42)

which is the lower bound for the log-likelihood.

The idea behind the IWAE model (Burda et al., 2015) is
to obtain an (asymptotically optimal) approximation of the
evidence by maximizing

IW-ELBOk = Ezi∼q(·|x) log
1
k

∑k
i=1 R(x, zi), (43)

which is a closer (than ELBO) lower bound for the log-
likelihood.

To obtain upper bounds for the evidence, it is enough to
apply Theorems 4 and 5 for X = 1

k

∑k
i=1 Xi, where

Xi = R(x, zi) and Yi = R(x, z̃i), and all zi and z̃i are in-
dependently sampled from q(·|x). Then, we conclude that
the size of the respective variational gap is bounded from
above by the following value, which we will call impor-
tance sampling variational gap bound (IS-VG-B):

IS-VG-B = C − 1 + exp(−C)Ezi,z̃i∼q(·|x)

∑k
i=1 R(x,z̃i)∑k
i=1 R(x,zi)

,

(44)
where C may be chosen arbitrarily, with the optimum equal
to

C opt = logEzi,z̃i∼q(·|x)

∑k
i=1 R(x,z̃i)∑k
i=1 R(x,zi)

. (45)

Starting with a case study for simple synthetic one-
dimensional data generated from the Laplace distribution,
in the following few paragraphs we provide and discuss
the results of the experiments, in which we compare our
approach to those presented in Dieng et al. (2017); Ji
and Shen (2019); Masrani et al. (2019). Mainly, we ap-
ply all considered estimation techniques for the variational
gap to selected Gaussian autoencoders (i.e., classical VAE
and two different IWAE models, on MNIST, SVHN, and
CelebA datasets), previously learned using their own ob-
jectives and VAE experimental setup.

Case Study on Synthetic Data Suppose that our data are
drawn from a known distribution p(x). Then obviously, the

true evidence of data4 is expressed as
∫
p(x) log p(x)dx.

Suppose that by training the VAE model, we construct the
approximation of p(x) in the class of distributions pθ(x),
where θ denotes the weights of the neural networks. Then
the (model) evidence is given as

∫
p(x) log pθ(x)dx. Con-

sequently,

true evidence = evidence +DKL(p(x)∥pθ(x)), (46)

where DKL denotes the Kullback-Leibler divergence. Ob-
viously, if (which is a common case) p(x) does not belong
to the family of distributions (pθ(x))θ∈Θ (more precisely,
DKL(p(x)∥pθ(x)) > 0), then the evidence is less than the
true-evidence. Since we used the VAE model, we also have
ELBO which is less than the evidence. Finally, we obtain
upper and lower bounds for the evidence of data, which be-
come tighter with the increasing number of samples from
the latent distribution qθ(·|x) (here x represents any data
point drawn from p(x)).

1 8 16 32 64
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Lower bound

ELBO

Upper bound

True evidence
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Figure 2: Behavior of lower and the upper bounds for the
evidence vs. the number of samples from the latent.

We illustrate the above reasoning in the case of sim-
ple synthetic one-dimensional data generated from the
Laplace distribution Laplace(0, 0.2). We trained the VAE
model (for architecture details, see Appendix C) with one-
dimensional latent space. The experimental results (see
Figure 2) are consistent with the above-mentioned theoret-
ical discussion. The true evidence of the data coming from
the Laplace distribution equals -0.097. On the other hand,
ELBO (calculated as a value of the cost function of VAE)
is a strong lower bound for the (model) evidence which,
in turn, is less that the true evidence. Moreover, the IW-
ELBO lower bound and our upper bound converge to the
evidence of data, thus providing its tight estimate in the in-
terval [−0.137,−0.132], with the ends calculated using 64
latent samples.

4In this paragraph, unlike before, the notion “evidence” refers
to the expected value of the log-likelihood of data. In practice, this
corresponds to taking the average over the whole dataset, which
we use anyway in our experiments. Moreover, to avoid possible
misunderstanding, we draw readers’ attention to the fact that in
our paper, the evidence of data is based on the model distribution
(see (2) and (40)). This paragraph is the only place where we also
mention the true evidence.
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Figure 3: Behavior of lower and upper bounds for the ev-
idence of data, calculated by our method for VAE, IWAE-
5, and IWAE-10 models, previously trained on MNIST,
SVHN, and CelebA datasets, vs. the number of latent sam-
ples. All computations were averaged over 3 collections of
samples, and over the test dataset.

Experiments for VAE and IWAE Models In our fur-
ther experiments, we validate our importance sampling
variational gap bound (given by (44) and (45)) against
the other state-of-the-art bounds, denoted by CUBO-VG-
B, EUBO-VG-B, and TVO-VG-B, depending on the evi-
dence upper bound used. All comparisons are made for
VAE, IWAE-5, and IWAE-10 models, for which the re-
spective bounds are calculated using (in total) the same
number of latent samples zi. Each model was previ-
ously trained on three classical datasets, i.e., MNIST (Le-
Cun et al., 1998), SVHN (Netzer et al., 2011), and
CelebA (Liu et al., 2015), using its own objective and
VAE experimental setup (see Appendix C for the de-
tails). The code for all experiments is available on
the GitHub repository https://github.com/gmum/
Bounding_Evidence_Estimating_LL.

The obtained results are presented in Table 1 and Figures 1

and 3. Namely, from Table 1 we learn that the proposed
method for bounding the evidence of data is superior in
comparison to all competitors, excluding TVO50-VG-B for
VAE trained on SVHN and CelebA datasets, as far as we
make calculations using the largest considered number of
latent samples (i.e., 216). However, estimating bounds for
such sets of data is much more demanding because of com-
plicated encoded data distributions. We believe increas-
ing the sample size up to 217 or 218 (although quite time-
consuming) would further weaken the impact of outliers
and allow our method to definitely win. Additionally, a
closer inspection of Figure 1 shows that our approach is the
only one guaranteeing to decrease a computed variational
gap bound with the increasing number of samples, which
agrees with the conclusion of Theorem 5. This is due to
applying the importance sampling technique, which (to our
best knowledge) is not the case for the other methods (note
that for them, the biased estimation may result in bounds
growing with the sample size).

More complete results of our approach, including the de-
pendence of the obtained lower and upper bounds on the
number of latent samples used in the computations, are
presented in Figure 3. In practice, they allow us (for any
given dataset) to compare the effects of training between
all considered models. Note that even though the IWAE
models are learned using more latent samples, they do not
always deliver better results, i.e., greater values of the log-
likelihood of data (see also Rainforth et al., 2018). For ex-
ample, VAE trained on the MNIST dataset delivers the best
(the greatest) log-likelihood estimates5.

To prevent possible readers’ concerns, we would like to
explain that the gaps calculated on SVHN and CelebA
datasets for different numbers of latent samples do not
overlap because we use estimators (and not strict values,
provided in (44) and (45)) suffering from the presence of
outliers. To confirm this, we removed outliers and reran all
computations. The obtained results are presented in Fig-
ure 4. Note that we observe no such phenomenon anymore,
which supports our assertion.

Dependence of Variational Gap Bound on C We con-
ducted additional experiments to explore the dependence
of the proposed variational gap bound on the choice of
constant C in (44). In Figure 5 we present the results ob-
tained for VAE, IWAE-5, and IWAE-10 models, previously
trained on MNIST, SVHN, and CelebA datasets. Note that
in each case, Copt (see (45)) is a value for which IS-VG-B
reaches a minimum.

5We would like to emphasize that, although our method is also
able to evaluate the effects of even suboptimal training, we work
on properly learned models. For example, the FID score for our
Gaussian VAE equals 28.73 and is better than, e.g., 40.47 pro-
vided in (Knop et al., 2020), where a comparable experimental
setup was used.
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Figure 4: Behavior of lower and upper bounds for the
evidence of data, calculated without 1% outliers by our
method for VAE, IWAE-5, and IWAE-10 models, previ-
ously trained on SVHN and CelebA datasets, vs. the num-
ber of latent samples. All computations were averaged over
3 collections of samples, and over the test dataset.

More details on the experimental results can be found in
Appendix C.

5 CONCLUSION

In this paper, we proposed novel upper bounds for the vari-
ational gap (see (4) for a basic version and (17) for an im-
proved version), and the use of the importance sampling
technique to tighten them, which allowed us to calculate a
precise estimation of f(EX) for any concave function f .
We focused particular attention on the most important case
when f = log (see (6) for a basic version as well as (29)
and (31) for improved versions), which led us to a practical
method for validating the effects of training in generative
models involving lower bound optimization. We conducted
experiments that proved the superiority of our approach in
comparison to the other state-of-the-art techniques.

Limitation In this contribution we did not consider pos-
sible applications of our approach outside VAEs, which
might be a natural direction for future work. Moreover, our
experience shows that the introduced novel bounds have
rather limited utility in the training process. Finally, cal-
culating bounds in our experiments is based on estimators
rather than strict values, which makes it sensitive to the
presence of outliers, and results in nonrigorous bounds (al-
though we note the discussed convergence results). How-
ever, we would like to emphasize that our proposed varia-
tional gap bounds are strict bounds as far as we limit our-
selves to the theoretical approach (where we deal with ran-
dom variables and their means).
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Figure 5: Estimated size of the proposed variational gap
bound, calculated using (44) for VAE, IWAE-5, and IWAE-
10 models, previously trained on MNIST, SVHN, and
CelebA datasets, vs. constant C. In each case, the opti-
mal value Copt is marked with a short vertical line. All
computations were averaged over the test dataset.
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A MISSING PROOFS

In this section, we provide proofs omitted from the main article.

Theorem 1. Let f be a smooth concave function. Then

f(EX) ≤ E(f(X) + (Y −X)f ′(X)), (47)

where X and Y are two independent random variables with the same distribution.

Proof. Let (Ω, µ) be a probabilistic space and X,Y : Ω → R be independent random variables with the same distribution.
We use notation

m = EX =
∫
Ω
Xdµ. (48)

Clearly EX = EY . Observe that applying Taylor’s expansion and concavity of f (which means that f ′′ ≤ 0), for every
ω ∈ Ω we have

f(m) ≤ f(X(ω)) + (m−X(ω))f ′(X(ω)). (49)

Integrating the above formula over all ω ∈ Ω and making use of the fact that X and Y are independent random variables
with the same distribution, we obtain

f(EX) =
∫
Ω
f(m) dµ ≤

∫
Ω
f(X(ω)) + (m−X(ω))f ′(X(ω)) dµ

= Ef(X) + EY Ef ′(X)− E(Xf ′(X)) = E(f(X) + (Y −X)f ′(X)),
(50)

which completes the proof.

Theorem 6. Assume that f is a smooth function. Let X and Y be independent random variables with the same distribution,
which attain only values ε-close to EX , where ε > 0 is small. Then

f(EX) = Ef(X) + 1
2E((Y −X)f ′(X)) + o(ε2). (51)

Proof. Let (Ω, µ) be a probabilistic space and X,Y : Ω → R be random variables satisfying the assumptions of the
theorem. Put m = EX = EY . By applying Taylor’s expansion for f and f ′, taking any ω ∈ Ω we have

f(m) = f(X(ω)) + (m−X(ω))f ′(X(ω)) +
1

2
(m−X(ω))2f ′′(X(ω)) + o(ε2) (52)

and
f ′(m) = f ′(X(ω)) + (m−X(ω))f ′′(X(ω)) + o(ε). (53)

Hence,

f(m) = f(X(ω)) +
1

2
(m−X(ω))f ′(m) +

1

2
(m−X(ω))f ′(X(ω)) + o(ε2). (54)

Then integrating the above formula over all ω ∈ Ω and making use of the fact that X and Y are independent random
variables with the same distribution, we obtain

f(EX) = Ef(X) +
1

2
(EXEf ′(X)− E(Xf ′(X))) + o(ε2) = E(f(X) +

1

2
(Y −X)f ′(X)) + o(ε2), (55)

which completes the proof.

B OTHER BOUNDS

In this section, we follow the notation established in Section 4 of the main paper.
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χ Upper Bound (CUBO) The (general) χ upper bound for the evidence log p(x) was derived by Dieng et al. (2017),
with the use of the χ divergence. It is given by the following formula:

CUBOn =
1

n
logEz∼q(·|x)

(
p(x, z)

q(z|x)

)n

=
1

n
logEz∼q(·|x)R(x, z)n, (56)

where n ≥ 1. Let us note that CUBO is strictly related to the variational Rényi bound provided by Li and Turner (2016).

The authors of (Dieng et al., 2017) prove (see the sandwiching theorem therein) that CUBOn is a non-decreasing function
of n ≥ 1 and

IW-ELBOk ≤ log p(x) ≤ CUBOn (57)

for any k ≥ 1. Hence, for comparison with our approach, as the respective bound for the variational gap (CUBO-VG-B)
we take a difference between CUBOn and IW-ELBOk, i.e.

CUBOn-VG-B = CUBOn − IW-ELBOk. (58)

Thermodynamic Variational Objective (TVO) Masrani et al. (2019) provide upper and lower bounds for the evidence
log p(x), obtained by applying the thermodynamic integration technique. It is based on bounding (via left and right Rie-
mann sum) a one-dimensional integral of the expected values of instantaneous ELBO, calculated under latent distributions
πβ for β ∈ [0, 1], lying on a geometric path between q(z|x) and p(x, z) (hence β0 = q(z|x) and β1 = p(z|x)). This leads
to a lower and upper version of the thermodynamic variational objective (TVO), given by the following formulas:

TVOL
K =

1

K

K−1∑
l=0

Ez∼πβl
log

p(x, z)

q(z|x) =
1

K

K−1∑
l=0

Ez∼πβl
logR(x, z), (59)

and

TVOU
K =

1

K

K∑
l=1

Ez∼πβl
log

p(x, z)

q(z|x) =
1

K

K∑
l=1

Ez∼πβl
logR(x, z), (60)

where βl = l/K. Let us note that TVOL
1 = ELBO and TVOU

1 coincides with the evidence upper bound (EUBO), which
was introduced by Ji and Shen (2019).

It was proved in (Masrani et al., 2019) that for any K ≥ 1 we have

TVOL
K ≤ log p(x) ≤ TVOU

K . (61)

Hence, for our purpose, as the respective bound for the variational gap (TVO-VG-B) we take a difference between TVOU
K

and TVOL
K , i.e.:

TVOK-VG-B = TVOU
K − TVOL

K . (62)

In particular,

EUBO-VG-B = TVO1-VG-B = TVOU
1 − TVOL

1 = EUBO − ELBO. (63)

C EXPERIMENTAL DETAILS AND EXTENSIONS

Experimental Results for VAE and IWAE Models We validated our importance sampling variational gap bound (IS-
VG-B) against the other state-of-the-art bounds, denoted by CUBO-VG-B, EUBO-VG-B, and TVO-VG-B, depending on
the evidence upper bound used. All computations were made for VAE and IWAE models, previously trained with the use
of ELBO, IW-ELBO5, and IW-ELBO10 objectives. For the IWAE models, we used the same neural architectures as in
VAE.

Table 2, which is an extension of Table 1 from the main paper, presents the size of all considered variational gap bounds
for the evidence of data, computed with the use of various numbers of latent samples and averaged over the test dataset.
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Table 2: Estimated size of various variational gap bounds for the evidence of data (lower is better), calculated for VAE,
IWAE-5, and IWAE-10 models, previously trained on MNIST, SVHN, and CelebA datasets. All computations were aver-
aged over 3 collections of 23–216 latent samples, and over the test dataset.
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MNIST SVHN CelebA

VA
E

23 0.76 0.37 0.59 2.83 1.42 0.57 0.28 0.06 1.61 0.53 0.82 5.67 2.83 1.13 0.57 0.11 4.76 0.63 0.95 16.66 8.33 3.33 1.67 0.33
24 0.58 0.48 0.78 3.43 1.72 0.69 0.34 0.07 1.45 0.72 1.12 7.23 3.62 1.45 0.72 0.14 4.00 0.84 1.27 20.43 10.21 4.08 2.04 0.41
25 0.45 0.59 0.97 3.94 1.97 0.79 0.39 0.08 1.31 0.92 1.42 8.70 4.35 1.74 0.87 0.17 3.46 1.05 1.59 23.80 11.90 4.76 2.38 0.48
26 0.34 0.70 1.15 4.37 2.19 0.87 0.44 0.09 1.20 1.12 1.72 10.07 5.03 2.01 1.01 0.20 3.06 1.26 1.92 26.78 13.39 5.36 2.68 0.54
27 0.29 0.81 1.34 4.75 2.37 0.95 0.47 0.09 1.13 1.32 2.03 11.35 5.68 2.27 1.14 0.23 2.78 1.48 2.24 29.37 14.69 5.87 2.94 0.59
28 0.23 0.91 1.51 5.08 2.54 1.02 0.51 0.10 1.03 1.52 2.35 12.61 6.31 2.52 1.26 0.25 2.50 1.69 2.56 31.83 15.91 6.37 3.18 0.64
29 0.20 1.01 1.70 5.38 2.69 1.08 0.54 0.11 0.96 1.73 2.66 13.81 6.90 2.76 1.38 0.28 2.25 1.90 2.89 34.11 17.05 6.82 3.41 0.68
210 0.17 1.10 1.87 5.63 2.82 1.13 0.56 0.11 0.90 1.94 2.97 14.95 7.48 2.99 1.49 0.30 2.13 2.12 3.21 36.17 18.08 7.23 3.62 0.72
211 0.13 1.20 2.04 5.87 2.94 1.17 0.59 0.12 0.85 2.15 3.30 16.09 8.05 3.22 1.61 0.32 2.05 2.23 3.37 37.29 18.64 7.46 3.73 0.74
212 0.10 1.28 2.21 6.08 3.04 1.22 0.61 0.12 0.81 2.35 3.62 17.18 8.59 3.44 1.72 0.34 1.94 2.44 3.70 39.20 19.60 7.84 3.92 0.79
213 0.09 1.37 2.38 6.27 3.13 1.25 0.63 0.13 0.76 2.57 3.94 18.25 9.12 3.65 1.82 0.36 1.77 2.69 4.08 41.28 20.64 8.26 4.13 0.83
214 0.08 1.45 2.54 6.42 3.21 1.28 0.64 0.13 0.73 2.73 4.18 19.02 9.51 3.80 1.90 0.38 1.71 2.85 4.32 42.49 21.25 8.50 4.25 0.85
215 0.06 1.52 2.68 6.56 3.28 1.31 0.66 0.13 0.59 2.92 4.48 19.94 9.97 3.99 1.99 0.40 1.25 3.02 4.59 43.75 21.88 8.75 4.38 0.88
216 0.04 1.59 2.83 6.68 3.34 1.34 0.67 0.13 0.44 3.16 4.84 21.08 10.54 4.22 2.11 0.42 1.12 3.25 4.92 45.45 22.73 9.09 4.55 0.91

IW
A

E
-5

23 1.76 0.54 0.83 8.73 4.36 1.75 0.87 0.17 3.06 0.60 0.92 13.30 6.65 2.66 1.33 0.27 9.54 0.66 1.00 35.33 17.67 7.07 3.53 0.71
24 1.11 0.68 1.06 9.84 4.92 1.97 0.98 0.20 2.40 0.80 1.22 15.85 7.93 3.17 1.59 0.32 8.04 0.88 1.33 42.57 21.29 8.51 4.26 0.85
25 0.69 0.81 1.26 10.62 5.31 2.12 1.06 0.21 1.95 0.99 1.51 17.94 8.97 3.59 1.79 0.36 6.85 1.11 1.67 48.78 24.39 9.76 4.88 0.98
26 0.43 0.91 1.44 11.15 5.58 2.23 1.12 0.22 1.59 1.18 1.80 19.72 9.86 3.94 1.97 0.39 6.01 1.33 2.00 54.09 27.05 10.82 5.41 1.08
27 0.27 1.00 1.59 11.53 5.76 2.31 1.15 0.23 1.31 1.36 2.08 21.23 10.62 4.25 2.12 0.42 5.37 1.55 2.33 58.81 29.41 11.76 5.88 1.17
28 0.19 1.07 1.72 11.78 5.89 2.36 1.18 0.24 1.10 1.54 2.36 22.53 11.27 4.51 2.25 0.45 4.82 1.77 2.66 63.10 31.55 12.62 6.31 1.26
29 0.12 1.13 1.82 11.96 5.98 2.39 1.20 0.24 0.94 1.71 2.63 23.68 11.84 4.74 2.37 0.47 4.41 1.99 3.00 66.91 33.46 13.38 6.69 1.34
210 0.07 1.17 1.91 12.09 6.05 2.42 1.21 0.24 0.79 1.88 2.90 24.71 12.35 4.94 2.47 0.49 3.98 2.21 3.33 70.48 35.24 14.10 7.05 1.41
211 0.04 1.21 1.99 12.18 6.09 2.44 1.22 0.24 0.67 2.05 3.16 25.61 12.81 5.12 2.56 0.51 3.60 2.43 3.67 73.79 36.90 14.76 7.38 1.48
212 0.03 1.24 2.05 12.25 6.12 2.45 1.22 0.24 0.58 2.20 3.41 26.41 13.21 5.28 2.64 0.53 3.34 2.65 4.00 76.81 38.40 15.36 7.68 1.54
213 0.02 1.27 2.11 12.30 6.15 2.46 1.23 0.25 0.51 2.35 3.65 27.14 13.57 5.43 2.71 0.54 3.09 2.87 4.33 79.60 39.80 15.92 7.96 1.59
214 0.01 1.29 2.16 12.33 6.17 2.47 1.23 0.25 0.44 2.49 3.88 27.77 13.89 5.55 2.78 0.56 2.97 3.01 4.54 81.15 40.57 16.23 8.11 1.62
215 0.01 1.31 2.20 12.36 6.18 2.47 1.24 0.25 0.35 2.62 4.08 28.30 14.15 5.66 2.83 0.57 2.88 3.12 4.70 82.31 41.16 16.46 8.23 1.65
216 0.004 1.32 2.24 12.38 6.19 2.48 1.24 0.25 0.31 2.74 4.30 28.82 14.41 5.76 2.88 0.58 1.23 3.40 5.14 85.41 42.70 17.08 8.54 1.71

IW
A

E
-1

0

23 2.73 0.58 0.88 12.69 6.35 2.54 1.27 0.25 3.39 0.61 0.93 14.86 7.43 2.97 1.49 0.30 8.81 0.66 0.99 31.32 15.66 6.26 3.13 0.63
24 1.71 0.75 1.14 14.34 7.17 2.87 1.43 0.29 2.70 0.81 1.23 17.69 8.84 3.54 1.77 0.35 7.18 0.88 1.32 37.80 18.90 7.56 3.78 0.76
25 1.09 0.90 1.38 15.46 7.73 3.09 1.55 0.31 2.15 1.01 1.53 20.01 10.01 4.00 2.00 0.40 6.14 1.10 1.66 43.38 21.69 8.68 4.34 0.87
26 0.67 1.03 1.59 16.25 8.13 3.25 1.63 0.33 1.76 1.20 1.83 21.94 10.97 4.39 2.19 0.44 5.37 1.32 1.99 48.23 24.11 9.64 4.82 0.96
27 0.42 1.14 1.78 16.80 8.40 3.36 1.68 0.34 1.48 1.39 2.12 23.61 11.80 4.72 2.36 0.47 4.81 1.54 2.32 52.48 26.24 10.50 5.25 1.05
28 0.27 1.23 1.94 17.19 8.59 3.44 1.72 0.34 1.26 1.57 2.41 25.06 12.53 5.01 2.51 0.50 4.33 1.76 2.65 56.37 28.19 11.28 5.64 1.13
29 0.17 1.30 2.07 17.46 8.73 3.49 1.75 0.35 1.08 1.76 2.69 26.34 13.17 5.27 2.63 0.53 3.92 1.98 2.98 59.87 29.94 11.97 5.99 1.20
210 0.10 1.36 2.18 17.64 8.82 3.53 1.76 0.35 0.91 1.93 2.97 27.48 13.74 5.50 2.75 0.55 3.61 2.20 3.31 62.97 31.49 12.59 6.30 1.26
211 0.07 1.41 2.27 17.77 8.89 3.55 1.78 0.36 0.78 2.10 3.24 28.48 14.24 5.70 2.85 0.57 3.34 2.42 3.65 66.00 33.00 13.20 6.60 1.32
212 0.05 1.45 2.34 17.86 8.93 3.57 1.79 0.36 0.67 2.27 3.50 29.37 14.69 5.87 2.94 0.59 3.07 2.60 3.92 68.31 34.16 13.66 6.83 1.37
213 0.03 1.48 2.41 17.93 8.96 3.59 1.79 0.36 0.52 2.43 3.75 30.18 15.09 6.04 3.02 0.60 2.82 2.78 4.19 70.36 35.18 14.07 7.04 1.41
214 0.02 1.50 2.46 17.97 8.99 3.59 1.80 0.36 0.44 2.57 3.97 30.85 15.42 6.17 3.08 0.62 2.70 2.94 4.44 72.31 36.16 14.46 7.23 1.45
215 0.01 1.52 2.51 18.01 9.00 3.60 1.80 0.36 0.35 2.68 4.16 31.36 15.68 6.27 3.14 0.63 1.87 3.17 4.78 74.71 37.36 14.94 7.47 1.49
216 0.01 1.54 2.55 18.03 9.01 3.61 1.80 0.36 0.28 2.83 4.40 32.00 16.00 6.40 3.20 0.64 0.72 3.22 4.86 75.46 37.73 15.09 7.55 1.51

Algorithmic Details In each experiment, to calculate the required bounds, i.e., CUBO-VG-B, EUBO-VG-B, TVO-VG-
B, and (our) IS-VG-B, we used (56), (58), (59), (60), (62), and (63), as well as (43), (44), and (45) from the main paper. It
means that we had to estimate a few expected values that appear in the mentioned formulas. We made this by both direct
application of respective (unbiased) sample mean estimators and a method proposed by Masrani et al. (2019) (see (13)
therein) that allowed us to reuse samples from q(·|x) to estimate an expected value under any πβl

. Namely, we used the
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Figure 6: Sampled images for the VAE, IWAE-5, and IWAE-10 models (from left to right) trained on MNIST, SVHN, and
CelebA datasets (from top to bottom).

following formulas:

Ez∼q(·|x)R(x, z)n ≈ 1

k

k∑
i=1

R(x, zi)
n for n ≥ 1, (64)

Ez∼πβl
logR(x, z) ≈

k∑
i=1

wl
i logR(x, zi) for l = 0, . . . ,K, (65)

Ezi∼q(·|x) log
1

k

k∑
i=1

R(x, zi) ≈
1

m

m∑
j=1

log
1

k

k∑
i=1

R(x, zji ), (66)

Ezi,z̃i∼q(·|x)

∑k
i=1 R(x, z̃i)∑k
i=1 R(x, zi)

≈ 1

m

m∑
j=1

∑k
i=1 R(x, z̃ji )∑k
i=1 R(x, zji )

, (67)

where zi, z
j
i , and z̃ji were sampled from q(·|x), wl

i = R(x, zi)
βl , and wl

i = wl
i/

∑k
j=1 w

l
j . In each case, we forced the use

of the same number of latent samples (zi or zji ), and therefore computations of CUBO and TVO were averaged over m
repetitions. In our experiments we set m = 3 and k = 23, . . . , 216.

Training and Architecture Details All experiments were performed on a single Tesla v100 GPU. We used a con-
volutional VAE architecture (see below for more details) with weights optimized by the Adam optimizer and a learn-
ing rate of 0.0001. The networks were trained for 100 epochs with a batch size of 64 for the CelebA dataset and 50
epochs for both MNIST and SVHN datasets. In all reported experiments, we used Euclidean latent spaces Z = Rd for
d = 8, 32, 128, depending on the used dataset (respectively: MNIST, SVHN, and CelebA). We took standard Gaussian
priors p(z) ∼ N (0, Id). We used Gaussian encoders q(z|x) ∼ N (µx,Σx), with a mean µx and a diagonal covariance
matrix Σx, and Gaussian decoders p(x|z) ∼ N (q(z|x), σ2I) with σ2 = 0.3.

We applied three different models, each for a different dataset. For the MNIST dataset, we used a network architecture
that contained two parts: an encoder and a decoder. The encoder consisted mainly of a 2-layer fully-connection, and the
decoder consisted of a 3-layer fully-connection. Between each layer, we used the ReLu activation function.

In the case of the SVHN dataset, we used deeper architectures for the encoder and decoder. Both networks consisted
mainly of 4 layers. The encoder had only 2D convolutions, between which we used leaky ReLU with leakiness of 0.2.
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In the decoder, we applied 2D transposed convolutions and ReLu as activation functions. For the last layer, we used the
sigmoid activation function.

For the CelebA dataset, we applied network architectures that consisted mainly of replicated 5-layer blocks. In the encoder
network, each block was built with a 2D convolution layer, batch normalization (Ioffe and Szegedy, 2015), and leaky ReLU
with leakiness of 0.2. A single block in the decoder network contained an operation that applied a 2D nearest-neighbor
upsampling to an input signal composed of several input channels. Then, similar to the block of the encoder network, there
was a 2D convolution layer, batch normalization, and leaky ReLU with a leakiness of 0.2.

Details for Experiment with Laplace Distributed Data We generated 104 observations from Laplace distribution
Laplace(0, 0.2). Then we use them to calculate the (average) log-likelihood, ELBO, IW-ELBO lower bound, and our
proposed upper bound (taking C = 0) for the previously learned VAE with one-dimensional latent space. To estimate
lower and upper bounds, we sampled from the latent different numbers of times (from 1 to 64), to examine how the number
of draws will affect bound positions. In the training procedure of the underlying VAE model, we selected batches of size
1000 and SGD optimizer with the learning rate 10−7. The encoder consisted of one hidden layer with 4 neurons and a
ReLU activation function in it, with linear activation in the output layer. We set an identical network architecture for the
decoder.

Simple Qualitative Evaluation We tried to confirm the quantitative results presented in Figure 3 in the main paper by
comparing visually samples randomly generated by various models. We expected to obtain images of the best quality for
VAE trained on MNIST and for IWAE models trained on SVHN, as well as images of comparable quality for all considered
models trained on CelebA. The respective samples are presented in Figure 6. Although some slight visual effects might be
visible after a closer look, the differences are not impressive. Hence, in this case, simple qualitative evaluation is a rather
inadequate method.


