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Abstract

Causal decomposition has provided a powerful
tool to analyze health disparity problems by as-
sessing the proportion of disparity caused by each
mediator (the variable that mediates the effect of
the exposure on the health outcome). However,
most of these methods lack policy implications,
as they fail to account for all sources of disparities
caused by the mediator. Besides, its identifiability
needs to specify a set to be admissible to make
the strong ignorability condition hold, which can
be problematic as some variables in this set may
induce new spurious features. To resolve these is-
sues, under the framework of the structural causal
model, we propose a new decomposition, dubbed
as adjusted and unadjusted effects, which is able
to include all types of disparity by adjusting each
mediator’s distribution from the disadvantaged
group to the advantaged ones. Besides, by learn-
ing the maximal ancestral graph and implement-
ing causal discovery from heterogeneous data, we
can identify the admissible set, followed by an
efficient algorithm for estimation. The theoretical
correctness and efficacy of our method are demon-
strated using a synthetic dataset and a common
spine disease dataset.

1 Introduction

Health disparity/inequity, which is defined as the health
outcome difference between socially advantaged and disad-
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vantaged populations [Braveman et al., 2011], is a serious
public health issue. To address this issue, a natural policy
would be to identify all sources of disparities and develop
policies to intervene and/or adjust for factors that mediate
the effect of exposure (e.g., race or ethnicity) on the health
outcome. To assess the effect of this policy, a natural ques-
tion is: what is the amount of disparity reduction, after
making a policy that removes all disparities through the
mediator of interest?

To answer this and related questions, many causal decom-
position methods have been proposed, including natural
indirect effects PEARL [2001], Robins and Greenland
[1992], controlled mediated effects VanderWeele [2011],
path-specific effects Avin et al. [2005], Oaxaca-Blinder de-
composition Oaxaca [1973], among others, and have been
applied to many health inequity scenarios Ibfelt et al. [2013],
Hystad et al. [2013], Jackson [2018], Blakely et al. [2018],
McGuire et al. [2006]. Although the common target is
quantitatively attributing the disparity to the mediator via
causal inference, they adopt different intervention strategies.
Particularly, the natural indirect effect intervenes on the me-
diator to the value it would have taken had the exposure
variable changed to the advantaged group and everything
else had been the same; while the controlled mediated effect
intervenes on other mediators at a fixed value.

Different decomposition methods have different implica-
tions; however, when it comes to our goal, they either lack
policy implications or have issues with identifiability. For
instance, the natural indirect effect is more attributional than
operational since it measures the effect under the original
situation (i.e., the value of exogenous is unchanged) instead
of the effect of a policy under a new situation. Besides,
its identifiability requires that the exposure not affect the
mediator-outcome confounders. In many scenarios, how-
ever, this assumption may not hold (if R → X in Fig. 1).
Furthermore, when this assumption is violated, the natu-
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ral indirect effect may fail to account for all sources of
disparities (e.g., M ′ ⊥⊥ R when X is an unobserved se-
lection variable in Fig. 1 (b)). Although Jackson [2020],
VanderWeele et al. [2014] can alleviate this problem, their
identifiability is based on the strong ignorability condition,
which means admissibility for some provided covariate sets,
i.e., to deconfound between the mediator and the outcome.
However, this condition may not hold when the provided
covariate set includes some variables that perturb directed
paths or induce new spurious features Pearl [2009].

Our Contributions. To resolve these issues, we propose
a new decomposition paradigm under the framework of
the structural causal model (SCM), namely unadjusted and
adjusted effects, towards better policy implications and iden-
tifiability results, that account for social disparities.

To be specific, we adjust each mediator’s distribution from
the disadvantaged group to the advantaged one, by gener-
ating mediators with an independent copy of exogenous
variables. This has better policy implications since i) it is
more aligned with the goal of assessing the effectiveness
of a policy, and ii) can include all sources of disparities.
Moreover, guided by the back-door criterion, we are able
to identify the admissible set for appropriate attribution, by
leveraging Markovian equivalence conditions of maximal
ancestral graphs (MAGs) and exploring the heterogeneity
among different social groups. With this guarantee, we pro-
pose an efficient algorithm to estimate the adjusted and un-
adjusted effects of social inequities. Theoretical correctness
and utility are demonstrated by the consistent estimation
results on a synthetic and robust spine-disease dataset.

Organization. In Sec. 2, we review existing causal decom-
position methods. In Sec. 3, we introduce some background
knowledge regarding the structural causal model and causal
discovery. In Sec. 4, we propose a new causal decompo-
sition framework: unadjusted and adjusted effects. We
will show that compared to the natural indirect effect, our
proposed adjusted effect is able to include all sources of dis-
parity, thus having better policy implications. In Sec. 5, we
provide an identifiability analysis. Different from the strong
ignorability condition that pre-specifies a covariate set to be
admissible, we propose to identify the admissible set, via i)
local causal discovery from heterogeneity data according to
the exposure variable; and ii) exploring Markovian equiva-
lence, which is more computationally efficient but requires
additional conditions to determine equivalence. Guided by
this analysis, we in Sec. 6 introduce our estimation method.
In Sec. 7, we evaluate our method on a synthetic dataset and
a spine-disease dataset. Sec. 8 concludes the paper.

2 Related Work

Existing methods for health inequity decompose the total
amount of disparity into the proportion directly from ex-
posure to the reported outcome, and the proportion indi-

rectly through the mediated factor. Typical decomposition
includes natural indirect effects, path-specific effects, con-
trolled mediated effects, Oaxaca-Blinder decomposition,
etc. Perhaps the most familiar method is natural indirect
(mediation)/direct effects [PEARL, 2001, Vansteelandt and
VanderWeele, 2012, Valeri and VanderWeele, 2013], which
have been applied to many health inequity problems [Ibfelt
et al., 2013, Hystad et al., 2013]. However, this effect is
more attributional [PEARL, 2001] than operational since it
assesses the change under the original situation, which may
change at the time when the new policy is made. Besides,
its identifiability requires no mediator-outcome confounder
to be affected by the exposure, which may not be satisfied in
health equity scenarios [VanderWeele et al., 2014]. Besides,
when such confounders exist, the natural indirect effect may
fail to account for all sources of disparities caused by the me-
diator of interest. Similarly, the controlled mediated effect,
which assigns a fixed value to other mediated factors, is of
less policy interest as it does not allow these factors to vary
across individuals by default. The path-specific effect [Jack-
son, 2018, Avin et al., 2005, Gong and Zhu, 2021] measures
the effect along some specific paths. As the intervention is
implemented on the edge rather than the exposure or me-
diator variables, it has to integrate over the distribution of
the exposure to obtain the path-specific effect; hence, it fails
to measure the change after intervention (policy making).
The Oaxaca-Blinder decomposition Oaxaca [1973], Quirk
et al. [2006] linearly relates the outcome to other covari-
ates and is later endowed with causal meaning [Jackson and
VanderWeele, 2018] when the regression function refers to
structural equations and the provided covariate set happens
to deconfound the mediator and the outcome. Furthermore,
the non-parametric form of this decomposition is proposed
in Jackson and VanderWeele [2018]. Other types of decom-
position include [Jackson, 2020, VanderWeele et al., 2014].
Similar to Oaxaca-Blinder decomposition, these methods
also presume the admissibility of a provided covariate set
(i.e., strong ignorability), which can be problematic since
the provided covariate set may induce new spurious features,
violating the strong ignorability condition.

In contrast, our decomposition method, namely adjusted
and unadjusted effects, can resolve the above defects in
terms of policy implications and identifiability. Specifically,
we define the adjusted effect as the difference between the
advantaged and disadvantaged groups after equalizing the
mediator’s distribution, in the framework of structural causal
models (SCMs) that serve an intuitive exhibition of the dif-
ference from other decomposition methods clearly. We
show that our adjusted effect can well assess the disparity
reduction after making an policy, by eliminating all sources
of disparity. Besides, for identifiability, equipped with the
back-door criterion in SCM, we establish the theory and the
procedure to identify the admissible sets among covariates
rather than presume by default that some pre-specified co-
variate sets are admissible. These results can extend to other
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estimators, such as [Jackson, 2020] which lets the mediator
additionally condition on other variables.

3 Preliminary

Structural Causal Model (SCM). The SCM is defined
as M := ⟨G,F ,U, P (U)⟩. Here, the G := (V,E) is
a directed acyclic graph (DAG) that describes the causal
structure over endogenous variables V, where E denotes
the edge set such that X → Y ∈ E means a direct causal
relation from X to Y . We say X causally influences Y
if there is a directed path from X to Y . We refer to
An(V ),Pa(V ),De(V ),Ch(V ) as ancestral, parent, descen-
dant, and child variable sets of V . The U := {Ui} denote
exogenous variables, with P (U) denoting its probability
function. The F := {fVi

(Pa(i), Ui)}Vi∈V denotes the set
of structural equations. These structural equations are au-
tonomous to each other, i.e., breaking one equation will
not affect others. Under the Markovian assumption that
U := {Ui} are independent, we can factorize joint distribu-
tion into disentangled factors [Schölkopf et al., 2021], i.e.,
P (V) := ΠVi∈VP (Vi|Pa(i)). These permit us to define
the interventional distribution, i.e., ”P (O|do(Oi = oi))”,
and study the (conditional) average causal effect (ACE):
E(Y |do(T = 1), X = x) − E(Y |do(T = 0), X = x).
Graphically speaking, do(O = o) means removing arrows
into O and setting its value to o. GV and GV respectively
denote the graph with arrows going into and emanating
from V deleted. With the SCM, we further define the sub-
modelMx asM with X ← fX(Pa(X), Ux) replaced by
X = x. The counterfactual Y (X = x) is then defined as
Y (X = x)(U = u) := YMx(U = u).

The SCM translates the strong ignorability assumption, i.e.,
{Y (1), Y (0)} ⊥⊥ T |Z,X into a more intuitive graphical
criteria [Galles and Pearl, 2013] for Z to be admissible:
P (Y |do(T = t), X) =

∫
P (Y |T = t, Z,X)P (Z|X)dZ.

Among these criteria, the back-door criterion is the most
typical one, which refers to a subset that i) blocks each
back-door path from T to Y and ii) meanwhile does not
perturb directed paths or induce new spurious features. This
criterion, especially ii), informs us that the presumption of
admissibility for some covariate sets may be problematic
when it includes variables that violate ii).

Causal Discovery. Equipped with the SCM that converts
the strong ignorability condition into graphical criteria, the
admissible sets can be easily detected via causal discov-
ery. Typical methods for causal discovery include the PC
algorithm, which first learns an undirected skeleton via con-
ditional independence test and identifies as many directions
as possible via v-structure, e.g., Vi → Vk ← Vj .

Maximal Ancestral Graph. Indeed, when there are unob-
served variables, one can learn a maximal ancestral graph
(MAG) over a subset node [Zhang and Spirtes, 2005], which
is a mixed graph that preserves the conditional independence

relation in the sense that two variables are not adjacent if and
only if there is no inducing paths1 between them. Specifi-
cally, the MAG may contain: 1) X → Y , 2) X ← Y and
3) X ↔ Y , which respectively mean 1) X ∈ An(Y ), 2)
Y ∈ An(X) and 3) X and Y is correlated but X ̸∈ An(Y ),
Y ̸∈ An(X). We define ◦ that can refer to the head or tail of
an arrow. Zhang and Spirtes [2005], Spirtes and Richardson
[1996] provided conditions for two MAGs to be Markovian
equivalent (in Prop. 3.1), which can help to determine causal
directions that differentiate among classes of MAGs.

Proposition 3.1 (Proposition 1 in [Spirtes and Richardson,
1996]). Two MAGs are Markovian equivalent iff i) they have
the same adjacencies; ii) they have the same unshielded
colliders; iii) for any discriminating path of a vertex V , V
is a collider on the path in one graph iff it is a collider on
the path in the other. Here, B is an unshielded collider
if in (A,B,C), A◦→ B ←◦C. A discriminating path
u := ⟨X,W1, ...,WK , V, Y ⟩ means u includes three edges,
with X not adjacent to Y, V adjacent to Y , and any Wk

(for k ∈ {1, ...,K}) is a collider and a parent of Y .

Identifying Directions from Heterogeneity. Recently,
Huang et al. [2020] proposed to leverage domain index
C to identify directions (beyond v-structure) among vari-
ables with changed causal mechanisms, i.e., P c(Vi|Pa(i))
changes across C. This can be achieved under a “faithful-
ness” condition at distributional level, i.e., if C → Vi, C →
Vj and Vi ⊥⊥ Vj |C,X for some X , then {P (Vi|X,C = c}
is independent of {P (Vj |Vi, X,C = c)} due to disen-
tanglement of generating factors {P (Vi|Pa(i))}; while
{P (Vj |X,C = c)} and {P (Vi|Vj , X,C = c)} are depen-
dent. One can thus determine Vi → Vj (resp. Vj → Vi) if
the Hilbert Schmidt Independence Criterion (HSIC) [Gret-
ton et al., 2007] ∆Vi→Vj |X < α (resp., ∆Vj→Vi|X < α) for
some significance level α > 0.

4 Adjusted and Unadjusted Effect

Problem Setup. Our data consists of {r(i), o(i), y(i)}ni=1

∼i.i.d P (R,O, Y ), where R denotes the exposure variable
with R = 1 (resp. R = 0) denoting the advantaged (resp.
disadvantaged) group, Y denotes the health outcome, and
O denotes the observed covariate set. Denote Y (R = r) as
the counterfactual. The health inequity means E(Y (R =
1))−E(Y (R = 0)) > 0. Our goal is to assess the disparity
reduction to measure the effect of making policy on some
mediator variables M ∈ M ⊂ O. Here, we call M a
mediator if there exists a directed causal path from R to Y
that goes through M .

In this section, we introduce a new decomposition method:
the unadjusted and adjusted effects. Formally speaking,
∀M ∈M, we define the adjusted effect δM and the unad-

1We leave the definition of inducing path to the supplementaries
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(a) Original causal graph (b) Mediation M(R′ = 1)(u) (c) Adjusted (Ours) MR′=1(u
′)

Figure 1: R,M respectively denote exposure and mediator variables; X is unobserved; V ′ is a copy of V after making
policy, generated by another group R′ ̸= R. Unlike the Mediation Effect with original exogenous U; our Adjusted Effect
uses U′ ∼i.i.d U to generate M ′ (Eq. (5)), which can effectively account for all sources of disparities.

justed effect ζM as:

δM := E(Y (R = 0, GM |R=1))− E(Y (R = 0)), (1)
ζM := E(Y (R = 1))− E(Y (R = 0, GM |R=1)), (2)

where GM |R=1 means to replace the original factor
P (M |Pa(M)) with P (M |R = 1), i.e., assigning the me-
diator M with the distribution of the advantaged group
M |R = 1. We use V ′

i to denote the copy of Vi generated
by the new policy from R′ ̸= R, in order to differentiate the
original Vi. Then, correspondingly, structural equations for
Y (R = 0, GM |R=1) are:

R← 0, (3)
Vi ← fi(Pa(Vi), ui), ∀Vi ∈ V\De(M), (4)
GM|R=1 : M←MR=1(u

′), u′ ∼ P (U), (5)
Vi ← fi(Pa(Vi)\M,M, ui), ∀Vi ∈ Ch(M), (6)
Vi ← fi(Pa(Vi), ui), ∀Vi ∈ De(M)\Ch(M), (7)

Here, Eq. 3, 4, (6), (7) describe the original generating
process under u; while Eq. 5 describes the regenerating
process of M under the intervened model MR=1 with u′ ∼
P (U) that is independent to u. Finally, we regenerate M ’s
children and descendants using Eq. 6, (7). Simply speaking,
the adjusted effect replaces M ← fM (R = 0, Pa(M) \
R, uM ) in the original SCM with an intervened policy on
M : MR=1(u

′ ∼ P (U)) that equalizes the distribution of
M between advantaged and disadvantaged groups.

Compared with the natural indirect effect with Y (R =
0,M(R = 1)), our adjusted effect generates M using an-
other exogenous U′ ∼i.i.d U, which has better policy im-
plications in terms of measuring the effect of making policy
in a new situation. Besides, it can effectively account for all
sources of disparity. To illustrate, consider the example in
Fig. 1:

Example 4.1. Suppose R,X (unobserved),M, Y in Fig. 1
(a) respectively denote the race, retirement income, medical
insurance, and health outcome. The disadvantaged group
has a lower level of retirement income and thus a lower
level of medical insurance. As illustrated in Fig. 1 (b),

the structural equations for natural indirect effect Y (R =
0,M(R = 1)) are:

R← 0,

X ← fX(R = 0, UX),

X′ ← fX(R′ = 1,UX),M′ ← fM(X′,R′ = 1,UM),

Y ← fY (X,M ′, UY ),

SCM of Y (R = 0,M(R = 1))

in which UX is the confounder between X and X ′ to gener-
ate M ′. When X is unobserved, M ′ may not eliminate all
sources of disparities, i.e., M ′ ⊥̸⊥ R, either when X is the
selection or latent variable. Specifically, when X is taken as
the selection variable, then as the collider between the path
from R = 0 to M ′ (in Fig. 1 (b)) it induces the correlation
between R = 0 and M ′, which means M ′ still mixes the
information of R = 0. When X is the latent variable, it
can be mistakenly taken as exogenous of M , i.e., X ∈ UM

since the condition that whether there is another variable
affecting X is unknown. Since the exogenous is unchanged
in natural indirect effect, M ′ ← fM (R′ = 1, X,UM\X)
is generated with X that is generated from R = 0. In this
case, the M(R = 1)(u) of the natural indirect effect fails
to account for the disparity in the path of R→ X →M .

R← 0,

X ← fX(R = 0, UX),

X′ ← fX(R = 1, ŨX),M← fM(X′,R = 1,UM),

Y ← fY (X,M,UY ).

SCM of Y (R = 0, GM |R=1)

In contrast, our adjusted effect with Y (R = 0, GM |R′=1)
is able to remove all disparities sourced from medical in-
surance M , i.e., MR′=1 ⊥⊥ R, since it generates M ′ with
independent exogenous U′.

In addition to policy implications, our adjusted effect re-
quires weaker conditions for identifiability, compared to
the natural indirect effect. Specifically, the natural indirect
effect requires the deconfounding set between M and Y
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(given R) to not contain the descendants of R. This assump-
tion may not hold in our health equity scenario, as shown by
example 4.1. In contrast, our Y (R = 0, GM |R=1) only re-
quires no existence of unobserved confounders between M
and Y , which is commonly made in the literature, including
the natural indirect effect and other decomposition methods.

Indeed, our definition is closely related to others in the
literature. Specifically, when the linear equations refer to
structural equations, our Y (R = 0, GM |R=1) degenerates
to Oaxaca–Blinder decomposition [Oaxaca, 1973, Quirk
et al., 2006]. Besides, it has the same form as randomized
intervention effects [VanderWeele et al., 2014, Jackson and
VanderWeele, 2018], if the covariate set provided in their
works happens to be admissible. Further, our definition can
be easily extended to [Jackson, 2020] that lets M and Y
additionally condition on allowable variables. More impor-
tantly, unlike these methods that assume without checking
that the covariate set O happens to be admissible, our ad-
justed effect is endowed with a method that is provable to
identify the admissible set among O.

5 Identifiability

In this section, we discuss the identifiability property of δM .
We first give some basic assumptions.

Assumption 5.1 (SCM with no Unobserved Confounders).
We assume that ⟨G,F ,U, P (U)⟩ is a structural causal
model, with G := (V,E) and O ∪ {Y,R} ⊂ V. In ad-
dition, we assume for each M ∈M, there is no unobserved
confounder between M and Y .

Note that we do not assume all variables in V are observable;
rather, we only observe a subset of them {O, R, Y } ⊂ V.
The “no unobserved confounder” condition, which does not
additionally pre-specifies some covariate sets to be admissi-
ble, is weaker than the strong ignorability condition that is
widely assumed in the literature of causal inference [Pearl,
2009, Spirtes et al., 2000] and other causal decomposition
works Jackson [2020], VanderWeele et al. [2014]. Further-
more, we will show later that this assumption is necessary
for the adjusted effect to be identifiable.

In the following, we define the context variable, which
refers to the variable with no arrows going into them.

Definition 5.1 (Context Variable). We say C ⊂ O ∪ R is
the set of context variables if any C ∈ C is not causally
affected by any variable in V.

Remark. It naturally holds that R is a context variable, i.e.,
R → C since the exposure variable normally refers to the
innate attributes. Similarly, other demographic variables
such as gender, and ethnicity are also context variables.

Besides, as Y refers to the outcome that is temporally re-
ported later than others, it naturally holds that Y does not
causally influence other variables. Then we have δM =

∫
yp(y|do(m), R = 0)p(m|R = 1)dydm −

∫
yp(y|R = 0)dy,

due to (R ⊥⊥ Y )GM,R
, (R ⊥⊥ Y )GR

, and (R ⊥⊥M)GR
. To

identify δM , all that is left is to identify p(y|do(m), r).

Next, we introduce Markovian and Faithfulness conditions.

Assumption 5.2 (Markovian and Faithfulness). The Marko-
vian means that the exogenous variables {Ui} are indepen-
dent. This implies ∀ disjoint sets Vi,Vj ,Vk, it holds that
Vi ⊥⊥d Vj |Vk =⇒ Vi ⊥⊥ Vj |Vk. On the other hand,
faithfulness means Vi ⊥⊥ Vj |Vk =⇒ Vi ⊥⊥d Vj |Vk,
where ⊥⊥d and ⊥⊥ respectively mean d-separation and prob-
ability independence.

This assumption, as was commonly made in the causal infer-
ence literature, allows us to implement conditional indepen-
dence tests for causal discovery, which can provide a graphi-
cal criterion to identify p(y|do(m), r). In the following, we
show that it is almost necessary to assume no unobserved
confounder in assump. 5.1 to identify p(y|do(m), r).

Proposition 5.1. Suppose assumption 5.2 holds in the SCM
⟨G,F ,U, P (U)⟩, we have that the p(y|do(m), r) is iden-
tifiable for all forms of P (U) and F , if and only if there
exists an admissible set BM , i.e., (M ⊥⊥ Y |BM , R)GM

.

Remark. If there exists an unobserved confounder such
that its path to Y or M is not blocked by BM , then
p(y|do(m), r) cannot be identified generally. Note that
under the linear model, [Kasy, 2014, Frölich and Hu-
ber, 2017] leverages instrumental variables for identifia-
bility with unobserved confounders, however, assumed that
M(Z = z, uM ) increases with respect to the instrumental
variable Z for all individuals uM . This condition may not
hold in our health equity scenario. For example, if Z := R
denotes race and M denotes the income level, then it is
unreasonable to assume that any person in the advantaged
group has a higher income level than all persons in R = 0.

The Prop. 5.1 informs us to identify an admissible set, of
which each Oi is selected according to the type of the maxi-
mal ancestral graph (MAG) over (Oi,M, Y ). Specifically,
we first list a broader family of types of MAGs in Fig. 2,
which are equivalent according to Prop. 3.1. We show that
any set that contains variables belonging to type (a) and does
not contain any variables in types (d,e,f) is admissible. To
explain, note that the variable with the type (a) is sufficient
to block each back-door path between M and Y as there
is no unobserved confounder between M and Y . Besides,
the variable with types (b) and (c) does not perturb directed
paths or induce new spurious features. Therefore, the in-
clusion of these variables can still make the set admissible.
Types (d,e,f) are other members of the equivalence class.

Formally speaking, we define

BM := {Oi : MAG(Oi,M, Y ) is (a).},
BM := {Oi : MAG(Oi,M, Y ) belongs to (a,b,c).},



A New Causal Decomposition Paradigm towards Health Equity

Figure 2: MAG of admissible sets: (a,b,c) and their equiva-
lence classes: (d,e,f).

and show that any set that contains BM and belongs to BM

is an admissible set:
Theorem 5.1. Under assump. 5.1, 5.2, any BM such that
BM ⊂ BM ⊂ BM is admissible.

According to Thm. 5.1, it is sufficient to identify any inter-
mediate sets between BM and BM . To achieve this goal, we
first iteratively learn MAG(Oi,M, Y ) for each Oi ∈ O via
the FCI-JCI algorithm, which is provable to be sound and
complete Zhang [2008b] to identify the equivalence class
of MAG. As members (d),(e),(f) are equivalent to types
(a),(b),(c), we need to discriminate variables with types
(a-c) from those with types (d-f).

To achieve this goal, we propose to leverage the context
variables in Def. 5.1. Specifically, inspired by conditions
(ii),(iii) in Prop. 3.1, we introduce the unshielded-condition
and the discriminate-condition on the context variable:
Definition 5.2. For the mediator M , we say C satisfies the
MAG-Equi condition for Oi and M , if either one of the
following conditions holds:

• Unshielded-condition: there exists Ci
M ∈ C such that

MAG(Ci
M , Oi,M) is Ci

M → Oi ◦−◦M ;
• Discriminate-condition: there exists a pair of context

variables (Ci,1
M , Ci,2

M ) such that i) MAG(Ci,1
M , Oi,M)

is Ci,1
M → M ◦−◦ Oi; and ii) Ci,2

M is adjacent to M

and not adjacent to Y in MAG(Ci,2
M , Oi,M, Y ).

As the name suggests, the unshielded-condition and discrim-
inate-condition respectively exploit the unshielded collider
criterion and the discriminating path criterion in Prop. 3.1
to identify different classes of MAGs, with the assistance
of context variable. In the following, we will show that if
C satisfies the MAG-Equi condition, we can discriminate
types (a,b,c) from (d,e,f) in Fig. 2.

Identify BM when the MAG-Equi condition holds. The
following lemma summarizes this result.
Lemma 5.1. Suppose assumptions 5.1, 5.2 hold and C sat-
isfies the MAG-Equi condition. Then if C satisfies the MAG-
Equi condition, we can discriminate types (a,b,c) from (d,e,f)
in Fig. 2. That is, we can determine whether Oi ∈ BM .

Proof-sketch. Indeed, both unshielded-condition and dis-
criminate-condition utilize “unshielded colliders” criterion

in Prop. 3.1. Specifically, Ci
M → Oi ◦−◦M eliminates types

(d,e,f) with M◦→ Oi. While for discriminate-condition,
the Ci,1

M → M ◦− ◦ Oi first eliminates types (d,f) with
M ←◦Oi, in which Oi is an unshielded collider. Further,
the MAG structure over (Ci,2

M ,M,Oi, Y ) explores the dis-
criminating path ⟨Ci,2

M ,M,Oi, Y ⟩ for Oi to eliminate type
(e) with M ↔ Oi ↔ Y . Please refer to the appendix for
details.

The MAG-Equi condition requires the existence of a con-
text variable that does not simultaneously affect Oi and
M . This condition can hold for some Oi when there are
multiple context variables, such as gender, ethnicity, race,
age, religious affiliation, and marital status. For instance,
if Oi,M, Y respectively denote education level, working
style and treatment outcome, it is reasonable and hence
probable for “religious affiliation” to determine the work-
ing style M but not affect the education level Oi and Y .
In this regard, the discriminate-condition is satisfied when
Ci,1

M = Ci,2
M and denotes “religious affiliation”. Similarly,

the unshielded-the condition can be satisfied when Ci
M de-

notes “race/ethnicity” as it may not affect the working style
M given the education level Oi.

However, this MAG-Equi condition may uniformly hold
for all Oi, especially when there are few context variables.
In this case, lemma 5.1 cannot be applied to determine
whether Oi ∈ BM . To address this problem, inspired by
Thm. 5.1, we turn to discriminate type (a) from others, i.e.,
whether Oi ∈ BM , by leveraging heterogeneity induced
by the exposure variable R to identify the causal directions
Oi →M,Y that characterizes type (a).

Identify BM when the MAG-Equi condition is violated.
We split data into multiple domains according to the value
of R. The heterogeneity among these domains can help us
to determine causal directions by exploiting changed causal
modules Huang et al. [2020]. This requires the following
assumption, namely faithfulness at the distributional level,
which was firstly proposed by Huang et al. [2020].

Assumption 5.3 ([Huang et al., 2020]). If Oi → Oj and at
least R → Oi or R → Oj holds, then {P r(Oi|Oj ,X)}r is
dependent to {P r(Oj |X)}r, where X is the minimal decon-
founding set 2.

Under this assumption, we have the following result:

Lemma 5.2. Under assump. 5.1-5.3, we have Oi ∈ BM

iff there exists Xi
M such that i) {P (M,Y |Oi,X

i
M , r)}r and

{P (Oi|Xi
M , r)}r are independent; ii) {P (M |Xi

M , r)}r and
{P (Oi|M,Xi

M , r)}r are dependent; and iii) {P (Y |Xi
M , r)}r

and {P (Oi|Y,Xi
M , r)}r are dependent.

To implement these independence tests, we correspondingly
examine whether ∆Oi,Y←M|Xi

M
< α, ∆Oi→M|Xi

M
≥ α and

2X is a deconfounding set between Oi and Oj if Oi ⊥⊥ Oj |X
and X ∩ (De(Oi) ∪De(Oj)) = ∅.
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∆Y→M|Xi
M
≥ α with some α > 0 to respectively determine

whether i), ii) and iii) hold, derived from Hilbert-Schmidt
Independence Criterion (HSIC) norm Gretton et al. [2007]
to measure the dependency between two sets of distributions
Huang et al. [2020]. Compared to lemma 5.1, the lemma 5.2
does not require the MAG-Equi condition, however, is more
computationally expensive as it requires searching over all
subsets of all Oi with its type of MAGs belonging to (a-f) in
Fig. 2, i.e., Ball

M := {Oi : MAG(Oi,M, Y ) belongs to (a-f).}.
We summarize lemma 5.1, 5.2 into the following theorem.

Theorem 5.2 (Main Theorem). Under assump. 5.1-5.3,
there exists an identifiable admissible set BM with BM ⊂
BM ⊂ BM . Particularly, BM respectively degenerates
to BM and BM if the MAG-Equi condition in lemma 5.1
holds and does not hold for all Oi ∈ O.

Remark. This analysis can easily extend to the form in [Jack-
son, 2020] that additionally conditions on some “allowable
variables”. As these variables are assumed to not be affected
by R and M , conditioning on these variables will not induce
new spurious features or block directed paths.

With Thm. 5.2, we can identify the adjusted effect δM and
unadjusted effect ζM via BM as:

δM = Em|R=1

[
EbM |R=0 [E[Y |m,bM , R = 0]]

]
− E0[Y ],

ζM = E1[Y ]− Em|R=1

[
EbM |R=0 [E[Y |m,bM , R = 0]]

]
,

where Er[Y ] denotes E[Y |R = r] for r = 0, 1.

6 Estimation

Algorithm 1 summarizes the whole procedure to calculate
δM , ζM for each M . Roughly speaking, it contains i) detect
all mediators M; then for each M ∈ M, ii) identify BM

and iii) estimate δM , ζM by estimating E(Y |m,bM , R = 0)
and p(bM |R = r).

For E(Y |m,bM , R = 0), we can choose several off-the-
shelf predictors such as tree-based or generalized linear
models for fitting. To estimate p(bM |R = r) with BM =
{Bi}si=1, we write p(bM |R = r) = Πs

i=1p(bi|b1:i−1, R =
r) and implement kernel density estimation (KDE) to es-
timate p(bi|b1:i−1, R = r) if bi is continuous and use soft-
max if bi is discrete. If s is large, we use Markov chain
Monte Carlo to generate data from p(bM |R = r).

Computational Complexity. Under the worst case, i.e.,
the MAG-Equi condition is violated for all Oi, one has
to search over S ⊂ Ball

M . If we follow an ascending or-
der in terms of |S|, the overall complexity to estimate
δM , ζM for each M is with order (p ∗ |C|)3(Ball

M )|BM |

with p := |O|, where p3, |C|3 are respectively spent for
calculating {MAG(Oi,M, Y )}Oi and {MAG(Ci, Oi,M)}Ci ,
{MAG(Ci,M,Oi, Y )}Ci . When the MAG-Equi condition
holds for all Oi, the complexity is only with order (p∗|C|)3.

Algorithm 1 Estimate δM , ζM for M ∈M.

INPUT: {r(i), o(i), y(i)}ni=1 and α > 0.
OUTPUT: δ̂M for each M ∈M.

1: Detect M := {Oi|Oi ̸⊥ R, Y,Oi ̸⊥ R|Y,Oi ̸⊥ Y |R}.
2: For each M ∈M,
3: Initialize BM = ∅, Ball

M = ∅. Denote OM := O\M .
4: Run FCI-JCI to obtain {MAG(Oi,M, Y )}Oi∈OM .
5: Detect Ball

M with types (a-f) in Fig. 2.
6: For each Oi ∈ Ball

M ,
7: ∀Ci ∈ C, run FCI-JCI to obtain MAG(Ci, Oi,M)

and MAG(Ci,M,Oi, Y ).
8: If MAG-Equi holds, add BM = BM ∪Oi.
9: Else, search over S ⊂ Ball

M such that ∆M,Y←Oi|S <

α, ∆Oi←M|S > α and ∆Y←M|S > α, add BM = BM ∪
Oi; else continue.

10: Estimate E(Y |m,bM , R = 0), E(Y |R = r) and
p(bM |R = r) for r = 0, 1.

11: Estimate δ̂M and ζ̂M .

7 Experiment

In this section, we evaluate our method on a synthetic dataset
and a spine disease dataset, namely Spine Patient Outcomes
Research Trial (SPORT) Birkmeyer et al. [2002], Weinstein
et al. [2008, 2006b,a], Pearson et al. [2012].

7.1 Simulation

Data Generation. We follow the causal graph in Fig. 3
to generate data via: R ∼ Bern(1, 0.5); X ← fX(εx) (εx ∼
N (µx, σ

2
x)); M1 ← fM1(x, r) := α0 + αRR + αXX + εM1 ;

M2 ← fM2(x, r,m1) := β0+β1M1+βRR+βXX+εM2 ; Y ←
fY (x, r,m1,m2) := ρ0 + ρ1M1 + ρ2M2 + ρXX + ρRR+ εY .
Our goal is to estimate adjusted and unadjusted effects for
M1, M2, and {M1,M2}, respectively.

Figure 3: Causal graph to generate data.

Set (α0, αR, αX) := (0, 2, 3), (β0, β1, βR, βX) := (0, 2, 3, 4)

and (ρ0, ρ1, ρ2, ρR, ρX) := (0, 2, 3, 4, 5), we have δM1 =

ρ1E(M1(1) − M1(0)) + ρ2β1E(M1(1) − M1(0)) = (ρ1 +

ρ2β1)α1 = 16; δM2 = ρ2 (β1E(M1(1)−M1(0)) + β2) =

ρ2(β1α1 + β2) = 21; δM1,M2 = (ρ1 + ρ2β1)E(M1(1) −
M1(0)) + ρ2β2 = (ρ1 + ρ2β1)α1 + ρ2β2 = 25; ζM1 =

E(Y (1))− E(Y (0))− δM1 = 14; ζM2 = 9 and ζM1,M2 = 5.

Implementation. We follow algorithm 1 wih α = 0.05 and
linear model to fit E(Y |m,bM , R = 0).
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Figure 4: Estimation Results on Synthetic Dataset.

Figure 5: Adjusted/Unadjusted Effects on IDH data.

Results. Fig. 4 shows that our estimations can asymptoti-
cally approximate the ground-truth value as n grows.

7.2 Spine Patient Outcomes Research Trial (SPORT)

Dataset. The Spine Patient Outcomes Research Trial
(SPORT) dataset was designed to investigate the effective-
ness of spine surgery for the three most common reasons
for low back pain (LBP) surgical disease. Low back pain-
related conditions remain one of the most controversial
diseases, as to, whether surgery is more effective than non-
surgical treatments Birkmeyer et al. [2002]. As reported in
Vos et al. [2017], LBP is a top-5 leading cause of disability
globally, which has brought heavy burdens economically
and socially to health systems globally. The SPORT study
enrolled 2,505 patients in the United States from March
2000 to February 2005. There were three groups with as-
sociated LBP: 1) intervertebral disc herniation (IDH), 2)
spinal stenosis (SPS), and 3) degenerative spondylolisthesis

(DS). The race fell into three main groups: Asian Americans,
African Americans, and White–Hispanic and non-Hispanic
Americans. To investigate the long-term surgical effects
(as LBP is a chronic disease), SPORT studied outcomes
using validated measures. Primary outcomes were (i.e., Y )
bodily pain (BP) and physical functioning (PF). Both are
scaled from 0 to 100 (the higher, the better). Longitudi-
nal data were collected at various intervals over 8 years
after implementing surgical and non-surgical treatments
(initially 6 weeks, 12 weeks, 6 months, 1 year, and yearly
thereafter). For each patient, SPORT recorded the baseline
demographic characteristics, social-economic factors such
as income, working style, education years, and other com-
modities such as hypertension, diabetes, weight, smoking
history, etc. Weinstein et al. [2008], Birkmeyer et al. [2002].

Implementation. We observe large differences between
the white and non-white groups (which are mainly Asian
and African Americans) in terms of BP and PF scores, as
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shown in Fig. 8 in the appendix. We follow algorithm 1
with α = 0.05 and use a random forest predictor with
50 estimators to estimate E(Y |BM ,M,R). The detected
mediator set M contains four features: income and working
styles (social economics status) Body mass index (BMI)
and the outcome score at baseline (health status). We then
calculate the adjusted effects for the white and non-white
groups (R = 1 means white) for DS, SPS, and IDH with
n = 601, 634, and 1, 195 patients; and p = 18 covariates.
More implementation details can be found in the appendix.

Results Analysis. Due to space limits, we only show the
results on the IDH disease and placed other results in the
appendix. As shown in Fig. 5, both adjusted and unadjusted
effects are non-ignorable, which suggests more compensa-
tions for minorities (income, working status), healthier daily
habits (BMI), and more personalized health care (the out-
come at baselines) such as better medications. Particularly,
for the working style and the income which are more of
practical interest for policy-making, if we assign them to
the advantaged group’s distribution, the disparity in both BP
and PF scores can be decreased by a noticeable margin. To
explain, we observed that the proportion of the non-white
group with no or low-level income is 5.4% more than that
of the white patient subgroup and, that the proportion of
employment of the black patient group was nearly 18% less
than that of the white subgroup. This suggests the possibility
that alleviating disparities in outcomes can be achieved by
focusing on one’s employment status and income. Besides,
it is interesting to note that the BMI has significant adjust-
ment effects, which help explain the disparities in terms of
outcomes after surgical treatments. Finally, one can observe
that making policies on all mediators (purple curve) does
not necessarily have better effects, since the formula of δM
does not necessarily increase as |M | increases. To illustrate,
consider the group R = 0 that does not have good living
or dietary habits, adjusting all factors may let them treat
their disease lightly (e.g., choosing non-surgical treatment),
which may in turn result in worse outcomes.

8 Conclusion

We define the adjusted and unadjusted effects under the
structural-causal model framework. Compared to existing
methods, our method has better policy implications, by elim-
inating all sources of disparity to measure the effect of a
policy on the mediator of interest. Additionally, unlike tradi-
tional methods that rely on the strong ignorability condition
for identifiability, we can identify the admissible set via
causal discovery. Our methods are efficient and easy to
implement. In the SPORT dataset, we identified important,
interpretable socioeconomic variables that significantly im-
pact disparities in terms of short and long-term treatment
effects. For limitations, our methods require no unobserved
confounder conditions. That said we plan to explore the
‘relaxation’ of this condition for future work.
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A Theoretical Analysis

Our theoretical analysis is based on Prop. 3.1 and some MAG-related definitions. These definitions can be found in Zhang
[2008b]. We will also introduce them here for completeness.

We begin with the mixed graph, which is a graph with two kinds of edges: directed (→), and bi-directed (↔). Note that
this definition is slightly different from that in Zhang [2008b] as we do not require it to contain an undirected graph (−),
which means two variables are dependent due to latent selection variables. According to our problem setting, the observed
variables are not assumed to be dependent on some unobserved selection variables, so it is unnecessary for our definition to
contain the undirected graph. We first introduce the definition of ancestral graph.

Definition A.1 (Ancestral Graph). An ancestral graph G is a mixed graph with no directed and almost directed cycles. Here,
the almost directed cycle occurs when A↔ B and B ∈ AnG(A).

Next, we introduce the definition of inducing path, which can further define maximal ancestral graph.

Definition A.2 (Inducing Path). A path p from X to Y in G is an inducing path if every non-endpoint vertex on p is a
collider and is either ∈ AnG(X) or ∈ AnG(Y ).

Definition A.3 (Maximal Ancestral Graph). An ancestral graph is Maximal Ancestral Graph if, for any two non-adjacent
variables, there is no inducing path between them.

Next, we introduce the definition of unshielded collider and discriminating path, which form two main principles in
Prop. 3.1.

Definition A.4 (Unshielded Collider). A triple ⟨X,Y, Z⟩ is called an unshielded collider if the edge between (X,Y ) and
the one between (Y, Z) are pointed to Y .

Definition A.5 (Discriminating path). In a MAG, a path p = ⟨X,V1, ..., Vp,W, Y ⟩, is a discriminating path for W if i) p
includes at least three edges; ii) W is a non-endpoint on p, and is adjacent to Y . iii) X is not adjacent to Y , and each Vi for
i ∈ {1, ..., p} is a collider on p and ∈ Pa(Y ).

Proof of Prop. 5.1. The Galles and Pearl [2013] provided four conditions for p(y|do(m), r) to be identifiable, and the
theorem 4.3.2 in Pearl [2009] proved that at least one of these conditions holds. These four conditions are:

• There is no-back door path from M to Y .

• There is no directed path from M to Y in G.

• There exists a set of nodes B that blocks all back-door paths from M to Y .

• There exists sets of nodes Z1 and Z2 such that:

1. Z1 blocks every directed path from M to Y ;
2. Z2 blocks all back-door paths between Z1 and Y ;
3. Z2 blocks all back-door paths between M and Z1;
4. Z2 does not activate any back-door paths between M and Y .

Since there is a directed edge M → Y , therefore the second and the fourth conditions are violated. As we condition on
R, so the first condition can be modified to no back-door path from M to Y , given R. In this regard, the B in the third
condition degenerates to ∅. So we have p(y|do(m), r) is identifiable if and only if there exists B that block all back-door
paths from M to Y . If this exists unobserved confounder between M to Y , this sufficient and necessary condition will not
hold, making p(y|do(m), r) unidentifiable.

Proof of Theorem. 5.1. It is sufficient to show that the i) BM contain all mediator-outcome confounders and meanwhile ii)
the variable in BM does not perturb existing directed paths from M to Y and not induce new spurious features, according to
Pearl [2009]. For i), note that for each mediator-outcome confounder, it causally influences both M and Y , which means
this there exists directed paths from Oi to M and Oi to Y . Therefore, the maximal ancestral graph over (M,Oi, Y ) is
{M ← Oi → Y } ∪ {M → Y }. Therefore, we have Oi ∈ BM . For ii), for each Oi ∈ BM , if it lies in the directed path
from M to Y , then the learned MAG must be {M → Oi → Y } ∪ {M → Y }, which is not contained in BM . For Oi with
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the MAG (in addition to the edge M → Y ) withM ← Oi ↔ Y or M ↔ Oi → Y . Since there is no unobserved confounder
between M and Y , then there respectively exists an observed confounder that blocks the path between Oi and Y and the
path between M and Oi. Besides, such a confounder is in BM . Therefore, such an Oi will not induce new spurious features,
since even there is a collider induces this path, there exists a variable in BM that can block this path. In this regard, any set
that contains BM and belong to BM will satisfy both i) and ii). Therefore, this set is admissible.

Proof of Lemma 5.1. It is easy to note that we have Oi ∈ BM if we can discriminate the associated types of MAGs from
those in B̃MAG(M). Specifically, the MAGs in B̃MAG(M) (we omit M → Y as it is included in all MAGs) are: i)
M ← Oi → Y ; ii) M ← Oi ↔ Y ; iii) M ↔ Oi → Y ; iv) M → Oi → Y ; v) M → Oi ↔ Y ; vi) M ↔ Oi ↔ Y .
Therefore, our goal is to discriminate i), ii), iii) from others. Note that when the first condition in Lemma 5.1 is satisfied,
we can discriminate i) and ii) using unshielded collider condition in Prop. 3.1, as the M → Oi or M ↔ Oi can make
⟨Oi,M,Ci

M ⟩ unshielded collier, therefore we have Oi ∈ BM . If the second condition is satisfied, we can first discriminate
i), ii), iii), vi) from iv) and v) using unshielded collider condition; then to eliminate vi) which can induce spurious path for
instance M ← S1 → Oi ← S2 → Y with S1, S2 unobserved, we note that ⟨Cj

M ,M,Oi, Y ⟩ form a discriminating path
for Oi in i), ii), iii) and vi), with the difference that the Oi in vi) is a collider on the path M ↔ Oi ↔ Y in vi) but is not
a collider on the same path in i), ii) and iii). Therefore, we can discriminate i), ii), iii) from vi). In this regard, we can
determine whether Oi ∈ BM if either one of the condition holds in Lemma 5.1.

Proof of Lemma 5.2. For the Oi such that M ← Oi → Y in the MAG over (Oi,M, Y ), we have that the deconfounding
sets between Oi and M , and that between M and Y , can be observed, thus we there exists Xi which contains both
deconfounding sets, such that {P r(M |Oi)}, {P r(Y |Oi)} are independent to {P r(Oi)}, because they have disentangled
causal mechanisms. Besides, we have {P r(Oi|M)}, {P r(Oi|Y )} are respectively dependent to {P r(M)} and {P r(Y )}
under assumption 5.3, since they are entangled. On the other hand, we will show that this conclusion does not hold for
Oi with other types of MAG. Similarly, the MAGs in B̃MAG(M) (we omit M → Y as it is included in all MAGs) are:
i) M ← Oi → Y ; ii) M ← Oi ↔ Y ; iii) M ↔ Oi → Y ; iv) M → Oi → Y ; v) M → Oi ↔ Y ; vi) M ↔ Oi ↔ Y .
For the MAG with M ↔ Oi, then for any set A, the independent relations for ({P r(M |A, Oi)},{P r(Oi|A)}) and
({P r(M |A)},{P r(Oi|M,A)}) simultaneously hold or not hold, determined by whether A is the deconfounding set
between Oi and M . This conclusion similarly holds for the MAG with Oi ↔ Y . Therefore, we can discriminate MAGs ii),
iii),v), vi) from others. For the MAG with M → Oi → Y , if there exists a set A such that {P r(M |A, Oi)} is {P r(Oi|A)}
independent, then A must block the directed paths between M and Oi. Suppose otherwise there exists an unblocked directed
path from M to Oi; in this regard, both distributions are entangled since they are affected by the mechanism P r(Oi|A,M).
Then if A blocks the directed paths between M and Oi, the independence between {P r(Oi|A,M)} and {P r(M |A)} also
holds. This can help us further eliminate type iv). As a result, we have Oi ∈ BM .

Proof of Theorem 5.2. Under assumptions 5.1, 5.2, and 5.3, we can detect BM . Besides, if condition in Lemma 5.1 holds
for Oi, we can determine whether Oi ∈ BM . Therefore, we have the detected BM is

BM ∪ {Oi|the condition in Lemma 5.1 for Oi holds and Oi ∈ BM}, which ⊃ BMand ⊂ BM .

The proof is completed.

B Experiment on SPORT

B.1 Implementation Details

Our implementation is composed of three steps: i) detect the mediator set M; ii) identify admissible sets; and iii) Estimation.

Detection of M. We follow the FCI-JCI algorithm Zhang [2008a] to identify adjustment sets among social-economic
factors. In total, M contains four features: income and working styles (social economics status) Body mass index (BMI),
and the outcome score at baseline (health status).

Identification of admissible sets. In addition to the race variable, there are also other context variables such as gender, age,
etc. We discovered that there is at least a context variable that is non-adjacent to M for each adjusted factor M . As a result,
we can directly identify BM by iteratively implementing the FCI-JCI algorithm to obtain MAG over (R,M,O, Y ) for each
O ∈ Ball

M . Specifically, the BM is (age, gender, education years, working style) when M denotes income; is (age, gender,
education years, back pain at baseline (bpBA)) when M denotes working style; (gender, diabetes) when M denotes BMI
and finally is ∅ when M := bpBA.
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Estimation. To fit E(Y |BM ,M,R), we train a random forest predictor with 50 estimators.

B.2 Results on SPS, DS diseases when R denotes ”Race”

In this section, we show our estimated adjusted and unadjusted effects of SPS and DS diseases in the SPORT dataset. Fig. 6
and Fig. 7 respectively show the adjusted and unadjusted effects of the SPS and DS diseases. Fig. 8 shows the total effects.

Figure 6: Adjusted and Unadjusted effects of the SPS disease when R denotes race.

Figure 7: Adjusted and Unadjusted effects of the DS disease when R denotes race.
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Figure 8: Total Effects with Y denoting BF and PF scores when R denotes race.

B.3 Results on when R denotes ”Gender”

We also conduct experiments when R denotes ”Gender”, with R = 1 (or R = 0) meaning the male (female) group. Fig. 8
shows the total effects of E(Y |R = 1) − E(Y |R = 0), which suggests a significant difference in SPS and DS diseases;
and a minor but unignorable difference in IDH disease. The selected mutable variable set M contains ”income”, ”working
styles” and ”BMI”. The BM is (age, gender, education years, working style) when M denotes income; is (age, gender,
education years, back pain at baseline (bpBA)) when M denotes working style; (gender, diabetes) when M denotes BMI.
The whole implementation procedure is the same to the one when R denotes ”Race”. Fig. 10, 11 and Fig. 12 respectively
shows the adjusted and unadjusted effects of the IDH, SPS, and DS diseases.
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Figure 9: Total Effects with R denotes gender.

Figure 10: Adjusted and Unadjusted effects of the IDH diseases when R denotes gender.
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Figure 11: Adjusted and Unadjusted effects of the SPS disease when R denotes gender.

Figure 12: Adjusted and Unadjusted effects of the DS disease when R denotes gender.
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