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Abstract

Subset selection, i.e., finding a bunch of items
from a collection to achieve specific goals, has
wide applications in information retrieval, statis-
tics, and machine learning. To implement an end-
to-end learning framework, different relaxed dif-
ferentiable operators of subset selection are pro-
posed. Most existing work relies on either reg-
ularization method or perturbation method. In
this work, we provide a probabilistic interpreta-
tion for regularization relaxation and unify two
schemes. Besides, we build some concrete ex-
amples to show the generic connection between
these two relaxations. Finally, we evaluate the
perturbed selector as well as the regularized se-
lector on two tasks: the maximum entropy sam-
pling problem and the feature selection problem.
The experimental results show that these two
methods can achieve competitive performance
against other benchmarks.

1 INTRODUCTION

High-dimensional data has been pervasive nowadays across
science and industry. Despite their appealing fine-grained
details and high-quality properties, they also pose an un-
precendent challenge in analyzing these datasets. For ex-
ample, it could be computationally expensive to retrieve
information from a high-resolution image dataset (Cordon-
nier et al., 2021). Therefore, subset selection methods that
can reduce the dimensionality are of great importance to
dealing with these high-dimensional data. For example, in
feature extraction (Balın et al., 2019), one aims to select
the most informative pixels to represent the original data;
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in neural machine translation, the beam search algorithm
needs to find the k sequences of largest likelihood.

Unfortunately, subset selection operators cannot be inte-
grated into an end-to-end learning framework due to their
non-smoothness and thus non-differentiability. To this end,
different differentiable relaxation methods for subset selec-
tion are proposed. There are mainly two types of relaxation
methods: regularization relaxation and pertubation relax-
ation. Similar ideas can be found in other tasks, refer to
Blondel et al. (2020); Berthet et al. (2020) and references
therein.

Although there is a voluminous literature for relaxation
methods, these differentiable operators of subset selec-
tion are investigated separately, either in a regularization
scheme or a perturbation scheme. In this paper, we present
a unified viewpoint for these two schemes. Regularization
and perturbation play the same role in shifting the output
from vertices to the interior of a feasible region and thus
introduce smoothness and differentiation. In addition, it
connects the regularization relaxation with a probabilistic
model, which provides a different interpretation. To have
a comprehensive understanding, we build two examples
which link the perturbed distribution and the regularized
entropy function. The first example is the Gumbel dis-
tribution of perturbation relaxation and the corresponding
negative Shannon entropy. The second example is the con-
nection between logistic distribution and the binary entropy
function.

We propose two learning algorithms based on the two re-
laxation methods for maximum entropy sampling prob-
lem. As the only two end-to-end learning algorithms, they
achieve competitive results compared to other methods. Fi-
nally, we evaluate two relaxations on the feature selection
problem and achieve better performance.

Contribution. Our contribution is threefold:

1. We unify two differentiable relaxations, i.e., regu-
larization relaxation and perturbation relaxation, for
subset selection. This generic connection provides a
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probabilistic interpretation for regularized relaxation.

2. We build some concrete examples for both regularized
relaxation and perturbed relaxation and show their
equivalence.

3. To the best of our knowledge, we are the first to in-
troduce perturbed top-k selector as well as regularized
top-k selector to the maximum entropy sampling prob-
lem and feature selection problem.

This paper is organized as follows. In Section 2, we
review related work from regularization and perturbation
schemes. Section 3 introduces preliminary knowledge of
differentiable subset selection. Section 4 introduces the
main results, which reveal the generic connection between
two schemes. Two learning algorithms for maximum
entropy sampling problem (MESP) as well as applications
of two relaxations to feature selection are introduced in
Section 5.

Notations. Denote [N ] := {1, . . . , n} and S ⊆ [N ]. |S|
denotes the cardinality of S . Let Mp := {x ∈ {0, 1}n}
be the power set of [N ] andMk := {x ∈ {0, 1}n

∣∣111>x =
k} be the subset with fixed cardinality k. θ ∈ Θ is the
score vector; J denotes the Jacobian. We denote H(·) as
entropy function; Z as perturbed error and τ > 0 as the
temperature parameter. Diag(x) is a diagonal matrix which
has the vector x on its diagonal and I is the identity matrix.
‖ · ‖F represents Forbenius norm.

2 RELATED WORK

We review the related work from three broad sections: sub-
set selection with regularized relaxation; subset selection
with perturbed relaxation; and other subset selection meth-
ods.

Subset Selection with Regularized Relaxation. Regular-
ization technique has been a pervasive approach across dif-
ferent subject areas, including structured prediction (Nic-
ulae and Martins, 2020; Blondel et al., 2020), dynamic
programming (Mensch and Blondel, 2018), reinforcement
learning (Geist et al., 2019) and sorting (Cuturi et al.,
2019). Here, we restrict the review of this versatile method
to subset selection only.

Amos et al. (2019) proposes the Limited Multi-Label(LML)
projection layer based on constrained linear programming
with binary entropy regularization. However, it proposes
the binary entropy function as the regularizer only and does
not introduce the temeprature parameter. The adaptive
Euclidean projection of linear objective on (n, k)-simplex,
which is equivalent to subset selection with `2 norm
regularizer, is investigated in Kong et al. (2020). A similar
idea can be found in sparsemax (Martins and Astudillo,

2016). Xie et al. (2020) proposes a differentiable top-k
operator with negative Shannon entropy regularized. It is
based on optimal transport with a designed cost matrix
and marginal distribution. Petersen et al. (2022) proposes
a family of differentiable top-k selector which considers
multiple k.

Subset Selection with Perturbed Relaxation. Perturba-
tion technique has been an important trick in a wide range
of fields. A well-known example is the Gumbel-Max trick,
which is applied in random choice models. Besides, it
is also exploited in online learning and bandit problems,
dubbed FTPL (Follow the Perturbed Leader) (Abernethy
et al., 2014, 2016). Berthet et al. (2020) proposes general
differentiable optimizer with perturbed relaxtion. Cordon-
nier et al. (2021) extends the idea of perturbed optimizer to
top-k operator and applies it to image recognition.

Other Subset Selection Methods. Plötz and Roth
(2018) proposes k-Nearest-Neighbors (kNN) which lever-
ages self-similarity to sample k elements from n choices.
To enable differentiation, kNN updates the logits by using
the expected weight vector instead of the discrete samples.
Xie and Ermon (2019) revisits the kNN and applies it to
sentiment classfication problem. Kool et al. (2019) extends
the idea of the Gumbel-Max trick to Gumbel-Top-k and
uses REINFORCE to construct the gradient, which means it
does not admit reparametrization. Struminsky et al. (2021)
leverages recursive Gumbel-max trick to define distribu-
tions over structure domains and uses the score function
estimator to estimate gradient. Hazimeh et al. (2021) de-
velops a continuous relaxation for top-k selection by intro-
ducing a smooth-step function.

3 DIFFERENTIABLE SUBSET
SELECTION

In this section, we introduce some preliminaries to subset
selection and review the existing relaxation methods based
on regularization and perturbation techniques.

3.1 Subset Selection

Subset selection aims to select a bunch of components to
achieve targets. For example, maximum entorpy sampling
problem aims to select the subset with the largest determi-
nant. The cardinality of the subset can be fixed or not. In
the following discussion, we fix the cardinality of the sub-
set. Consider the subsetM =Mk, and θ ∈ Rn is a score
vector, the top-k selector is defined as follows:

y(θ) := arg max
y∈M

〈θ, y〉 (1)

The solution of (1) is simple: it returns a k-hot vector which
is the indices of θ’s top-k elements. For simplicity, we
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assume this vector is unique. We call it as the hard se-
lector in contrast to the following relaxed selector. Obvi-
ously, the solution of (1) is discrete and non-differentiable.
This problem hinders the end-to-end learning framework of
most deep learning architectures.

3.2 Regularized Relaxation

As we discussed above, the top-k selector is a discrete and
non-differentiable operator which cannot be embedded into
downstream layers. To implement an end-to-end differen-
tiable fashion, the regularized top-k selector is proposed by
introducing a regularization term compared with (1). Let
conv(M) be convex hull of M and H(y) be an convex
function, the regularized top-k selector is defined as fol-
lows

yH(θ; τ) := arg max
y∈conv(M)

〈θ, y〉 − τH(y), (2)

where τ > 0 is the temperature parameter. With a slight
abuse of notation, we omit τ and write yH(θ; τ) as yH(θ).

We refer H(y) in (2) as “entropy function” which stems
from information theory. Here, it plays an important role
in introducing smoothness and differentiability to (1). The
objective of (2) involves two terms: a linear term 〈θ, y〉 and
a regularization term−τH(y). The maximizer of the linear
term 〈θ, y〉 returns the vertices inM. However, the max-
imizer of the regularization term −τH(y), e.g. Shannon
entropy, returns the uniform distribution over all vertices
of M. Consequently, introducing the regularization term
−τH(y) tends to shift the maximizer from vertices to the
interior of M. Figure 1a illustrates the main idea of the
regularized top-k selector.

Here, we list different choices of entropy function.

• Negative Shannon entropy: H(y) =
∑
i yi log yi. The

solution to regularized top-k selector with negative
Shannon entropy is

yH(θ)i = Π[0,1]

(
e(θi−u

∗)/τ−1),
where Π[0,1](x) := min(max(0, x), 1) denotes pro-
jection of x on interval [0, 1] and u∗ satisfies

n∑

i=1

Π[0,1]

(
e(θi−u

∗)/τ−1) = k.

• Binary entropy: H(y) =
∑n
i=1 yi log yi + (1 −

yi) log(1 − yi). The solution to regularized top-k se-
lector with binary entropy is

yH(θ)i =
1

1 + exp(−θi/τ − ν?)
, (3)

where ν? satisfies:
n∑

i=1

1/(1 + exp(−θi/τ − ν?)) = k.

Differentiation. The proposed regularized relaxations pro-
vide a smooth operator and can serve as a forward pass
in network architecture. However, these relaxations can-
not be directly integrated into network architecture since
the backward pass requires ∂yH(θ)

∂θ which cannot be com-
puted explicitly. It is difficult because the differentiation
of yH(θ) depends on ν∗ which itself implicitly depends
on θ. Therefore, the implicit function theorem is required
to derive the gradient. Combining implicit differentiation
with deep learning has been widely explored in Amos et al.
(2017); Amos and Kolter (2017); Amos et al. (2019); Blon-
del et al. (2022).

The regularized top-k selector can be formualted as the
maximizer of a constrained optimization problem. Define
the constrained optimization problem as

max
000≤y≤111

〈θ, y〉 − τH(y)

s. t. 111>y = k.

The Karush–Kuhn–Tucker (KKT) condition is

θ − τ∇H(y) + 111ν = 0,

111>y − k = 0.
(4)

Denote (y∗, ν∗) as the optimal value, and take implicit dif-
ferentiation on (4), we have

[
τ∇2H(y∗) − 111
−111> 000

] [
dy
dν

]
=

[
dθ
000

]
. (5)

We can form the Jacobian ∂yH(θ)
∂θ now. One can simply

set dθ = I , and solve the equation (5), then dy would be
the desired Jacobian. Refer to Amos and Kolter (2017) and
Blondel et al. (2022) for more details.

3.3 Perturbed Relaxation

We introduce a perturbed relaxation to top-k selector,
dubbed perturbed top-k selector. The perturbed top-k se-
lector operator is defined as:

yZ(θ; τ) := E[ arg max
y∈M

〈θ + τZ, y〉 ], (6)

where Z is an n−dimensional random variable. We write
yZ(θ; τ) as yZ(θ) with a slight abuse of notation.

Notably, the feasible set of perturbed top-k inside the ex-
pectation is M while it is the convex hull of M in reg-
ularized top-k. Although for each sample, the perturbed
top-k selector returns a discrete output, the expectation that
aggregates all discrete outputs returns a smooth optimizer
which takes value in the convex hull ofM. The idea of the
perturbed top-k selector is demonstrated in Figure 1b.

Differentiation. The perturbed relaxation is widely inves-
tigated in online learning (Abernethy et al., 2014, 2016;
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(a) regularized relaxation

(b) perturbed relaxation

Figure 1: Schemes of two relaxations.

Berthet et al., 2020). It is differentiable with a non-zero Ja-
cobian and can be computed by integration by parts. The
following theorem gives the Jacobian of yZ(θ) at θ.

Theorem 1 (Abernethy et al. (2016)). For noiseZ with dis-
tribution dµ(z) ∝ exp(−ν(z))dz and twice differentiable
ν, the Jacobian matrix of yZ(θ) at θ is

J = E
[
yZ(θ)∇zν(Z)>/τ

]
. (7)

Different distributions lead to different Jacobians. Here, we
list some common choices of noise Z:

• Gumbel Distribution: The probability density func-
tion of Gumbel(0, 1) is f(z) = exp(−z+ exp(−z)).
In this case, ν(z) = z − exp(−z) and ν′(z) =
1− exp(−z).

• Normal Distribution: The probability density function
of N(0, 1) is f(z) = 1√

2π
exp(−z2/2). In this case,

ν(z) = z2/2 and v′(z) = z .

In practice, it is infeasible to derive the explicit form of
yZ(θ) in (6), let alone the Jacobian in (7). Therefore, an
approximation of the Monte Carlo estimator is proposed.
Generally, it takes Z as Gumbel(0, 1) distribution. To con-
struct a Monte Carlo estimator, one first draws samples
{zi}Mi=1

i.i.d∼ Gumbel(0, 1). The Monte Carlo estimator of
perturbed top-k selector is

ŷZ(θ) =
1

M

M∑

i=1

ỹi(θ), (8)

where ỹi(θ) := arg maxy∈M〈θ + τzi, y〉. Consequently,
the Monte Carlo estimator of Jacobian is

Ĵ =
1

M

M∑

i=1

ỹi(θ)(1− exp(−zi))>/τ. (9)

4 CONNECTION BETWEEN TWO
RELAXATIONS

We have introduced regularized relaxation and perturbed
selection separately. However, it seems there is some in-
trinsic connection between two relaxations when one takes
a particular perturbed error and entropy function. We pro-
vide two examples to show this intrinsic connection.

Gumbel—Negative Shannon Entropy. Consider M =

M1 and Z i.i.d∼ Gumbel(0, 1), then

yZ(θ)i = E[ arg max
y∈M1

〈θ + τZ, y〉 ]i

= P (θi + τZi ≥ θj + τZj ,∀j 6= i) ,

=
exp(θi/τ)∑n
j=1 exp(θj/τ)

.

It is also known as Gumbel-Max trick (Maddison et al.,
2014). Besides, if M = M1 and H(y) =

∑
i yi log yi,

then we have

yH(θ) = arg max
y∈conv(M1)

〈θ, y〉 − τ
∑

i

yi log yi. (10)

By the first order condition of (10), we have

yH(θ)i =
exp(θi/τ)∑n
j=1 exp(θj/τ)

. (11)

The above discussion illustrates that the regularized and
perturbed selectors are the same. This connection has also
been investigated in Berthet et al. (2020).

Logistic—Binary Entropy. Consider M = Mp, Z i.i.d∼
Logistic(0, 1) and note that cumulative distribution func-
tion of Logistic(0, 1) is F (x) = 1/

(
1 + exp(−x)

)
then

yZ(θ)i = E[ arg max
y∈Mp

〈θ + τZ, y〉 ]i

= P (θi + τZi ≥ 0)

=
1

1 + exp(−θi/τ)
.

Besides, ifM = Mp and H(y) =
∑n
i=1 yi log yi + (1 −

yi) log(1− yi), then

yH(θ) = arg max
y∈conv(Mp)

〈θ, y〉

− τ
n∑

i=1

(
yi log yi + (1− yi) log(1− yi)

)
.
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(a) τ = 5.0 (b) τ = 1.0 (c) τ = 0.5 (d) τ = 0.1

Figure 2: example of differentiable subset selection with decreasing temperature τ = [ 5.0, 1.0, 0.5, 0.1 ]. Here, θ =
[ − 0.6, 1.9, − 0.2, 1.1, − 1.0] and k = 3.

By the first order condition, we have

yH(θ)i =
1

1 + exp(−θi/τ)
. (12)

To the best of our knowledge, our work first establishes
the connection between logistic distribution and binary en-
tropy function.

Proposition 1. Let Ω(θ) = E[ maxy∈M〈θ + Z, y〉 ] for
some distribution Z, then yH(θ) = yZ(θ) ∀θ ∈ Θ if and
only if

H = Ω? + C, (13)

where Ω? denotes Fenchel conjugate of Ω and C ∈ R is a
constant.

While a sufficient condition of two relaxations has been
studied before (Abernethy et al., 2014, 2016; Berthet et al.,
2020), this proposition reveals not only a sufficient but also
a necessary condition between two relaxations. Moreover,
it builds a bridge between perturbed relaxation and regu-
larized relaxation. It links the regularizer under regulariza-
tion scheme with the random perturbed error under pertur-
bation scheme. Besides, this provides a probabilistic in-
terpretation for regularized relaxation. Equipped with this
connection, the regularization relaxation can be interpreted
as probability under a corresponding random noise induced
by H .

We derive relaxation results for the Gumbel distribution
and the Logistic distribution and show their equivalence
above. Here, we revisit these results and prove them as
corollaries of Proposition 1 .

Corollary 1. If M = M1, Z i.i.d∼ Gumbel(0, 1) and
H(y) =

∑
i yi log yi , then

yH(θ) = yZ(θ).

Proof. ConsiderM =M1, Z
i.i.d∼ Gumbel(0, 1) , then

Ω(θ) = E[ max
y∈M1

〈θ + Z, y〉 ]

= log
n∑

i=1

exp(θi) + γ,

where γ ≈ 0.577 is Euler’s constant. The Fenchel conju-
gate of Ω is

Ω?(y) = sup
θ
〈θ, y〉 − Ω(θ)

=
∑

i

yi log yi,

which is negative Shannon entropy, see Boyd et al. (2004)
Example 3.25 for conjugate derivation. By applying Propo-
sition 1, the proof is complete.

Corollary 2. If M = Mp, Z i.i.d∼ Logistic(0, 1) and
H(y) =

∑n
i=1 yi log yi + (1− yi) log(1− yi), then

yH(θ) = yZ(θ).

Proof. ConsiderM =Mp, Z i.i.d∼ Logistic(0, 1),

Ω(θ) = E[ max
y∈Mp

〈θ + Z, y〉 ]

=
n∑

i=1

E[ max
(
θi + Zi, 0

)
]

=
n∑

i=1

log
(
1 + exp(θi)

)
.

The Fenchel conjugate of Ω is

Ω?(θ) = sup
θ
〈θ, y〉 − Ω(θ)

=

n∑

i=1

yi log yi + (1− yi) log(1− yi),

which is the binary entropy, see Appendix for conjugate
derivation. The proof is completed as a consequence of
Proposition 1 .

These two corollaries provide another perspective on the
equivalence of distribution and the entropy function. Next,
we establish some common properties of two relaxations.

Proposition 2 (Properties of Two Relaxations). Suppose Z
is an i.i.d random vector and Equation (13) is satisfied, then
yR(θ) ∈ {yH(θ), yZ(θ)} share some common properties:



A Unified Perspective on Regularization and Perturbation in Differentiable Subset Selection

1. (temperature limit) If τ → 0, then yR(θ) → y(θ); if
τ →∞, then yR(θ)→ k/n · 111.

2. (order preserving) If θi > θj , then yR(θ)i ≥ yR(θ)j .

3. (permutation invariance) If P is a permutation ma-
trix, then yR(Pθ) = PyR(θ).

4. (temperature scaling) yR(θ; τ) = yR(θ/τ ; 1).

The temperature limit property describes the limiting case
of two relaxations as the temperature parameter approaches
zero or infty. Figure 2 illustrates relaxation results of the
top-3 selector among five indices with decreasing τ . When
τ is large (τ = 5.0), the relaxed selector approaches an
“uniform” selector: each index has equal value. While τ is
small (τ = 0.1), the relaxed selector approaches hard se-
lector as in (1). The order perserving property is straight-
forward: the larger the score is, the larger the output is. Fig-
ure 2 demonstrates this property for any temperature. The
permutation invariannce illustrates the symmetry of two
relaxations. The temperature scaling property shows the
effect of the temperature parameter is equivalent to scaling
the score vector.

Finally, we highlight some differences. Although two re-
laxations can produce smooth and differentiable operators
for the original hard operator, they manifest themselves in
different forms. The regularized relaxation can produce
an exact solution by solving a constrained optimization
problem with a specifically designed entropy function.
However, the perturbed relaxation, which produces a
Monte Carlo estimator as given in (8), differs from the
regularized ones. Moreover, the perturbed relaxation has
more flexibility than the regularized relaxation since the
choice of perturbation distribution could be any exponen-
tial family distribution. Although there is a connection
between distribution and entropy function in (13), it is hard
to derive the explicit form of Ω for a general distribution
Z. Another difference between the two relaxations lies in
the gradient. The gradient of regularized relaxation, which
is exact, can be derived by implicit differentiation of the
KKT condition. By contrast, the gradient of perturbed
relaxation can only be approximated by random samples.
One first draws i.i.d samples from the distribution Z and
computes the Monte Carlo estimator as (9). The perturbed
relaxation gradient is simple and easy to implement.
However, it is also time-consuming to compute the Monte
Carlo estimator whenever the dimension is high.

5 APPLICATION

In this section, we carry out experiments on two relaxations
on two tasks: the maximum entropy sampling problem and
the feature selection problem. We have made the code for

our algorithm and experiments available on a public repos-
itory1

5.1 Maximum Entropy Sampling Problem

Maximum entropy sampling problem (MESP), which aims
to select the most informative submatrix, has wide appli-
cations in meteorology, environmental statistics, and sta-
tistical geology. A typical example of MESP comes from
spatial statistics: it aims to select s locations from which to
collect the consequent data with data obtained from time-
series observations of n environmental locations.

MESP can be defined as follows. Let C be a n×n positive
semidefinite matrix. The goal is to select a k × k minor to
maximize its logarithm of determinant. Formally,

` := max
{

ldetC[S, S] : S ⊂ [N ], |S| = k
}
, (14)

where ldet denotes natural logarithm of the determinant
and C[S, S] denotes a principal submatrix of C having row
and column index S. It is notable that the “entropy” from
MESP represents the logarithm of the determinant of the
submatrix, which is different from the “entropy” in regu-
larized Top-k which refers to H(y).

Maximum entropy sampling problem is proved to be NP-
hard (Ko et al., 1995). It is impractical to explicitly list all
elements of [N ] even if n and k are of moderate size. For
example, for n = 90 and k = 40, it has around 6 × 1025

possibilities in total. The optimal solution to MESP re-
quires the branch-and-bound method. Therefore, it is time-
consuming to solve an MESP problem to optimality, even
of moderate size. For instance, it takes 52.04 hours to opti-
mality for n = 90 and k = 40 (Anstreicher, 2020). There-
fore, deriving an efficient bound for MESP is of great im-
portance.

It is not straightforward to construct a relaxation for MESP
from (14). Fortunately, Anstreicher (2020) proposes an
identity which can be utilized to directly construct a relax-
ation for MESP.

Lemma 2 (Anstreicher (2020)). For a subset S ⊂ [N ], let
C be a positive semidefinite matrix and y = [y1, . . . , yn]>,
where yi = 1, if i ∈ S, and yi = 0, if i ∈ [N ]\S. Then

2 ldetC[S, S] = ldet
(
C Diag(y)C + I −Diag(y)

)
.

(15)

We can construct a relaxation for MESP by leveraging
identity (15). Combining two relaxations of subset selec-
tion, our objective becomes to maximize:

`(θ) =
1

2
ldet

(
C Diag(yR(θ))C + I −Diag(yR(θ))

)
,

1Code available at: https://github.com/xqsun4/subset-selction
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where yR(θ) ∈ {yH(θ), yZ(θ)}. We present the pseu-
docode for regularized relaxation MESP as Algorithm 1
and perturbed relaxation MESP as Algorithm 2 .

Algorithm 1 Maximum Entropy Sampling with Regular-
ized Relaxation

Input: C
Ouput: S
θ0 ← 000; . initialize θ
ŷ(θ0)← (3);
while 1 ≤ t ≤ T do

`(θt)← ldet
(
C Diag(ŷ)C + I −Diag(ŷ)

)
;

θt+1 ← θt + α∇`(θt);
ŷ(θt+1)← (3);

end while
Return: S = top-k(θ). . return index

Algorithm 2 Maximum Entropy Sampling with Perturbed
Relaxation

Input: C
Ouput: S
θ0 ← 000; . initialize θ
draws samples {zi}Mi=1

i.i.d∼ Gumbel(0, 1);
ŷ(θ0)← (8);
while 1 ≤ t ≤ T do

`(θt)← ldet
(
C Diag(ŷ)C + I −Diag(ŷ)

)
;

θt+1 ← θt + α∇`(θt);
draws samples {zi}Mi=1

i.i.d∼ Gumbel(0, 1);
ŷ(θt+1)← (8);

end while
Return: S = top-k(θ). . return index

We evaluate two algorithms on canonical datasets from the
MESP literature with dimensions of n = 90 and n = 124.
Two other sampling methods (Li and Xie, 2020) 2 are
compared and the results are listed on Table 1 and Table
2. The optimal solution is obtained by the branch-and-
bound method (Anstreicher, 2020). Our proposed meth-
ods achieve competitive results where they are slightly bet-
ter than sampling method and slightly inferior to the lo-
cal search method. However, these sampling methods de-
pend on either spectral decomposition or Cholesky factor-
ization, rather than an end-to-end manner. More details can
be found in Appendix.

5.2 Feature Selection

Feature selection aims to identify a subset of data with the
most informative information to achieve dimensionality re-
duction. Balın et al. (2019) proposes Concrete Autoencoder
(CAE), which ia an end-to-end differentiable selection se-

2https://github.com/yongchunli-13/Approximation-
Algorithms-for-MESP

Table 1: Maximum entropy sampling problem with n =
90.

k Optimality Sampling Local
Search

Regularized Perturbed

10 58.532 58.521 58.532 57.882 57.882

20 111.482 111.207 111.482 110.885 110.885

30 161.539 160.884 161.539 161.285 161.11

40 209.969 208.757 209.958 209.403 208.943

50 257.16 255.736 257.154 256.715 256.821

60 303.019 301.474 303.008 302.498 301.782

70 347.471 345.861 347.453 347.071 345.435

80 389.997 389.002 389.997 389.926 389.411

Table 2: Maximum entropy sampling problem with n =
124.

k Optimality Sampling Local
Search

Regularized Perturbed

20 77.827 77.726 77.826 77.106 77.106

30 106.7 105.843 106.7 105.95 105.95

40 131.055 128.988 131.055 129.832 129.832

50 149.498 145.831 149.498 148.272 148.428

60 164.012 157.955 163.916 160.545 159.773

70 172.528 165.816 172.528 167.288 166.36

80 175.091 167.898 175.091 166.201 167.147

90 171.262 160.425 171.262 170.008 160.304

100 162.865 155.592 162.865 153.483 151.976

lection framework. It utilizes the reparametrization of Con-
crete distribution (Jang et al., 2017; Maddison et al., 2017).
We implement two relaxations on the same feature selec-
tion structure and compare the performance of the two re-
laxations with that of the concrete layer.

Figure 3: The model architecture of {Concrete, Perturbed,
Regularized} Autoencoder.
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Figure 4: A visualization of MNIST (n = 784) feature selection with k = 50. The plots in the first row is original images
of handwritten digits from zero to nine; the second (third, fourth) row plots the selected pixels and overlaped pixels for
Concrete (Perturbed, Regularized) Autoencoder.

Table 3: Mean value of MNIST (n = 784) feature selection with k = 50.

criteria Lap AEFS UDFS MCFS PFA CAE RAE PAE

NMI (↑) 0.412 0.38 0.288 0.414 0.429 0.492 0.445 0.457

ACC (↑) 0.412 0.479 0.349 0.46 0.484 0.523 0.529 0.535

MSELR (↓) 0.072 0.068 0.077 0.064 0.049 0.024 0.022 0.022

MSE(↓) 0.176 0.122 0.185 0.138 0.086 0.057 0.021 0.021

ClASS (↑) 0.412 0.476 0.382 0.462 0.498 0.5 0.527 0.531

CLASSDT (↑) 0.62 0.785 0.648 0.801 0.848 0.894 0.911 0.91

The CAE employs an encoder-decoder architecture where
the encoder is concrete selector layer and the decoder is
used to reconstruct input via selected feature. Analoguesly,
we propose Perturbed Autoencoder (PAE) and Regularized
Autoencoder (RAE) which replace the concrete layer with
perturbed relaxation and regularized relaxation. All subset
selection layers are differentiable and can be incorporated
into the end-to-end learning framework. We would like to
optimize

arg min
θ,φ

E
[ ∥∥fφ(XS)−X

∥∥
F

]
, where XS = gθ(X).

The reconstruction error is designed as the Forbenius norm
between the inputs and the outputs. We adopt the Adam
optimizer with a learning rate of 10−3. Besides, the same
annealing schedule as Balın et al. (2019) for temperature
parameter is adopted. The temeperature at epoch b is
τ(b) = τ0(τB/τ0)b/B , where τB is high temperature at
beginning of training and τ0 is the lower bound of temper-
ature. Here, the initial temperature τB is 10.0 and the final
temperature τ0 is 0.01. The dataset is randomly devided
into a 90-10 split to train and test the model. We evaluate
the models on differnet criteria: normalized mutual infor-
mation (NMI) (Li et al., 2017); accuracy by K-means clus-
tering (ACC) (Li et al., 2017); MSE by linear regression

(MSELR); MSE by MLP (MSE); accuracy of the k-nearest
neighbors classifier (CLASS); accuracy of extremely ran-
domized trees classifier (CLASSDT) Geurts et al. (2006).

From a theoretical pointview, the concrete distribution can
be treated as the stochastic relaxation of corresponding per-
turbed top-1 selector (namely, the Gumbel-Max trick) or
regularized top-1 selector (namely, softmax operator). See
Figure 3 for the architecture of Concrete Autoencoder.

To manifest the capability of our relaxation selector, we ap-
ply the proposed methods to the MNIST dataset and test
their performance. First, we run Concrete 3, Perturbed,
Regularized} Autoencoder to select ex ante relaxed fea-
tures . Then, an ex post hard selector is implemented. A
visualization of the result is shown in Figure 4 . We com-
pare our models with Lap (He et al., 2005), PFA (Lu et al.,
2007), MCFS (Cai et al., 2010), UDFS (Yang et al., 2011),
AEFS (Han et al., 2018)and CAE (Balın et al., 2019). We
evaluate the informativeness of subsets extracted by these
methods as well as other benchmarks. We repeat the ex-
periments ten times and take the average results. Table 3
shows that our proposed methods outperform benchmarks.
More details can be found in Appendix.

3https://github.com/mfbalin/Concrete-Autoencoders
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6 CONCLUSION

In this paper, we build a generic connection between ex-
isting differentiable relaxation methods, which are based
on the regularization method and the perturbation method.
This connection also provides a probabilistic interpretation
for regularized relaxations. We first introduce two relax-
ations on the maximum entropy sampling problem and test
their performance with the Gumbel-Softmax trick in the
feature selection problem.

As far as we know, there are two promising directions to
explore. The connection we build is based on a subset
selection problem. One possible direction could extend the
idea to other strutural models. We first try these relaxation
methods with MESP, which is an important combinatorial
problem. However, these methods can only produce
approximate results without any optimality guarantee.
Another direction could integrate these relaxations to
construct a more efficient branch-and-bound method to
optimality.
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Mathieu Blondel, André FT Martins, and Vlad Niculae.
Learning with fenchel-young losses. Journal of Machine
Learning Research, 21(35):1–69, 2020.

Mathieu Blondel, Quentin Berthet, Marco Cuturi, Roy
Frostig, Stephan Hoyer, Felipe Llinares-López, Fabian
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Perturbation in Differentiable Subset Selection

A Technical Results

A.1 Proof of Proposition 1

Proof. Without loss of generality, we set τ = 1 (otherwise, let θ′ = θ/τ ). We note

F (θ) := max
y∈conv(M)

〈θ, y〉 −H(y) (1)

It is maximized at ∇θF (θ) = yH(θ) . By the definition of Fenchel-Rockafellar duality (see Wainwright et al. (2008),
Appendix A) and Ω(θ) := E[ maxy∈M〈θ + Z, y〉 ] ,

Ω(θ) = max
y∈conv(M)

〈θ, y〉 − Ω?(y) = max
y∈conv(M)

〈θ, y〉 −H(y) + C = F (θ) + C (2)

Because the expectation has a unique maximizer with probability one, we can swap the expectation and gradient (Bertsekas,
1973)

yZ(θ) = E[ arg max
y∈M

〈θ + Z, y〉 ] = ∇Ω(θ) = ∇θF (θ) = yH(θ) (3)

The inverse direction is just straightforward. Since yZ(θ) = ∇Ω(θ), yH(θ) = ∇θF (θ), and

yZ(θ) = yH(θ), ∀θ ∈ Θ, (4)

then

H = Ω? + C. (5)

A.2 Conjugate Derivation

Lemma 1. Let Z be the standard logistic distribution, then

E[ max(θ + Z, 0) ] = log(1 + exp(θ)). (6)

Proof. X = θ + Z is also logistic distribution with location µ = θ and its CDF is

F (x) =
1

1 + exp(−(x− θ)) , (7)

then
∫
xdF (x) =

x exp(−(x− θ))
1 + exp(−(x− θ)) − log(1 + exp(−(x− θ))) + C.

E[ max(θ + Z, 0) ] =

∫ ∞

0

xdF (x) = log(1 + exp(θ)). (8)
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Lemma 2. The Fenchel conjugate of Ω(θ) =
∑n
i=1 log(1 + exp(θi)) is

Ω?(x) =
n∑

i=1

xi log xi + (1− xi) log(1− xi). (9)

Proof. First, we consider the Fenchel conjugate of f(θ) = log(1 + exp(θ)). The Fenchel conjugate of f(θ) is defined as

f?(x) = sup
θ
〈x, θ〉 − f(θ). (10)

By the first order condition,

x− exp(θ)

1 + exp(θ)
= 0 =⇒ θ = log(x)− log(1− x) (11)

which indicates 0 < x < 1. Substituting into Eq. (10),

f?(x) = x log x+ (1− x) log(1− x) (12)

By applying the property of Fenchel conjugate of seperate functions, we obtain

Ω?(x) =

n∑

i=1

xi log xi + (1− xi) log(1− xi). (13)

This completes the proof.

A.3 Regularized Relaxation

This part introduces the derivation of maximizer of different regularized optimization problem.

Binary Entropy: H(y) =
∑n
i=1 yi log yi + (1 − yi) log(1 − yi). The binary entropy regularized optimization (BERO)

problem becomes

max 〈θ, y〉 −
(

n∑

i=1

yi log yi + (1− yi) log(1− yi)
)

s. t. 111>y = k,

0 ≤ yi ≤ 1,∀i = 1, . . . , n.

(BERO)

It is obvious that BERO is a convex and contrained optimization problem. The solution to BERO is:

yH(θ)i =
1

1 + exp(−θi − ν?)
(14)

where ν? satisfies:
n∑

i=1

1

1 + exp(−θi − ν?)
= k (15)

Negative Shannon Entropy: H(y) =
∑n
i=1 yi log yi. The relative entropy regularized optimization (RERO) problem is

as follows

max 〈θ, y〉 −
n∑

i=1

yi log yi

s. t. 111>y = k,

0 ≤ yi ≤ 1,∀i = 1, . . . , n.

(RERO)

The solution to the RERO is given by:

yH(θ)i = Π[0,1]

(
exp(θi − λ∗)

)
, i = 1, . . . , n. (16)

where Π[0,1](x) := min(max(0, x), 1) and λ∗ satisfies:
n∑

i=1

Π[0,1]

(
exp(θi − λ∗)

)
= k (17)



B Experimental Details

B.1 Maximum Entropy Sampling Problem

Maximum entropy sampling problem (MESP) has wide applications in meteorology, environmental statistics, and statis-
tical geology. For example, Figure 1 from Anstreicher (2020) illustrates the 90 temperature monitoring stations in the
Pacific Northwest of the United States. And the data from these 90 monitoring stations constitutes a 90× 90 non-singular
matrix. Another example is covariance matrices (n = 124) coming from an application to re-designing an environmental
monitoring network.

Figure 1: Locations of monitoring stations for matrix with n = 90 (Anstreicher, 2020)

Formally, MESP can be defined as follows. Let C be a n × n positive semidefinite matrix. The goal is to select a k × k
minor to maximize its logarithm of determinant. Formally,

`(C, k) := max
{

ldetC[S, S] : S ⊂ [N ], |S| = k
}
, (18)

Anstreicher (2020) proposes an identity which can be used to construct an upper bound, dubbed “Linx bound”. For a subset
S ⊂ [N ], let C be a positive semidefinite matrix, y = [y1, . . . , yn]>, yi = 1, if i ∈ S, and yi = 0, if i ∈ [N ]\S, then

2 ldetC[S, S] = ldet
(
C Diag(y)C + I −Diag(y)

)
. (19)

Moreover, it is also easy to check that
`(C, k) = `(γC, k)− k log γ,

where the scale factor γ > 0. Therefore, a scaled objective function is

`(θ) =
1

2
ldet

(
γC Diag(y)C + I −Diag(y)

)
− k

2
log γ. (20)

The optimal scale factor γ for relaxations depends on C and k. We propose a schedule γ = eak+b, where a = 0.057 and
b = −4.157.
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MESP with Regularized Relaxations. For regularized relaxation, we take the binary entropy H(y) =
∑n
i=1 yi log yi +

(1 − yi) log(1 − yi) as regularizer. The regularized optimizer is yH(θ)i = 1
1+exp(−θi−ν?) given in (14). We make use of

available implementation1 of LML (Amos et al., 2019).

MESP with Perturbed Relaxations. For perturbed relaxation, we take perturbed error as Gumbel distribution and ap-
proximate it by the Monte Carlo estimator

ŷZ(θ) =
1

M

M∑

i=1

ỹi(θ), (21)

where {zi}Mi=1
i.i.d∼ Gumbel(0, 1) and ỹi(θ) = arg maxy∈M〈θ + τzi, y〉. We take the available implementation 2 of

perturbed optimizer Blondel et al. (2020) and set the linear programming as top-k selector.

B.2 MNIST Feature Selection

Balın et al. (2019) proposes Concrete Autoencoder (CAE), which ia an end-to-end differentiable selection selection frame-
work. CAE employs an encoder-decoder architecture where the encoder is concrete selector layer and the decoder is used
to reconstruct input via selected feature.

Analogously, we propose Perturbed Autoencoder (PAE) and Regularized Autoencoder (RAE) which replace the concrete
layer with perturbed relaxation and regularized relaxation. All subset selection layers are differentiable and can be incor-
porated into the end-to-end learning framework. We would like to optimize

arg min
θ,φ

E
[ ∥∥fφ(XS)−X

∥∥
F

]
where XS = gθ(X)

The reconstruct network is designed to be MLP. The reconstruction error is designed as the Forbenius norm between the
inputs and the outputs. We adopt the Adam optimizer with a learning rate of 10−3. Besides, the same annealing schedule
as Balın et al. (2019) for temperature parameter is adopted. The temeperature at epoch b is τ(b) = τ0(τB/τ0)b/B , where
τB is high temperature at beginning of training and τ0 is the lower bound of temperature. Here, the initial temperature τB
is 10.0 and the final temperature τ0 is 0.01.

Figure 2: The model architecture of {Concrete, Perturbed, Regularized} Autoencoder.

The dataset is randomly devided into a 90-10 split to train and test the model. We evaluate the models on differnet criterias:
normalized mutual information (NMI) (Li et al., 2017); accuracy by K-means clustering (ACC) (Li et al., 2017); mean
squared error by linear regression (MSELR); mean squared error by MLP (MSE); accuracy of the k-nearest neighbors
classifier (CLASS); accuracy of extremely randomized trees classifier (CLASSDT) Geurts et al. (2006).

1https://github.com/locuslab/lml
2https://github.com/google-research/google-research/tree/master/perturbations


