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Abstract

In mixed linear regression, each observation
comes from one of L regression vectors (signals),
but we do not know which one. The goal is to
estimate the signals from the unlabeled observa-
tions. We propose a novel approximate message
passing (AMP) algorithm for estimation and rig-
orously characterize its performance in the high-
dimensional limit. This characterization is in
terms of a state evolution recursion, which al-
lows us to precisely compute performance mea-
sures such as the asymptotic mean-squared er-
ror. This can be used to tailor the AMP algo-
rithm to take advantage of any known structural
information about the signals. Using state evo-
lution, we derive an optimal choice of AMP ‘de-
noising’ functions that minimizes the estimation
error in each iteration. Numerical simulations are
provided to validate the theoretical results, and
show that AMP significantly outperforms other
estimators including spectral methods, expecta-
tion maximization, and alternating minimization.
Though our numerical results focus on mixed lin-
ear regression, the proposed AMP algorithm can
be applied to a broader class of models including
mixtures of generalized linear models and max-
affine regression.

1 INTRODUCTION

We consider the mixed linear regression problem where we
wish to estimate L signal vectors β(1), . . . , β(L) ∈ Rp from
unlabeled observations of each. Specifically, the compo-
nents of the observed vector Y := (Y1, . . . , Yn) are gener-
ated as:

Yi = ⟨Xi, β
(1)⟩ci1 + · · ·+ ⟨Xi, β

(L)⟩ciL + ϵi, i ∈ [n].
(1)
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Here Xi ∈ Rp is the ith feature vector, ϵi is a noise vari-
able, and ci1, . . . , ciL ∈ {0, 1} are binary-valued latent
variables such that

∑L
l=1 cil = 1, for i ∈ [n]. The nota-

tion ⟨·, ·⟩ denotes the Euclidean inner product. In words,
each observation comes from exactly one of the L signal
vectors (regressors), but we do not know which one.

The case of L = 1 is standard linear regression, which im-
plicitly assumes a homogeneous population, i.e., a single
regression vector captures the population characteristics of
the entire sample. However, this assumption may not be re-
alistic in some situations as the sample may contain several
sub-populations. Standard linear regression may provide
biased estimates in such situations when the population
heterogeneity is unobserved. The mixed linear regression
(MLR) model is more flexible as it allows for differences
in regressors across unobserved sub-populations. MLR has
been used for analyzing heterogenous data in a variety of
fields including biology, physics, and economics (McLach-
lan and Peel, 2004; Grün and Leisch, 2007; Li et al., 2019;
Devijver et al., 2020).

In the MLR model (1), a natural approach for estimating
β(1), . . . , β(L) from {Xi, Yi}ni=1 is via the global least-
squares estimator given by:

β̂(1), . . . , β̂(L)

= argmin
β(1),...,β(L)∈Rp

c1,...,cL∈{0,1}n∑L
l=1 cil=1, i∈[n]

n∑
i=1

(
Yi −

L∑
l=1

⟨Xi, β
(l)⟩ cil

)2

. (2)

However, this optimization problem is non-convex, and
computing the global minimum is known to be NP-hard (Yi
et al., 2014). A range of alternative approaches has been
proposed including estimators based on: spectral methods
(Chaganty and Liang, 2013; Yi et al., 2014); expectation-
maximization (EM) (Faria and Soromenho, 2010; Städler
et al., 2010; Zhang et al., 2020); alternating minimization
(Yi et al., 2014; Shen and Sanghavi, 2019; Ghosh and Kan-
nan, 2020); convex relaxation (Chen et al., 2014); moment
descent methods (Li and Liang, 2018; Chen et al., 2020);
and tractable non-convex objective functions (Zhong et al.,
2016; Barik and Honorio, 2022). Most of these techniques
are generic, and while some can incorporate certain con-
straints like sparsity, they are not well-equipped to exploit
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specific structural information about β(1), . . . , β(L), such
as a known prior on the signals. Moreover, these methods
are suboptimal with respect to sample complexity: for ac-
curate recovery they require the number of observations n
to be at least of order p log p (Yi et al., 2014; Li and Liang,
2018; Chen et al., 2020). In contrast, here we consider the
high-dimensional regime where n is proportional to p and
provide exact asymptotics for the performance of the pro-
posed estimator.

Approximate message passing (AMP) is a family of it-
erative algorithms which can be tailored to take advan-
tage of structural information about the signals and the
model, e.g., a known prior on the signal vector or on the
proportion of observations that come from each signal.
AMP algorithms were first proposed for the standard lin-
ear model (Kabashima, 2003; Bayati and Montanari, 2011;
Donoho et al., 2009; Krzakala et al., 2012; Maleki et al.,
2013), but have since been applied to a range of statis-
tical problems, including estimation in generalized linear
models (Rangan, 2011; Schniter and Rangan, 2014; Barbier
et al., 2019; Ma et al., 2019; Sur and Candès, 2019; Mail-
lard et al., 2020; Mondelli and Venkataramanan, 2021) and
low-rank matrix estimation (Deshpande and Montanari,
2014; Fletcher and Rangan, 2018; Kabashima et al., 2016;
Lesieur et al., 2017; Montanari and Venkataramanan, 2021;
Barbier et al., 2020). In all these settings, under suitable
model assumptions the performance of AMP in the high-
dimensional limit is characterized by a succinct determin-
istic recursion called state evolution. The state evolution
characterization has been used to show that AMP achieves
Bayes-optimal performance for some models (Deshpande
and Montanari, 2014; Donoho et al., 2013; Montanari and
Venkataramanan, 2021; Barbier et al., 2019), and a con-
jecture from statistical physics states that AMP is optimal
among polynomial-time algorithms for a wide range of sta-
tistical estimation problems.

In this work, we design and analyze an AMP algorithm
for a general regression model, of which mixed linear re-
gression is a special case. Define the signal matrix B :=
(β(1), . . . , β(L)) ∈ Rp×L, and consider the problem of esti-
mating B from an observed matrix Y := (Y1, . . . , Yn)

⊤ ∈
Rn×Lout , whose ith row Yi is generated as:

Yi = q(B⊤Xi , Ψi) ∈ RLout i ∈ [n]. (3)

Here Ψ ∈ Rn×LΨ is a matrix of unobserved auxiliary vari-
ables (with Ψi its ith row), and q : RL ×RLΨ → RLout is a
known function. The model (3) can be viewed as a general-
ized linear model with matrix-valued signals and auxiliary
variables, so we call it the matrix GLM.

The MLR model (1) is a special case of the matrix GLM,
obtained by taking Ψi = (ci,1, . . . , ci,L, ϵi). In addi-
tion, (3) includes other popular latent variable models in-
cluding mixtures of generalized linear models (Khalili and
Chen, 2007; Sedghi et al., 2016) and max-affine regression

(Ghosh et al., 2022). The AMP and the theoretical results in
Section 3 are presented for the matrix GLM, but we focus
on mixed linear regression for the numerical simulations.
This allows us to easily compare with other approaches
such as spectral methods and the EM algorithm, and high-
light the interesting features of the proposed AMP.

Main contributions. We propose an AMP algorithm for
the matrix GLM (3), under the assumption that the features
{Xi}i∈[n] are i.i.d. Gaussian. Our first technical contribu-
tion is a state evolution result for the AMP algorithm (The-
orem 1), which gives a rigorous characterization of its per-
formance in the high-dimensional limit as n, p → ∞ with
a fixed ratio δ = n/p, for a constant δ > 0. This allows
us to compute exact asymptotic formulas for performance
measures such as the mean-squared error (MSE) and the
normalized correlation between the signals and their es-
timates. The AMP algorithm uses a pair of ‘denoising’
functions to produce updated signal estimates in each iter-
ation. The accuracy of these estimates can be tracked using
a signal-to-noise ratio defined in terms of the state evolu-
tion parameters. Our second contribution (Proposition 2)
is to derive an optimal choice of denoising functions that
maximizes this signal-to-noise ratio. The optimal choice
for one of the these functions depends on the prior on the
signals, while the other depends only on the output func-
tion q(·, ·) in (3). We present numerical simulation results
for the mixed linear regression setting, and show that AMP
significantly outperforms other estimators, including those
based on spectral methods, alternating minimization, and
expectation maximization.

The state evolution performance characterization in The-
orem 1 is proved using a change of variables that maps
the proposed algorithm to an abstract AMP recursion with
matrix-valued iterates. A state evolution characterization
for this abstract AMP was established by Javanmard and
Montanari (2013); this result is translated via the change
of variables to obtain the state evolution characterization
for the proposed AMP. Though our AMP algorithm and
its analysis assume i.i.d. Gaussian features, we expect that
they can be extended to a much broader class of i.i.d. de-
signs using the recent universality results of Wang et al.
(2022). Another exciting direction for future work is to
generalize the AMP algorithm and its state evolution to the
mixed regression models with rotationally invariant design
matrices. This can be done via a reduction to an abstract
AMP recursion for rotationally invariant matrices, similar
to the ones studied in (Fan, 2022) and Zhong et al. (2021).

Other related work. Mixtures of generalized linear
models have been studied in machine learning under the
name ‘hierarchical mixtures of experts’, see e.g., (Jordan
and Jacobs, 1994). Bayesian methods for inference in this
model were investigated by Peng et al. (1996) and Water-
house et al. (1995), and Bayesian inference for the special
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case of MLR was analyzed by Viele and Tong (2002). Bal-
akrishnan et al. (2017) and Klusowski et al. (2019) obtained
statistical guarantees on the performance of the EM algo-
rithm for a class of problems, including the special case of
symmetric mixed linear regression where β(1) = −β(2).
Variants of the EM algorithm for symmetric MLR in the
high-dimensional setting (with sparse signals) were ana-
lyzed by Wang et al. (2015),Yi and Caramanis (2015), and
Zhu et al. (2017). Fan et al. (2018) obtained minimax lower
bounds for a class of computationally feasible algorithms
for symmetric MLR.

Kong et al. (2020) studied MLR as a canonical example of
meta-learning. They consider the setting where the number
of signals (L) is large, and derive conditions under which a
large number of signals with a few observations can com-
pensate for the lack of signals with abundantly many ob-
servations. The special case of MLR with sparse signals
was studied by Krishnamurthy et al. (2019) and Pal et al.
(2021). Pal et al. (2022) analyzed the prediction error of
MLR in the non-realizable setting, where no generative
model is assumed for the data. Chandrasekher et al. (2021)
recently analyzed the performance of a class of iterative al-
gorithms (not including AMP) for mixtures of GLMs. They
provide a sharp characterization of the per-iteration error
with sample-splitting in the regime n ∼ p polylog(p), as-
suming a Gaussian design and a random initialization.

2 PRELIMINARIES

Notation. We write [n] for the set {1, . . . , n}. All vectors
(even rows of matrices) are assumed to be column vectors
unless otherwise stated. Matrices are denoted by upper case
letters, and given a matrix A, we write Ai for its ith row.
The notation M ⪰ 0 denotes that the square matrix M is
positive semidefinite. We write Ip for the p × p identity
matrix. For r ∈ [1,∞), we write ∥x∥r for the ℓr-norm of
x = (x1, . . . , xn) ∈ Rn, so that ∥x∥r =

(∑n
i=1 |xi|r

)1/r
.

Given random variables U, V , we write U
d
= V to denote

equality in distribution.

Complete convergence. The asymptotic results in this
paper are stated in terms of complete convergence (Hsu
and Robbins, 1947), (Feng et al., 2022, Sec. 1.1). This
is a stronger mode of stochastic convergence than almost
sure convergence, and is denoted using the symbol c→. Let
{Xn} be a sequence of random elements taking values in a
Euclidean space E. We say that Xn converges completely
to a deterministic limit x ∈ E, and write Xn

c→ x, if
Yn → x almost surely for any sequence of E-valued ran-
dom elements {Yn} with Yn

d
= Xn for all n.

Wasserstein distances. For D ∈ N, let PD(r) be the
set of all Borel probability measures on RD with fi-
nite rth-moment. That is, any P ∈ PD(r) satisfies

∫
RD ∥x∥r2dP (x) < ∞. For P,Q ∈ PD(r), the r-

Wasserstein distance between P and Q is defined by
dr(P,Q) = inf(X,Y ) E[∥X − Y ∥r2]1/r, where the infimum
is taken over all pairs of random vectors (X,Y ) defined on
a common probability space with X ∼ P and Y ∼ Q.

Model assumptions. In the model (3), each feature vec-
tor Xi ∈ Rp is assumed to have independent Gaussian
entries with zero mean and variance 1/n, i.e., Xi ∼i.i.d.

N (0, Ip/n). The n × p design matrix X is formed
by stacking the feature vectors X1, . . . , Xn, i.e., X =
[X1, . . . , Xn]

⊤. The matrix X is independent of both the
signal matrix B = (β(1), . . . , β(L)) ∈ Rp×L and the auxil-
iary variable matrix Ψ ∈ Rn×LΨ .

As p → ∞, we assume that n/p = δ, for some con-
stant δ > 0. As p → ∞, the empirical distributions of
the rows of the signal matrix and the auxiliary variable
matrix are assumed to converge in Wasserstein distance to
well-defined limits. More precisely, for some r ∈ [2,∞),
there exist random variables B̄ ∼ PB̄ (where B̄ ∈ RL)
and Ψ̄ ∼ PΨ̄ (where Ψ̄ ∈ RLΨ ) with E[B̄⊤B̄] > 0 and
E
[∑L

l=1 |B̄l|r
]
,E
[∑LΨ

l=1 |Ψ̄l|r
]
< ∞, such that writing

νp(B) and νn(Ψ) for the empirical distributions of the rows
of B and Ψ respectively, we have dr(νp(B), PB̄)

c→ 0 and
dr(νn(Ψ), PΨ̄)

c→ 0.

3 AMP FOR THE MATRIX-GLM

Consider the task of estimating the signal matrix B given
{Xi, Yi}i∈[n], generated according to (3).

Algorithm. In each iteration k ≥ 1, the AMP algorithm
iteratively produces estimates B̂k and Θk of B ∈ Rp×L

and Θ := XB ∈ Rn×L, respectively. Starting with an
initializer B̂0 ∈ Rp×L and defining R̂−1 := 0 ∈ Rn×L,
for k ≥ 0 the algorithm computes:

Θk = XB̂k − R̂k−1(F k)⊤, R̂k = gk(Θ
k, Y ), (4)

Bk+1 = X⊤R̂k − B̂k(Ck)⊤, B̂k+1 = fk+1(B
k+1).

Here the functions gk : RL × RLout → RL and fk+1 :
RL → RL act row-wise on their matrix inputs, and the
matrices Ck, F k+1 ∈ RL×L are defined as

Ck =
1

n

n∑
i=1

g′k(Θ
k
i , Yi), F k+1 =

1

n

p∑
j=1

f ′
k+1(B

k+1
j ),

where g′k, f
′
k+1 denote the Jacobians of gk, fk+1, respec-

tively, with respect to their first arguments. We note that
the time complexity of each iteration of (4) is O(npL).

State evolution. The “memory” terms −R̂k−1(F k)⊤

and −B̂k(Ck)⊤ in (4) play a crucial role in debiasing the
iterates Θk and Bk+1, ensuring that their joint empirical
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distributions are accurately captured by state evolution in
the high-dimensional limit. Theorem 1 below shows that
for each k ≥ 1, the empirical distribution of the rows of Bk

converges to the distribution of Mk
BB̄ + Gk

B ∈ RL, where
Gk

B ∼ N (0,Tk
B) is independent of B̄, the random variable

representing the limiting distribution of the rows of the sig-
nal matrix B. The deterministic matrices Mk

B ,T
k
B ∈ RL×L

are recursively defined below. The result implies that the
empirical distribution of the rows of B̂k converges to the
distribution of fk(Mk

BB̄ +Gk
B). Thus fk can be viewed as

a denoising function that can be tailored to take advantage
of the prior on B̄. Theorem 1 also shows that the empirical
distribution of the rows of Θk converges to the distribution
of Mk

ΘZ + Gk
Θ ∈ RL, where Z ∼ N (0, 1

δE[B̄B̄⊤]) and
Gk

Θ ∼ N (0,Tk
Θ) are independent.

We now describe the state evolution recursion defining the
matrices Mk

Θ,T
k
Θ,M

k
B ,T

k
B ∈ RL×L. Recalling that the

observation Y is generated via the function q according to
(3), it is convenient to rewrite gk in (4) in terms of another
function hk : RL × RL × RLΨ → RL defined as:

hk(z, u, v) := gk(u, q(z, v)). (5)

Then, for k ≥ 0, given Σk ∈ R2L×2L, take
(
Z
Zk

)
∼

N (0,Σk) to be independent of Ψ̄ ∼ PΨ̄ and compute:

Mk+1
B = E[∂Zhk(Z,Z

k, Ψ̄)], (6)

Tk+1
B = E[hk(Z,Z

k, Ψ̄)hk(Z,Z
k, Ψ̄)⊤], (7)

Σk+1 =

(
Σk+1

(11) Σk+1
(12)

Σk+1
(21) Σk+1

(22)

)
, (8)

where the four L×L matrices constituting Σk+1 ∈ R2L×2L

are given by:

Σk+1
(11) =

1

δ
E[B̄B̄⊤], (9)

Σk+1
(12) =

(
Σk+1

(21)

)⊤
=

1

δ
E[B̄fk+1(M

k+1
B B̄ +Gk+1

B )⊤],

Σk+1
(22) =

1

δ
E[fk+1(M

k+1
B B̄ +Gk+1

B )fk+1(M
k+1
B B̄ +Gk+1

B )⊤].

Here we take Gk+1
B ∼ N (0,Tk+1

B ) to be independent of
B̄ ∼ PB̄ . Note that ∂Zhk denotes the partial derivative
(Jacobian) of hk with respect to its first argument Z ∈ RL,
so it is an L× L matrix. The state evolution recursion (6)-
(8) is initialized with Σ0 ∈ R2L×2L defined below in (13).

For
(
Z
Zk

)
∼ N (0,Σk), using standard properties of

Gaussian random vectors, we have

(Z,Zk, Ψ̄)
d
= (Z,Mk

ΘZ +Gk
Θ, Ψ̄), (10)

where Gk
Θ ∼ N (0,Tk

Θ) is independent of Z, with

Mk
Θ = Σk

(21)

(
Σk

(11)

)−1
, (11)

Tk
Θ = Σk

(22) − Σk
(21)

(
Σk

(11)

)−1
Σk

(12). (12)

Main result. We begin with two assumptions required
for the main result. The first is on the AMP initializer
B̂0 ∈ Rp×L, and the second is on the functions gk, fk+1

used to define the AMP in (4).

(A1) There exists Σ0 ∈ RL×L and c0 ∈ R such that as
n, p → ∞ (with n/p → δ), we have

1

n

(
B⊤B B⊤B̂0

(B̂0)⊤B (B̂0)⊤B̂0

)
c→ Σ0, (13)

1

p

p∑
j=1

L∑
l=1

|B̂0
jl|r

c→ c0.

Here r ∈ [2,∞) is the same as that used for the as-
sumptions on the signal matrix at the end of Section 2.
Furthermore, there exists a Lipschitz F0 : RL → RL

such that 1
p (B̂

0)⊤ϕ(B)
c→ E[F0(B̄)ϕ(B̄)⊤] and Σ

(22)
0 −

E[F0(B̄)F0(B̄)⊤] is positive semi-definite for all Lipschitz
ϕ : RL → RL.

(A2) For k ≥ 0, the function fk+1 is non-constant and Lip-
schitz on RL, and hk defined in (5) is Lipschitz on R2L+LΨ

with PΨ̄({v : (z, u) → hk(z, u, v) is a non-constant}) >
0. Furthermore, f ′

k+1 is continuous Lebesgue almost ev-
erywhere, and writing Dk ⊆ RL+LΨ for the set of discon-
tinuities of g′k, we have P[(Zk, Ȳ ) ∈ Dk] = 0.

Assumptions (A1) and (A2) are similar to those required
for AMP initialization in (non-mixed) generalized linear
models (Feng et al., 2022, Section 4). Moreover, (A1) is
implied by the assumptions on the signal matrix if an ini-
tialization B̂0 is chosen to be a scaled version of the all
ones matrix.

The result is stated in terms of pseudo-Lipschitz test func-
tions. Let PLm(r, C) be the set of functions ϕ : Rm → R
such that |ϕ(x)−ϕ(y)| ≤ C(1+∥x∥r−1

2 +∥y∥r−1
2 )∥x−y∥2

for all x, y ∈ Rm. A function ϕ ∈ PLm(r, C) is called
pseudo-Lipschitz of order r.

Theorem 1. Consider the AMP in (4) for the general mixed
model in (3). Suppose that the model assumptions in Sec-
tion 2 as well as (A1) and (A2) are satisfied, and that T1

B
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is positive definite. Then for each k ≥ 0, we have

sup
ϕ∈PL2L(r,1)

∣∣∣1
p

p∑
j=1

ϕ(Bk+1
j , Bj)

− E[ϕ(Mk+1
B B̄ +Gk+1

B , B̄)]
∣∣∣ c→ 0, (14)

sup
ϕ∈PL2L+LΨ

(r,1)

∣∣∣ 1
n

n∑
i=1

ϕ(Θk
i ,Θi,Ψi)

− E[ϕ(Mk
Θ Z +Gk

Θ, Z, Ψ̄)]
∣∣∣ c→ 0, (15)

as n, p → ∞ with n/p → δ, where Θi = B⊤Xi for 1 ≤
i ≤ n. In the above, Gk+1

B ∼ N (0,Tk+1
B ) is independent

of B̄, and Gk
Θ ∼ N (0,Tk

Θ) is independent of (Z, Ψ̄).

The proof of the theorem is given in Section 5.1.

The result (14) is equivalent to the statement that the joint
empirical distributions of the rows of (Bk+1, B) converges
completely in r-Wasserstein distance to the joint distribu-
tion of (Mk+1

B B̄+Gk+1
B , B̄); see (Feng et al., 2022, Corol-

lary 7.21 ). An analogous statement holds for (15).

Performance measures. Theorem 1 allows us to com-
pute the limiting values of performance measures such as
the mean-squared error (MSE), and the normalized correla-
tion between each signal and its AMP estimate. For k ≥ 1,
writing β̂(ℓ),k for the ℓth column of the AMP iterate B̂k,
we have B̂k =

(
β̂(1),k, . . . , β̂(L),k

)
. Note that β̂(ℓ),k is the

estimate of the signal β(ℓ) after k iterations. We also define
the shorthand B̄k := Mk

BB̄ + GB
k . Then Theorem 1 im-

plies that the normalized squared correlation between each
signal and its AMP estimate after k iterations converges as:

⟨β̂(ℓ),k, β(ℓ)⟩2

∥β̂(ℓ),k∥22∥β(ℓ)∥22
c→ (E[fk,ℓ(B̄k)B̄ℓ])

2

E[fk,ℓ(B̄k)2]E[B̄2
ℓ ]
, ℓ ∈ [L]. (16)

Here fk,ℓ is the ℓth component of the function fk : RL →
RL, and B̄ℓ is the ℓth component of B̄ ∈ RL. Similarly,
the MSE of the AMP estimate after k iterations converges
as:

∥β(ℓ) − β̂(ℓ),k∥22
p

c→ E
[(
B̄ℓ − fk,ℓ(B̄

k)
)2]

, ℓ ∈ [L].

(17)

3.1 Choosing the Functions fk and gk

Recalling that the empirical distributions of the rows of
Θk and Bk+1 converge to the laws of Mk

Θ Z + Gk
Θ and

Mk+1
B B̄ + Gk+1

B , respectively, we define the random vec-
tors:

Z̃k := Z +
(
Mk

Θ

)−1
Gk

Θ,

B̃k+1 := B̄ +
(
Mk+1

B

)−1
Gk+1

B .
(18)

(If the inverse doesn’t exist we premultiply by the pseu-
doinverse.) Since Gk+1

B ∼ N (0,Tk+1
B ) and Gk

Θ ∼
N (0,Tk

Θ), the effective noise covariance matrices are:

cov(Z̃k − Z) =
(
Mk

Θ

)−1
Tk

Θ

((
Mk

Θ

)−1
)⊤

=: Nk
Θ,

cov(B̃k+1 − B̄) =
(
Mk+1

B

)−1
Tk+1

B

((
Mk+1

B

)−1
)⊤

=: Nk+1
B . (19)

From (12), we observe that Mk
Θ,T

k
Θ are both determined

by Σk, which in turn is determined by the choice of fk
(from (9)). Similarly, from (5)-(6), Mk+1

B , Tk+1
B are de-

termined by gk. A natural objective is to choose fk and
gk to minimize the trace of the effective noise covariance
matrices Nk

Θ and Nk+1
B in (19). We can interpret the quan-

tities Tr(Nk
Θ) and Tr(Nk+1

B ) as the effective noise vari-
ances for estimating Z, B̄ from Z̃k, B̃k+1, respectively. In
the special case where there is only one signal, minimiz-
ing these effective noise variances is equivalent to max-
imizing the scalar signal-to-noise ratios (Mk

Θ)
2/Tk

Θ and
(Mk+1

B )2/Tk+1
B , respectively, which is achieved by the

Bayes-optimal AMP for generalized linear models (Ran-
gan, 2011; Feng et al., 2022).

Assuming that the signal prior PB̄ and the distribution of
auxiliary variables PΨ are known, the following proposi-
tion gives optimal choices for fk, gk.

Proposition 2. Let k ≥ 1. Then:

1) Given Mk
B , Tk

B , the quantity Tr(Nk
Θ) is minimized when

fk = f∗
k , where

f∗
k (s) = E[B̄ | Mk

BB̄ +Gk
B = s], (20)

where Gk
B ∼ N (0,Tk

B) and B̄ ∼ PB̄ are independent.

2) Given Mk
Θ, Tk

Θ, the quantity Tr(Nk+1
B ) is minimized

when gk = g∗k, where

g∗k(u, y) =Cov[Z | Zk = u]−1
(
E[Z | Zk = u, Ȳ = y]

− E[Z | Zk = u]
)
. (21)

Here
(
Z
Zk

)
∼ N (0,Σk) and Ȳ = q(Z, Ψ̄), with Ψ̄ ∼ PΨ̄

independent of Z.

The proof is given in Section 5.2.

4 NUMERICAL SIMULATIONS

We first focus on the MLR model (1) with two signals,
where for i ∈ [n],

Yi = ⟨Xi, β
(1)⟩ci + ⟨Xi, β

(2)⟩(1− ci) + ϵi. (22)

We take ci ∼i.i.d. Bernoulli(α) for α ∈ (0, 1), ϵi ∼i.i.d.

N (0, σ2), and Xi ∼i.i.d. N (0, Ip/n), for i ∈ [n]. We set
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Figure 1: Gaussian prior with ρ = 0: normalized squared
correlation vs. δ for various noise levels σ, with α = 0.7.
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Figure 2: Gaussian prior with different values of signal
covariance ρ: Normalized squared correlation vs. δ, with
α = 0.7, σ = 0.

the signal dimension p = 500 and vary the value of n in
our experiments.

The AMP algorithm in (4) is implemented with gk = g∗k,
the optimal choice given by (21). For the function fk, we
use the Bayes-optimal f∗

k in (20) unless stated otherwise.
The performance in all the plots is measured via the nor-
malized squared correlation between the AMP estimate and
the signal (see (16)). Each point on the plots is obtained
from 10 independent runs, where in each run, AMP is exe-
cuted for 10 iterations. We report the average and error bars
at 1 standard deviation of the final iteration. Additional im-
plementation details are given in Appendix A.

Gaussian prior. In Figures 1, 2, and 3, we set the
Bernoulli parameter α = 0.7 and choose the two signals
to be jointly Gaussian, with their entries generated as

(β
(1)
i , β

(2)
i ) ∼i.i.d. N

([
0
0

]
,

[
1 ρ
ρ 1

])
, i ∈ [p]. (23)

The initializer B̂0 ∈ Rp×2 is chosen randomly according
to the same distribution, independently of the signal.

Figure 1 shows the performance of AMP for independent
signals (ρ = 0). The normalized squared correlation is
plotted as a function of the sampling ratio δ = n

p , for differ-
ent noise levels σ. The state evolution predictions closely
match the performance of AMP for practical values of n, p,
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Figure 3: Gaussian prior with ρ = 0 and different values
of estimated proportion α̂: Normalized squared correlation
vs. δ, with true α = 0.7, σ = 0.

validating the result of Theorem 1. As expected, the cor-
relation improves with increasing δ and degrades with in-
creasing σ. The performance for β(1) is better than for β(2)

as 70% of the observations come from β(1). Figure 2 plots
the performance as a function of δ for signal correlation
ρ ∈ {0, 1,−1}, with σ = 0 (noiseless). When ρ = 1, both
signals are identical and the problem reduces to standard
linear regression. When ρ = −1, we have β(2) = −β(1),
so there is still effectively only one signal vector. However,
the ρ = −1 case is harder than ρ = 1 since each mea-
surement is unlabelled and could come from either β(1) or
−β(1) (with probabilities 0.7 and 0.3, respectively).

In practical applications, we may not know the exact pro-
portion of observations that come that come from the first
signal. Figure 3 shows the performance when AMP is run
assuming a proportion parameter α̂ = 0.6 which is dif-
ferent from the true value α = 0.7. The functions f∗

k , g
∗
k

defining the AMP depend on α, hence replacing α with α̂
in these functions is effectively running AMP with a differ-
ent (sub-optimal) choice of denoising functions.

Comparison with other estimators. Figure 4 compares
the performance of AMP with other widely studied esti-
mators for mixed linear regression, for the Gaussian sig-
nal prior in (23) with independent signals (ρ = 0). The
other estimators are: the spectral estimator proposed in (Yi
et al., 2014, Algorithm 2); alternating minimization (AM)
(Yi et al., 2014, Algorithm 1); and expectation maximiza-
tion (EM) (Faria and Soromenho, 2010, Section 2.1). Fig-
ure 5 compares the performance of AMP with these esti-
mators for a sparse signal prior given by:

(β
(1)
i , β

(2)
i ) ∼i.i.d. (0.9) δ0 + (0.05) δ+1 +(0.05) δ−1,

i ∈ [p]. (24)

For this prior, we modified the least squares step of the AM
algorithm in (Yi et al., 2014, Algorithm 2) to use Lasso
instead of standard least squares – this gives better per-
formance as it takes advantage of the signal sparsity. We
also tried using the lasso-type EM algorithm (Städler et al.,
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Figure 4: Comparison of different estimators for Gaussian
prior with ρ = 0: Normalized squared correlation vs. δ,
with α = 0.6, σ = 0.
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Figure 5: Comparison of different estimators for sparse
prior: Normalized squared correlation vs. δ, with α = 0.6,
σ = 0.1.

2010); however, it was not found to give a noticeable im-
provement in performance. In both setups, AMP signifi-
cantly outperforms the other estimators as it is tailored to
take advantage of the signal prior via the choice of the de-
noising function fk.

Three signals. To illustrate AMP’s ability to tackle MLR
with more than two signals, we now consider the model (1)
with three signals:

Yi = ⟨Xi, β
(1)⟩ci1 + ⟨Xi, β

(2)⟩ci2 + ⟨Xi, β
(3)⟩ci3

+ ϵi, i ∈ [n]. (25)

We take [ci1, ci2, ci3]
⊤ to be a one-hot vector, where we

denote the position of the one in the one-hot vector to be
ci ∼i.i.d. Categorical({α1, α2, α3}), ϵi ∼i.i.d. N (0, σ2),
and Xi ∼i.i.d. N (0, Ip/n), for i ∈ [n]. We set the signal
dimension p = 500 and vary the value of n in our exper-
iments. The AMP algorithm in (4) is implemented with
gk = g∗k and fk = f∗

k (i.e., the optimal choices).

We use independent Gaussian priors for the three signals.
Specifically, we generate:

(β
(1)
j , β

(2)
j , β

(3)
j ) ∼i.i.d. N (E[B̄], I3), j ∈ [p] (26)

ci ∼i.i.d. Categorical({α1, α2, α3}), i ∈ [n]. (27)
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Figure 6: MLR with three signals. Comparison of different
estimators for Gaussian prior: Normalized squared corre-
lation vs. δ, with σ = 0.

The initializer B̂0 ∈ Rp×3 is chosen randomly according
to the same distribution, independent of the signal. Figure
6 compares the performance of AMP with other MLR esti-
mators, for the noiseless case, i.e., σ = 0. The parameters
for the Gaussian signal prior in (26)–(27) were chosen to
be E[B̄] = [0, 0.5, 1]⊤ and (α1, α2, α3) = (1/3, 1/3, 1/3).
(This is the case where signals have different means but ap-
pear in the same proportion of observations.) We modified
the grid search1 step of the spectral estimator in (Yi et al.,
2014, Algorithm 2) to sample evenly across a sphere in-
stead of a circle (the reason being that we now have three
signals instead of two). Since this step cannot be done ex-
actly like in the 2D case, we used the Fibonacci sphere
algorithm by Álvaro González (2010) to achieve this ap-
proximately and efficiently in our 3D case. As in the case
of two-signal MLR, AMP is shown to significantly outper-
form the other estimators since it is tailored to take advan-
tage of the signal prior via the choice of the denoising func-
tion fk.

5 PROOFS

5.1 Proof of Theorem 1

To prove the theorem, we use a change of variables to
rewrite (4) as a new matrix-valued AMP iteration. The new
iteration is a special case of an abstract AMP iteration for

1In the two signal case, grid search was used to iterate
over all possible combinations of the top two eigenvectors of
1
n

∑n
i=1 YiXiX

⊤
i to get the best combination for each signal.
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which a state evolution result has been established by Ja-
vanmard and Montanari (2013). This state evolution result
is then translated to obtain the results in (14)-(15).

Given the iteration (4), for k ≥ 0 define

B̌k+1 := Bk+1 −B(Mk+1
B )⊤, Θ̌k := (Θ,Θk), (28)

where we recall that Θ = XB. For k ≥ 0, we also define
the function f̌k : R2L → R2L:

f̌k(B̌
k, B) = (B, fk(B̌

k +B(Mk
B)

⊤)). (29)

Then, we claim that the original AMP iteration (4) is equiv-
alent to the following one:

Θ̌k = Xf̌k(B̌
k, B) − hk−1(Θ̌

k−1,Ψ)(F̌ k)⊤

B̌k+1 = X⊤hk(Θ̌
k,Ψ) − f̌k(B̌

k, B)(Čk)⊤,
(30)

where hk is defined in (5), and the matrices Čk ∈ RL×2L,
F̌ k+1 ∈ R2L×L are defined as:

Čk =
(
E[∂Zhk(Z,Z

k, Ψ̄)] 1
n

∑n
i=1 ∂Θk

i
hk(Θi,Θ

k
i ,Ψi)

)
F̌ k+1 =

(
0L×L

1
n

∑p
j=1 f

′
k+1(B̌

k
j +Bj(M

k
B)

⊤)

)
. (31)

The iteration (30) is initialized with Θ̌0 = (Θ, XB̂0),
where B̂0 is the initializer of the original AMP. The equiv-
alence between the iteration in (30) and the original AMP
in (4) can be seen by substituting the definitions (28)
and (29) into (30), and recalling from (6) that Mk+1

B =
E[∂Zhk(Z,Z

k, Ψ̄)].

The key difference between the new iteration in (30) and
the original AMP (4) is that in (30), in addition to the pre-
vious iterate, the inputs to the functions f̌k and hk are aux-
iliary variables (B,Ψ, respectively) that are independent of
X . This is in contrast to the AMP in (4) where the in-
put Y to the function gk is not independent of X . The
recursion in (30) is a special case of an abstract AMP re-
cursion with matrix-valued iterates for which a state evolu-
tion result has been established by Javanmard and Monta-
nari (2013). (We will use a version of the result described
in (Feng et al., 2022, Sec. 6.7)).) The standard form of
the abstract AMP recursion uses empirical estimates (in-
stead of expected values) for the first two entries of Čk in
(31). However, the state evolution result remains valid for
the recursion (30) (see Remark 4.3 of Feng et al. (2022)).
This result states that the empirical distributions of the rows
of Θ̌k and B̌k+1 converge to the Gaussian distributions
N (0, Σ̌k) and N (0, Ťk+1), respectively. The determin-
istic covariance matrices Σ̌k ∈ R2L×2L, Ťk+1 ∈ RL×L

are defined by the following state evolution recursion. Let
Σ̌0 = Σ0 (defined in Assumption (A1)), and for k ≥ 0:

Ťk+1 = E
[
hk(G

k
σ, Ψ̄)hk(G

k
σ, Ψ̄)⊤

]
, (32)

Σ̌k+1 = δ−1E
[
f̌k+1(G

k+1
τ , B̄)f̌k+1(G

k+1
τ , B̄)⊤

]
,

=

(
δ−1E[B̄B̄⊤] Σ̌k+1

(12)(
Σ̌k+1

(12)

)⊤
Σ̌k+1

(22)

)
, (33)

where

Σ̌k+1
(12) =

(
Σ̌k+1

(21)

)⊤
= δ−1E

[
B̄fk+1(G

k+1
τ +MB

k+1B̄)⊤
]

Σ̌k+1
(22) = δ−1E

[
fk+1(G

k+1
τ +MB

k+1B̄) (34)

· fk+1(G
k+1
τ +MB

k+1B̄)⊤
]
.

Here we take Gk
σ ∼ N(0, Σ̌k) independent of Ψ̄ ∼ PΨ̄,

and Gk+1
τ ∼ N(0, Ťk+1) independent of B̄ ∼ PB̄ . Com-

paring the recursive definitions of (Tk+1
B ,Σk+1) in (7)-(9)

and of (Ťk+1, Σ̌k+1) in (32)-(33), and noting that they are
both initialized with Σ0, we have that Ťk+1 = Tk+1

B and
Σ̌k+1 = Σk+1 for k ≥ 0.

The following proposition follows from the state evolution
result (Feng et al., 2022, Sec. 6.7) for an abstract AMP re-
cursion with matrix-valued iterates.
Proposition 3. Assume the setting of Theorem 1. For the
abstract AMP in (30), for k ≥ 0 we have:

sup
η∈PL2L(r,1)

∣∣∣1
p

p∑
j=1

η(B̌k+1
j , Bj)− E[η(Gk+1

τ , B̄)]
∣∣∣ c→ 0,

(35)

sup
η∈PL2L+LΨ

(r,1)

∣∣∣ 1
n

n∑
i=1

η(Θ̌k
i ,Ψi)− E[η(Gk

σ, Ψ̄)]
∣∣∣ c→ 0,

(36)

as n, p → ∞ with n/p → δ.

To obtain the result (14), we recall the definition of
B̌k+1 from (28), and in (35) we take η(B̌k+1, B) =
ck,rϕ(B̌

k+1+B(Mk+1
B )⊤, B) for a suitably small constant

ck,r > 0, and recall that Gk+1
τ ∼ N (0,Tk+1

B ). To obtain
(15), we recall the definition of Θ̌k from (28), and in (36)
take η(Θ̌k,Ψ) = ϕ(Θk,Θ,Ψ). Since Σ̌k = Σk, we have:

(Gk
σ, Ψ̄)

d
= (Z,Zk, Ψ̄)

d
= (Z, Mk

ΘZ +Gk
Θ, Ψ̄), (37)

where the last equality follows from (10). This completes
the proof of the theorem.

5.2 Proof of Proposition 2

The proof relies on the following generalized Cauchy-
Schwarz inequality for covariance matrices.
Lemma 4. (Lavergne, 2008, Lemma 1) Let U, V ∈ RL

random vectors such that E[∥U∥22] < ∞, E[∥V ∥22] < ∞,
and E[V V ⊤] is invertible. Then

E[UU⊤]− E[UV ⊤]
(
E[V V ⊤]

)−1E[V U⊤] ⪰ 0. (38)

Proof of part 1. Using the law of total expectation, Σk
(12)

in (9) can be written as:

δΣk
(12) = E[B̄fk(M

k
BB̄ +Gk

B)
⊤] (39)

= E
[
E[B̄fk(M

k
BB̄ +Gk

B)
⊤ | Mk

BB̄ +Gk
B ]
]
= E[f∗

kf
⊤
k ],
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where we use the shorthand fk ≡ fk(M
k
BB̄ + Gk

B) and
f∗
k ≡ E[B̄ |Mk

BB̄ +Gk
B ]. Using Lemma 4 we have that

E[f∗
k (f

∗
k )

⊤]− E[f∗
kf

⊤
k ]E[fkf⊤

k ]−1E[fk(f∗
k )

⊤] ⪰ 0

=⇒ δ−1E[f∗
k (f

∗
k )

⊤]− Σk
(12)(Σ

k
(22))

−1Σk
(21) ⪰ 0,

(40)

where we have used (39) and (9) for the second line.
Adding and subtracting Tk

Θ in (40) we obtain

Tk
Θ −

(
Tk

Θ − δ−1E[f∗
k (f

∗
k )

⊤] + Σk
(12)(Σ

k
(22))

−1Σk
(21)︸ ︷︷ ︸

:=Γk
Θ

)
⪰ 0. (41)

Multiplying the matrix (Tk
Θ − Γk

Θ) in (41) by
(
Mk

Θ

)−1
on

the left and
((

Mk
Θ

)−1
)⊤

on the right maintains positive
definiteness. This yields

Nk
Θ −

(
Mk

Θ

)−1
Γk
Θ

((
Mk

Θ

)−1
)⊤

⪰ 0, (42)

where we have used the formula for Nk
Θ from (19). Eq.

(42) implies

Tr(Nk
Θ) ≥ Tr

((
Mk

Θ

)−1
Γk
Θ

((
Mk

Θ

)−1
)⊤)

. (43)

Now, using the formula for Tk
Θ in (12) it can be verified

that when fk = f∗
k , we have

Tk
Θ = Γk

Θ = (44)
1

δ

(
E[f∗

k (f
∗
k )

⊤]− E[f∗
k (f

∗
k )

⊤]
(
E[B̄B̄⊤]

)−1E[f∗
k (f

∗
k )

⊤]
)
.

Therefore (41)-(43) are satisfied with equality when fk =
f∗
k , which proves the first part of the proposition.

Proof of part 2. We begin with the following lemma:
Lemma 5. Let x = (x1, . . . , xL) and g : RL → RL

be such that for j = 1, . . . , L, the function xj →
gl(x1, . . . , xL) (where gl(x1, . . . , xL) is the lth entry of
g(x1, . . . , xL)) is absolutely continuous for Lebesgue al-
most every (xi : i ̸= j) ∈ RL−1, with weak deriva-
tive ∂xj

gl : RL → R satisfying E[|∂xj
gl(x)|] < ∞.

Let ∇g(x) = (∇g1(x), . . . ,∇gL(x))
⊤ ∈ RL×L where

∇gl(x) =
(
∂x1gl(x), . . . , ∂xL

gl(x)
)⊤

for x ∈ RL. If
X ∼ N (µ,Σ) with Σ positive definite, then

E[∇g(X)] =
(
Σ−1E

[
(X − µ)g(X)⊤

])⊤
. (45)

Proof. We have

E[(X − µ)g(X)⊤]

=
(
E[(X − µ)g1(X)], . . . ,E[(X − µ)gL(X)]

)
(46)

(a)
= (ΣE[∇g1(X)], . . . ,ΣE[∇gL(X)]) (47)
= ΣE[(∇g1(X), . . . ,∇gL(X))] (48)
(b)
= ΣE[∇g(X)]⊤, (49)

where (a) uses the multivariate Stein’s Lemma from (Feng
et al., 2022, Lemma 6.20) which states that under our
conditions we have E[Xgl(X)] = ΣE[∇gl(X)] for l =
1, . . . , L, and (b) uses the definition of ∇g(x). Finally, re-
arranging the above equation and taking the transpose gives
the result.

Next, we use our multivariate generalization of Stein’s
Lemma (Lemma 5) to show that

Mk+1
B = E

[
gk(Z

k, Ȳ )g∗k(Z
k, Ȳ )⊤

]
, (50)

where g∗k is defined in (21). Indeed, using the law of total
expectation we have

Mk+1
B = E

[
E[∂Zhk(Z,Z

k, Ψ̄)|Zk]
]

(a)
= E

[
Cov[Z|Zk]−1E

[
(Z − E[Z|Zk])hk(Z,Z

k, Ψ̄)⊤∣∣Zk
]]⊤

= E[Cov[Z|Zk]−1(Z − E[Z|Zk])hk(Z,Z
k, Ψ̄)⊤]⊤

= E
[
E
[
Cov[Z|Zk]−1(Z − E[Z|Zk])hk(Z,Z

k, Ψ̄)⊤∣∣Zk, Ȳ
]]⊤

(b)
= E

[
g∗k(Z

k, Ȳ )hk(Z,Z
k, Ψ̄)⊤

]⊤
(c)
= E

[
gk(Z

k, Ȳ )g∗k(Z
k, Ȳ )⊤

]
. (51)

Here (a) applies Lemma 5, (b) follows from the definition
of g∗k in (21), and (c) from (5). Using the shorthand gk ≡
gk(Z

k, Ȳ ) and g∗k ≡ g∗k(Z
k, Ȳ ), from Lemma 4 we have:

E[g∗k(g∗k)⊤]− E[g∗kg⊤k ]
(
E[gkg⊤k ]

)−1

E[gk(g∗k)⊤] ⪰ 0

⇔ E[g∗k(g∗k)⊤]−
(
Nk+1

B

)−1 ⪰ 0 (52)

⇔
(
E[g∗k(g∗k)⊤]

)−1

−Nk+1
B ⪯ 0, (53)

where (52) is obtained by recallling from (19) that
(Nk+1

B )−1 = Mk+1
B

(
Tk+1

B

)−1 (
Mk+1

B

)⊤
, and using the

expressions for Mk+1
B and Tk+1

B in (50) and (7). Eq. (53)
follows from the fact that if P and Q are positive definite
matrices such that P −Q ⪰ 0, then P−1−Q−1 ⪯ 0. From
(53), we have that

Tr(Nk+1
B ) ≤ Tr

((
E[g∗k(g∗k)⊤]

)−1
)
, (54)

with equality if gk = g∗k. This completes the proof of the
second part of the proposition.

Acknowledgements

N. Tan was supported by the Cambridge Trust and the
Harding Distinguished Postgraduate Scholars Programme
Leverage Scheme.



Mixed Linear Regression via AMP

References

Balakrishnan, S., Wainwright, M. J., and Yu, B. (2017).
Statistical guarantees for the EM algorithm: From popu-
lation to sample-based analysis. The Annals of Statistics,
45(1):77–120.

Barbier, J., Krzakala, F., Macris, N., Miolane, L., and
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borová, L. (2012). Probabilistic reconstruction in com-
pressed sensing: algorithms, phase diagrams, and thresh-
old achieving matrices. Journal of Statistical Mechanics:
Theory and Experiment, 2012(8).

Lavergne, P. (2008). A Cauchy-Schwarz inequality for ex-
pectation of matrices. Discussion Papers, Department of
Economics, Simon Fraser University.

Lesieur, T., Krzakala, F., and Zdeborová, L. (2017). Con-
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A IMPLEMENTATION DETAILS

In this appendix, we consider MLR with two signals (see (22)), and provide the implementation details of matrix-AMP with
Bayes-optimal functions (see Proposition 2), for the Gaussian prior and the sparse discrete prior. While the implementation
details stated here are for the case of two signals, it is straightforward to generalize them to the case of three signals which
we have omitted.

A.1 Gaussian Prior

We start by rewriting the matrix-AMP algorithm with more details below:

• Initialize R̂−1 = 0 ∈ Rn×2, F0 = I2. Next, we decide on a joint distribution of B0
j = (β

(1)
j , β

(2)
j ) and B̂0

j =

(β̂
0,(1)
j , β̂

0,(2)
j ), and initialize

Σ0 =
p

n


E[(β(1)

j )2] E[β(1)
j β

(2)
j ] E[β(1)

j β̂
0,(1)
j ] E[β(1)

j β̂
0,(2)
j ]

E[β(1)
j β

(2)
j ] E[(β(2)

j )2] E[β(2)
j β̂

0,(1)
j ] E[β(2)

j β̂
0,(2)
j ]

E[β(1)
j β̂

0,(1)
j ] E[β(2)

j β̂
0,(1)
j ] E[(β̂0,(1)

j )2] E[β̂0,(1)
j β̂

0,(2)
j ]

E[β(1)
j β̂

0,(2)
j ] E[β(2)

j β̂
0,(2)
j ] E[β̂0,(1)

j β̂
0,(2)
j ] E[(β̂0,(2)

j )2]

 . (55)

• For each iteration of matrix-AMP k ∈ N0, we have the following steps:

1. Compute Θk := XB̂k − R̂k−1F⊤
k

2. Approximate R̂k := gk(Θ
k, Y )

3. Approximate Ck := 1
n

∑n
i=1 g

′
k(Θ

k
i , Yi)

4. Compute Bk+1 := X⊤R̂k − B̂kC⊤
k

5. Approximate B̂k+1 := fk+1(B
k+1)

6. Approximate F k+1 := 1
n

∑p
j=1 f

′
k+1(B

k+1
j )

7. Approximate Σk+1

Steps 1 and 4 are straightforward and thus, can be obtained through direct computation. The other steps are trickier
and requires some form of approximation to make the computation tractable. We now proceed to explain in detail how
approximation can be done for steps 2, 3, 5, 6, and 7.

Step 2: We approximate this by computing gk(Θ
k
i , Yi) first, which we denote by gk(Z

k, Ȳ ) (this is essentially gk(Θ
k
i , Yi)

but written with random variables) for the purpose of our derivations. The computation consists of the followings steps:

• Compute

Var[Z|Zk] = Σk
(11) − Σk

(12)(Σ
k
(22))

−1Σk
(21) (56)

E[Z|Zk] = Σk
(12)(Σ

k
(22))

−1Zk. (57)

• Note that we have (Z,Zk) ∼ N4(0,Σ
k), Z = (Z1, Z2)

⊤ and

Y = q(Z, Ψ̄) = Z1c̄+ Z2(1− c̄) + ϵ̄. (58)

Define c̄ to be the random variable that the empirical distribution of ci’s converge to. Compute

E[Z|Zk, Ȳ ] =
∑

c̄∈{0,1}

E[Z|Zk, Ȳ , c̄]P[c̄|Zk, Ȳ ] (59)

= E[Z|Zk, Ȳ , c̄ = 1]︸ ︷︷ ︸
Part 1

P[c̄ = 1|Zk, Ȳ ]︸ ︷︷ ︸
Part 2

+E[Z|Zk, Ȳ , c̄ = 0]︸ ︷︷ ︸
Part 3

P[c̄ = 0|Zk, Ȳ ]︸ ︷︷ ︸
Part 4

(60)
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Part 1. We first find the joint distribution of (Z,Zk, Ȳ |c̄ = 1) which we write as N5(0,Σ
k,1
Y ). We now proceed to

derive Σk,1
Y . We know from the joint distribution of (Z,Zk) that (Σk,1

Y )[4],[4] = Σk. Hence, we only need to solve for
the remaining entries:

(Σk,1
Y )5,5 = Var[Ȳ |c̄ = 1] = Var[Z1 + ϵ̄] = Σk

11 + σ2 (61)

(Σk,1
Y )1,5 = (Σk,1

Y )5,1 = Cov[Ȳ , Z1|c̄ = 1] = Cov[Z1 + ϵ̄, Z1] = Σk
11 (62)

(Σk,1
Y )2,5 = (Σk,1

Y )5,2 = Cov[Ȳ , Z2|c̄ = 1] = Cov[Z1 + ϵ̄, Z2] = Σk
12 (63)

(Σk,1
Y )1,3 = (Σk,1

Y )3,1 = Cov[Ȳ , Zk
1 |c̄ = 1] = Cov[Z1 + ϵ̄, Zk

1 ] = Σk
13 (64)

(Σk,1
Y )1,4 = (Σk,1

Y )4,1 = Cov[Ȳ , Zk
2 |c̄ = 1] = Cov[Z1 + ϵ̄, Zk

2 ] = Σk
14, (65)

where we have used the fact that (Z,Zk) and ϵ̄ are independent, and the notation Σk
ij refers to the (i, j)-th entry of

the matrix Σk. This gives

Σk,1
Y =


Σk

11 Σk
12 Σk

13 Σk
14 Σk

11

Σk
21 Σk

22 Σk
23 Σk

24 Σk
21

Σk
31 Σk

32 Σk
33 Σk

34 Σk
31

Σk
41 Σk

42 Σk
43 Σk

44 Σk
41

Σk
11 Σk

12 Σk
13 Σk

14 Σk
11 + σ2

 . (66)

From the joint distribution, we can compute

E[Z|Zk, Ȳ , c̄ = 1] = (Σk,1
Y )[2],[3+](Σ

k,1
Y )−1

[3+],[3+]

[
Zk

Ȳ

]
, (67)

where [3+] := {3, 4, 5}.

Part 3. Using the same approach as part 1, we can find the joint distribution of (Z,Zk, Ȳ |c̄ = 0), which is

 Z
Zk

Ȳ

 ∼ N5



0
0
0
0
0

 ,Σk,0
Y =


Σk

11 Σk
12 Σk

13 Σk
14 Σk

12

Σk
21 Σk

22 Σk
23 Σk

24 Σk
22

Σk
31 Σk

32 Σk
33 Σk

34 Σk
32

Σk
41 Σk

42 Σk
43 Σk

44 Σk
42

Σk
21 Σk

22 Σk
23 Σk

24 Σk
22 + σ2


 . (68)

From the joint distribution, we can compute

E[Z|Zk, Ȳ , c̄ = 0] = (Σk,0
Y )[2],[3+](Σ

k,0
Y )−1

[3+],[3+]

[
Zk

Ȳ

]
. (69)

Part 2. We compute

P[c̄ = 1|Zk, Ȳ ] =
P[c̄ = 1]P[Zk, Ȳ |c̄ = 1]

P[c̄ = 1]P[Zk, Ȳ |c̄ = 1] + P[c̄ = 0]P[Zk, Ȳ |c̄ = 0]
(70)

=
αP[Zk, Ȳ |c̄ = 1]

αP[Zk, Ȳ |c̄ = 1] + (1− α)P[Zk, Ȳ |c̄ = 0]
, (71)

where given c̄ = 1, we have (Zk, Ȳ )⊤ ∼ N3

(
0, (Σk,1

Y )[3+],[3+]

)
, and given c̄ = 0, we have (Zk, Ȳ )⊤ ∼

N3

(
0, (Σk,0

Y )[3+],[3+]

)
.

Part 4. Similar to part 2, we compute

P[c̄ = 0|Zk, Ȳ ] =
(1− α)P[Zk, Ȳ |c̄ = 0]

αP[Zk, Ȳ |c̄ = 1] + (1− α)P[Zk, Ȳ |c̄ = 0]
, (72)

where given c̄ = 0, we have (Zk, Ȳ )⊤ ∼ N3

(
0, (Σk,0

Y )[3+],[3+]

)
.

• Finally, compute
gk(Z

k, Ȳ ) = Var[Z|Zk]−1(E[Z|Zk, Ȳ ]− E[Z|Zk]).
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Now that we know how to compute gk(Z
k, Ȳ ), we can compute R̂k by applying gk row wise to Θk and Y (i.e., compute

gk(Θ
k
i , Yi)).

Step 3: We approximate Ck = 1
n

∑b
i=1 g

′
k(Θ

k
i , Yi) by calculating E[g′k(Zk, Ȳ )]. We do this by applying the generalized

Stein’s lemma (see Lemma 5) to (Z,Zk)⊤ ∼ N4(0,Σ
k) and hk(Z,Z

k, Ψ̄) = gk(Z
k, Ȳ ). This gives

E
[[

Z
Zk

]
h(Z,Zk, Ψ̄)⊤

]
= ΣkE

[
∇(Z,Zk)hk(Z,Z

k, Ψ̄)
]⊤

. (73)

Writing the above more explicitly gives[
E[Zhk(Z,Z

k, Ψ̄)⊤]
E[Zkhk(Z,Z

k, Ψ̄)⊤]

]
=

[
Σk

(11) Σ(12)

Σk
(21) Σ(22)

]
E
[
∇Z{hk(Z,Z

k, Ψ̄)}1 ∇Z{hk(Z,Z
k, Ψ̄)}2

∇Zk{hk(Z,Z
k, Ψ̄)}1 ∇Zk{hk(Z,Z

k, Ψ̄)}2

]
(74)

=

[
Σk

(11) Σk
(12)

Σk
(21) Σk

(22)

] [
E[∇Zhk(Z,Z

k, Ψ̄)]⊤

E[∇Zkhk(Z,Z
k, Ψ̄)]⊤

]
(75)

=

[
Σk

(11)E[∇Zhk(Z,Z
k, Ψ̄)]⊤ +Σk

(12)E[∇Zkhk(Z,Z
k, Ψ̄)]⊤

Σk
(21)E[∇Zhk(Z,Z

k, Ψ̄)]⊤ +Σk
(22)E[∇Zkhk(Z,Z

k, Ψ̄)]⊤

]
, (76)

where {hk(Z,Z
k, Ψ̄)}i refers to the ith output of hk ∈ R2. Looking at just the second row above and rearranging, we get

E[∇Zkhk(Z,Z
k, Ψ̄)] =

{
(Σk

(22))
−1
(
E[Zkhk(Z,Z

k, Ψ̄)⊤]− Σk
(21)E[∇Zhk(Z,Z

k, Ψ̄)]⊤
)}⊤

, (77)

where E[Zkhk(Z,Z
k, Ψ̄)⊤] can be approximated by 1

n ⟨Θ
k, gk(Θ

k, Y )⟩ and E[∇Zhk(Z,Z
k, Ψ̄)] can be approximated by

1
ngk(Θ

k, Y )⊤gk(Θ
k, Y ) (see (51) to see why this makes sense).

Step 5: We approximate this by first noting that from our state evolution Gk+1
B ∼ N2(0,T

k+1
B ) is independent of B̄. This

implies that [
B̄

Mk+1
B B̄ +Gk+1

B

]
∼ N4

([
E[B̄]

Mk+1
B E[B̄]

]
,

[
Cov[B̄] Cov[B̄](Mk+1

B )⊤

Mk+1
B Cov[B̄] Mk+1

B Cov[B̄](Mk+1
B )⊤ +Tk+1

B

])
(78)

This implies that

fk+1(M
k+1
B B̄ +Gk+1

B =: s) = E[B̄|s] (79)

= E[B̄] + Cov[B̄](Mk+1
B )⊤

(
Mk+1

B Cov[B̄](Mk+1
B )⊤ +Tk+1

B

)−1(
s−Mk+1

B E[B̄]
)
. (80)

We can use the above function to compute fk+1(B
k+1
j ) if we can approximate Mk+1

B and Tk+1
B (which is the same as

Mk+1
B under the Bayes-optimal setting). This can be calculated using

Mk+1
B ≈ 1

n
gk(Θ

k, Y )⊤gk(Θ
k, Y ). (81)

Step 6: The expression for this can be obtained by taking the derivative of (80) w.r.t. s, which gives

f ′
k+1(s) =

(
Mk+1

B Cov[B̄](Mk+1
B )⊤ +Tk+1

B

)−1

Mk+1
B Cov[B̄], (82)

where Mk+1
B and Tk+1

B can be approximated using (81).

Step 7: We have

Σk+1 ≈ p

n

[
E[B̄B̄⊤] 1

pfk+1(B
k+1)⊤fk+1(B

k+1)
1
pfk+1(B

k+1)⊤fk+1(B
k+1) 1

pfk+1(B
k+1)⊤fk+1(B

k+1)

]
. (83)
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A.2 Sparse Discrete Prior

As presented in Appendix A.1, there are seven main steps in the AMP algorithm. A change in prior requires us to make
changes to our denoiser fk which affects steps 5, and 6 – the other steps remain unchanged. The changes are as follows:

Step 5: We have

fk+1(M
k+1
B B̄ +Gk+1

B =: s) = E[B̄|s] (84)

=
∑
b̄

b̄P[B̄ = b̄|s] (85)

=
∑
b̄

b̄
P[B̄ = b̄]P[s|B̄ = b̄]

P[s]
(86)

=

∑
b̄ b̄P[B̄ = b̄]P[s|B̄ = b̄]∑
b̄ P[B̄ = b̄]P[s|B̄ = b̄]

, (87)

where (s|B̄ = b̄) = (Mk+1
B B̄ +Gk+1

B |B̄ = b̄) ∼ N (Mk+1
B b̄,Tk+1

B ).

Step 6: By the definition of a Jacobian, we have

∇sf(M
k+1
B B̄ +Gk+1

B =: s) =

[
∂f1
∂s1

∂f1
∂s2

∂f2
∂s1

∂f2
∂s2

]
=

[
(∇sf1)

⊤

(∇sf2)
⊤

]
(88)

Let us look at just

f1(s) =

∑
b̄ β

(1)
j P[B̄ = b̄]P[s|B̄ = b̄]∑
b̄ P[B̄ = b̄]P[s|B̄ = b̄]

=:
num1

denom1
. (89)

By the quotient rule for functions with a vector input and an ouput in R, we have

∇sf1(s) =
(∇snum1)(denom1)− (num1)(∇sdenom1)

denom2
1

(90)

Using vector calculus, we see that

∇sP[s|B̄ = b̄] = ∇s

(
exp{− 1

2 (s−Mk+1
B b̄)⊤(Tk+1

B )−1(s−Mk+1
B b̄)}√

det(2πTk+1
B )

)
(91)

= (Tk+1
B )−1

(
Mk+1

B b̄− s
)
P[s|B̄ = b̄] (92)

Using the above equation, we get

∇snum1 =
∑
b̄

β
(1)
j (Tk+1

B )−1
(
Mk+1

B b̄− s
)
P[B̄ = b̄]P[s|B̄ = b̄] (93)

∇sdenom1 =
∑
b̄

(Tk+1
B )−1

(
Mk+1

B b̄− s
)
P[B̄ = b̄]P[s|B̄ = b̄]. (94)

We can perform the same steps to get ∇sf2(s).


