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Abstract

In this paper, we consider the problem of two-
sample hypothesis testing that aims at detecting
the difference between two probability densities
based on finite samples. The proposed test statis-
tic is constructed by first truncating a sample ver-
sion of a negative Besov norm and then normal-
izing it. Here, the negative Besov norm is the
norm associated with a Besov space with nega-
tive exponent, and is shown to be closely related
to a class of commonly used adversarial losses
(or integral probability metrics) with smooth dis-
criminators. Theoretically, we characterize the
optimal detection boundary of two-sample testing
in terms of the dimensionalities and smoothness
levels of the underlying densities and the discrim-
inator class defining the adversarial loss. We also
show that the proposed approach can simultane-
ously attain the optimal detection boundary under
many common adversarial losses, including those
induced by the ℓ1, ℓ2 distances and Wasserstein
distances. Our numerical experiments show that
the proposed test procedure tends to exhibit higher
power and robustness in difference detection than
existing state-of-the-art competitors.

1 Introduction

The problem of two-sample hypothesis testing, which aims
at determining whether two underlying probability densities
are significantly different based on their samples, has been a
central topic in statistics and machine learning. Many classic
two-sample tests follow parametric approaches, which are
designed based on prior information about the parametric
form of the underlying distributions, like Gaussianity. Exam-
ples of classic parametric two-sample tests include Pearson’s
chi-squared test (Pearson, 1900), Student’s t-test (Student,
1908) and Hotelling’s two-sample test (Hotelling, 1931).
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On the other hand, nonparametric two-sample test proce-
dures avoid making any restrictive parametric assumptions
on the distributions, and therefore tends to be more robust
while less efficient when the parametric assumption indeed
holds. There are rich literatures regarding the nonparametric
two-sample testing problem. Nonparametric comparison for
one-dimensional samples was done in the minimax sense
in ℓ2 distance by Ingster (1986) via a χ2-type test statis-
tic. Butucea and Tribouley (2006) proposed a minimax uni-
variate two-sample testing procedure in ℓ2 and ℓ∞ distances
based on the wavelet expansion, and the proposed proce-
dure is adaptive to the smoothness of the underlying densi-
ties. Multivariate nonparametric two-sample testing prob-
lems have also been investigated in the literature. Friedman
and Rafsky (1979) used the idea of minimal spanning tree
(MST) to generalize the univariate test. Xing et al. (2019)
addresses the problem of comparing probability density
distributions by establishing a connection with interaction
testing, and they propose a minimax optimal penalized like-
lihood ratio test for conducting interaction testing in this
scenario. Gretton et al. (2012a); Li and Yuan (2019); Gret-
ton et al. (2009a, 2012b) proposed two-sample tests based
on Maximum Mean Discrepancy (MMD). In particular, Li
and Yuan (2019) showed that two-sample tests via Gaussian
kernel embedding with an appropriately chosen scaling pa-
rameter can attain the minimax optimal rate n−

2α
4α+d in ℓ2

loss for α-smooth d-dimensional densities. Other nonpara-
metric approaches for two-sample testing include Schilling
(1986); Henze (1988); Liu and Modarres (2011); Biswas
and Ghosh (2014); Wang et al. (2021).

The test statistics for nonparametric two-sample tests are
usually constructed based on finite-sample surrogates to
some metrics quantifying the discrepancy between the two
populations, including the ℓp distance (Györfi and Van
Der Meulen, 1991), Wasserstein distance (Ramdas et al.,
2017) and Maximum Mean Discrepancy (MMD, Gretton
et al., 2012a, 2009b; Li and Yuan, 2019). These metrics
can all be embraced into a general family of discrepancy
measures on distributions, called adversarial losses, which
are also called integral probability metrics (IPM) in the
probability literature, defined as

dF (p, q) = sup
f∈F

∣∣∣ ∫
X
f(x) dp(x)−

∫
X
f(x) dq(x)

∣∣∣, (1)
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where X ⊂ Rd denotes the data space, and F is the discrim-
inator class composed of a subset of all Borel-measurable
functions. Note that if the discriminator class satisfies
F = −F , then it is not necessary to take the absolute value
inside (1) . Different choices of F leads to different adver-
sarial losses. However, except for some special cases such
as when F is the unit ball of a reproducing kernel Hilbert
space (RKHS) (Li and Yuan, 2019; Sriperumbudur et al.,
2010) or the dimensionality d equals to one (Del Barrio
et al., 1999), the adversarial loss in (1) lacks a closed-form
expression. For practical computations, we need to numer-
ically solve the optimization problem of maximizing the
difference over the discriminator class.

In this work, we consider a broad class of adversarial losses
indexed by a smoothness (level) parameter γ ∈ [0,∞),
which are shown to equivalent to the negative Besov norms.
Here, the negative Besov norm is the norm associated with
a Besov space (Triebel, 2006, 2010) with negative exponent.
Since the smoothness parameter γ can be interpreted as the
weights that penalize the high-order wavelet coefficients
(high frequency components) in the wavelet expansion of
the difference between the two distributions of concern, we
propose to approximate the population level negative Besov
norm by truncating its empirical version (c.f. Lemma 2). By
further normalizing this truncated finite-sample surrogate to
the negative Besov norm, we define a set of test statistics that
are asymptotically standard normal under the null hypoth-
esis and tends to infinity in the presence of any significant
difference between the two distributions. In addition, when
the populations of concern have d-dimensional densities that
are at least α-smooth, for some suitably chosen penalizing
weights (i.e., the exponent of the negative Besov norm), the
constructed tests can detect the distributional difference at
our derived optimal separation rate O

(
n−

2(α+γ)
4α+d +n−

1
2

)
up

to inessential logarithmic terms, simultaneously under all ad-
versarial losses with γ-smooth (γ ∈ [0,∞]) discriminators,
which includes the commonly-used ℓ1, ℓ2 distances and the
1-Wasserstein distance (Santambrogio, 2015; Villani, 2009)
as special cases. The result also rigorously verifies conven-
tional wisdom that testing is usually easier than estimation,
as our derived rate for testing is smaller than the minimax
rate for estimation O(n−

α+γ
2α+d + n−

1
2 ) (Uppal et al., 2019)

under the same loss functions. Empirically, we compare
our approach with the state-of-the-art nonparametric two-
sample test based on MMD with Gaussian kernels; it turns
out that our approach outperforms the Gaussian-MMD test
in terms of both detection power and robustness to hyperpa-
rameters.

The rest of the paper is organized as follows. In Section 2,
we give a brief introduction to the adversarial loss. In
Section 3, we show the equivalence between a class of
representative adversarial losses and the negative Besov
norm. We also provide an empirical surrogate to the neg-
ative Besov norm based on finite samples in Section 4. In

Section 5, we first derive the minimax rate of nonparamet-
ric two-sample testing under adversarial losses, and then
propose a minimax-optimal test procedure based on the em-
pirical surrogate from Section 4. Simulations and a real data
application are included in Section 6 and 7.

2 Adversarial losses

Many recent machine learning studies employ the adversar-
ial loss as an alternative to the conventional ℓp distances
for characterizing the closeness between probability mea-
sures (Arjovsky et al., 2017; Tolstikhin et al., 2017). The
adversarial loss defined in (1) can realize a large family of
probability metrics by suitably choosing the discriminator
class F . We focus on the following adversarial losses where
F is the unit ball within the Sobolev-2 class or Hölder class,
denoted as Wγ

1 (Ω) and Cγ1 (Ω) respectively, with smooth-
ness level γ ≥ 0 (the formal definition of Wγ

1 (Ω) and Cγ1 (Ω)
can be found in the supplementary material), for which the
corresponding metrics are respectively denoted as dWγ (·, ·)
and dHγ (·, ·).

Adversarial losses are more suitable to characterize discrep-
ancies between nearly singular distributions, such as those
arising from high-dimensional data with low-dimensional
structures, than many conventional metrics including the
ℓp distances due to their robustness against distribution per-
turbations. In particular, the metric dWγ (or dHγ ) becomes
stronger as γ decreases. By taking γ = 0, dWγ and dHγ are
equivalent to the ℓ2 and ℓ1 distance, respectively; by taking
γ = 1, the metric dHγ corresponds to the 1-Wasserstein dis-
tance (Santambrogio, 2015). The smoothness parameter γ
controls the sensitivity of the metric to oscillations: a smaller
γ makes dWγ , d

H
γ more sensitive to high frequency compo-

nents of the density. For example, consider a d-dimensional
random variable X with support lying close to a low di-
mensional submanifold. More specifically, we consider the
following probabilistic model

p(X|z) = N (G(z), σ2Id), z ∼ N (0, Id̄), (2)

with d > d̄. Model (2) is commonly employed in gener-
ative modelling literature for learning data generators for
the images of objects (Kingma and Welling, 2013; Doer-
sch, 2016), where the latent variable z can be interpreted
as (low dimensional) global characteristics such as cam-
era projection, lighting condition, texture, object position
and orientation. Suppose we translate the mean parame-
ter of the conditional distribution of X along a direction
inside the normal space of the underlying submanifold
M = {G(z) : z ∈ Rd̄} at point G(z) by a tiny amount
u > 0, that is, we consider the following conditional distri-
bution: p(X ′|z) = N (G(z) + ω(z) · u, σ2Id), where ω(z)
is a unit vector perpendicular to the tangent space of M at
G(z) (see Figure 1 for an illustration). In this example, the
Wasserstein distance between marginal distributions of X
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and X ′ is of order O(|u|) regardless of the order of σ; while
the corresponding ℓp distance can be of order O(1) given
that |u/σ| = O(1). This suggests that when used as a dis-
crepancy measure for distribution estimation, the ℓp distance
is much more sensitive to oscillations and support mismatch-
ing. As a consequence, the detection boundary under the ℓp
distance will be extremely large for nearly singular distribu-
tions. This is because some "physically close" distributions
that are difficult to distinguish may have large ℓp distances
due to their supports not perfectly aligning with the support
of the original data. On the other hand, the adversarial loss
with smoother discriminator class honestly quantifies the
amount of support mismatch and therefore more suitable
for quantifying the discrepancy between nearly singular
distributions.

Figure 1: The figure shows the random samples from the
distribution of X (Blue points) and X ′ (Orange points) with
d = 2, d̄ = 1, G(z) = (z, z), u = 0.3 and σ = 0.1. We can
see that the shape and the location of the two scatter plots
are quite similar, yet the ℓp distance is quite large due to the
support mismatching.

3 Wavelet Transform and Besov Norm

The wavelet transform is a powerful exploratory data anal-
ysis tool that can efficiently represent signals with slowly
varying trend and abrupt changes interrupting smooth re-
gions. Roughly speaking, a wavelet is a rapidly decay-
ing wave like oscillation that exists for a finite duration.
Commonly-used wavelets includes Haar wavelet (Triebel,
2010), Meyer wavelet (Triebel, 2006; Meyer, 1992),
Daubechies wavelet (Daubechies, 1988), etc. One of the key
concepts in wavelet transform is the scaling, which refers to
the process of stretching or shrinking the wavelet along the
features. A stretched wavelet helps in capturing the slowly
varying trends in a signal; while a shrinking wavelet helps
in detecting the abrupt changes.

Concretely, let L2(Rd) denote the set of all square integrable
functions on Rd. It is possible to define a complete orthonor-
mal basis {Ψj}j≥0 for L2(Rd) so that: the set of level zero
basis Ψ0 is formed by shifting some compact scaling func-
tion; for any j ∈ N+, the set of level j basis Ψj is obtained
by shifting some compact wavelet function and scaling it
by a factor of 2−(j−1); and any function p ∈ L2(Rd) can

be uniquely expressed as

p(x) =

∞∑
j=0

∑
ψ∈Ψj

pψψ(x) with pψ =

∫
Rd

ψ(x)p(x) dx.

Further detail is included in Appendix B. As described
above, for ψ ∈ Ψj , when the level j is small, the wavelet
coefficient pψ can capture general trends of the function
p(·); on the contrary, with a large level j, the wavelet coeffi-
cient pψ can capture abrupt changes/oscillations. Therefore,
for a smooth function p(·) not containing large and abrupt
oscillations, the wavelet coefficient pψ tends to be small for
those ψ corresponding to a large level basis. To formally
quantify such function oscillations, we can use the so-called
Besov norm with exponent s, defined for a smooth level
s ∈ [0,∞) and l,m ∈ N+ as follows:

∥p∥Bs
l,m

:=
[ ∞∑
j=0

2jm(s+ d
2−

d
l )
( ∑
ψ∈Ψj

|pψ|l
)m

l

] 1
m

. (3)

We can correspondingly define the Besov space Bsl,m(Rd)
as a subspace of L2(Rd) equipped with the norm ∥ · ∥Bs

l,m
.

The Besov space is closely related to the Sobolev space:
when l = m = 2, the Besov space Bs2,2(Rd) is equivalent
to the Sobolev-2 space Ws(Rd); when l = m = ∞, the
Besov space Bs∞,∞(Rd) is equivalent to the Hölder space
Cs(Rd).

Apart from quantifying the smoothness level of a function,
by allowing a negative exponent s inside (3), the Besov
norm can be used to measure the difference of two func-
tions. In particular, by choosing l = m = 2, s = −γ, we
can obtain the following distance between two probability
density functions p, q ∈ L2(Rd),

∥p− q∥B−γ
2,2

=
[ ∞∑
j=0

2−2jγ
∑
ψ∈Ψj

(pψ − qψ)
2
] 1

2

. (4)

We call the norm in (4) the negative Besov norm with
exponent γ ∈ [0,∞). The decaying level γ controls
the sensitivity of the metric to abrupt changes. By tak-
ing γ = 0 and l = m = 2, we attain the conventional

ℓ2 loss (i.e.,
[ ∫

Rd(p(x) − q(x))2 dx
] 1

2 ). However, as de-
scribed in Section 2, the ℓ2 distance is sensitive to small
wiggles/oscialltions, and may not be suitable for cases where
we are also concerned about the slowly varying trends. On
the other hand, by choosing a positive γ, the influence of
high level wavelet coefficients (high frequency component)
is controlled by the weight 2−2jγ . The following Lemma
shows that the negative Besov norm is equivalent to the ad-
versarial loss with the discriminator class being the Sobolev-
2 space.
Lemma 1. For probability density functions p, q ∈ L2(Rd)
and γ ≥ 0, we have

c dWγ (p, q) ≤
∥∥p− q

∥∥
B−γ

2,2
≤ C dWγ (p, q),
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where positive constants c and C only depend on γ, d.

4 Empirical Surrogate to Squared Negative
Besov Norm

The adversarial loss, even though conceptual appealing, may
suffer from lacking a closed-form expression for computa-
tions. According to Lemma 1, the adversarial loss dWγ is
equivalent to the negative Besov norm ∥ · ∥B−γ

2,2
with expo-

nent γ, up to some multiplicative constant. However, the
negative Besov norm is a sum of an infinite series, and can
not be computed in a finite number of operations. To this
end, we restrict our attention to distributions supported on
a bounded domain Ω ⊂ Rd with smooth densities. De-
note by Wu,α

L (Ω) the subset of αth order Sobolev-2 space
Wα
L (Rd) so that each function is uniformly bounded by L

and supported on Ω, that is,

Wu,α
L (Ω) =

{
p ∈ Wα

L(Rd) : sup
x∈Ω

|p(x)| ≤ L,

supp(p) ⊂ Ω
}
, α > 0.

Note that here the uniform boundness of the density function
is only a technique artifact to simplify the proof, so that
magnitudes of high-order (empirical) wavelet coefficients
can be properly bounded; it also trivially holds for Hölder
smooth density functions. The compactness of the support
of the density is for ensuring that only finitely many wavelet
coefficients are non-vanishing at a given scale. Consider
densities p, q ∈ Wu,α

L (Ω), we further choose to truncate the
wavelet expansion at a finite level J to attain a best accuracy
versus efficiency trade-off, where J is an integer depending
on the sample size and smoothness level α that will be
chosen later. This leads to the following approximation to
the squared negative Besov norm:

∥p− q∥2
B̂−γ

2,2

=

J∑
j=0

2−2jγ
∑
ψ∈Ψj

(pψ − qψ)
2, (5)

where Ψj = {ψ ∈ Ψj : supp(ψ) ∩ Ω ̸= ∅} for j ≥ 0.1

Given the wavelet coefficients {pψ, qψ}ψ∈Ψj ,j∈N, (5) can
be computed in O(2dJ) number of operations. In statisti-
cal applications, the wavelet coefficients are not directly
computable, but instead two sets of i.i.d samples X(n) =
{X1, · · · , Xn} ∼ p and Y (m) = {Y1, · · · , Ym} ∼ q are
available. Based on the definition pψ = Ep[ψ(X)] of
the wavelet coefficient, we can estimate pψ by replacing
the population level expectation with the empirical mean
p̂ψ = n−1

∑n
i=1 ψ(Xi). However, it is not hard to see

that p̂2ψ is a biased estimator of p2ψ. We then correct for
the bias and use instead the U -statistic to approximate p2ψ,
which leads to the following statistic that forms an unbiased

1We use supp(ψ) to denote the support of function ψ.

estimator to (5),

Tγ,J =

J∑
j=0

2−2jγ
∑
ψ∈Ψj

[
1

n(n− 1)

∑
i1 ̸=i2

ψ(Xi1)ψ(Xi2)+

1

m(m− 1)

∑
i1 ̸=i2

ψ(Yi1)ψ(Yi2)−
2

nm

∑
i1,i2

ψ(Xi1)ψ(Yi2)

]
.

(6)
For brevity, we consider the balanced case where c ≤
n/m ≤ C for some constants 0 < c ≤ C < ∞, and
express explicitly only the dependence on n and not m in
our theoretical results. For general situations, the rate will
only depend on the minimum of n and m.

The next lemma shows that by choosing a suitable truncation
level J , the statistic Tγ,J is a valid estimator to the squared
Besov norm in the sense that (1) under the case where the
two distributions p, q are the same, Tγ,J converges to zero
in probability; (2) when the two distributions are sufficiently
separated, the ratio of the statistic and squared negative
Besov norm converges to one in probability.

Lemma 2. For distributions p, q ∈ Wu,α
L (Ω). Suppose

c ≤ n/m ≤ C for some constants 0 < c ≤ C < ∞.
For any γ ≥ 0, the statistic Tγ,J with J = ⌈log2(n

2
4α+d )⌉

satisfy the following properties:

1. If p = q, we have Tγ,J
P−→ 0, where P−→ means con-

verging in probability;

2. If dWγ (p, q) · (n
2(α+γ)
4α+d ∧ n 1

2 ) · (log n)− 1
2 → ∞, then

we have Tγ,J

∥p−q∥2

B
−γ
2,2

P−→ 1.

The statistic Tγ,J can then be deployed to construct a test
statistic for the two-sample hypothesis testing, which we
describe in detail in the following section.

A commonly-used metric in literature for measuring the
discrepancy between two distributions p, q is the maximum
mean discrepancy (MMD). With finite data, the squared
MMD between p, q is commonly approximated by the U -
statistic:

TMMD
h =

1

n(n− 1)

∑
i1 ̸=i2

kh(Xi1 , Xi2)

+
1

m(m− 1)

∑
i1 ̸=i2

kh(Yi1 , Yi2)−
2

nm

∑
i1,i2

kh(Xi1 , Yi2),

(7)
where kh(x, y) = k(x−yh ) is a positive semi-definite kernel,
typically chosen as a Gaussian kernel with bandwidth h. It
has been shown that for properly chosen bandwidth, TMMD

h

can well approximate the squared ℓ2 distance (Gretton et al.,
2012a). Compared with TMMD

h , the statistic Tγ,J can rep-
resent a large class of metrics including the ℓ2 distance by
allowing different γ. Computationally, due to the compact-
ness of the wavelet function, for any j ∈ N and X ∈ Ω,
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there are only a constant number of ψ ∈ Ψj such that
ψ(X) ̸= 0. Therefore, the statistic Tγ,J can be computed
in O(nJ + 2dJ) number of operations: we need O(nJ)
number of operations for obtaining estimators of wavelet
coefficients, and O(2dJ) number of operations to compute
the truncated negative Besov norm given the wavelet coef-
ficients. Plugging in the choice of J = ⌈log2(n

2
4α+d )⌉, the

dependence of the computational complexity of Tγ,J in n
is O(n log n+ n

2d
4α+d ). While TMMD

h requires O(n2) num-
ber of operations, which is larger than the number required
by Tγ,J for α > 0. Moreover, by choosing a positive γ,
the weights 2−2γj penalize coefficients at high levels and
reduce the variance of the statistic. Therefore, Tγ,J tends
to be robust against the choice of sufficiently large J’s. In
comparison, TMMD

h is known to be sensitive to the choice
of bandwidth h: a bandwidth value which is too small leads
to an estimation with small bias and large variance; while
a large bandwidth leads to low variance at the expense of
increased bias. It is also worth mentioning that when the
populations of concern are α-smooth, the optimal choice of
the bandwidth is given by h = O(n−

2
4α+d ) (Li and Yuan,

2019), which relates to the optimal choice of the trunca-
tion level J in our proposed statistic through 2−J ≍ h.
Therefore, any rule for selecting the bandwidth in the MMD
test with Gaussian kernel (e.g., the median heuristic, Arlot
et al., 2019) can be deployed for selecting J . Addition-
ally, by rearranging the order of summations in the statis-
tic Tγ,J , it actually corresponds to a special MMD test
statistic with a kernel constructed via wavelet truncation:
kγ,J(x, y) =

∑J
j=0

∑
ψ∈Ψj

2−2jγψ(x)ψ(y). So we can
adopt rules in literature of MMD tests for optimizing the
choice of the kernel (Gretton et al., 2012b).

5 Minimax Nonparametric Two-Sample Test

The two-sample test is a statistical hypothesis test used to
determine whether two independent samplesX(n) and Y (m)

come from a common population. Let p, q be two proba-
bility density functions in Wu,α

L (Ω). To better quantify the
power of a two-sample test, We consider the null hypoth-
esis H0 : p = q and a local alternative hypothesis that is
increasingly closer to the null as data accrue:

H1(∆n;D) : D(p, q) ≥ ∆n,

where D is some discrepancy measure. For a test Φ based
on data X(n), we can define its power as

power
(
Φ;H1(∆n;D)

)
:= inf

p,q∈Wu,α
L

(Ω)

D(p,q)≥∆n

P (Φ rejectH0).

(8)
Of particular interest here is the smallest separation ∆n

from the null hypothesis that can be detected consistently
in a minimax sense. We care about metrics dWγ1 and dHγ1
with γ1 ∈ [0,∞). Note that by Sobolev embedding theo-
rem (Adams and Fournier, 2003), Cγ1L (Ω) ⊂ Wγ1

L1
(Ω), and

therefore dHγ1(p, p0) ≲ dWγ1 (p, p0), which leads to

power
(
Φ;H1(∆n; d

W
γ1 )

)
≤ power

(
Φ;H1(c∆n; d

H
γ1)

)
,
(9)

for some constant c depend on Ω. We first provide a lower
bound to the optimal detection boundary (or separation
threshold) when D(·, ·) is chosen to be the adversarial loss
dHγ1 with Hölder smooth discriminators. Here again for the
sake of simplicity, we consider the balanced case where
c ≤ n/m ≤ C for some constants 0 < c ≤ C < ∞ and
express explicitly only the dependence on n.

Theorem 1. For any γ1 ≥ 0, if ∆n = o
(
n−

2(α+γ1)
4α+d ∨

1√
n

)
2, then there exists some η ∈ (0, 1) so that for any

test Φn based on data X(n) and Y (m) that has asymptotic
significance level η, i.e., limn→∞ P (Φn rejectH0) = η for
any p = q ∈ Wu,α

L (Ω), we have

lim inf
n→∞

power
(
Φn;H1(∆n; d

H
γ1)

)
< 1.

A similar result holds when the discrepancy measure is cho-
sen to be dWγ1 (recall inequality (9)). Now we demonstrate
that, with a proper choice of γ and J , we can construct a
test statistic based on Tγ,J that simultaneously attains the
optimal detection boundary (up to logarithmic term) for all
the dHγ1 and dWγ1 metrics with γ1 ranging over [0,∞).

Given a specified significance level η, to obtain an asymp-
totic η-level test, we may proceed to reject H0 if and
only if Tγ,J exceeds the η-upper quantile of its asymp-
totic distribution under H0. However, the asymptotic dis-
tribution of Tγ,J remains unknown. To obtain a “normal-
ized” test statistic that is asymptotically standard normal
under H0, we should estimate the variance of Tγ,J . Denote
rn,m = 2

n(n−1)+
2

m(m−1)+
4
mn , a simple calculation yields

that, under H0,

Var(Tγ,J) = rnm · E
[( J∑

j=0

∑
ψ∈Ψj

2−2jγψ(X)ψ(Y )
)2

−
( J∑
j=0

∑
ψ∈Ψj

2−2jγψ(X) · qψ
)2

−

( J∑
j=0

∑
ψ∈Ψj

2−2jγψ(Y ) · pψ
)2

+
( J∑
j=0

∑
ψ∈Ψj

2−2jγpψqψ

)2
]
.

(10)
Note that the last term in (10) is a higher-order term, so
we only need to estimate the first three terms. To this end,
we replace the population means with the empirical means
and approximate the wavelet coefficients by their sample

2an = o(bn) if an/bn → 0 as n increases.
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versions, which leads to

Ŝ 2
γ,J = rnm ·

{
1

nm

∑
i1,i2

( J∑
j=0

2−2jγ
∑
ψ∈Ψj

ψ(Xi1)ψ(Yi2)
)2

− 1

n

n∑
i1=1

[ J∑
j=0

2−2jγ
∑
ψ∈Ψj

ψ(Xi1) ·
( 1

m

m∑
i2=1

ψ(Yi2)
)]2

− 1

m

m∑
i2=1

[ J∑
j=0

2−2jγ
∑
ψ∈Ψj

ψ(Yi2) ·
( 1
n

n∑
i1=1

ψ(Xi1)
)]2}

.

However, we need to avoid a negative or zero estimate of
the variance. To this end, we replace Ŝ 2

γ,J with a small
value 1/n3 whenever it is too small or negative. Namely, let
S̃ 2
γ,J = max(Ŝ 2

γ,J ,
1
n3 ). Now we can define the following

“normalized” test statistic:

T̃γ,J = S̃ −1
γ,JTγ,J .

The following theorem summarizes our main results on the
validity and power of the test induced from the test statistic
T̃γ,J .

Theorem 2. For p, q ∈ Wu,α
L (Ω), consider test statistic

T̃γ,J with 2J ≍ n
2

4α+d and 0 ≤ γ ≤ d
4 ,

1. under H0, we have T̃γ,J
d−→ N(0, 1), where d−→ means

converging in distribution;

2. for any significance level η ∈ (0, 1), consider test ΦJγ,η
where H0 is rejected if and only if T̃γ,J exceeds zη , the
upper η-quantile of the standard normal distribution
(i.e., P (Z ≥ zη) = η with Z ∈ N(0, 1)). Let

δn(γ1) =


n−

4α+4(γ∧γ1)
4α+d , 0 < γ < d

4

log n · n−
4α

4α+d , γ = 0

log n · n−1+
4(γ−γ∧γ1)

4α+d , γ = d
4

(11)
then for any γ1 ≥ 0 and ∆n satisfies ∆2

n ·δn(γ1)−1 →
∞, we have (1) T̃γ,J

P−→ +∞ given that dWγ1 (p, q) ≥
∆n; (2) the power defined in (8) satisfies

lim
n→∞

power
(
ΦJγ,η;H1(∆n; d

W
γ1 )

)
= 1.

Theorem 2 suggests that (1) the test ΦJγ,η has asymptotic
level η; (2) for any 0 < γ1 <

d
4 , by choosing γ1 ≤ γ < d

4 ,
the test ΦJγ,η can attain the optimal detection boundary

n−
2(α+γ1)
4α+d ∨ 1√

n
under both dWγ1 and dHγ1 metrics (recall

inequality (9)); the case for γ1 ≥ d
4 or γ1 = 0 only intro-

duces an extra logarithmic term. In particular, by taking
γ = d

4 , the test ΦJγ,η can simultaneously attain the optimal
detection boundary up to a logarithmic term under dWγ1 and
dHγ1 metrics with γ1 ranging over [0,∞).

Corollary 1. Consider test statistics T̃γ,J with γ = d
4 and

2J ≍ n
2

4α+d . For any γ1 ≥ 0, denote ∆n = (log n) ·(
n−

2(α+γ1)
4α+d ∨ 1√

n

)
, then for any significance level η ∈ (0, 1)

the associated test ΦJd
4 ,η

satisfies that

lim
n→∞

power
(
ΦJd

4 ,η
;H1(∆n; d

W
γ1 )

)
= 1.

In practice, rather than estimating the variance of Tγ,J , we
can also estimate the testing threshold by bootstrap meth-
ods (Arcones and Gine, 1992; Efron, 1979) as the bootstrap
threshold may be more accurate for small samples: we com-
pute the statistics Tγ,J based on datasets randomly sampled
from the joint sample {X(n), Y (m)}, and then we evaluate
the upper η-quantile of the empirical distribution of Tγ,J
based on the bootstrapping datasets.

Remark 1. The reason for considering Sobolev discrimina-
tors in constructing the test statistic is that, the norm B−γ

2,2

associated with dWγ has a nice squared form, which enables
us to utilize techniques from U -statistics for computation
and theoretical analysis. Since we develop a matching lower
bound for Hölder smooth discriminators, our result can be
generalized to any adversarial loss with the discriminator
class being an interpolation space between Sobolev-2 and
Hölder space. Moreover, for γ > d/2, the Sobolev-2 space
Bγ2,2(Rd) coincides with the reproducing kernel Hilbert
space (RKHS) generated by the Matérn kernel of order
γ − d/2 (Kanagawa et al., 2018), so the proposed statistics
Tγ,J would be asymptotically equivalent to the Matérn ker-
nel based MMD statistic with bandwidth h ≍ 2−J . However,
the most interesting case lies in γ ≤ d

4 , as the optimal de-
tection boundary is the parametric root-n rate when γ > d

4 .
So increasing γ above d

4 leads to a weaker loss but has no
improvement in the optimal detection rate.

Remark 2. Another closely related problem is the goodness-
of-fit test. The goodness-of-fit test is a statistical hypothesis
test used to determine whether the sample data fits a spec-
ified distribution p0 from an expected population (e.g. a
population with a normal distribution). The two-sample
test can also be used to do a goodness-of-fit test: a random
sample Z(m) is first drawn from the known reference distri-
bution p0 and then a two–sample test is performed on data
sets X(n) and Z(m). We can construct a minimax optimal
nonparametric goodness-of-fit test in a similar way as the
two-sample test, where the extra prior information of p0 is
incorporated. Further detail is available in Appendix C.

Remark 3. The assumption about the compactness of
the support of p, q can be relaxed. For example, if p, q
have exponential decay tails, then we can consider Ω =
[−c log n, c log n] so that the probability mass outside of Ω
is a negligible higher-order term, and it will only introduce
extra logarithmic terms in the detection power.
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6 Numerical Illustration

In this section, we aim at: (1) verifying empirically that the
proposed test ΦJγ,η has asymptotic significance level η; (2)
evaluating the power of the proposed test and comparing
it with the MMD test. We carry out our experiment using
two hypothesis testing procedures: one is the test ΦJγ,η with
γ = d

4 as suggested in Theorem 2 and Corollary 1, where
the wavelet basis is chosen to be the Haar wavelet3, the other
one is the hypothesis test based on MMD with Gaussian ker-
nel kh(x, y) = exp

(
− (∥x− y∥/h)2

)
(Li and Yuan, 2019):

H0 is rejected if and only if T̃MMD
h = TMMD

h /ŜMMD ex-
ceeds zη, where TMMD

h is defined in (7), and ŜMMD is
an estimator to the standard variance of TMMD

h for nor-
malizing the statistic, we denote the corresponding test by
ΦMMD
h,η . We then apply the two procedures to synthetic

datasets. Specifically, let µ0 be the uniform distribution on
[0, 1]d and µ1(x) =

∏d
j=1 ν(xj) be a d-dimensional distri-

bution with ν being beta distribution with shape parameters
α = 2.5, β = 2.5. Then we scale and translate the random
variable X ∼ µ1 by the transform Y = X/k + 0.5 with
k ∈ R+, the corresponding distribution of Y is denote by
µ
[k]
1 . We set p = 1

2µ0 +
1
2µ

[5]
1 and q = 1

2µ0 +
1
2µ

[k]
1 with

k ∈ {3, 3.5, 3.8, 4, 5}.

We first check the normality of the test statistic T̃γ,J and
T̃MMD
h under H0. With n = 50, we independently sample

2n data from p, and split it into two equally-sized data
sets X(n) and Y (n). The bandwidth h and truncation level
J are selected based on the median heuristic (Arlot et al.,
2019; Garreau et al., 2017): define Hn = Median(∥Zi −
Zj∥2 | 1 ≤ i ≤ j ≤ 2n), where Z = {Z1, Z2, · · · , Z2n} =
{X(n), Y (n)}. Following (Garreau et al., 2017), we set h =√
Hn/2, and similarly choose J = ⌈log2(1/

√
Hn) + 1⌉.

The corresponding bandwidth is around h = 0.25, and
truncation level is around J = 3. The density and normal
quantile-quantile (Q-Q) plots of the test statistics of concern
based on 1000 replicates are shown in figure 2(a) and 2(b).
We can see the density for T̃γ,J under H0 is closer to the
standard normal. In addition, the 1-Wasserstein distance
between the distribution of the test statistics (under H0)
and standard normal is 0.2538 for T̃MMD

h , and 0.2138 for
T̃γ,J . Therefore, our method delivered better uncertainty
quantification.

To assess the power of the proposed testing procedure. We
sample n = 50 samples from p and q = 1

2µ0 +
1
2µ

[k]
1 with

k ∈ {3, 3.5, 3.8, 4} respectively. The selected bandwidth
based on the median heuristic is also around h = 0.25, and
the truncation level is around J = 3. The densities of the
two test statistics of concern are given in Figure 2(c). We
can see the density of T̃γ,J has a much heavier tail, that is,

3The Haar wavelet’s (mother) wavelet function is described as
ϕM(x) = 1(0 ≤ x < 1/2) − 1(1/2 ≤ x < 1), and its scaling
function can be described as ϕF(x) = 1(0 ≤ x < 1).

T̃γ,J tends to return a larger value that leads to the rejection
of the null hypothesis. Moreover, we consider the powers
(i.e., the probability that success to reject the null hypothe-
sis) of the tests ΦJγ,η and ΦMMD

h,η with level of significance
η ∈ {0.05, 0.01}. The results are shown in Table 1, from
which we can see that the test ΦJγ,η has much larger powers
than ΦMMD

h,η . Now we study the sensitivity of the hypothesis

Powers: ΦJγ,η ↑
k η = 0.01 η = 0.05
4 0.307± 0.016 0.416± 0.016

3.8 0.434± 0.020 0.548± 0.014
3.5 0.602± 0.013 0.711± 0.011
3 0.822± 0.012 0.891± 0.010

Powers: ΦMMD
h,η ↑

k η = 0.01 η = 0.05
4 0.085± 0.011 0.163± 0.012

3.8 0.134± 0.008 0.246± 0.013
3.5 0.283± 0.013 0.440± 0.018
3 0.716± 0.009 0.837± 0.008

Table 1: Under p = 1
2µ0+

1
2µ

[5]
1 and q = 1

2µ0+
1
2µ

[k]
1 with

k ∈ {3, 3.5, 3.8, 4}, the table shows the powers for tests
ΦJγ,η and ΦMMD

h,η with γ = 1/2, J = 3, h = 0.25 and level
of significance η ∈ {0.05, 0.01}.

testing procedures to the hyperparameter. We also include
in comparison the hypothesis testing procedure ΦJη = ΦJ0,η ,
which means that we do not include the decaying factor
2−2γj for the level j of the wavelet in the proposed test
statistic. Figure 3 shows the trends of the powers as the
level of significance varies for different methods and hyper-
parameters. We can see that the tests ΦJη and ΦMMD

h,η exhibit
similar patterns: both increasing and decreasing J (or h)
from the optimal level would lead to an obvious deteriorate
in the performance. On the other hand, the test ΦJγ,η with
γ = d

4 is much more robust to large truncation levels: choos-
ing an arbitrary J from {3, 4 · · · , 7} outperforms the MMD
test ΦMMD

h,η with the bandwidth h being selected through the
median heuristic (i.e., h = 0.25).

7 Application

As shown in Lemmas 1 and 2, the statistic Tγ,J provides a
reasonable metric for quantifying the distance between the
underlying populations based on finite samples. Therefore,
Tγ,J can be deployed in practical problems as an evaluation
criterion for checking the goodness of model fit.

We consider the MNIST handwritten digit (LeCun et al.,
1995) dataset, which is composed of 60k grey-scale im-
ages of handwritten digits (0 − 9), along with a test set
of 10k images. A popular method for modelling and ef-
ficient sampling from the complex distribution P∗ over
the handwritten digit is the variational autoencoder (VAE,
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(a) Density plot: q = p = 1
2
µ0 +

1
2
µ
[5]
1 (b) Q-Q plot: q = p = 1

2
µ0 +

1
2
µ
[5]
1 (c) Density plot: p = 1

2
µ0 + 1

2
µ
[5]
1 , q =

1
2
µ0 +

1
2
µ
[k]
1

Figure 2: Densities and Normal quantile-quantile (Q-Q) plots of test statistics: blue curves correspond to T̃MMD
h with

h = 0.25, red curves correspond to T̃γ,J with J = 3 and γ = 1/2, black curve corresponds to the baseline of standard
normal.

(a) Test ΦMMD
h,η (b) Test ΦJ

η (c) Test ΦJ
γ,η

Figure 3: For p = 1
2µ0 +

1
2µ

[5]
1 and q = 1

2µ0 +
1
2µ

[k]
1 with k = 3.8. The figure illustrates the trends of powers as the level η

of significance varies for (1) test ΦMMD
h,η under different choices of bandwidth h; (2) test ΦJη = ΦJ0,η with different choices

of truncation level J ; (3) test ΦJγ,η with γ = d
4 and different choices of truncation level J . The cases for k = 3, 3.5, 4 exhibit

similar trends.

Kingma and Welling, 2013; Rezende et al., 2014). In plain
language, VAE is a latent variable generative modelling
approach that defines a joint density p(x, z) over the data
space X ⊂ RD and the latent space Z ⊂ Rd by speci-
fying a prior π(z) over latent variables and a conditional
density (decoder) p(x|z) of data given latent variables. To
avoid marginalizing out latent variables, VAE introduces
a family of encoders q(z|x) for approximating the poste-
rior of latent variables and jointly optimizing the so-called
evidence lower bound (ELBO, Ormerod and Wand, 2010).
The commonly-used choice of π(z) is the isotropic Gaus-
sian distribution. In this experiment, we consider jointly
optimizing the prior inside a mixture of Gaussian family
{π(z) = 1

K

∑K
j=1N(µj , σ

2
j Id) |µj ∈ R, σj ∈ R+} (Jiang

et al., 2016; Tomczak and Welling, 2018). Of particular
interest here is the choice of the hyperparameter K ∈ N+:
whether uses a mixture of Gaussian can outperform the stan-
dard Gaussian and what is the optimal choice of K. To
this end, let the latent dimension d = 2 and denote the fit-
ted encoder and prior based on the training set as q̂[K](z|x)
and π̂[K](z), respectively. Here the encoder and prior are
modelled by neural networks, details are available in Ap-

pendix A. A good choice of prior family will result in a
small distance between the marginal of the learned encoder
EP∗ [q̂[K](z|x)] and the prior π̂[K](z). Therefore, we sample
10k i.i.d data from EP∗ [q̂[K](z|x)] by first randomly pick a
data point x from the test set and sample z from q̂[K](z|x),
the obtaining data set is denote by Z(n)

1 with n = 10k. Sim-
ilarly, we sample data set Z(n)

2 from π̂[K](z). We record the
value of Tγ,J with γ = d

4 and J = 8 for different choices of
K. As a comparison, we record the values of the negative
test marginal log-likelihood (LL) (Burda et al., 2015; Tom-
czak and Welling, 2018), which is a commonly-used metric
for quantitatively evaluating the VAE model. The results are
shown in Figure 4.

According to the plot, the statistic Tγ,J decreases rapidly
when K increases from 1 to 10. As we can see in Figure 5,
when K = 1, where the fitted prior is a single mode nor-
mal distribution, the marginal of the fitted encoder has an
obvious clustering structure. In contrast, when K = 10,
the fitted prior and marginal of the fitted encoder has a
similar clustering structure. In addition, the trend of Tγ,J
approaches a horizontal line when K ≥ 10. This is consis-
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Figure 4: The statistic Tγ,J (black curve) and negative test
marginal log-likelihood (red curve) as K varies. For both
metrics, a smaller value implies better performance.

tent with the fact that the dataset consists of 10 digits ‘0’ to
‘9’. Interestingly, for this dataset our method correctly iden-
tified/learned the number of clusters, a key clustering tuning
parameter usually set from domain knowledge. The trend of
the negative test LL exhibits similar pattern as the statistic
Tγ,J , while it is more computational demanding: we need
170s for computing the test LL using an NVIDIA-A100
GPU, while the statistic Tγ,J can be computed in 9s.

(a) Marginal of the fitted en-
coder (K = 1)

(b) Fitted prior (K = 1)

(c) Marginal of the fitted en-
coder (K = 10)

(d) Fitted prior (K = 10)

Figure 5: Random samples from the marginal of the fitted
encoder and priors for different K.

8 Conclusion

In this paper, we propose a minimax nonparametric two-
sample test that can simultaneously attain the optimal detec-
tion boundary under many common adversarial losses. We
conducted experiments to show that in comparison to the
conventional MMD test with Gaussian kernel, the proposed
testing procedure tends to exhibit higher power and robust-
ness against tuning parameters. In our theoretical analysis,
the optimal choice of the truncation level J depends on the

smoothness α of the underlying population, which may be
unknown in practical problems. The development of a data-
driven adaptive test to the distribution smoothness level may
be left to future research.
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Appendix

Notations: We adopt the notations in the manuscript, and further introduce the following additional notations for the
technical proofs. For α ∈ R, the floor and ceiling functions are denoted by ⌊α⌋ and ⌈α⌉, indicating rounding α to the
next smaller and larger integer. For two sequences {an} and {bn}, we use the notation an ≲ bn and an ≳ bn to mean
an ≤ Cbn and an ≥ Cbn, respectively, for some constant C > 0 independent of n. In addition, an ≍ bn means that both
an ≲ bn and an ≳ bn hold. We use L2(Rd) to denote the set of square integrable functions on Rd. When no ambiguity
arises, for an absolutely continuous probability measure ν, we may also use ν to refer its density function. For a multi-index
a = (a1, · · · , ad) ∈ Nd0 = {(a1, · · · , ad) | ∀j ∈ [d], aj ∈ N0}, we define |a| =

∑d
k=1 aj and use f (a) to denote the mixed

partial derivative of function f with order a. For α ∈ [0,∞), we use the notation Cα(Ω) to denote the α-smooth Hölder
(function) class (see e.g., Evans (2010)) equipped with the Hölder norm ∥ · ∥Cα(Ω):

∥f∥Cα(Ω) =
∑

|a|=⌊α⌋

max
x,y∈Ω,
x ̸=y

|f (a)(x)− f (a)(y)|
∥x− y∥α−⌊α⌋ +

∑
|a|≤⌊α⌋

max
x∈Ω

|f (a)(x)|,

and let Cαr (Ω) :=
{
f : Ω → R : ∥f∥Cα(Ω) ≤ r

}
. Similarly, we use the notation Wα(Ω) to denote the α-smooth

Sobolev(-2) class equipped with the Sobolev norm ∥ · ∥Wα(Ω):

∥f∥Wα(Ω) =
∑

|a|=⌊α⌋

√∫
Ω

∫
Ω

|f (a)(x)− f (a)(y)|2
∥x− y∥2(α−⌊α⌋)+d dx dy +

∑
|a|≤⌊α⌋

√∫
Ω

|f (a)(x)|2 dx,

and let Wα
r (Ω) :=

{
f : Ω → R : ∥f∥Wα(Ω) ≤ r

}
. We use ∥ · ∥p to denote the usual vector ℓp norm, and reserve ∥ · ∥ for

the ℓ2 norm (that is, suppress the subscript when p = 2). For two sequences {an} and {bn}, we use the notation an = o(bn)

if an/bn → 0 ad n increases. For two random sequences {an} and {bn}, we use the notation an = op(bn) if an/bn
P−→ 0.

For any positive integer m, we use the shorthand [m] := {1, · · · ,m}. Throughout, C, L c, C0, L0, c0, C1, L1, c1,. . . are
generically used to denote positive constants whose values might change from one line to another, but are independent from
everything else.

A Implementation Details for the Real Data Application

Follow Kingma and Welling (2013), for our encoder, we use the multivariate Gaussian distribution, with the mean and
covariance matrices parameterized by the outputs of a convolutional neural network with Probabilistic (tfp) Layers;
the decoder is a multivariate Bernoulli whose probabilities are computed with a deconvolutional neural network. The
specification of our models are described in Table 2. Note that the regularizer “KLDivergenceRegularizer” in the probabilistic
layer of the encoder should contribute a “regularization” term to the final loss. Specifically, we are adding the KL divergence
between the encoder and the prior to the loss, which is the KL term in the ELBO. Moreover, in the computation of
the statistic Tγ,J , for consistency, we transform the data sets by setting Z

(n)
1 = Z

(n)
1 − Zmin/(Zmax − Zmin) and

Z
(n)
2 = Z

(n)
2 − Zmin/(Zmax − Zmin), where Zmax and Zmin are the maximum and minimum of the joint dataset

{Z(n)
1 , Z

(n)
2 } through all the data points (by dimension). After the transformation, the data sets Z(n)

1 and Z(n)
2 are all

included in [0, 1]d. The code for reproducing the experiment is available in https://github.com/rtang1997/
Two_sample_test_adversarial.

https://github.com/rtang1997/Two_sample_test_adversarial
https://github.com/rtang1997/Two_sample_test_adversarial
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Operation Kernel Strides Feature maps Activation
Decoder p(x|z) : z ∈ Rd 2

Fully connected 6× 6× 32 Leaky ReLU
Transposed convolution 3× 3 2× 2 13× 13× 64 Leaky ReLU
Transposed convolution 3× 3 2× 2 27× 27× 32 Leaky ReLU
Transposed convolution 2× 2 1× 1 28× 28× 1 Leaky ReLU

Probabilistic Layers: IndependentBernoulli 28× 28× 1
Encoder q(z|x) 28× 28× 1
Minus x by 0.5 28× 28× 1

Convolution 3× 3 2× 2 14× 14× 32 LeakyReLU
Convolution 3× 3 2× 2 7× 7× 64 LeakyReLU

Fully connected 5
Probabilistic Layers:MultivariateNomalTriL 2 KLDivergenceRegularizer

Batch size 128
Number of epochs 50

Number of training samples and test samples 60k and 10k respectively.

Table 2: Network architecture and hyperparameters the encoder and decoder.

B Wavelet and Besov Function Space

In this section, we give a brief introduction to the wavelet and Besov function Space. Further details are available in Cohen
(2003); Triebel (2006); Härdle et al. (2012). Let ϕM and ϕF be a compactly supported wavelet and scaling function,
respectively, for example Daubechies wavelets (Bouzebda and Didi, 2017; Hütter and Rigollet, 2021). This implies that{

ψF(x− k) j = 0, k ∈ Z,
2(j−1)/2ψM(2j−1x− k), j ∈ N+, k ∈ Z,

is an orthonormal basis of L2(R). To obtain a basis of L2(Rd) for an integer d > 1, set G = {F, M}d \ {(F, . . . ,F)}.
Then for any multi-index k ∈ Zd, the level zero basis ϕ[d]k is obtained by translating the d-fold tensor product ϕ⊗dF by k as

ϕ
[d]
k (x) =

∏d
i=1 ϕF(xi − ki) for x = (x1, . . . , xd) ∈ Rd, and for any j ≥ 1, the level j basis

{
ψ
[d]
ljk : l ∈ [2d − 1]

}
with

translation k is any ordering of the following 2d − 1 functions,

ψ
[d]
gjk(x) = 2

d(j−1)
2

d∏
i=1

ϕ[d]gi
(
2j−1xi − ki

)
, ∀g ∈ G.

This gives the orthornormal basis {
ϕ
[d]
k (x), j = 0, l = 0, k ∈ Zd,
ψ
[d]
ljk(x), j ∈ N+, l ∈ [2d − 1], k ∈ Zd,

for L2(Rd). Denote Ψ0 = {ϕ[d]k (·) : k ∈ Zd} as the set of level zero basis and Ψj = {ψ[d]
ljk(·) : l ∈ [2d − 1], k ∈ Zd}

as the set of level j basis for j ∈ N+. We are then ready to define the Besov space Bsl,m(Rd) consists of functions f that
admits the wavelet expansion

f(x) =
∑
j≥0

∑
ψ∈Ψj

fψψ(x),

where fψ :=
∫
f(x)ψ(x) dx, and is equipped with the norm

∥f∥Bs
p,q

:=
∥∥∥2js2dj( 1

2−
1
p )∥fj∥l

∥∥∥
m
,

with fj = {fψ}ψ∈Ψj
.

The following Theorem collects the relationship between the Besov space, Hölder space and Sobolev-2 space.
Theorem 3. (Triebel, 2006; Giné and Nickl, 2015) Let α > 0, Wα(Rd) = Bα2,2(Rd). If α is not integer, then Cα(Rd) =
Bα∞,∞(Rd); if α is integer, then Bα1,∞(Rd) ⊂ Cα(Rd) ⊂ Bα∞,∞(Rd).
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C Goodness-of-fit Test

The goodness of fit test is a statistical hypothesis test used to determine whether the sample data fits a distribution from
an expected population (e.g. a population with a normal distribution). Given data sets X(n) = {X1, X2, · · · , Xn} i.i.d
sampled from an unknown distribution p. The goal is to check if X(n) come from a distribution p0, in other words, we are
interested in testing the null hypothesis HGoF

0 : p = p0.

As in the case of two-sample test, we restrict our attention to smooth densities p, p0 ∈ Wu,α
L (Ω), and consider an alternative

test
HGoF

1 (∆n;D) : D(p, p0) ≥ ∆n,

where D is some discrepancy measure. Then for a test Φ based on data X(n), the power of Φ is defined as

power
(
Φ;HGoF

1 (∆n;D)
)
:= inf

p∈Wu,α
L

(Ω)

D(p,p0)≥∆n

P (Φ rejectHGoF
0 ).

Similar to the statistic Tγ,J , we can define the following statistic for approximating the squared negative Besov norm
∥p− p0∥2B−γ

2,2 (Ω)
:

TGoF
γ,J =

1

n(n− 1)

∑
i1 ̸=i2

{ J∑
j=0

2−2jγ ·
∑
ψ∈Ψj

[(
ψ(Xi1)− p0ψ

)(
ψ(Xi2)− p0ψ

)]}
. (12)

As before, we normalize the statistic TGoF
γ,J to construct an optimal test statistic. Note that under HGoF

0 ,

Var(TGoF
γ,J ) =

2

n(n− 1)
EX1,X2∼p0

[( J∑
j=0

2−2jγ
∑
ψ∈Ψj

(
ψ(X1)− p0ψ

)
·
(
ψ(X2)− p0ψ

))2
]
.

It is then natural to consider estimating Var(TGoF
γ,J ) by U -statistics:

Ŝ2
γ,J =

2

n(n− 1)

{
1

n(n− 1)

∑
i1 ̸=i2

[ J∑
j=0

2−2jγ
∑
ψ∈Ψj

ψ(Xi1)ψ(Xi2)
]2

− 2

n

n∑
i=1

[ J∑
j=0

2−2jγ
∑
ψ∈Ψj

ψ(Xi)p0ψ

]2
+

( J∑
j=0

2−2jγ
∑
ψ∈Ψj

p20ψ

)2
}
.

Similarly to the two-sample test, we slightly modify the variance estimator by considering

S̃2
γ,J = max(Ŝ2

γ,J ,
1

n3
)

to ensure the positiveness. In the end, we can define the test statistic

T̃GoF
γ,J = S̃−1

γ,JT
GoF
γ,J .

The following theorem show the validity and power of the test induced from T̃GoF
γ,J .

Theorem 4. Consider Test statistic T̃GoF
γ,J with 2J ≍ n

2
4α+d and 0 ≤ γ ≤ d

4 , and level η ∈ (0, 1),

1. under HGoF
0 , we have T̃GoF

γ,J
d−→ N(0, 1);

2. consider test ΦGoF
γ,η,J where HGoF

0 is rejected if and only if T̃GoF
γ,J exceeds the η-upper quantile of the standard normal,

then for any γ1 ≥ 0 and ∆n satisfies ∆2
n · δn(γ1)−1 → ∞ with

δn(γ1) =


n−

4α+4(γ∧γ1)
4α+d , 0 < γ < d

4

log n · n−
4α

4α+d γ = 0

log n · n−1+
4(γ−γ∧γ1)

4α+d , γ = d
4 ,

we have
lim
n→∞

power
(
ΦGoF
γ,η,J ;HGoF

1 (∆n; d
W
γ1 )

)
= 1
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3. choose γ = d
4 , let ∆n = (log n) ·

(
n−

2(α+γ1)
4α+d ∨ 1√

n

)
, then the associated test ΦGoF

d
4 ,η,J

satisfies that for any γ1 ≥ 0,

lim
n→∞

power
(
ΦGoF

d
4 ,η,J

;HGoF
1 (∆n; d

W
γ1 )

)
= 1.

Theorem 5. For any γ1 > 0, if ∆n = o(n−
2(α+γ1)
4α+d ∨ 1√

n
), then there exists some η ∈ (0, 1) so that for any test Φn based

on data X(n) that has asymptotically significance level η, we have

lim inf
n→∞

power
(
Φn;HGoF

1 (∆n; d
H
γ1)

)
< 1.

D Proof for Goodness-of-fit Test

D.1 Proof of Theorem 5

Since p0 is almost surely continuous, there exists x0 ∈ Ω and δ, c > 0 so that p0(x) ≥ c > 0 for any ∥x − x0∥ ≤ δ. So
without loss of generality, we assume [0, 1]d ⊂ Ω and p0 is bounded away from zero in [0, 1]d. We first consider the case

when d ≥ 4γ1. Then ∆n = n−
2(α+γ1)
4α+d . Similar as the proof of Theorem 3 of Li and Yuan (2019), as proved in Ingster

(1987), we only need to construct a set of density function {pω}ω∈W belong to CαL(Rd) with compact support and indexed
by a multi-index ω so that

Ep0
( 1

|W |
∑
ω∈W

∏n
i=1 pω(Xi)∏n

i=1 p0(Xi)

)2

= O(1),

and for any ω ∈ W

dHγ1(p0, pω) ≳ n−
2(α+γ1)
4α+d .

To construct pω satisfies above conditions, we set m = ⌈n
2

4α+d ⌉,

W = {−1, 1}m
d

,

ω = {ωξ}ξ∈[m]d ,

and

pω(x) = p0(x) +
( 1

m

)α+ d
2

∑
ξ∈[m−1]d

ωξ · ϕξ(x)

with ϕξ(x) = m
d
2 ·

d∏
j=1

k(mxj − ξj)

where k(t) =


exp(− 1

1−(4t−1)2 ) 0 < t < 1
2

− exp(− 1
1−(4t−3)2 )

1
2 < t < 1

0 otherwise.

Then we can check that {pω}ω∈W ⊂ CαL(Rd) and
⋃
ω∈W supp(pω) ⊂ Ω. Moreover, by equation (14) of Li and Yuan

(2019), we have

Ep0
( 1

|W |
∑
ω∈W

∏n
i=1 pω(Xi)∏n

i=1 p0(Xi)

)2

≤ exp
(1
2
mdn2m−4α+2d max

ξ∈[m−1]d

( ∫
ϕ2ξ(x)/p0(x)dx

)2)
= O(1).

Furthermore, for any ω ∈ W , we have

fω(x) =
( 1

m

)γ1+ d
2

∑
ξ∈[m−1]d

ωξ · ϕξ(x) ∈ Cγ1L1
(Rd),
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and thus
dHγ1(p0, pω) = sup

f∈Cγ1
1 (Rd)

∫
f(x) ·

(
pω(x)− p0(x)

)
dx

≳
∫
fω(x) ·

(
pω(x)− p0(x)

)
dx

=
( 1

m

)γ1+d+α ∑
ξ∈[m−1]d

∑
ξ1∈[m−1]d

ωξ · ωξ1 ·
∫
ϕξ(x) · ϕξ1(x) dx

=
( 1

m

)γ1+d+α ∑
ξ∈[m−1]d

ω2
ξ

∫
ϕ2ξ(x)dx

≳ m−(γ1+α) ≍ n−
2(α+γ1)
4α+d .

For the case d < 4γ1, we have ∆n = 1√
n

. Consider

p(x) = p0(x) +
1√
n

d∏
j=1

k(xj) ∈ CαL(Rd).

Then we have supp(p) ⊂ Ω, and

dχ2(p(x), p0(x)) =

∫
(
p(x)

p0(x)
− 1)2p0(x) dx

=

∫
1

n

∏d
j=1 k

2(xj)

p0(x)
dx

≲
1

n
,

and thus
dχ2(p⊗n(x), p⊗n0 (x)) = O(1).

Moreover, since f(x) =
∏d
j=1 k(xj) ∈ CγL1

(Rd), we have

dHγ (p0, p) ≥
∫ d∏

j=1

k(xj) · (p(x)− p0(x)) dx

=

∫
1√
n
·
d∏
j=1

k(xj)
2 dx

≳
1√
n
.

We can then get the desired conclusion by combining all pieces.

D.2 Proof of Theorem 4

Throughout the proof, we use X to denote the random variable sampled from p, and X1, X2, · · · to denote independent
random variables from p. Without loss of generality, we assume Ω = [0, 1]d. The proof contains two part: one part is about
the normality under HGoF

0 , another part is the power analysis. We first show the normality.

D.2.1 Proof of the normality under HGoF
0

To begin with, we show S̃2
γ,J is a valid approximate for the variance of TGoF

γ,J though the following lemma.

Lemma 3. Under HGoF
0 , the quantity

S̃2
γ,J

Var(TGoF
γ,J )

converges in probability to 1 as n goes to infinity.

The proof of Lemma 3 is given in Section D.2.3. Write

S̃−1
γ,JT

GoF
γ,J =

TGoF
γ,J√

Var(TGoF
γ,J )

+
(√Var(TGoF

γ,J )

S̃γ,J
− 1

)
·

TGoF
γ,J√

Var(TGoF
γ,J )

.
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By Lemma 3, we only need to prove that

TGoF
γ,J√

Var(TGoF
γ,J )

d−→ N(0, 1). (13)

Let

H(X1, X2) =

J∑
j=0

2−2jγ
∑
ψ∈Ψj

(
ψ(X1)− p0ψ

)
·
(
ψ(X2)− p0ψ

)
.

Then by a slight adaptation of the proof of Theorem 1 of Hall (1984), we have the following lemma.

Lemma 4. Suppose

E[H4(X1, X2)]

n2(E[H2(X1, X2)])2
→ 0; (14)

E[H2(X1, X2)H
2(X1, X3)]

n(E[H2(X1, X2)])2
→ 0; (15)

E[G2(X1, X2)]

(E[H2(X1, X2)])2
→ 0, whereG(x, y) = E[H(X,x)H(X, y)]. (16)

Then we have under H0,
TGoF
γ,J√

Var(TGoF
γ,J )

d−→ N(0, 1).

We first show statement (14). By equation (21) in the proof Lemma 3, we have

E[H2(X1, X2)] ≳ 2J(d−4γ); (17)

moreover, we can obtain

E[H4(X1, X2)] = E
[( J∑

j=0

2−2jγ
∑
ψ∈Ψj

(
ψ(X1)− p0ψ

)
·
(
ψ(X2)− p0ψ

))4]

≲ E
[( J∑

j=0

2−2jγ
∑
ψ∈Ψj

ψ(X1) · ψ(X2)
))4]

+ E
[( J∑

j=0

2−2jγ
∑
ψ∈Ψj

ψ(X) · p0ψ
))4]

+
( J∑
j=0

2−2jγ
∑
ψ∈Ψj

p20ψ

)4

≲ 2J(3d−8γ) · J,

where the last inequality uses the bounds for terms (A), (C) in the proof of Lemma 3. So statement (14) holds by plugging
in 2J ≍ n

2
4α+d with α > 0.

Now we show statement (15). Let

Ψ̃j(ψ) =
{
ψ′ ∈ Ψj : supp(ψ) ∩ supp(ψ′) ̸= ∅

}
.

Then for any j ≥ j′ and ψ ∈ Ψj′ , we have ∣∣Ψ̃j(ψ)∣∣ ≲ 2d(j−j
′).
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We have

E[H2(X1, X2)H
2(X1, X3)]

= E
[( J∑

j=0

2−2jγ
∑
ψ∈Ψj

(
ψ(X1)− p0ψ

)
·
(
ψ(X2)− p0ψ

))2

·
( J∑
j=0

2−2jγ
∑
ψ∈Ψj

(
ψ(X1)− p0ψ

)
·
(
ψ(X3)− p0ψ

))2
]

≤ E
[( J∑

j=0

2−2jγ
∑
ψ∈Ψj

(
ψ(X1)− p0ψ

)
· ψ(X2)

)2

·
( J∑
j=0

2−2jγ
∑
ψ∈Ψj

(
ψ(X1)− p0ψ

)
· ψ(X3)

)2
]

=

J∑
j1=0

J∑
j2=0

J∑
j3=0

J∑
j4=0

2−2(j1+j2+j3+j4)γ
∑

ψ1∈Ψj1

∑
ψ2∈Ψj2

∑
ψ3∈Ψj3

∑
ψ4∈Ψj4

E
[
ψ1(X2)ψ2(X2)ψ3(X3)ψ4(X3)

·
(
ψ1(X1)− p0ψ1

)
·
(
ψ2(X1)− p0ψ2

)
·
(
ψ3(X1)− p0ψ3

)
·
(
ψ4(X1)− p0ψ4

)]
(i)

≲
J∑

j1=0

∑
ψ1∈Ψj1

J∑
j2=j1

∑
ψ2∈Ψ̃j2

(ψ1)

J∑
j3=j2

∑
ψ3∈Ψ̃j3

(ψ2)

J∑
j4=j3

∑
ψ4∈Ψ̃j4

(ψ3)

2−2(j1+j2+j3+j4)γE
[
ψ1(X2)ψ2(X2)ψ3(X3)ψ4(X3)

·
(
ψ1(X1)− p0ψ1

)
·
(
ψ2(X1)− p0ψ2

)
·
(
ψ3(X1)− p0ψ3

)
·
(
ψ4(X1)− p0ψ4

)]
≲

J∑
j1=0

J∑
j2=j1

J∑
j3=j2

J∑
j4=j3

2dj4 · 2−2(j1+j2+j3+j4)γ · 2−dj4 · 2 d
2 (j1+j2+j3+j4) · 2−dj2 · 2 d

2 (j1+j2) · 2−dj4 · 2 d
2 (j3+j4)

≲ 2J(2d−8γ) · J2.
(18)

Combined with (17), we can get the desired statement. The it remains to show statement (16). We have

E[G2(X1, X2)]

= EX2,X3

[(
EX1

[
H(X1, X2)H(X1, X3)

])2
]

= EX2,X3

[( J∑
j1=0

J∑
j2=0

∑
ψ1∈Ψj1

∑
ψ2∈Ψj2

2−2(j1+j2)γ · EX1

[
(ψ1(X1)− p0ψ1)(ψ2(X1)− p0ψ2)

]
· (ψ1(X2)− p0ψ1

)(ψ2(X3)− p0ψ2
)
)2

]
≤ EX2,X3

[( J∑
j1=0

J∑
j2=0

∑
ψ1∈Ψj1

∑
ψ2∈Ψj2

2−2(j1+j2)γEX1

[
(ψ1(X1)− p0ψ1

)(ψ2(X1)− p0ψ2
)
]
ψ1(X2)ψ2(X3)

)2
]

=

J∑
j1=0

J∑
j2=0

J∑
j3=0

j∑
j4=0

∑
ψ1∈Ψj1

∑
ψ2∈Ψj2

∑
ψ3∈Ψj3

∑
ψ4∈Ψj4

2−2(j1+j2+j3+j4)γ · E
[
ψ1(X2)ψ2(X3)ψ3(X2)ψ4(X3)

·
(
ψ1(X1)− p0ψ1

)
·
(
ψ2(X1)− p0ψ2

)
·
(
ψ3(X4)− p0ψ3

)
·
(
ψ4(X4)− p0ψ4

)]
(ii)

≲
J∑

j1=0

J∑
j2=j1

J∑
j3=j2

J∑
j4=j3

2dj4 · 2−2(j1+j2+j3+j4)γ · 2d(j1+j2+j3+j4) · 2−d(j3+j4+j2+j4)

≲ J3 ·
J∑

j1=0

2(d−8γ)j1 = o(2J(2d−8γ)),

where (ii) uses the same strategy as in (i) of inequality (18). We can then get the desired result by combining all pieces.
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D.2.2 Proof for the Power analysis

Since p ∈ Wu,α
L (Ω), we can write

p =

J∑
j=0

∑
ψ∈Ψj

pψψ(x).

For any f ∈ Wγ1
1 (Rd) and ψ ∈ Ψj ,denote fψ =

∫
f(x)ψ(x) dx. We have

sup
f∈Wγ1

1 (Rd)

∫
f dp0 −

∫
f dp

= sup
f∈Wγ1

1 (Rd)

∞∑
j=0

∑
ψ∈Ψj

(pψ − p0ψ) · fψ

≲ sup
f∈Wγ1

1 (Rd)

J∑
j=0

∑
ψ∈Ψj

(pψ − p0ψ) · fψ

+ 2−J(γ1+α)

√√√√ ∞∑
j=J

∑
ψ∈Ψj

(pψ − p0ψ)2 · 22jα
√√√√ sup
f∈Wγ1

1 (Rd)

∞∑
j=J

∑
ψ∈Ψj

22jγ1 · f2ψ

≲

√√√√ J∑
j=0

∑
ψ∈Ψj

2−2γ1j · (pψ − p0ψ)2

√√√√ sup
f∈Wγ1

1 (Rd)

J∑
j=0

∑
ψ∈Ψj

22γ1j · f2ψ +O
(
2−J(γ1+α)

)

≲

√√√√ J∑
j=0

∑
ψ∈Ψj

2−2γ1j · (pψ − p0ψ)2 +O
(
2−J(γ1+α)

)

(19)

Then when dγ1(p0, p) ≥ ∆n with ∆2
n · δn(γ1)−1 → ∞. We can obtain

J∑
j=0

∑
ψ∈Ψj

2−2γ1j · (pψ − p0ψ)
2 ≳ ∆2

n.

So if γ1 ≥ γ, we have
J∑
j=0

∑
ψ∈Ψj

2−2γj · (pψ − p0ψ)
2 ≳ ∆2

n;

and if γ1 < γ, we have
J∑
j=0

∑
ψ∈Ψj

2−2γj · (pψ − p0ψ)
2 ≳ ∆2

n · 2−2J(γ−γ1);

Denote ∆̃n = ∆2
n · 2−2J(γ−γ1∧γ). To show the desired result, we only need to prove that when

∑J
j=0

∑
ψ∈Ψj

2−2γj ·

(pψ − p0ψ)
2 ≳ ∆̃n, S̃−1

γ,JT
GoF
γ,J

P−→ ∞.

Note that we can rewrite the statistic TGoF
γ,J as

TGoF
γ,J =

1

n(n− 1)

∑
i1 ̸=i2

{ J∑
j=0

2−2jγ
∑
ψ∈Ψj

(
ψ(Xi1)− pψ

)
·
(
ψ(Xi2)− pψ

)}
︸ ︷︷ ︸

(A′)

+

J∑
j=0

2−2jγ
∑
ψ∈Ψj

(pψ − p0ψ)
2

︸ ︷︷ ︸
(B′)

+
2

n

n∑
i=1

J∑
j=0

2−2jγ
∑
ψ∈Ψj

(pψ − p0ψ) · (ψ(Xi)− pψ)︸ ︷︷ ︸
(C′)

.
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We first consider term (A′), we have
E[(A′)] = 0

and

Var(A′) =
2

n(n− 1)
E
[( J∑

j=0

2−2jγ
∑
ψ∈Ψj

(
ψ(X1)− pψ

)
·
(
ψ(X2)− pψ

))2]

≤ 2

n(n− 1)
E
[( J∑

j=0

2−2jγ
∑
ψ∈Ψj

ψ(X1) · ψ(X2)
)2]

≲ n−2 ·
J∑

j1=0

∑
ψ1∈Ψj1

J∑
j2=j1

∑
ψ2∈Ψ̃j2

(ψ1)

2−2(j1+j2)γ ·
(
Ep0

[
ψ1(X)ψ2(X)

])2

≲ n−2 ·
J∑

j1=0

J∑
j2=j1

2dj2 · 2−2(j1+j2)γ
(
2−dj2 · 2 d

2 (j1+j2)
)2

≲

{
n−2 · 2J(d−4γ)−1

2d−4γ−1
γ > 0

n−2 · 2dJ · J γ = 0

= o(∆̃2
n),

where Ψ̃j(ψ) is defined in (23). The above inequality leads to

(A′)

∆̃n

P−→ 0.

For term (B′), we have
(B′) ≳ ∆̃n.

For term (C ′), we have we have
E[(C ′)] = 0

and

Var(C ′) ≤ 4

n
E
[( J∑

j=0

2−2jγ
∑
ψ∈Ψj

(pψ − p0ψ) · ψ(X)
)2]

=
4

n

J∑
j1=0

J∑
j2=0

∑
ψ1∈Ψj1

∑
ψ2∈Ψj2

2−2γ(j1+j2) · (pψ1
− p0ψ1

) · (pψ2
− p0ψ2

) · E[ψ1(X)ψ2(X)]

≲ n−1

√√√√√ J∑
j1=0

J∑
j2=j1

∑
ψ1∈Ψj1

∑
ψ2∈Ψ̃j2 (ψ1)

2−2γ(j1+j2) · E
[
|ψ1(X)| · |ψ2(X)|

]

·

√√√√ J∑
j1=0

J∑
j2=0

∑
ψ1∈Ψj1

∑
ψ2∈Ψj2

2−2γ(j1+j2) · (pψ1 − p0ψ1)
2 · (pψ2 − p0ψ2)

2 · E
[
|ψ1(X)| · |ψ2(X)|

]

≲ n−1 ·

√√√√ J∑
j1=0

J∑
j2=j1

2(
d
2−2γ)(j1+j2) ·

( J∑
j=0

∑
ψ∈Ψj

2−2γj · (pψ − p0ψ)
2
)

≲ n−1 · 2
J( d

2−2γ) − 1

2
d
2−2γ − 1

·
( J∑
j=0

∑
ψ∈Ψj

2−2γj · (pψ − p0ψ)
2
)
.

Combining with the fact that
∑J
j=0

∑
ψ∈Ψj

2−2γj · (pψ − p0ψ)
2 ≳ ∆̃n, we have

Var(C′)(∑J
j=0

∑
ψ∈Ψj

2−2γj · (pψ − p0ψ)2
)2 = o(1),
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which can lead to

(C ′)∑J
j=0

∑
ψ∈Ψj

2−2γj · (pψ − p0ψ)2
P−→ 0.

Combined with the bounds for terms (A′), (B′) and (C ′), we can finally obtain

TGoF
γ,J∑J

j=0

∑
ψ∈Ψj

2−2γj · (pψ − p0ψ)2
P−→ 1 (20)

Now we provide bound to the term S̃γ,J . Recall that |S̃γ,J − Ŝγ,J | ≲ n−3 and equation (22), we consider

E[Ŝ2
γ,J ] =

2

n(n− 1)

J∑
j1=0

J∑
j2=0

∑
ψ1∈Ψj1

∑
ψ2∈Ψj2

2−2(j1+j2)γ ·
(
Ep0

[
ψ1(X)ψ2(X)

]
− p0ψ1

p0ψ2

)2

≲ n−2 ·
J∑

j1=0

∑
ψ1∈Ψj1

J∑
j2=j1

∑
ψ2∈Ψ̃j2

(ψ1)

2−2(j1+j2)γ ·
(
E
[
ψ1(X1)ψ1(X2)ψ2(X1)ψ2(X2)

]
+ p20ψ1

p20ψ2

)

≲ n−2 ·
J∑

j1=0

J∑
j2=j1

2dj2 · 2−2(j1+j2)γ · 2−2dj2 · 2d(j1+j2)

≲

{
n−2 · 2J(d−4γ)−1

2d−4γ−1
γ > 0

n−2 · 2dJ · J γ = 0

= o(∆̃2
n).

So we have

Ŝγ,J

∆̃n

P−→ 0,

which leads to

Ŝγ,J

∆̃n

P−→ 0.

Combined with statement (20) and the fact that
∑J
j=0

∑
ψ∈Ψj

2−2γj · (pψ − p0ψ)
2 ≳ ∆̃n, we can obtain the desired result.

D.2.3 Proof of Lemma 3

Under HGoF
0 , we have

E(TGoF
γ,J ) =

J∑
j=0

2−2jγ
∑
ψ∈Ψj

(
Ep[ψ(X)− p0ψ]

)2
= 0,
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and

Var(TGoF
γ,J ) =

2

n(n− 1)
EX1,X2∼p0

[( J∑
j=0

2−2jγ
∑
ψ∈Ψj

(
ψ(X1)− p0ψ

)
·
(
ψ(X2)− p0ψ

))2
]

=
2

n(n− 1)

J∑
j1=0

J∑
j2=0

2−2(j1+j2)γ
∑

ψ1∈Ψj1

∑
ψ2∈Ψj2

(
Ep0

[(
ψ1(X)− p0ψ1

)
·
(
ψ2(X)− p0ψ2

)])2

(i)

≥ 2

n(n− 1)

J∑
j1=0

2−4j1γ
∑

ψ1∈Ψj1

(
Ep0

[
ψ2
1(X)

]
− p20ψ1

)2

≥ 2

n(n− 1)

J∑
j=⌊ J

2 ⌋

2−4jγ
∑
ψ∈Ψj

(
Ep0

[
ψ2(X)

]
− p20ψ

)2

≥ 1

n(n− 1)

J∑
j=⌊ J

2 ⌋

2−4jγ
∑
ψ∈Ψj

(
Ep0

[
ψ2(X)

])2 − 2

n(n− 1)

J∑
j=⌊ J

2 ⌋

2−4jγ
∑
ψ∈Ψj

p40ψ

(ii)

≥ 1

n(n− 1)

J∑
j=⌊ J

2 ⌋

2−4jγ

(
Ep0

[∑
ψ∈Ψj

ψ2(X)
])2

C2jd
− C1n

−2

≳ n−2 · 2
J(d−4γ) − 2

J
2 (d−4γ)

2d−4γ − 1
.

(21)

where (i) is obtained by taking j1 = j2, (ii) uses the uniform boundedness of p0 that leads to p0ψ = Ep0 [ψ(X)] ≲ 2−
dj
2

and
∑∞
j=0 p

2
0ψ · 22jα = O(1). Therefore, we can obtain

S̃2
γ,J

Var(TGoF
γ,J )

=
Ŝ2
γ,J

Var(TGoF
γ,J )

+
S̃2
γ,J − Ŝ2

γ,J

Var(TGoF
γ,J )

=
Ŝ2
γ,J

Var(TGoF
γ,J )

+ o(1),

and we only need to prove

Ŝ2
γ,J

Var(TGoF
γ,J )

P−→ 1.

Note that

E[Ŝ2
γ,J ] =

2

n(n− 1)
EX1,X2∼p0

[( J∑
j=0

∑
ψ∈Ψj

2−2jγψ(X1)ψ(X2)
)2

− 2 ·
( J∑
j=0

∑
ψ∈Ψj

2−2jγψ(X1) · p0ψ
)2

+
( J∑
j=0

∑
ψ∈Ψj

2−2jγp20ψ

)2
]

=
2

n(n− 1)

J∑
j1=0

J∑
j2=0

∑
ψ1∈Ψj1

∑
ψ2∈Ψj2

2−2(j1+j2)γ ·
{(

Ep0
[
ψ1(X)ψ2(X)]

)2

− 2p0ψ1
p0ψ2

Ep0 [ψ1(X)ψ2(X)] + p20ψ1
p20ψ2

}
=

2

n(n− 1)

J∑
j1=0

J∑
j2=0

∑
ψ1∈Ψj1

∑
ψ2∈Ψj2

2−2(j1+j2)γ ·
(
Ep0

[
ψ1(X)ψ2(X)

]
− p0ψ1p0ψ2

)2

underHGoF
0=

2

n(n− 1)

J∑
j1=0

J∑
j2=0

∑
ψ1∈Ψj1

∑
ψ2∈Ψj2

2−2(j1+j2)γ ·
(
Ep0

[(
ψ1(X)− p0ψ1

)
·
(
ψ2(X)− p0ψ2

)])2

= Var(TGoF
γ,J ).

(22)
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So the estimator Ŝ2
γ,J is unbiased. Now we bound the variance of Ŝ2

γ,J .

Var(Ŝ2
γ,J) ≲

1

n2(n− 2)2

{
n−2 · EX1,X2∼p0

[( J∑
j=0

2−2jγ
∑
ψ∈Ψj

ψ(X1)ψ(X2)
)4]

︸ ︷︷ ︸
(A)

+ n−1 · EX2∼p0

[( J∑
j1=0

J∑
j2=0

2−2(j1+j2)γ
∑

ψ1∈Ψj1

∑
ψ2∈Ψj2

Ep0
[
ψ1(X1)ψ2(X1)

]
ψ1(X2)ψ2(X2)

)2]
︸ ︷︷ ︸

(B)

+ n−1 · Ep0
[( J∑

j=0

2−2jγ
∑
ψ∈Ψj

ψ(X) · p0ψ
)4]

︸ ︷︷ ︸
(C)

}
.

Let
Ψ̃j(ψ) =

{
ψ′ ∈ Ψj : supp(ψ) ∩ supp(ψ′) ̸= ∅

}
. (23)

Then for any j ≥ j′ and ψ ∈ Ψj′ , we have ∣∣Ψ̃j(ψ)∣∣ ≲ 2d(j−j
′).

Therefore, we can bound term (C) as

(C) ≤ 24

n

J∑
j1=0

∑
ψ1∈Ψj1

J∑
j2=j1

∑
ψ2∈Ψ̃j2

(ψ1)

J∑
j3=j2

∑
ψ3∈Ψ̃j3

(ψ2)

J∑
j4=j3

∑
ψ4∈Ψ̃j4

(ψ3)

2−2(j1+j2+j3+j4)γ

· Ep0
[
ψ1(X)ψ2(X)ψ3(X)ψ4(X)

]
· p0ψ1

p0ψ2
p0ψ3

p0ψ4

≤ 24

n

J∑
j1=0

2dj1
J∑

j2=j1

2d(j2−j1)
J∑

j3=j2

2d(j3−j2)
J∑

j4=j3

2d(j4−j3) · 2−2(j1+j2+j3+j4)γ

· 2−dj4+ d
2 (j1+j2+j3+j4) · 2− d

2 (j1+j2+j3+j4)

≲
2(2d−8γ)J

n
.

Similarly, we can bound term (B) as

(B) ≲ n−1
J∑

j1=0

∑
ψ1∈Ψj1

J∑
j2=0

∑
ψ2∈Ψj2

J∑
j3=0

∑
ψ3∈Ψj3

J∑
j4=0

∑
ψ4∈Ψj4

2−2(j1+j2+j3+j4)γ

· Ep0 [ψ1(X1)ψ2(X1)] · Ep0 [ψ3(X1)ψ4(X1)] · Ep0 [ψ1(X2)ψ2(X2)ψ3(X2)ψ4(X2)]

≲ n−1 ·
J∑

j1=0

∑
ψ1∈Ψj1

J∑
j2=j1

∑
ψ2∈Ψ̃j2

(ψ1)

J∑
j3=j2

∑
ψ3∈Ψ̃j3

(ψ2)

J∑
j4=j3

∑
ψ4∈Ψ̃j4

(ψ3)

2−2(j1+j2+j3+j4)γ

· Ep0 [ψ1(X1)ψ2(X1)] · Ep0 [ψ3(X1)ψ4(X1)] · Ep0 [ψ1(X2)ψ2(X2)ψ3(X2)ψ4(X2)]

+ n−1 ·
J∑

j1=0

∑
ψ1∈Ψj1

J∑
j3=j1

∑
ψ3∈Ψ̃j3 (ψ1)

J∑
j2=j3

∑
ψ2∈Ψ̃j2 (ψ3)

J∑
j4=j2

∑
ψ4∈Ψ̃j4 (ψ2)

2−2(j1+j2+j3+j4)γ

· Ep0 [ψ1(X1)ψ2(X1)] · Ep0 [ψ3(X1)ψ4(X1)] · Ep0 [ψ1(X2)ψ2(X2)ψ3(X2)ψ4(X2)]

≲ n−1 ·
J∑

j1=0

J∑
j2=j1

J∑
j3=j2

J∑
j4=j3

2dj4 · 2−2(j1+j2+j3+j4)γ · 2−d(j4+j2) · 2−dj4 · 2d(j1+j2+j3+j4)

+ n−1 ·
J∑

j1=0

J∑
j3=j1

J∑
j2=j3

J∑
j4=j2

2dj4 · 2−2(j1+j2+j3+j4)γ · 2−d(j4+j2) · 2−dj4 · 2d(j1+j2+j3+j4)

≲
J2

n
2(2d−8γ)J ,
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where the last inequality uses d ≥ 4γ, and the log n term occurs at the boundary d = 4γ. For the term (A),

(A) ≲ n−2 ·
J∑

j1=0

∑
ψ1∈Ψj1

J∑
j2=j1

∑
ψ2∈Ψ̃j2

(ψ1)

J∑
j3=j2

∑
ψ3∈Ψ̃j3

(ψ2)

J∑
j4=j3

∑
ψ4∈Ψ̃j4

(ψ3)

2−2(j1+j2+j3+j4)γ

·
(
Ep0

[
ψ1(X)ψ2(X)ψ3(X)ψ4(X)

])2

≲ n−2 ·
J∑

j1=0

J∑
j2=j1

J∑
j3=j2

J∑
j4=j3

2dj4 · 2−2(j1+j2+j3+j4)γ
(
2−dj4 · 2 d

2 (j1+j2+j3+j4)
)2

≲
J

n2
· 2J(3d−8γ).

So, combine with the bound to terms (A), (B), and (C) and plug in 2J ≍ n
2

4α+d , we have

Var(Ŝ2
γ,J) = o(n−4+ 4d−16γ

4α+d ).

Combined with the upper bound (21) to Var(TGoF
γ,J ), we have

Var(Ŝ2
γ,J) = o

(
(Var(TGoF

γ,J ))2
)
.

Then combined with the unbiasedness of Ŝ2
γ , we can obtain the desired conclusion.

E Proof for Two-sample Test

E.1 Proof of Theorem 1

The proof of Theorem 1 directly follows from the result of Theorem 5 and the argument of the proof of Theorem 5 in Li
and Yuan (2019).

E.2 Proof of Theorem 2

Throughout the proof, we denote

Ψ̃j(ψ) =
{
ψ′ ∈ Ψj : supp(ψ) ∩ supp(ψ′) ̸= ∅

}
. (24)

We use X , Y to denote random variables from p and q respectively. We use X1, X2, · · · to denote independent random
variables from p; and we use Y1, Y2, · · · to denote independent random variables from q. Without loss of generality, we
assume Ω = [0, 1]d. The proof contains two part: one part is about the normality under H0, another part is the power
analysis. We first show the normality.

E.2.1 Proof of the normality under H0

Since p, q ∈ Wu,α
L (Ω), we can write

p =

J∑
j=0

∑
ψ∈Ψj

pψψ(x),

q =

J∑
j=0

∑
ψ∈Ψj

qψψ(x).

Similar to the proof of Theorem 4, we first show S̃ 2
γ,J is a valid approximate for the variance of Tγ,J though the following

lemma.

Lemma 5. Under H0, the quantity
S̃ 2

γ,J

Var(Tγ,J )
converges in probability to 1 as n goes to infinity.
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The proof of Lemma 5 is given in Section E.2.3. Write

S̃ −1
γ,JTγ,J =

Tγ,J√
Var(Tγ,J)

+
(√Var(Tγ,J)

S̃γ,J

− 1
)
· Tγ,J√

Var(Tγ,J)
.

By Lemma 5, we only need to prove that
Tγ,J√

Var(Tγ,J)

d−→ N(0, 1). (25)

Let

H(X1, X2) =

J∑
j=0

2−2jγ
∑
ψ∈Ψj

(
ψ(X1)− qψ

)
·
(
ψ(X2)− qψ

)
.

Without loss of generality, we can assume n ≥ m. Then under H0, we can rewrite

Tγ,J =
2

n(n− 1)

∑
1≤i1<i2≤n

H(Xi1 , Xi2) +
2

m(m− 1)

∑
1≤w1<w2≤m

H(Yw1
, Yw2

)− 2

nm

n∑
i=1

m∑
w=1

H(Xi, Yw)

=
m∑
i=2

i−1∑
j=1

[ 2

n(n− 1)
H(Xi, Xj) +

2

m(m− 1)
H(Yi, Yj)−

2

nm

(
H(Xi, Yj) +H(Xj , Yi)

)]

+

n∑
i=m+1

[ i−1∑
j=1

2

n(n− 1)
H(Xi, Xj)−

2

nm

m∑
j=1

H(Xi, Yj)
)]

− 2

nm

m∑
i=1

H(Xi, Yi).

Then by a adaptation of the proof of Theorem 1 of Hall (1984), we have the following lemma.

Lemma 6. Suppose 0 < c ≤ n
m ≤ C <∞ for constants c, C, and

2
nm

∑m
i=1H(Xi, Yi)√
Var(Tγ,J)

= op(1);

E[H4(X1, X2)]

n2(E[H2(X1, X2)])2
→ 0;

E[H2(X1, X2)H
2(X1, X3)]

n(E[H2(X1, X2)])2
→ 0;

E[G2(X1, X2)]

(E[H2(X1, X2)])2
→ 0, whereG(x, y) = E[H(X,x)H(X, y)].

Then we have under H0, Tγ,J√
Var(Tγ,J )

d−→ N(0, 1).

Note that

E[
2

nm

m∑
i=1

H(Xi, Yi)] = 0

and

Var
( 2

nm

m∑
i=1

H(Xi, Yi)
)
≲ n−3Var[H(X1, X2)]

≲ n−3 ·
J∑

j1=0

J∑
j2=j1

2dj1 · 2−2(j1+j2)γ

≲

{
n−3 · 2J(d−4γ)−2

J
2

(d−4γ)

2d−4γ−1
γ > 0

n−3 · 2dJ · J γ = 0

= o
(
Var(Tγ,J)

)
,

where the last inequality uses (28). So combined with equations (14), (15) and (16) in the proof of Theorem 4. We can
obtain the desired result.
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E.2.2 Proof for the Power analysis

Follow the proof of Theorem 4. When dγ1(p, q) ≥ ∆n with ∆2
n · δn(γ1)−1 → ∞, we can obtain

J∑
j=0

∑
ψ∈Ψj

2−2γ1j · (pψ − qψ)
2 ≳ ∆2

n.

So if γ1 ≥ γ, we have

J∑
j=0

∑
ψ∈Ψj

2−2γj · (pψ − qψ)
2 ≳ ∆2

n;

and if γ1 < γ, we have

J∑
j=0

∑
ψ∈Ψj

2−2γj · (pψ − qψ)
2 ≳ ∆2

n · 2−2J(γ−γ1);

Denote ∆̃n = ∆2
n · 2−2J(γ−γ1∧γ). To show the desired result, we only need to prove that when∑J

j=0

∑
ψ∈Ψj

2−2γj · (pψ − qψ)
2 ≳ ∆̃n, S̃ −1

γ,JTγ,J
P−→ ∞.

Note that we can rewrite the statistic Tγ,J as

Tγ,J =
1

n(n− 1)

∑
i1 ̸=i2

{ J∑
j=0

2−2jγ
∑
ψ∈Ψj

(
ψ(Xi1)− pψ

)
·
(
ψ(Xi2)− pψ

)}

+
1

m(m− 1)

∑
w1 ̸=w2

{ J∑
j=0

2−2jγ
∑
ψ∈Ψj

(
ψ(Yw1

)− qψ
)
·
(
ψ(Yw2

)− qψ
)}

+

J∑
j=0

2−2jγ
∑
ψ∈Ψj

(pψ − qψ)
2 +

2

n

n∑
i=1

J∑
j=0

2−2jγ
∑
ψ∈Ψj

(pψ − qψ) · (ψ(Xi)− pψ)

+
2

m

m∑
w=1

J∑
j=0

2−2jγ
∑
ψ∈Ψj

(qψ − pψ) · (ψ(Yw)− qψ)

− 2

nm

n∑
i=1

m∑
w=1

{ J∑
j=0

2−2jγ
∑
ψ∈Ψj

(
ψ(Xi)− pψ

)
·
(
ψ(Yw)− qψ

)}
︸ ︷︷ ︸

(F )

By tracking the proof of Theorem 4 in Section D.2.2, it remains to show

(F )

∆̃n

P−→ 0, (26)

and

Ŝγ,J

∆̃n

P−→ 0. (27)

Since

E[(F )] = 0,
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and

Var(F ) =
4

nm
· E

[( J∑
j=0

2−2jγ
∑
ψ∈Ψj

(
ψ(X)− pψ

)
·
(
ψ(Y )− qψ

))2
]

≲ n−2
J∑

j1=0

J∑
j2=j1

2dj2 · 2−2(j1+j2)γ · 2−2dj2 · 2d(j1+j2)

≲

{
n−2 · 2J(d−4γ)−1

2d−4γ−1
γ > 0

n−2 · 2dJ · J γ = 0

= o(∆̃2
n),

which proves statement (26). Now we provide bound to the term Ŝγ,J . Recall S
2

γ,J defined in equation (29), we have∣∣∣E[Ŝ 2
γ ]− E[S 2

γ ]
∣∣∣

≲ 2
( 1

n(n− 1)
+

1

m(m− 1)
+

2

mn

)
·
{ J∑
j1=0

J∑
j2=0

2−2(j1+j2)γ
∑

ψ1∈Ψj1

∑
ψ2∈Ψj2

[ 1

m
· E[ψ1(X)ψ2(X)] ·

(
qψ1

qψ2
+ E[ψ1(Y )ψ2(Y )]

)
+

1

n
· E[ψ1(Y )ψ2(Y )] ·

(
pψ1pψ2 + E[ψ1(X)ψ2(X)]

)]
+
( J∑
j=0

∑
ψ∈Ψj

2−2jγpψqψ

)2
}

≲ n−3
J∑

j1=0

J∑
j2=j1

[
2dj2 · 2−2(j1+j2)γ · 2−2dj2 · 2d(j1+j2)

]
+ n−2

= o(∆̃2
n)

Therefore, we only need to consider

E[S 2

γ ] = 2
( 1

n(n− 1)
+

1

m(m− 1)
+

2

mn

)
· E

[( J∑
j=0

∑
ψ∈Ψj

2−2jγψ(X)ψ(Y )
)2

−
( J∑
j=0

∑
ψ∈Ψj

2−2jγψ(X) · qψ
)2

−
( J∑
j=0

∑
ψ∈Ψj

2−2jγψ(Y ) · pψ
)2

+
( J∑
j=0

∑
ψ∈Ψj

2−2jγpψqψ

)2
]

= 2
( 1

n(n− 1)
+

1

m(m− 1)
+

2

mn

)
· E

[( J∑
j=0

∑
ψ∈Ψj

2−2jγ(ψ(X)− pψ)(ψ(Y )− qψ)
)2

]

≲ n−2 · E
[( J∑

j=0

∑
ψ∈Ψj

2−2jγ · ψ(X) · ψ(Y )
)2

]

≲ n−2 ·
J∑

j1=0

∑
ψ1∈Ψj1

J∑
j2=j1

∑
ψ2∈Ψ̃j2

(ψ1)

2−2(j1+j2)γ · E
[
ψ1(X)ψ1(Y )ψ2(X)ψ2(Y )

]

≲ n−2 ·
J∑

j1=0

J∑
j2=j1

2dj2 · 2−2(j1+j2)γ · 2−2dj2 · 2d(j1+j2)

≲

{
n−2 · 2J(d−4γ)−1

2d−4γ−1
γ > 0

n−2 · 2dJ · J γ = 0

= o(∆̃2
n),

which leads to statement (27). We can then obtain the desired result.
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E.2.3 Proof of Lemma 5

Under H0, we have

E(Tγ,J) =
J∑
j=0

2−2jγ
∑
ψ∈Ψj

(
pψ − qψ

)2
= 0,

and

Var(Tγ,J) = E
[( 1

n(n− 1)

∑
i1 ̸=i2

J∑
j=0

∑
ψ∈Ψj

2−2jγ · (ψ(Xi1)− pψ) · (ψ(Xi2)− pψ)

+
1

m(m− 1)

∑
w1 ̸=w2

J∑
j=0

∑
ψ∈Ψj

2−2jγ · (ψ(Yw1
)− qψ) · (ψ(Yw2

)− qψ)

− 2

nm

n∑
i=1

m∑
w=1

J∑
j=0

∑
ψ∈Ψj

2−2jγ · (ψ(Xi)− pψ) · (ψ(Yw)− qψ)
)2

]

=
2

n(n− 1)
· EX1,X2∼p

[( J∑
j=0

2−2jγ
∑
ψ∈Ψj

(
ψ(X1)− pψ

)
·
(
ψ(X2)− pψ

))2
]

+
2

m(m− 1)
· EY1,Y2∼q

[( J∑
j=0

2−2jγ
∑
ψ∈Ψj

(
ψ(Y1)− qψ

)
·
(
ψ(Y2)− qψ

))2
]

+
4

nm
· EX∼p,Y∼q

[( J∑
j=0

2−2jγ
∑
ψ∈Ψj

(
ψ(X)− pψ

)
·
(
ψ(Y )− qψ

))2
]

=
( 2

n(n− 1)
+

2

m(m− 1)
+

4

nm

)
·

J∑
j1=0

J∑
j2=0

2−2(j1+j2)γ
∑

ψ1∈Ψj1

∑
ψ2∈Ψj2

(
Ep0

[(
ψ1(X)− pψ1

)
·
(
ψ2(X)− pψ2

)])2

≥
( 2

n(n− 1)
+

2

m(m− 1)
+

4

nm

) J∑
j1=0

2−4j1γ
∑

ψ1∈Ψj1

(
Ep0

[
ψ2
1(X)

]
− p2ψ1

)2

≳
( 2

n(n− 1)
+

2

m(m− 1)
+

4

nm

)
· 2

J(d−4γ) − 2
J
2 (d−4γ)

2d−4γ − 1
,

(28)

where the last inequality is obtained by using the same strategy as in (21). Therefore, we can obtain

S̃ 2
γ,J

Var(Tγ,J)
=

Ŝ 2
γ,J

Var(Tγ,J)
+

S̃ 2
γ,J − S̃ 2

γ,J

Var(Tγ,J)
=

Ŝ 2
γ,J

Var(Tγ,J)
+ o(1),

and we only need to prove
Ŝ 2
γ,J

Var(Tγ,J)

P−→ 1.

Denote

S
2

γ,J = 2
( 1

n(n− 1)
+

1

m(m− 1)
+

2

mn

)
·
{

1

nm

n∑
i1=1

m∑
i2=1

( J∑
j=0

2−2jγ
∑
ψ∈Ψj

ψ(Xi1)ψ(Yi2)
)2

− 1

n

n∑
i1=1

[ J∑
j=0

2−2jγ
∑
ψ∈Ψj

ψ(Xi1) · qψ
]2

− 1

m

m∑
i2=1

[ J∑
j=0

2−2jγ
∑
ψ∈Ψj

ψ(Yi2) · pψ
]2

+
( J∑
j=0

∑
ψ∈Ψj

2−2jγ · qψ · pψ
)2

}
.

(29)
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We now show that Ŝ 2
γ,J is close to S

2

γ,J . Note that

∣∣∣∣ 1n
n∑
i=1

[ J∑
j=0

2−2jγ
∑
ψ∈Ψj

ψ(Xi) ·
( 1

m

m∑
w=1

ψ(Yw)
)]2

− 1

n

n∑
i=1

[ J∑
j=0

2−2jγ
∑
ψ∈Ψj

ψ(Xi) · qψ
]2∣∣∣∣

=

∣∣∣∣ 1n
n∑
i=1

[ J∑
j=0

2−2jγ
∑
ψ∈Ψj

ψ(Xi) ·
( 1

m

m∑
w=1

ψ(Yw)− qψ

)]

·
[ J∑
j=0

2−2jγ
∑
ψ∈Ψj

ψ(Xi) ·
( 1

m

m∑
w=1

ψ(Yw) + qψ

)]∣∣∣∣
Since for any j ∈ {0, 1, · · · , J}, ψ(Y ) ≲ 2

dj
2 and by the uniform boundedness of q, we have Eq[ψ(Y )2] = O(1) and

Eq[ψ(Y )] = O(2−
dj
2 ). Then by Bernstein’s inequality and a union bound, we have it holds with probability at least 1− n−1

that for any j ∈ {0, 1, · · · , J} and ψ ∈ Ψj ,

∣∣∣ 1
m

m∑
w=1

ψ(Yw)− qψ

∣∣∣ ≲ √
log n

n
+

log n

n
· 2

dj
2 .

Therefore it holds with probability at least 1− n−1 that∣∣∣∣ 1n
n∑
i=1

[ J∑
j=0

2−2jγ
∑
ψ∈Ψj

ψ(Xi) ·
( 1

m

m∑
w=1

ψ(Yw)
)]2

− 1

n

n∑
i=1

[ J∑
j=0

2−2jγ
∑
ψ∈Ψj

ψ(Xi) · qψ
]2∣∣∣∣

≲
1

n

n∑
i=1

[ J∑
j=0

2−2jγ
∑
ψ∈Ψj

|ψ(Xi)| ·
(√ log n

n
+

log n

n
· 2

dj
2

)]

·
[ J∑
j=0

2−2jγ
∑
ψ∈Ψj

|ψ(Xi)| ·
(√ log n

n
+

log n

n
· 2

dj
2 + 2−

dj
2

)]

≲
1

n

n∑
i=1

J∑
j1=0

∑
ψ1∈Ψj1

J∑
j2=0

∑
ψ2∈Ψ̃j2

(ψ1)

2−2(j1+j2)γ
( log n

n
+ (

log n

n
)22

d(j1+j2)
2 +

√
log n

n
2−

d
2 j2

)
|ψ1(Xi)||ψ2(Xi)|

︸ ︷︷ ︸
(D)

.

Then we have

E[(D)] ≲
J∑

j2=0

J∑
j1≥j2

2dj1 · 2−2(j1+j2)γ
( log n

n
+ (

log n

n
)22

d(j1+j2)
2 +

√
log n

n
2−

d
2 j2

)
· 2−dj1 · 2

d(j1+j2)
2

= o
(2J(d−4γ) − 2

J
2 (d−4γ)

2d−4γ − 1

)
and

Var(D) ≲ n−1
J∑

j1=0

∑
ψ1∈Ψj1

J∑
j2=j1

∑
ψ2∈Ψ̃j2

(ψ1)

J∑
j3=j2

∑
ψ3∈Ψ̃j3

(ψ2)

J∑
j4=j3

∑
ψ4∈Ψ̃j4

(ψ3)

2−2(j1+j2+j3+j4)γ

·
( log n

n
+ (

log n

n
)22

d(j1+j2)
2 +

√
log n

n
2−

d
2 j2

)2

· E
[
|ψ1(X)ψ2(X)ψ3(X)ψ4(X)|

]
≲ n−1

J∑
j1=0

J∑
j2=j1

J∑
j3=j2

J∑
j4=j3

2dj4 · 2−2(j1+j2+j3+j4)γ · 2−dj4 · 2
d(j1+j2+j3+j4)

2

= o

((2J(d−4γ) − 2
J
2 (d−4γ)

2d−4γ − 1

)2
)
.

(30)
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Therefore, we can get∣∣∣∣ 1n
n∑
i=1

[ J∑
j=0

2−2jγ
∑
ψ∈Ψj

ψ(Xi) ·
( 1

m

m∑
w=1

ψ(Yw)
)]2

− 1

n

n∑
i=1

[ J∑
j=0

2−2jγ
∑
ψ∈Ψj

ψ(Xi) · qψ
]2∣∣∣∣

= op

(2J(d−4γ) − 2
J
2 (d−4γ)

2d−4γ − 1

)
.

Similarly, we can show∣∣∣∣ 1n
m∑
w=1

[ J∑
j=0

2−2jγ
∑
ψ∈Ψj

ψ(Yw) ·
( 1

n

n∑
i=1

ψ(Xi)
)]2

− 1

m

m∑
w=1

[ J∑
j=0

2−2jγ
∑
ψ∈Ψj

ψ(Yw) · pψ
]2∣∣∣∣

= op

(2J(d−4γ) − 2
J
2 (d−4γ)

2d−4γ − 1

)
.

Moreover, we have ( J∑
j=0

∑
ψ∈Ψj

2−2jγ · qψ · pψ
)2

= O(1) = o
(2J(d−4γ) − 2

J
2 (d−4γ)

2d−4γ − 1

)
. (31)

Then combined with the upper bound (28) to Var(Tγ,J), we have obtain

Ŝ 2
γ,J − S

2

γ,J

Var(Tγ,J)

P−→ 0.

Therefore, it remains to show
S

2

γ,J

Var(Tγ,J)

P−→ 1.

Note that under H0,

E[S 2

γ,J ] = 2
( 1

n(n− 1)
+

1

m(m− 1)
+

2

mn

)
· E

[( J∑
j=0

∑
ψ∈Ψj

2−2jγψ(X)ψ(Y )
)2

−
( J∑
j=0

∑
ψ∈Ψj

2−2jγψ(X) · qψ
)2

−
( J∑
j=0

∑
ψ∈Ψj

2−2jγψ(Y ) · pψ
)2

+
( J∑
j=0

∑
ψ∈Ψj

2−2jγpψqψ

)2
]

under H0= 2
( 1

n(n− 1)
+

1

m(m− 1)
+

2

mn

)
· E

[( J∑
j=0

∑
ψ∈Ψj

2−2jγ(ψ(X1)− pψ)(ψ(X2)− pψ)
)2

]
= Var(Tγ,J).

(32)

So the estimator S
2

γ,J is unbiased. Now we bound the variance of S
2

γ,J .

Var(S
2

γ,J) ≲ n−4

{
1

nm
· E

[( J∑
j=0

2−2jγ
∑
ψ∈Ψj

ψ(X1)ψ(X2)
)4]

+ (n−1 +m−1) · E
[( J∑

j=0

2−2jγ
∑
ψ∈Ψj

ψ(X) · pψ
)4]}

≲
J

n6
2J(3d−8γ) +

J2

n5
2J(2d−8γ),

where the last inequality uses the bounds of terms (A) and (C) in the proof of Lemma 3. So plug in 2J ≍ n
2

4α+d , we have

Var(Ŝ 2
γ,J) = o(n−4+ 4d−16γ

4α+d ).

Combined with the upper bound (28) to Var(Tγ,J), we have

Var(Ŝ 2
γ,J) = o

(
(Var(Tγ,J))

2
)
.

Then combined with the unbiasedness of Ŝ 2
γ , we can obtain the desired conclusion.
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F Proof of Technical Results

F.1 Proof of Lemma 1

For the left hand side, for any f ∈ Wγ1
1 (Rd) and ψ ∈ Ψj ,denote fψ =

∫
f(x)ψ(x) dx. We have

dWγ (p, q) = sup
f∈Wγ1

1 (Rd)

∫
f dp−

∫
f dq

= sup
f∈Wγ1

1 (Rd)

∞∑
j=0

∑
ψ∈Ψj

(pψ − qψ) · fψ

≲

√√√√ ∞∑
j=0

∑
ψ∈Ψj

(pψ − qψ)2 · 2−2jγ

√√√√ sup
f∈Wγ1

1 (Rd)

∞∑
j=0

∑
ψ∈Ψj

22jγ · f2ψ

≲

√√√√ ∞∑
j=0

∑
ψ∈Ψj

2−2γj · (pψ − qψ)2 = ∥p− q∥B−γ
2,2
.

For the right hand side, consider

fψ =
2−2jγ(pψ − qψ)√∑∞

j=0

∑
ψ∈Ψj

2−2γj(pψ − qψ)2

and f =
∑∞
j=0 fψψ(x). We have

∥f∥2Bγ
2,2

=

∞∑
j=0

∑
ψ∈Ψj

22jγ · f2ψ =

∞∑
j=0

∑
ψ∈Ψj

2−2γj(pψ − qψ)
2∑∞

j=0

∑
ψ∈Ψj

2−2γj(pψ − qψ)2
= 1.

So we have

dWγ (p, q) ≳
∫
f dp−

∫
f dq

=

∞∑
j=0

∑
ψ∈Ψj

(pψ − qψ) · fψ

=

∑∞
j=0

∑
ψ∈Ψj

2−2γj(pψ − qψ)
2√∑∞

j=0

∑
ψ∈Ψj

2−2γj(pψ − qψ)2

=

√√√√ ∞∑
j=0

∑
ψ∈Ψj

2−2γj(pψ − qψ)2 = ∥p− q∥B−γ
2,2
.

F.2 Proof of Lemma 2

For the first statement, under H0, we have

E(Tγ,J) =
J∑
j=0

2−2jγ
∑
ψ∈Ψj

(
Ep[ψ(X)− qψ]

)2
= 0,
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and
Var(Tγ,J) =

( 2

n(n− 1)
+

2

m(m− 1)
+

4

nm

)
· EX1,X2∼p0

[( J∑
j=0

2−2jγ
∑
ψ∈Ψj

(
ψ(X1)− qψ

)
·
(
ψ(X2)− qψ

))2
]

≲ n−2 ·
J∑

j1=0

J∑
j2=0

2−2(j1+j2)γ
∑

ψ1∈Ψj1

∑
ψ2∈Ψj2

(
Ep0

[(
ψ1(X)− qψ1

)
·
(
ψ2(X)− qψ2

)])2

= n−2 ·
J∑

j1=0

J∑
j2=0

2−2(j1+j2)γ
∑

ψ1∈Ψj1

∑
ψ2∈Ψj2

(
Ep0

[
ψ1(X) · ψ2(X)

]
− qψ1qψ2

)2

≲ n−2 ·
J∑

j1=0

J∑
j2=0

2−2(j1+j2)γ
∑

ψ1∈Ψj1

∑
ψ2∈Ψj2

(
Ep0

[
ψ1(X) · ψ2(X)

])2

+ C n−2

(i)

≲ n−2
J∑

j1=0

J∑
j2≥j1

2−2(j1+j2)γ · 2dj2 · 2d(j1+j2) · 2−2dj2

= o(1)

where (i) uses the same strategy as that for bounding term (B) in the proof of Lemma 3. We can then get the first statement.
For the second statement, by equation (19), we have

J∑
j=0

∑
ψ∈Ψj

2−2γj · (pψ − qψ)
2 ≳ dWγ (p, p0),

and
∞∑
j=J

∑
ψ∈Ψj

2−2γj · (pψ − qψ)
2 ≲ n−

4(α+γ)
4α+d .

Then by dWγ (p, q) · n−
2(α+γ)
4α+d → ∞, we only need to prove

Tγ,J∑J
j=0

∑
ψ∈Ψj

2−2jγ(pψ − qψ)2
P−→ 1,

which directly follows from equation (20) and equation (26).

F.3 Proof of Lemma 4

The proof is a slight adaptation of the proof of Theorem 1 of Hall (1984). We include it here for completeness. Set
Yni =

∑i−1
j=1H(Xi, Xj). By applying Brown’s Martingale central limit theory. We only need to check two conditions

s−2
n

n∑
i=2

E
{
Y 2
ni1

(
|Yni| > εsn

)}
→ 0 (33)

as n→ ∞ for each ε > 0, where s2n = E[(
∑
i ̸=j H(Xi, Xj))

2], and

s−2
n V 2

n
P−→ 1 (34)

as n→ ∞, where

V 2
n =

n∑
i=2

E[Y 2
ni |X1, · · · , Xi−1].

Since H is symmetric and E[H(X1, X2)|X1] = 0, it has been shown in the proof of Theorem 1 of Hall (1984) that

s2n =
1

2
n(n− 1)E[H2(X1, X2)],
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and
n∑
i=2

E[Y 4
ni] ≲ n2 · E[H4(X1, X2)] + n3 · E[H2(X1, X2)H

2(X1, X3)],

which combines with conditions (14) and (15) can lead to s−4
n

∑n
i=2 E[Y 2

ni] → 0 that implies (33). Moreover, it’s shown in
the proof of Theorem 1 of Hall (1984) that

E[(V 2
n − s2n)

2] ≲ n4 · E[G2(X1, X2)] + n3 · E[H2(X1, X2)H
2(X1, X3)],

which combines with conditions (15) and (16) leads to s−4
n E[(V 2

n − s2n)
2] → 0 that implies (34). Proof is completed.

F.3.1 Proof of Lemma 6

The proof follows the proof of Theorem 1 of Hall (1984). Set

Yni =

{ ∑i−1
j=1

(
2

n(n−1)H(Xi, Xj) +
2

m(m−1)H(Yi, Yj)− 2
nm

(
H(Xi, Yj) +H(Xj , Yi)

))
2 ≤ i ≤ m,∑i−1

j=1
2

n(n−1)H(Xi, Xj)− 2
nm

∑m
j=1H(Xi, Yj) m < i ≤ n.

Set T γ,J =
∑n
i=2 Yni. Then by the condition

2
nm

∑m
i=1H(Xi, Yi)√
Var(Tγ,J)

= op(1),

it remains to prove Tγ,J√
Var(Tγ,J )

d−→ N(0, 1). By applying Brown’s Martingale central limit theory (see for example Corollary

3.1 of Hall and Heyde (1980)). We only need to check the following two conditions:

s−2
n

n∑
i=2

E
{
Y 2
ni1

(
|Yni| > εsn

)}
→ 0 (35)

as n→ ∞ for each ε > 0, where s2n = E[(T γ,J)2], and

s−2
n V 2

n
P−→ 1 (36)

as n→ ∞, where

V 2
n =

m∑
i=2

E[Y 2
ni |X1, · · · , Xi−1, Y1, · · · , Yi−1] +

n∑
i=m+1

E[Y 2
ni |X1, · · · , Xi−1, Y1, · · · , Ym].

Since

s2n =

n∑
i=2

E[Y 2
ni]

=

m∑
i=2

i−1∑
j=1

( 4

n2(n− 1)2
+

4

m2(m− 1)2
+

8

n2m2

)
· E[H2(X1, X2)]

+

n∑
i=m+1

( i−1∑
j=1

4

n2(n− 1)2
+

m∑
j=1

4

n2m2

)
· E[H2(X1, X2)]

=
( 2

n(n− 1)
+

2

m(m− 1)
+

4(m− 1)

nm2

)
· E[H2(X1, X2)].

Furthermore, since

E
[
H(X1, X2)H(X1, X3)H(X1, X4)H(X1, X5)

]
= E

[
H(X1, X2)H

3(X1, X3)
]
= 0,

follow the proof of Theorem 1 of Hall (1984), we can obtain

E[Y 4
ni] ≲ n−8 · i · E[H4(X1, X2)] + n−8 · i2 · E[H2(X1, X2)H

2(X1, X3)],
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whence

s−4
n

n∑
i=2

E[Y 4
ni] ≲

E[H4(X1, X2)]

n2 ·
(
E[H2(X1, X2)]

)2 +
E[H2(X1, X2)H

2(X1, X3)]

n ·
(
E[H2(X1, X2)]

)2 → 0,

which implies condition (35). Write

vni =

{
E
[
Y 2
ni |X1, · · · , Xi−1, Y1, · · · , Yi−1

]
, 2 ≤ i ≤ m

E
[
Y 2
ni |X1, · · · , Xi−1, Y1, · · · , Ym

]
, m+ 1 ≤ i ≤ n.

Observe that when i ≤ m

vni =

i−1∑
j=1

i−1∑
k=1

[( 4

n2(n− 1)2
+

4

n2m2

)
·G(Xj , Xk) +

( 4

m2(m− 1)2
+

4

n2m2

)
·G(Yj , Yk)

−
( 4

n2m(n− 1)
+

4

m2n(m− 1)

)
·
(
G(Yj , Xk) +G(Yk, Xj)

)]
,

and when i > m

vni =

i−1∑
j=1

i−1∑
k=1

4

n2(n− 1)2
·G(Xj , Xk) +

m∑
j=1

m∑
k=1

4

m2(m− 1)2
·G(Yj , Yk)

−
i−1∑
j=1

m∑
k=1

8

n2m(n− 1)
+

8

m2n(m− 1)
·G(Yk, Xj).

Note that for j1 ≤ k1 and j2 ≤ k2,

E[G(Xj1 , Xk1)G(Xj2 , Xk2)] =


E[G2(X1, X1)] j1 = k1 = j2 = k2

(E[G(X1, X1)])
2 = (E[H2(X1, X2)])

2 j1 = k1 ̸= j2 = k2
E[G2(X1, X2)] j1 = j2, k1 = k2, j1 < k1

0 otherwise.

We can write

E[V 4
n ] = E

[( n∑
i=1

vni
)2]

= Cnm1 · E[G2(X1, X1)] + Cnm2 · (E[H2(X1, X2)])
2 + Cnm3 · E[G2(X1, X2)].

After some algebra, we can check that
Cnm1 ≲ n−5

Cnm3 ≲ n−4∣∣∣ Cnm2(
2

n(n−1) +
2

m(m−1) +
4(m−1)
nm2

)2 − 1
∣∣∣ = o(1)

Thus we have ∣∣∣s−4
n E(V 2

n − s2n)
2
∣∣∣

=
∣∣∣E[V 4

n ]

s4n
− 1

∣∣∣
≲

E[G2(X1, X2)]

(E[H2(X1, X2)])2
+

E[G2(X1, X1)]

n(E[H2(X1, X2)])2
+ o(1)

≲
E[G2(X1, X2)]

(E[H2(X1, X2)])2
+

E[H2(X1, X2)H
2(X1, X3)]

n(E[H2(X1, X2)])2
+ o(1)

= o(1),

which implies condition (36). Proof is completed.
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