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Abstract

Learning function-on-scalar predictive models
for conditional densities and identifying fac-
tors that influence the entire probability distri-
bution are vital tasks in many data-driven appli-
cations. We present an efficient Majorization-
Minimization optimization algorithm, Wasser-
stein Distributional Learning (WDL), that trains
Semi-parametric Conditional Gaussian Mixture
Models (SCGMM) for conditional density func-
tions and uses the Wasserstein distance W2 as a
proper metric for the space of density outcomes.
We further provide theoretical convergence guar-
antees and illustrate the algorithm using boosted
machines. Experiments on the synthetic data
and real-world applications demonstrate the ef-
fectiveness of the proposed WDL algorithm.

1 INTRODUCTION

In scientific fields such as economics, biology, and cli-
mate science, examining the drivers of distributional het-
erogeneity is a powerful way for knowledge discovery. For
example, climate change has profoundly impacted multi-
ple aspects of a climate outcome’s distribution, including
its mean, overall variability, and the frequency of extreme
values (Field et al., 2012; Reich, 2012). Figure 1 dis-
plays annual distributions of daily temperature anomalies
from 1880 to 2012. These distributions exhibit a shift in
the mean and a substantial increase in tail behavior het-
erogeneity. Identifying drivers of such distributional shifts
and characterizing their effects are active areas of research
(Lewis and King, 2017; Fahey et al., 2017).

Traditional models that focus on conditional mean or other
summary statistics are limited in studying complex distri-
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Figure 1: Annual distributions of daily land-surface aver-
age temperature. Temperatures are anomalies (in Celsius)
relative to the Jan. 1951 – Dec. 1980 average. The color
of each density curve shows the annual radiative effect of
increased atmospheric CO2.

butional heterogeneity. In this paper, we focus on pre-
dictive learning of conditional distributions (density func-
tions), i.e., Distributional Learning, as a more direct, com-
prehensive and unified approach to discovering complex
associations between a distributional outcome and a set of
drivers. One major challenge for distributional learning
lies in the unique features of the density functional space,
i.e., non-negative, Borel measurable, and integrate to one.
Functional regression (e.g. Reiss et al., 2010; Wang et al.,
2016) has been applied to model probability density func-
tions (PDFs) outcomes, under the commonly used L2 dis-
tance as the measure of discrepancies. These methods are
not structured to address the necessary constraints of PDFs
and lead to problematic results (Delicado, 2011). Recent
developments (Arata, 2017; Boogaart et al., 2010; Egozcue
et al., 2006; Talská et al., 2018; Van den Boogaart et al.,
2014) resort to centered log-ratio (CLR) transformations
to map PDFs onto zero-integral elements of the space of
square-integrable real functions. Due to the transforma-
tions, these approaches could be over-restrictive, hard to as-
sess and interpret, and as the data dimension grows, lead to
substantial bias. In particular, they do not adopt the Wasser-
stein geometry, a well-defined metric for the density space.

In this paper, we directly address the needs of Distri-
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butional Learning by structuring a theoretically proper
function-on-scalar regression framework for PDFs that (1)
is defined on a sufficiently large and flexible functional
model space of PDFs; (2) uses the Wasserstein loss func-
tion (Panaretos and Zemel, 2019; Villani, 2008), a proper
measure of discrepancy for PDFs; and (3) enables compu-
tationally tractable optimization algorithms for carrying out
the model training. Our contributions are as follows:

1. We propose a comprehensive Wasserstein Distribu-
tional Learning (WDL) framework, based on the
global approximation property of finite mixture mod-
els. WDL satisfies the inherent constraints of density
functions and offers flexibility and expressiveness in
modeling complicated density outputs.

2. We derive theoretical guarantees for universal approx-
imation and consistency of the WDL framework.

3. We develop an efficient majorization-minimization
optimization algorithm that strongly resembles expec-
tation–maximization (EM). Optimization under the
Wasserstein loss is notoriously challenging, which has
been the obstacle for distributional learning under the
Wasserstein geometry. Our proposed algorithm is, to
the best of our knowledge, the first majorization-based
solution to the estimation problem associated with the
Wasserstein geometry. It achieves good convergence
performance both theoretically and empirically.

4. We demonstrate the excellent modeling performance
of WDL using boosted machines as an example use.

2 BACKGROUND AND DEFINITIONS

Data Setup and Notations. In this paper, we consider
distributional outcomes over R and define P2(R) as the set
of all Borel probability measures on R with a finite 2nd mo-
ment. Let X be a p-dimensional random covariate vector
with a support X ⊂ Rp and a probability density function
(PDF) fX; and G is a distributional response representing
the distribution for an outcome Y ∈ R and G ∈ P2(R).
Assume a random sample of n i.i.d. draws from the joint
distribution of the random process (X,G) on the product
space X × P2(R): D = {(xi, gi)}ni=1. For temperature
distributions in Figure 1, for the i-th year, gi is the ob-
served empirical distribution of daily temperatures, while
xi consists of the values of potential drivers for that year.
Our goal is to model the expected conditional distribution
E(G|X = x) from the random sample D = {(xi, gi)}ni=1.

Wasserstein Distance. The Wasserstein distance mea-
sures the aggregated discrepancies between two distribu-
tions. It offers excellent convergence properties in the dis-
tributional function space (Villani, 2008) and has gained
popularity for its intuitive interpretation as the optimal

transport costs (Bernton, 2019; Panaretos and Zemel, 2019;
Villani, 2003), in addition to its utility in real-world appli-
cations (Arjovsky et al., 2017; Duy and Takeuchi, 2022;
Sgouropoulos et al., 2015). Compared with other com-
monly used distributional loss functions such as the Kull-
back–Leibler divergence and L2 functional distance, the
Wasserstein distance does not require the distributions to
have a common support or rely on specific transformations.
It is, hence, more suitable for modeling highly heteroge-
neous distributions, and enjoys a more straightforward in-
terpretation (Mueller et al., 2018; Pegoraro and Beraha,
2022; Sharma and Gerig, 2020; Zhang et al., 2022). In
this paper, we focus on the one-dimensional 2-Wasserstein
distance W2(f1, f2) for continuous PDFs, f1 and f2 from
P2(R), defined as

W2(f1, f2) =
[ ∫ 1

0

(
F−1
1 (s)− F−1

2 (s)
)2
ds
] 1

2

,

where F−1
1 and F−1

2 are the quantile functions derived
from f1 and f2, respectively.

3 WASSERSTEIN DISTRIBUTIONAL
LEARNING

3.1 The overview of the WDL framework

Functional mapping from the scalar covariates to the den-
sity outputs is challenging due to the infinite dimensions of
the output space. To circumvent this difficulty, we propose
a semi-parametric conditional distribution family,

F⊗ T = {fθ ◦ τ (x) | fθ ∈ F, θ ∈ Θ ⊂ Rq;

τ (·) ∈ T (X ,Θ); x ∈ X ⊂ Rp},
(1)

where F = {fθ|θ ∈ Θ ⊂ Rq} is a parametric dis-
tribution family, and T (X ,Θ) is a non-parametric func-
tional family of mappings from the covariate space X to
the distribution parameter space Θ. This semi-parametric
conditional distribution family should be sufficiently large
and flexible such that the expected conditional distributions
E(G|X = x) can be well approximated by its elements.

For a given set of observations D = {(xi, gi)}ni=1, the
goal of WDL is then to identify the optimal mapping τ̂ (·)
in a specified functional space T (X ,Θ) and minimize the
Wasserstein loss that is evaluated at D = {(xi, gi)}ni=1:

τ̂ (·) = argmin
τ (·)∈T (X ,Θ)

n∑
i=1

W 2
2 (gi, fθ=τ (xi))

= argmin
τ (·)∈T (X ,Θ)

n∑
i=1

∫ 1

0

(
G−1

i (s)− F−1
θ=τ (xi)

(s)
)2
ds,

(2)

where G−1
i (s) is the quantile function derived from gi and

F−1
θ=τ (xi)

(s) is that derived from fθ=τ (xi). For simplicity,
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we refer to F−1
θ=τ (xi)

(s) and fθ=τ (xi) as F−1
τ (xi)

and fτ (xi)

for the rest of the paper.

3.2 Semi-parametric Conditional Gaussian Mixture
Model (SCGMM) as F⊗ T

We propose, for F⊗ T , a class of Semi-parametric Condi-
tional Gaussian Mixture Model (SCGMM),

fτ (x) =

K∑
k=1

πk(x)N{µk(x), σ
2
k(x)}, (3)

where N represents a Gaussian distribution, µk(x) and
σ2
k(x) are the mean and variance of the k-th component,

and πk(x) is the weight of the k-th component. We as-
sume that all the parameters are unknown functions of the
covariate x, and denote τ (x) = {πk(x), µk(x), σ

2
k(x)}Kk=1

as the collection of all parameter functions of model (3).
By definition, the SCGMM functional space automatically
satisfies the non-negativity and unit-integral constraint of
density functions. We offer below two novel theoretical
guarantees for establishing that the SCGMM model space,
under the 2-Wasserstein distance metric, supports a valid
WDL framework as defined in Section 3.1. Proofs of these
guarantees can be found in the Appendix.

The Universal Approximation guarantee. We establish
that SCGMM is dense in P2(R), under the Wasserstein ge-
ometry, with all the parameters being step functions of X.
We denote the distribution function of X by PX. For sim-
plicity, we denote H(x) ≜ E(G|X = x) ∈ P2(R) as the
expected conditional density of Y given X = x, and de-
note both τ and τ (·) as the mapping from X to Θ without
distinction. Furthermore, for a given mapping τ , we denote
τ̃ as its equivalence class. Specifically, we say τ 1 and τ 2

belong to the same equivalence class τ̃ if∫
x∈X

W2(fτ1(x), fτ (x))dPX(x)

=

∫
x∈X

W2(fτ2(x), fτ (x))dPX(x)

=0,

which also means τ̃ 1 = τ̃ 2 = τ̃ .

With the above definitions in place, we first introduce the
following assumptions.
Assumption 1. (The speed of decay of the covariates.) The
covariate X follows a light-tailed distribution, i.e., there
exist positive constants λ and M0, such that PX(∥X∥2 >
M) < exp(−λM) for any M > M0.
Assumption 2. (Continuity of H(x).) H(x) : X −→
P(R) is Lipschitz continuous, i.e., there exists a real con-
stant L > 0 such that, for all x1 and x2 in X ,

W2(H(x1), H(x2)) ≤ L∥x1 − x1∥2.

Theorem 1. (Universal approximation of SCGMM.) Un-
der Assumptions 1 and 2, for any ε > 0, there exists a pos-
itive integer K > 0, and corresponding Gaussian mixture
regression fτ (x) =

∑K
k=1 πk(x)N

(
µk(x), σ

2
k(x)

)
, such

that ∫
x∈X

W2(H(x), fτ (x))dPX(x) < ε,

where τ (x) = {πk(x), µk(x), σ
2
k(x)} are all scalar-

valued step functions of x.

The Consistency guarantee. Here we establish that, the
optimizer from the Wasserstein regression (2), fτ̂ (x), is
uniformly consistent in estimating E(G|X), the true con-
ditional distribution over X . We denote

Mn(τ ) =
1

n

n∑
i=1

W 2
2 (fτ (xi), gi)

and M(τ ) = E
(
W 2

2 (fτ (x), g)
)
.

Here, Mn,M : T (X ,Θ) → R+ are non-negative func-
tions defined over the functional space T (X ,Θ). Further,
we introduce metric d(·, ·) over T (X ,Θ)× T (X ,Θ) by

d(τ 1, τ 2) ≜ sup
x∈X
∥τ1(x)− τ2(x)∥.

We first introduce the following assumptions.
Assumption 3. (Continuity of fθ over θ.) The map
θ 7→ fθ is continuous in the sense that for any sequence
{θn} ⊂ Θ and point θ0 ∈ Θ, ∥θn − θ0∥ → 0 implies
W2(fθn

, fθ0
)→ 0.

Assumption 4. (Uniqueness of the minimizer.) For any
g ∈ P2(R), the minimizer set argminθ∈Θ W2(g, fθ) is
non-empty and belong to the same equivalence class.
Theorem 2. (The consistency of τ̂n.) Under Assump-
tions 3 and 4, suppose argminτ∈T (X ,Θ)M(τ ) ⊆ τ̃ 0,
the equivalence class of τ 0, and the SCGMM estimators
τ̂n = argminτ∈T (X ,Θ)Mn(τ ) all lie in a compact set
S ⊂ T (X ,Θ), then τ̂n are consistent in the sense that for
every ε > 0,

P(d(τ̂n, τ̃ 0) ≥ ε)→ 0.

Identifiability constraint. In practice, to ensure the
model identifiability of fτ (x) using finite data, we add an
order constraint to the component means throughout the pa-
per, stating that µ1(x) ≤ µ2(x) ≤ ... ≤ µK(x).

3.3 Majorization-Minimization Optimization

Optimizing under the Wasserstein distance has been known
to be computationally challenging (Bernton et al., 2019;
Kolouri et al., 2017). Following our notations, the gradi-
ent of the 2-Wasserstein loss takes the following form:

∂W 2
2 (fθ, g)

2

∂θ
= 2

∫ ∞

−∞
ϕθ(t) ·

∂fθ
∂θ

(t)dt,
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where ϕθ(t) =
∫ t

−∞
(
G−1 ◦ Fθ(x)− x

)
dx is the displace-

ment potential for optimal transport plan with parameter θ.
To compute the above gradient, multiple steps of numerical
differentiation, integration and function inverse are needed.
This leads to both unstable results and high computational
costs.

For our proposed WDL framework, we derive a novel and
efficient EM-like majorization-minimization optimization
algorithm. Without loss of generality, we introduce the al-
gorithm without the covariate X . We demonstrate in Sec-
tion 3.4 how the algorithm enables distributional learning
between G and X in F ⊗ T when integrated with boosting
machines. Proofs of the theoretical results in this section
can be found in the Appendix.

Let FD be the observed empirical distribution and {Fθ :
θ ∈ Θ} be a target parametric distribution family. We
aim to find the optimal parameters θ̂ that minimize L(θ) =
W 2

2 (FD, Fθ) over all the possible θ ∈ Θ. We begin
with a simple case where K = 1 and Fθ belongs to a
location-scale family, i.e., F = {Fθ(y) = F0(

y−µ
σ ) : θ =

(µ, σ), µ ∈ R, σ ∈ R+}, expanding from a standard dis-
tribution F0(Y ). The minimum Wasserstein estimations of
(µ, σ) can be derived as

µ̂ =

∫
F−1
D ds− σ̂ ·

∫
F−1
0 ds,

σ̂ =

∫
F−1
0 F−1

D ds−
∫
F−1
0 ds ·

∫
F−1
D ds∫

(F−1
0 )2ds− (

∫
F−1
0 ds)2

.

(4)

The major convenience offered by the location-scale family
is that their quantile functions can be written as linear func-
tions of the location and scale parameters. In practice, the
integrals in Equation (4) can be approximated numerically
by summation over a sequence of discrete quantile levels
0 < q1 < ... < qM < 1 or via Monte Carlo integration.
This estimation naturally holds for Gaussian distributions,
a location-scale distribution family.

When the target distribution Fθ is a Gaussian mixture,
however, the quantile functions F−1

θ (s) become compli-
cated nonlinear functions of the model parameters θ =
{(πk, µk, σk)}Kk=1. The optimization over L(θ) is then
much more challenging. Moreover, the Wasserstein loss
function is not convex, which leads to instability and slow
convergence for gradient-based optimization algorithms.
In this paper, we derive a Majorization-Minimization
(MM) algorithm built on the following Majorization the-
orem that provides an alternative loss function as a tight
upper bound of the Wasserstein loss.

Theorem 3. (Majorization.) For any two continuous PDFs
f ∈ P(R) and g ∈ P(R), along with any mixture decom-
position of f =

∑K
k=1 πk · fk and g =

∑K
k=1 πk · gk, the

following inequality holds

W 2
2 (f, g) ≤

K∑
k=1

πkW
2
2 (gk, fk), (5)

and the equality holds when

gk(x) = g(x) · fk ◦ F−1 ◦G(x)∑K
j=1 πjfj ◦ F−1 ◦G(x)

,

∀x ∈ R, for k = 1, ...,K.

(6)

Here, F−1 is the QF of f , and G is the CDF of g.

Let g = fD, f = fθ and fθ is a Gaussian mixture with
θ = {(πk, µk, σk)}Kk=1. The left side of Equation (5) in
Theorem 3 is the target loss function of our proposed WDL
with SCGMM. The right side of Equation (5) provides a
surrogate loss that majorizes the original objective func-
tion. Based on these results of Theorem 3, we derive the
following algorithm that minimize L(θ) = W 2

2 (fD, fθ) by
iteratively updating the decomposition of the empirical dis-
tribution fD and model distribution fθ.

Majorization-Minimization algorithm. At the end of
the (m− 1)-th iteration, let f (m−1)

k = N(µ
(m−1)
k , σ

(m−1)
k )

be the components of the model fit fθ(m−1) , and π(m−1) be
the component weights. The m-th iteration consists of the
following three sub-steps.

1. [Calculate g
(m−1)
k .] Given π

(m−1)
k and f

(m−1)
k , the

goal is to find the optimal mixture decomposition for
the empirical distribution g = fD =

∑K
k=1 π

(m−1)
k gk,

such that the surrogate loss is minimized. Since the
surrogate function has a lower bound as the original
loss function, by the equality conditions in Theorem
3, we update g

(m−1)
k using Equation (6). Note that

this step is quite similar with the E-step in the conven-
tional EM algorithm, and the only difference is that x
is replaced by F−1

θ(m−1) ◦G(x).

2. [Update f
(m−1)
k .] Given π

(m−1)
k and g

(m−1)
k , find

the optimal f (m)
k = N(µ

(m)
k , σ

(m)
k ) for minimizing∑K

k=1 π
(m−1)
k W 2

2 (fk, g
(m−1)
k ) using Equation (4).

3. [Update π
(m−1)
k .] Given f

(m)
k , find the optimal π(m)

k

for minimizing the target loss L(θ) = W 2
2 (fθ, fD)

with fθ =
∑K

k=1 πkf
(m)
k .

This step is the most challenging part in the optimiza-
tion as there is no explicit formula for the optimal πk.
Here, we provide two solutions. The first solution is
based on gradient descent. The derivative of loss func-
tion L(θ) with respect to πk is

∂L(θ)

∂πk
=

∫
R
(G−1 ◦ Fθ(t)− t) · Fk(t)dt.
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In this case, Fk is the CDF of f (m)
k . The convergence

of this solution is guaranteed by the convexity of L(θ)
over π. The second solution is to use the Maximiza-
tion step in EM algorithm for approximating the opti-
mal π, which is expressed as

π
(m)
k =

∫
R
g
(m−1)
k (x) ·

π
(m−1)
k f

(m)
k (x)∑K

j=1 π
(m−1)
j f

(m)
j (x)

dx.

Since the Wasserstein distance characterizes the weak
topology in the density distribution space, it is domi-
nated by KL divergence (strong topology) in the lim-
iting case. This solution does not find the optimal π
under the Wasserstein loss, but works well in practice
and is much easier to implement.

We show, in the Appendix, that the original loss function
L(θ) decreases during the optimization of the upper bound
by each iteration, i.e., L(θ(m)) ≤ L(θ(m−1)). The algo-
rithm hence converges under the original loss function.

3.4 Boosted Wasserstein Distributional Learning

In this section, we implement a full WDL framework,
F ⊗ T , as defined in Equation (1). For a sample of data,
D = {(xi, gi)}ni=1, we use SCGMM as F, and boosted
regression trees (Friedman, 2001) as T , with optimization
facilitated by the Majorization-Minimization algorithm in
Section 3.3.

To model the SCGMM parameters with regression trees,
we apply the following transformations. For the mixing
weights πk(x),

∑K
k=1 πk(x) = 1 and πk(x) ≥ 0 ∀k, we

introduce reparameterization through the softmax function:

πk(x) =
exp(αk(x))∑K
k=1 exp(αk(x))

,

where αk(x)’s are outputs of boosted trees and take val-
ues in R. Similarly, the scale parameters σk(x) are repre-
sented in terms of the exponential of the boosted tree out-
puts σk(x) = exp(zk(x)) > 0. The mean components,
µk(x)’s, are not transformed.

We fit the mixture regression model via the following
iterative boosting Algorithm 1 with the Majorization-
Minimization algorithm in Section 3.3 at its core. The
computation complexity of each step is O(nKq2 + nmd).
Here, n is the sample size, K is the number of components,
q is the number of quantile levels, m is the dimension of
θ, and d is the regression tree depth. The first part repre-
sents the complexity of the Majorization-Minimization al-
gorithm, and the second part represents the complexity of
fitting regression trees.

Besides using a fixed number of iterations, we could also
use early stopping (Yao et al., 2007) to avoid overfitting and

Algorithm 1 Wasserstein Distribution Learning with
Boosted Machines

Data: D = {(xi, gi)}ni=1

Training Controls: Set learning rate η > 0, maximum
of iterations, M > 0;
Random Initialization: Randomly sample θ̃

(0) iid∼
U(−0.5, 0.5), and fit regression tree T (0)(x) to θ̃

(0)
as

initialization τ̂ (0)(x).
for 1 ≤ m ≤M do

Based on τ̂ (m−1)(x), for i = 1, . . . , n,

θ̂
(m−1)

(xi)← τ̂ (m−1)(xi) =

{π̂(m−1)
k (xi), µ̂

(m−1)
k (xi), σ̂

(m−1)
k (xi)}Kk=1;

procedure MAJORIZATION-MINIMIZATION
for all i = 1, . . . , n do

Based on θ̂
(m−1)

(xi)

Derive MM estimate, θ̃
(m)

(xi), against gi.
end for

end procedure

Fit regression tree T (m)(x) to
(
θ̃
(m)
− θ̂

(m−1)
)

Update τ̂ (m)(x)← τ̂ (m−1)(x) + ηT (m)(x).
end for

return τ̂ (M)(x).

accelerate iterative optimization. Specifically, we calculate
the Wasserstein loss

∑n
i=1 W

2(gi, fτ (xi)) on a validation
set along the training process and stop when it is no longer
decreasing. To satisfy the identifiability constraint (Sec-
tion 3.2), in each optimization step, the updated compo-
nents will be sorted before feeding to the boosting machine.
Further algorithmic details can be found in the Appendix.

As opposed to the gradient-based optimization algorithm
introduced in Bishop (1994) and Rothfuss et al. (2019), our
model training framework utilizes the additive structure of
tree ensembles and the upper bound of the Wasserstein loss
to achieve a more stable and efficient solution path. In actu-
ality, any machine learning algorithms can be used to repre-
sent and estimate the nonparametric coefficient functions.
Compared with other models, such as polynomial functions
and neural networks, the boosted decision trees achieve a
balance between the expressive power and the generaliza-
tion ability. Moreover, the tree structure greatly improves
the model transparency and interpretability.

4 EXPERIMENTS

In this section, we demonstrate the estimation performance
and prediction accuracy of the proposed WDL framework
using simulations and two real-world applications. In all
the experiments, we compare the WDL framework with
two existing density regression methods: the global Fréchet
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regression (Petersen et al., 2019), a generalization of lin-
ear regression in the quantile functional space under the
Wasserstein loss, and the B-spline smoothed density re-
gression with a centered log-ratio (CLR) transformation
(Talská et al., 2018), which, for reasons of simplicity,
is referred to as the CLR regression for the rest of the
paper. The main ideas of these methods are provided
in Appendix. Reproducible codes for generating all re-
sults are available on GitHub (https://github.com/
ChengliangTang/WDL_MM).

4.1 Simulation Study

In this experiment, we consider multivariate covariates
X = (x1,x2,x3) that are mutually independent and fol-
low the uniform distribution on [−1, 1]. The conditional
density outcomes G are generated as follows.

F(G|X = x) = π1(x) · f1(x) + π2(x) · f2(x), (7)

where

π1(x) =
1

1 + exp(x3)
, π2(x) =

exp(x3)

1 + exp(x3)
,

f1(x) = N
(
x1 + ε, (|x2|+ 0.5)2

)
,

f2(x) = N
(
2x2

2 + 2 + ε, (|x1|+ 0.5)2
)
,

with independent random noise variable ε ∼ N(0, ω2).

By design, we assume that the conditional distribution
F(G|X = x) is a Gaussian mixture. The component-wise
means and variances are functions of x1 and x2, while
the component weights, π1(x) and π2(x), are governed
by x3. In addition, we let µ1(x) ≤ µ2(x),∀x ∈ X to
avoid identifiability issues. We also incorporate an addi-
tive random noise ε to the component-wise means µ1(x)
and µ2(x), which is independent of all X variables. The
additive random noise follows a zero-mean Gaussian dis-
tribution ε ∼ N(0, ω2).

Given a noise level ω, we generate, from the model
specified in (7), N = 200 random samples (xi, gi) ∼
F(X,G). More simulation details can be found in the
Appendix. We apply the proposed WDL to the gener-
ated {(xi, gi)}N=200

i=1 to estimate the parameter functions
τ (x) = {π(x), µ(x), σ2(x)}, and derive the expected con-
ditional distributions E(G|X).

Using this simulation study with known ground truth pa-
rameter functions, we also demonstrate, in the Appendix,
that the proposed WDL framework accurately recovers the
parameter functions. Here, we evaluate the performance
using two different measures: accuracy in estimating func-
tional dependence of G on X, and accuracy in predicting
the functional outputs. The first measure focuses on the
estimation performance of each method using the train-
ing set, and the second measure evaluates their generaliza-
tion abilities from a training set to an independent test set.

For the first measure, we evaluate the average performance
over 500 Monte Carlo replications. On each Monte Carlo
replication, we begin by randomly splitting the data into
the training set (80%) and the validation set (20%), along
with choosing the best tuning parameter based on valida-
tion results. Then, we refit each model with the best tuning
parameter over the entire data set. For the second mea-
sure, following what we would use in a real data scenario,
we evaluate the performance using a nested five-fold cross
validation. In order to minimize the optimism bias in per-
formance evaluation, hyper-parameter selection and model
training were performed using another layer of train-valid
split over the training folds, at which point we evaluated
the prediction loss on the held-out test fold. We applied
parameter tuning to WDL and CLR regression. No tuning
step was needed for the Fréchet regression.

Accuracy in estimating functional dependence of G on
X. Here we compare how well the three methods esti-
mate the conditional quantile functions of G given X. We
generalize partial dependence plot (PDP) to the quantile
functional space to measure the estimation accuracy. At
a given quantile level 0 < ρ < 1, let the target covariate
be Xs, and the set of all other covariates be Xc. We de-
fine the corresponding functional PDP at point value Xs =
xs as PDXs(xs; ρ) =

∫
xc∈Xc

F−1
τ (xs,xc)

(ρ)fXc(xc)dxc,
where fXc is the marginal density of Xc. Figure 2 com-
pares the functional PDPs estimated by the three meth-
ods with the ground truth at various quantile levels in
ρ ∈ {10%, 30%, 50%, 70%, 90%}. The functional PDPs of
the ground truth correspond to the conditional expectation
of the functional outputs E(G|X). The functional PDPs of
the three methods were calculated using 500 Monte Carlo
replications with noise level ω = 0.1. As shown in Fig-
ure 2, WDL is capable of capturing the heterogeneity in
the partial dependence curves and is closest to the ground
truth. The partial dependence curves for Fréchet regres-
sion are all approximately straight lines of different slopes,
due to its linearity assumption. As for the CLR regres-
sion, their fitted functional partial dependence curves are
also constrained by a linearity assumption after the cen-
tered log-ratio transformation.

Table 1: Predictive performance comparison at different
noise levels: Wasserstein loss and R̂2 (in bracket).

ω 0.1 0.2 0.5 1 2

WDL 0.05 (0.9) 0.1 (0.9) 0.3 (0.7) 1.1 (0.3) 3.9 (0.02)
Fréchet 0.3 (0.5) 0.3 (0.5) 0.5 (0.4) 1.2 (0.3) 3.9 (0.03)
CLR 0.3 (0.5) 0.3 (0.5) 0.5 (0.4) 1.2 (0.3) 4.0 (0.00)

Accuracy in predicting gi’s. We used nested five-fold
cross validations to evaluate the predictive performance
of WDL with comparison to the other methods. To nu-
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Figure 2: Functional partial dependence plots (PDP) for
predicted conditional quantiles versus the input scalar vari-
ables. The results are averaged over 500 Monte Carlo repli-
cations with noise level ω = 0.1.

merically measure the discrepancy between the observed
quantile functions and their model predictions from the
test samples, we defined an approximated Wasserstein dis-
tance from a dense array of equally spaced quantile levels
{0.01, 0.02, ..., 0.99},

W 2
i =

∫ 1

0

(
Qi(s)− Q̂

(cv)
i (s)

)2
ds

≈ 1

100

99∑
i=1

(
Qi(

i

100
)− Q̂

(cv)
i (

i

100
)
)2
,

where Qi and Q̂
(cv)
i are the observed and predicted quantile

functions for a test sample in cross validation, and W 2
i is

the Wasserstein prediction loss of the i-th observation. We
also define an R2-like statistic:

R̂2 = 1−

∑N
i=1 W

2
i

/
N

V ar(G)
,

where the variance of G is approximated by

V ar(G) ≈ 1

N

N∑
i=1

∫ 1

0

(
Qi(s)− Q̄(s)

)2
ds

and Q̄(s) = 1
N

∑N
i=1 Qi(s) for any s ∈ [0, 1]. Table 1

summarizes the average Wasserstein loss and R-square at
different noise levels (ω = 0.1, 0.2, 0.5, 1 and 2) using
a nested five-fold cross validation. The prediction accu-
racy (measured by average Wasserstein loss) and power (R-
square) decline as the noise level increases. At most noise
levels (ω = 0.1, 0.2, 0.5 and 1), WDL delivers the best
prediction due to its ability to model complicated density
output. When the noise level is high (ω = 2), the Fréchet
regression performs slightly better than the others due to
the robustness of its linear model assumption.

4.2 Modeling Annual Temperature Distributions

A fundamental step in climate research is to identify the
factors that impact the radiative balance of the planet and

are expected to change the temperature distribution. In this
section, we apply the proposed Wasserstein distributional
learning to understand how the radiative effects, or “radia-
tive forcings” of solar irradiance, volcanic eruptions, and
CO2, as well as natural climate variability through the El-
Niño Southern Oscillation (ENSO) are associated with an-
nual temperature distributions, using data from 1880-2012.
See the Appendix for a detailed description of the data set.

Here, we set the number of mixture components as three,
which correspond to: low temperatures (Component I),
medium temperatures (Component II), and high tempera-
tures (Component III). We fit the proposed Wasserstein dis-
tributional learning between the annual temperature quan-
tile functions and the four environmental drivers. To avoid
overfitting, we run a nested five-fold cross validation with
hyper-parameter selection (learning rate and number of it-
erations) and calculated the predicted density function for
each year when it was in the test fold. Figure 3 is the
histogram of daily temperatures on selected years overlain
with the model estimated temperature density curve. The
results clearly demonstrate that our method effectively cap-
tures the heterogeneity in the functional outputs. Results
for each year in the data set can be found in the Appendix.

One advantage of distributional learning is that it provides
the utility to predict any distributional features of interest
such as the center, spread, and tail behaviors of the distri-
butional outcome. Here, we evaluate the three methods’
performance in predicting extreme temperatures. For each
observed year, we calculate the number of days above the
90th percentile daily threshold (high temperatures) and the
number of days below the 10th percentile daily threshold
(low temperatures). The 10th and 90th percentiles are de-
rived from a 30-year climatological baseline period (1981-
2010). In Figure 4, we visualize the ground truth and the
test-fold predictions from each method. WDL and Fréchet
regression achieve the best prediction performance in terms
of R-squared. WDL is the only method that is able to cap-
ture the “plateau” of cold days and achieves positive R-
squared within the 1925 - 1975 time window. This is due to
WDL’s better characterization of the nonlinear dependence
of conditional quantiles. See more discussion in Appendix.

In Figure 5, we visualize the predicted density curves of
each component versus CO2 and ENSO radiative forcings.
For each given value of a physical driver Xs = xs, we com-
pute its marginal prediction of the distribution parameters
by averaging over all other covariates. We further visualize
the density curve of each component using different colors
according to the value of Xs = xs.

As shown in the figure, as the CO2 radiative forcing in-
creases, the mean temperature of all the three components
slowly increases. CO2 also substantially rearranges the
weights among the three components. Different from CO2,
ENSO primarily influences the weight and variance of each



Wasserstein Distributional Learning via Majorization-Minimization

2 0 2
0.0

0.5

1.0

1910

train
test

2 0 2

1930

train
test

2 0 2

1950

train
test

2 0 2

1970

train
test

2 0 2

1990

train
test

2 0 2

2010

train
test
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component, which results in more frequent instances of ex-
treme weather.

4.3 Modeling Regional Income Distributions

Modeling income distribution is a central topic in macroe-
conomic studies. Several indices, including Gini index, are
widely used to characterize the income distributions. In this
section, we apply WDL to model the regional income dis-
tribution of the 167 counties in New York, California and
Michigan, from which one could derive multiple indices si-
multaneously and explicitly study their joint distributions.
See the Appendix for a detailed data description.

We use WDL to model the association between the regional
income distributions against the scalar county health fac-
tors. The income data were log-transformed, which is a
common practice for highly skewed distributions.

As with the temperature distribution modeling example,
WDL showed similar excellent predictive performance in
modeling the income density curve for each county when it
was in the test fold. See the Appendix for the full results.
Here, we focus on demonstrating WDL’s performance in
predicting distributional features such as derived statistics
and their inter-dependence. From the predicted distribu-
tions when the counties were in the test fold, we calculated
three commonly used indices by the economists – Gini in-
dex, median income, and poverty rate, and then compared
them with the true values.

In Table 2, we compared the proposed WDL method with

Table 2: Performance comparison in terms of RMSE (and
R2) of different indices of income distributions. Results
are evaluated on the test folds.

Method Gini Index Median Income Poverty Rate
WDL 0.029 (0.2) 4017.4 (0.4) 0.037 (0.3)

Fréchet 0.052 (-1.6) 5113.1 (-0.0) 0.054 (-0.5)
CLR 0.030 (0.2) 11065.0 (-3.8) 0.040 (0.2)

Lasso Reg. 0.030 (0.2) 4433.3 (0.2) 0.041 (0.1)
Tree Reg. 0.032 (0.1) 4536.0 (0.2) 0.039 (0.2)

the other methods in terms of estimating individual in-
dices, using RMSE and the conventional R2. In addi-
tion to the two comparison methods, we also implemented
two methods that directly model the indices: lasso regres-
sion and tree regression, which corresponds to the conven-
tional approach of modeling summary statistics in macroe-
conomics. As shown in Table 2, these index-based meth-
ods adequately model the observed indices individually.
Our WDL algorithm offered the best performance for all
the indices, even outperforming the index-based methods
(lasso regression and tree regression). In Figure 6, we
evaluate the estimated joint distribution of median income
versus poverty rate calculated from the predicted income
distributions for the counties under study. As shown in
Figure 6, WDL is able to accurately capture the rela-
tionship between indices (summary statistics) without di-
rectly modeling them. In particular, predictions based on
WDL preserve the true nonlinear association between the
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two indices without overfitting, offering both stability and
flexibility in estimation. In comparison, non-Wasserstein-
distance-based methods such as CLR methods would fail
on these tasks. In particular, in Table 2, CLR methods have
the worst performance in modeling median income. See the
Appendix for detailed computation details and more results
on these indices.

5 CONCLUSION

Predictive distributional learning is important in data-
driven discoveries. The main contribution of our paper is
a novel and efficient function-on-scalar regression frame-
work for modeling distributional outputs. By definition,
our framework satisfies the inherent constraints of den-
sity functions, and is capable of modeling highly hetero-
geneous outputs. We offer theoretical guarantees for the
convergence of the proposed algorithm. Compared with

other methods in the literature, our proposed WDL frame-
work better captures the nonlinear dependence of the den-
sity functions over the covariates. Moreover, this frame-
work produces more convenient and accurate predictions
for derived density summary statistics of interest.
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A NOTATIONAL TABLE

In this section, we list all the main notations in the following table

Table A1: Main notations in the paper.

Team sheet
R The 1-dimensional space of real line.
Rp The p-dimensional Euclidean space.
X Random covariate vector.
X The support of X. X ⊂ Rp

fX The probability density function (PDF) of X.
G A distributional response representing the distribution of a random variable.
P2(R) The set of all Borel probability measures on R with a finite 2nd moment.
fθ Distribution function parameterized by θ ∈ Θ.
T (X ,Θ) Non-parametric functional family of mappings from X to Θ.

B THEOREM PROOFS

B.1 Proof of Theorem 1

Proof. To prove this theorem, we first introduce a lemma for the dense property of Gaussian mixture models in the func-
tional space

(
P2(R),W2

)
.

Lemma 1. Let FG ⊂ P2(R) be the family of finite Gaussian mixture distributions over the real line R, i.e.,

FG =

{
K∑

k=1

πkN(µk, σ
2
k)

∣∣∣∣∣K ∈ N+

}
.

Then the family FG is dense in
(
P2(R),W2

)
, i.e., the set of probability measures of a finite second moment with the

2-Wasserstein distance.

The proof of this lemma follows the idea of Theorem 6.18. in Villani (2003). It suffices to show that for any probability
distribution g ∈ P2(R) and any given constant ε > 0, there exists a finite Gaussian mixture distribution f =

∑K
k=1 πkfk,

where fk = N(µk, σ
2
k), such that W2(f, g) < ε.

We prove the above claim in two steps.

First, since g ∈ P2(R), it has a finite second moment, which means Eg(X
2) < ∞. Then, there exists a constant M > 0

large enough, such that

Eg[X
21{|X|>M}] <

ε2

9
.

Cover the compact set [−M,M ] by a finite family of balls {B(xk, ε/3)}1≤k≤K , with centers xk ∈ [−M,M ], and define

B′
k =

{
B(x1, ε/3) if k = 1

B(xk, ε/3)\
⋃

j<k B(xj , ε/3) if k = 2, ...,K

Then all B′
k are disjoint and still cover [−M,M ].

Define function J on R by

J(x) =

{
xk if x ∈ B′

k ∩ [−M,M ] for some k

0 if x ∈ R\[−M,M ]
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Then, for any x ∈ [−M,M ], we have |x− J(x)| < ε/3, which leads to the following inequality

Eg[(X − J(X))2] = Eg[(X − J(X))21{|X|>M}] + Eg[(X − J(X))21{|X|≤M}]

≤ Eg[(X − 0)21{|X|>M}] +
ε2

9
· Eg[1{|X|≤M}]

<
ε2

9
+

ε2

9
<

ε2

4
.

(A1)

Suppose random variable X ∼ g, we denote g̃ as the distribution of J(X), saying J(X) ∼ g̃. Then, by the construction of
J , the distribution g̃ can be written as g̃ =

∑K
k=1 πkδxk

, where δxk
is the point mass at xk. Moreover, using the definition

of the Wasserstein distance, from Equation (A1) we have

W2(g, g̃) ≤
√
Eg[(X − J(X))2] <

ε

2
. (A2)

Second, we approximate each point mass δxk
by a Gaussian distribution N(xk, σ

2
k). Let f =

∑K
k=1 πkN(xk, ε

2/4), then
using Theorem 3 (Majorization property) we can have

W 2
2 (f, g̃) = W 2

2

( K∑
k=1

πkδxk
,

K∑
k=1

πkN(xk, ε
2/4)

)
≤

K∑
k=1

πkW
2
2

(
δxk

,N(xk, ε
2/4)

)
= ε2/4.

As a result, we have
W2(f, g̃) ≤

ε

2
. (A3)

In conclusion, with f =
∑K

k=1 πkN(xk, ε
2/4) as defined above, combining Equation (A2) and Equation (A3) we have

W2(f, g) ≤W2(f, g̃) +W2(g̃, g) < ε,

which means the family FG is dense in (P2(R),W2). Thus Lemma 1 is proved.

Now, back to Theorem 1, we prove it in three steps. First, we prove the special case of compact support X . Second, we
extend the proof to the case of closed support X . Finally, we prove the theorem for a general X ⊂ Rp.

Step 1. First, suppose X is a compact set in Rp, we can prove a stronger version of the theorem, i.e., there exists a step
function τ (·) ∈ T (X ,Θ) such that

W2

(
H(x), fτ (x)

)
< ε, for ∀x ∈ X .

In fact, by Lipschitz continuity assumption, for ∀x1, x2 ∈ X and ∥x1 − x2∥2 < ε
3L , we have

W2

(
H(x1), H(x2)

)
≤ L · ε

3L
= ε/3.

Let δ = ε
6L

√
p > 0, we define δ−box each x ∈ X as

B(x, δ) =

p⊗
i=1

(x(i) − δ, x(i) + δ),

which is an open square-shaped neighbourhood covering x ∈ X ⊂ Rp. Also, we have diam(B(x, δ)) < ε
3L for each x

under the Euclidean distance. Since X ⊂
⋃

x∈X B(x, δ), and X is compact, there exists a finite set {xi}Ni=1 ⊂ X , such
that

X ⊂
N⋃
i=1

B(xi, δ).
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Define

B̃i = B(xi, δ)\
⋃
j<i

B(xj , δ),

then all B̃i are disjoint and still cover X . With the constructed finite set {B̃i}Ni=1, we define a function H̃(·), such that

H̃(x) = H(xi), if x ∈ B̃i.

By the definition of δ, we have W2

(
H(x), H̃(x)

)
< ε/3 for any x ∈ X .

By Lemma 1, for for each H(xi), there exists a Gaussian mixture distribution fi =
∑Ki

k π(k;i)N(µ(k;i), σ
2
(k;i)) such that

W2(fi, H(xi)) < ε/3, i = 1, ..., N . Let K = maxi Ki, and further decompose each Gaussian mixture distribution into K
components. Specifically, for the Gaussian mixture distribution fi with Ki < K components, we create another Gaussian
mixture distribution f̃i by equally dividing weight of the last component into (K−Ki+1) components. Therefore, without
loss of generality, here we simply assume each mixture distribution fi has the same number of components as K, and the
components are following the increasing order of their means, saying µ(1;i) ≤ µ(2;i) ≤ ... ≤ µ(K;i).

With the Gaussian mixture distributions fi =
∑K

k π(k;i)N(µ(k;i), σ
2
(k;i)) in place, we construct the following step τ (x) =

{πk(x), µk(x), σ
2
k(x)}Kk=1. For each x ∈ X , it belongs to one and only one B̃i. Then, for k = 1, ...,K, we let

πk(x) = π(k;i), µk(x) = µ(k;i), σk(x) = σ(k;i), if x ∈ B̃i.

By definition, each B̃i is the difference between a series of δ−boxes, which makes their boundaries piecewise axis-parallel.
Therefore, the above step function construction τ (x) is feasible. Let fτ (x) =

∑K
k πk(x) · N

(
µk(x), σ

2
k(x)

)
, we have

W2

(
fτ (x), H̃(x)

)
< ε/3, for ∀x ∈ X .

In conclusion, by combining the two parts, we have

W2

(
H(x), fτ (x)

)
≤W2

(
H(x), H̃(x)

)
+W2

(
H̃(x), fτ (x)

)
<ε/3 + ε/3 < ε, for ∀x ∈ X .

Step 2. Second, we prove the theorem for closed support X ⊂ Rp. We choose M large enough, then the integration can
be decomposed as ∫

x∈X
W2(H(x), fτ (x))dPX(x) =

∫
{x∈X|maxi |xi|≤M}

W2(H(x), fτ (x))dPX(x)

+

∫
{x∈X|maxi |xi|>M}

W2(H(x), fτ (x))dPX(x).

Because X ⊂ Rp is closed, S = {x ∈ X |maxi |xi| ≤ M} is compact for any finite M > 0. As proved in Step 1, there
exist tree models τ (x) defined over S such that

W2(H(x), fτ (x)) < ε/3, ∀x ∈ S = {x ∈ X |max
i
|xi| ≤M}.

Thus, we have ∫
{x∈X|maxi |xi|≤M}

W2(H(x), fτ (x))dPX(x) < ε/3.

Further, we choose an arbitrary fixed point x0 ∈ S = {x ∈ X |maxi |xi| ≤M}, and extend τ (x) to the entire X by letting
τ (x) = τ (x0), for ∀x ∈ S = {x ∈ X |maxi |xi| > M}.
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By the Lipschitz continuity assumption, we have∫
S={x∈X|maxi |xi|>M}

W2(H(x), fτ (x))dPX(x)

≤
∫
S

W2(H(x), H(x0))dPX(x) +

∫
S

W2(H(x0), fτ (x))dPX(x)

<

∫
S

L∥x− x0∥2dPX(x) +

∫
S

W2(H(x0), fτ (x0))dPX(x)

< ε/3 + ε/3, as M −→∞.

The first term is because of light tail assumption of PX, and the second term is by the definition of τ (x).

In conclusion, we have∫
x∈X

W2(H(x), fτ (x))dPX(x) =

∫
{x∈X|maxi |xi|≤M}

W2(H(x), fτ (x))dPX(x)

+

∫
{x∈X|maxi |xi|>M}

W2(H(x), fτ (x))dPX(x)

<
ε

3
+

ε

3
+

ε

3
= ε.

Step 3. Finally, we prove the theorem for general X ⊂ Rp. In fact, due to the continuity assumption, we can extend
H(x) : X −→ P(R) to X , the closure of X . We define H(x) : X −→ P(R) as follows

H(x) =

{
H(x) if x ∈ X
limy→x, y∈X H(y) if x ∈ X \ X

Moreover, we can generalize PX to PX by letting PX(A) = PX(A) for any A ⊂ X and PX(X \ X ) = 0.

By the result of Step 2, we can find fτ (x) such that the condition is satisfied. Therefore, over X , we have∫
X
W2(H(x), fτ (x))dPX(x)

=

∫
X
W2(H(x), fτ (x))dPX(x) < ε.

Thus, Theorem 1 is proved.

B.2 Proof of Theorem 2

Proof. This theorem is an extension of Theorem 5.14 in Van der Vaart (2000). The referenced theorem proves the consis-
tency of M-estimators under regularity assumptions. In our case, the SCGMM estimators are a special case of M-estimators
if we generalize the model parameter space Θ from a Euclidean space into the functional space T (X ,Θ).

For any τ̂ ∈ T (X ,Θ) such that M(τ̂ ) < ∞, let Ul ↓ τ̂ be a decreasing sequence of open balls covering τ̂ of di-
ameter converging to zero. For any (x, g) ∈ X × P2(R) and any open ball U ⊂ T (X ,Θ), define mU (x, g) =
infτ∈U W 2

2 (fτ (x), g) and M(U) =
∫
X×P2(R) mU (x, g)dF(x, g). Then, by the construction of {Ul} and the continu-

ity of fθ, the sequence mUl
(x, g) ↑ W 2

2 (fτ̂ (x), g) for (x, g) ∈ X × P2(R) almost surely. Further, by the dominated
convergence theorem and the finite assumption of W 2

2 (fτ̂ (x), g), we have
∫
X×P2(R) mUl

(x, g)dF(x, g) ↑ M(τ̂ (x)) =∫
X×P2(R) W

2
2 (fτ̂ (x), g)dF(x, g) <∞.

By definition, argminτ∈T (X ,Θ)M(τ ) ⊆ τ̃ 0. For any τ /∈ τ̃ 0, due to the uniqueness assumption we have M(τ ) >
M(τ 0). Combine this with the preceding paragraph to see that for every τ ̸= τ 0, there exists an open ball Uτ around τ
withM(Uτ ) >M(τ 0). The set B = {τ ∈ S : d(τ , τ 0) ≥ ε} is compact and covered by the balls {Uτ : τ ∈ B}. Let
Uτ1 , ..., Uτp be a finite sub-cover of B, then by the law of large numbers,

min
τ∈B
Mn(τ ) ≥ min

j=1,...,p
Mn(Uτ j )

a.s.−−→ min
j=1,...,p

M(Uτ j ) >M(τ 0). (A4)
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Therefore, we have
lim inf

n
min
τ∈B
Mn(τ ) >M(τ 0) almost surely,

which means
P
(
lim inf

n
min
τ∈B
Mn(τ ) >M(τ 0)

)
= 1. (A5)

If τ̂n ∈ B, thenMn(τ̂n) = minτ∈BMn(τ ), which by definition of τ̂n is no larger thanMn(τ 0). Thus, for any n >= 1,
we have

{τ̂n ∈ B} ⊂ {min
τ∈B
Mn(τ ) ≤Mn(τ 0)}.

On the other hand, we have the following inequality chain for the RHS term,

lim sup
n

P
{
min
τ∈B
Mn(τ ) ≤Mn(τ 0)

}
≤ P

(
lim sup

n
{min
τ∈B
Mn(τ ) ≤Mn(τ 0)}

)
≤ P

(
lim inf

n
min
τ∈B
Mn(τ ) ≤ lim inf

n
Mn(τ 0)

)
= P

(
lim inf

n
min
τ∈B
Mn(τ ) ≤M(τ 0)

)
(law of large numbers)

= 1− P
(
lim inf

n
min
τ∈B
Mn(τ ) >M(τ 0)

)
= 0.

Therefore, the LHS term P(d(τ̂n, τ 0) ≥ ε) = P(τ̂n ∈ B) → 0. Since P(d(τ̂n, τ̃ 0) ≥ ε) ≤ P(d(τ̂n, τ 0) ≥ ε), we also
have P(d(τ̂n, τ̃ 0) ≥ ε)→ 0, which concludes the consistency proof.

B.3 Proof of Theorem 3

Proof. To prove this theorem, we need to use the alternate definition of the Wasserstein distance. For any two distribution
densities f, g ∈ P2(R), the 2-Wasserstein distance W2(f, g) between them can also be defined as

W 2
2 (f, g) = inf

γ∈Π(f,g)

∫
R×R

(x1 − x2)
2γ(x1, x2)dx1dx2,

where Π(f, g) is the set of joint distributions γ ∈ P2(R×R) such that for any (x1, x2) ∈ R×R the marginal distributions
satisfy

∫
R γ(x1, s)ds = f(x1) and

∫
R γ(s, x2)ds = g(x2). More important, it can be proved the above definition is

equivalent with our previous definition of the Wasserstein distance in Section 2, and the γ∗ achieving the infimum is called
the optimal coupling. In our case, since R is a Polish space, the optimal coupling exists. More details can be found in
Villani (2008).

By the existence of optimal coupling, there are {γ∗
k ∈ Π(fk, gk)}Kk=1, such that for k = 1, ...,K, the lower bound of the

Wasserstein distance is achieved

W 2
2 (fk, gk) =

∫
R×R

(x1 − x2)
2γ∗

k(x1, x2)dx1dx2.

Define γ∗ =
∑K

k=1 πkγ
∗
k , then γ∗ ∈ Π(f, g) since for any (x1, x2) ∈ R × R the marginal distributions satisfy∫

R γ∗(x1, s)ds = f(x1) and
∫
R γ∗(s, x2)ds = g(x2). By definition,

W 2
2 (f, g) ≤

∫
R×R

(x1 − x2)
2γ∗(x1, x2)dx1dx2

=

K∑
k=1

πk

∫
R×R

(x1 − x2)
2γ∗

k(x1, x2)dx1dx2

=

K∑
k=1

πkW
2
2 (gk, fk).
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Thus, it remains to prove the equality condition. Define function tgf (x) = G−1 ◦F (x), where G−1 is the QF of g, F is the
CDF of f . The optimal coupling γ∗ can be expressed as the joint distribution of

(
X, tgf (X)

)
with random variable X ∼ f

(Villani, 2008). Further, we let gk be the distribution of tgf (Xk) with random variable Xk ∼ fk, then gk are in the form of
Equation (6) in Section 3. Moreover, the joint distribution γ∗

k of (Xk, t
g
f (Xk)) is the optimal coupling such that the lower

bound of the Wasserstein distance is achieved

W 2
2 (fk, gk) =

∫
R×R

(x1 − x2)
2γ∗

k(x1, x2)dx1dx2.

Finally, the following equations hold

W 2
2 (f, g) =

∫
R×R

(x1 − x2)
2γ∗(x1, x2)dx1dx2

=

∫
R
(x− tgf (x))

2f(x)dx

=
K∑

k=1

πk

∫
R
(x− tgf (x))

2fk(x)dx

=

K∑
k=1

πkW
2
2 (gk, fk),

and g =
∑K

k=1 πk · gk is a valid mixture decomposition.

C OPTIMIZATION FRAMEWORK

In this section, we provide more details for the optimization framework.

First, we show the target loss function is guaranteed to decrease in our optimization framework. In fact, by plugging
in g = fD, f = fθ, in Theorem 3 and assuming fθ belongs to the family of Gaussian mixture distributions with θ =
{(πk, µk, σk)}Kk=1, then the left side of Equation (5) in Theorem 3 becomes the target loss function L(θ) = W 2

2 (fD, fθ).
Moreover, if we treat the mixture decomposition component {gk}Kk=1 of the empirical distribution as the latent parameters,
the right side of Equation (5) provides a natural upper bound of L(θ). This can serve as a surrogate function that majorizes
the original objective function. Denoting the right side of Equation (5) by R(ν,θ) =

∑K
k=1 πkW

2
2 (gk, fk) with ν =

{gk}Kk=1, θ = {(πk, µk, σk)}Kk=1 and fk = N(µk, σ
2
k), we have L(θ) ≤ R(ν,θ) by Theorem 3. Therefore, we have the

following inequality chain

L(θ(m)) = L(π(m), µ(m), σ(m)) ≤ L(π(m−1), µ(m), σ(m)) ≤ R({gk}(m−1), π(m−1), µ(m), σ(m))

≤ R({gk}(m−1), π(m−1), µ(m−1), σ(m−1)) = L(π(m−1), µ(m−1), σ(m−1)) = L(θ(m−1)).

It indicates that the original loss function L(θ) decreases during the optimization of the upper bound R(ν,θ) =
R
(
{gk}Kk=1, π, µ, σ

)
in each iteration step. The outline algorithm hence converges to the minimum of the original loss

function.

Then, we provide more details for our boosted MM optimization framework in Figure A1.

Moreover, using the example of fitting a single three-component Gaussian mixture model fθ to empirical distribution g
derived from data sample D under the Wasserstein distance loss, we show our proposed WDL framework can achieve fast
convergence and jump out of local optima compared with the vanilla EM algorithm. In the experiment, we started from
the same random initialization for EM and WDL, and then calculate the Wasserstein distance loss along the optimization
process. In Video S1, we visualize the input data D or g as the histogram, represent the fitted components using three
curves of different colors, and also utilize colorful bars for the decomposition gk of the empirical distribution g. As we
can see in the video, the vanilla EM algorithm easily got stuck in the local optima. For WDL, the process identified one
component first, and then pushed the other two components away from the first one. Every time of such a push created a
sharper drop in the loss. In Figure A2, we provide a screenshot of Video S1 after 100 optimization steps.
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Input: D, K,M, η

Initialization: τ̂ (0)(x)

Compute {α(m−1)
k , µ

(m−1)
k , z

(m−1)
k }Kk=1 from τ̂ (m−1)(x)

Find optimal parameters: {α(m)
k , µ

(m)
k , z

(m)
k }Kk=1

Fit regression trees Tk ’s to the parameter differences

Update model via Boosting: τ̂ (m)(x) = τ̂ (m−1)(x) + η{Tk(x)}Kk=1

Converge ?

Output: τ̂ (M)(x)

Yes

Respectively
for {α, µ, z} No

Figure A1: Diagram for fitting SCGMM

D SIMULATION DETAILS

In this part, we introduce the simulation details for reproducibility. All the simulations were implemented with Python
version 3.6 and R version 4.0.3.

D.1 Simulation Setup

The simulation mechanism is illustrated in Equation (7) of Section 4. In the experiment, with predefined parameters
(N,n, ω), density-on-scalar data D = {(xi, ĝi)}Ni=1 were simulated as follows

D.2 Fréchet Regression

The implementation of global Fréchet regression was following the algorithm introduced in the reference paper (Petersen
et al., 2019, 2021). All the simulations were coded in R using the package frechet 1 developed by the author. In model
training, we first calculated the empirical quantile function Ĝ−1

i from the random points (yi,1, ..., yi,n), and then fed them
to the function GloDenReg. There is no tuning parameter in global Fréchet regression.

1https://cran.r-project.org/web/packages/frechet/index.html
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Figure A2: A screenshot of Video S1 after 100 optimization steps. First row: WDL framework; Second row: vanilla EM
algorithm.

D.3 CLR Regression

The implementation of the B-spline smoothed density regression with centered log-ratio transformation was based on the
sample codes 2 from the reference paper (Talská et al., 2018). Specifically, for a PDF f ∈ B2(I), the centered log-ratio
transformation is defined as

CLR[f ](t) = log f(t)− 1

γ

∫
I

log f(s)ds, ∀t ∈ I,

where γ is the normalization constant such that
∫
I
CLR[f ](t)dt = 0. Actually, the centered log-ratio transformation

defines an isometric isomorphism between the Bayes space B2(I) and the Hilbert space L2(I).

The hyper-parameters of CLR regression were chosen following the reference paper (Talská et al., 2018). With randomly
sampled data points (yi,1, ..., yi,n), we first built the histogram of each functional output, of which the optimal number
of classes were decided by the Sturges’ rule (Sturges, 1926). Because of the output heterogeneity, possible count zeros
were replaced by positive posterior expectations with Perks prior using methods from Martı́n-Fernández et al. (2015).
Afterwards, centered log-ratio transformation was applied to map the density estimations (histograms) into the Bayes space
B2(R), and B-spline polynomials with equally spaced knots were utilized to smooth the log density curve. To calculate
the Wasserstein loss, we transformed the estimated density function f̂i back into a quantile function F̂−1

i at the given 99
equally spaced quantile levels {ρl = l

100}
99
l=1 using linear interpolation, and then numerically calculated the Wasserstein

loss.

In the sample codes from the reference paper, quadratic B-splines with five equally spaced knots were used. In our
implementation, we fine-tuned these hyper-parameters (degree ∈ {2, 3, 4}, number of knots ∈ {5, 8, 10}) using cross-
validation.

2https://www.sciencedirect.com/science/article/abs/pii/S0167947318300276
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Algorithm A1 Data Simulation

Input: N -number of samples , n-number of data points in each density, ω-noise level.
for i = 1 to N do

[Inputs] Randomly sample covariate vectors xi ∼ U [−1, 1] and random noises εi ∼ N(0, ω2).
[Outputs] Randomly sample i.i.d. (yi,1, ..., yi,n) from the conditional density p(Y |X = xi, εi), and construct

empirical ĝi.
end for
Output: Density-on-scalar data D = {(xi, ĝi)}Ni=1.

Table A2: Performance comparison in terms of Wasserstein loss and R-squared (bracket) when the quantiles are sparse.

ω = 0.1 0.3 0.5
WDL 0.072 (0.84) 0.132 (0.64) 0.216 (0.36)

Fréchet 0.226 (0.51) 0.247 (0.35) 0.292 (0.16)

D.4 Regression with Sparse Quantiles

In real-world applications, a common scenario is that the conditional quantiles G−1
i (ρ) of the functional outputs {gi}Ni=1 are

only available at a series of sparse quantile values, for instance, ρ ∈ {0, 0.1, ..., 0.9, 1} in the UK biobank data 3. To apply
the Wasserstein distributional learning framework to these scenarios, additional treatments are essential due to the definition
of the Wasserstein loss. To be more specific, as introduced in Section 2, the Wasserstein distance between the two density
functions is the integral of their quantile differences. When the dense quantiles are available, e.g. ρ ∈ {0.01, 0.02, ..., 0.99},
the Wasserstein distance can be numerically approximated by the average of all quantile differences, as show below.

W 2
2 (g1, g2) =

∫ 1

0

(
G−1

1 (s)−G−1
2 (s)

)2
ds ≈ 1

100

99∑
i=1

(
G−1

1 (
i

100
)−G−1

2 (
i

100
)
)2
.

While, such approximation is far from accurate when the quantiles are sparse, e.g. ρ ∈ {0.1, 0.2, ..., 0.9}. Similarly, to
measure the discrepancy between functional outputs, we can still define the quasi-Wasserstein loss as

W̃ 2
2 (g1, g2) =

1

10

9∑
i=1

(
G−1

1 (
i

10
)−G−1

2 (
i

10
)
)2
.

However, to the best of our knowledge, there is no efficient algorithm for solving this optimization problem when the
model family is Semi-parametric Conditional Gaussian Mixture Models (SCGMM) and the quantiles levels are sparse.

Practically, a solution to address this issue is to apply a linear interpolation. Over the training set, we can augment the
sparse quantiles into a dense array using linear interpolation. It should be noted that the augmented quantiles naturally
satisfy the non-crossing constraints since linear interpolation keeps the monotonicity of the quantile function. Then, the
WDL framework can be fitted over the training set using the augmented dense quantiles. Optimization convergence is
theoretically guaranteed in Section 3. Last, but not least, we can take the predicted sparse quantiles as the functional
output, and the test error can be evaluated over the test set at the given quantile levels.

Using the same simulation setup as in Section 4, we rerun the experiments with sparse quantiles ρ ∈ {0, 0.1, ..., 0.9, 1},
and compare the performance of WDL with Fréchet regression. CLR regression is ignored here because under the sparse
quantiles, the estimated density would be highly unstable. As shown in Table S1, the WDL performance is similar with
that in the case of dense quantiles (Table 1), and is significantly better than Fréchet regression.

D.5 Simulations in The Linear Case

In this part, we present simulation results in a simpler setup, and prove our proposed method is flexible under different
settings. The simulation setup of this section follows the experiment in Petersen et al. (2019). In this case, the quantile
values of the functional output are linear functions of the input variables, which is the underlying assumption of global

3https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=23000
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Fréchet regression. Results show our proposed Wasserstein distributional learning framework is able to achieve comparable
performance even when the data are simulated in a different way from the model assumption.

To simulate the functional regression data, the responses Y are distributions represented by quantile functions Q(Y ) and
the predictors are random vectors X ∈ R3. For any given quantile level 0 < ρ < 1, the regression function is

Q−1
Y (ρ) = (µ0 + β⊤x) + (σ0 + γ⊤x) · Φ−1(ρ),

where Φ is the standard normal distribution function. µ0, σ0 ∈ R, β, γ ∈ R3, satisfy σ0 + γ⊤x > 0 for all x. In fact, this
simulation scenario corresponds to cases in which the response functions are normal distributions with linear parameters
on average.

In the simulation, the functional response Y is generated conditional on X by adding noise to the quantile functions. For
each input X = x, the distribution parameters (µ, σ) are independently sampled from p(µ|X = x) = N(µ0 + β⊤x, v1)
and p(σ|X = x) = Gam((σ0 + γ⊤x)2/v2, v2/(σ0 + γ⊤x)), and the corresponding functional output is Y = µ+ σΦ−1.
Specifically, we set the parameters as µ0 = 0, σ0 = 3, v1 = 0.25, v2 = 1, β = (1,−1, 3)⊤, γ = (0.1, 0.2, 0.3), and
simulated N = 200 random distributions, which are each represented by n = 300 random data points.
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Figure A3: Functional partial dependence plot for the three methods.

The functional partial dependence plots on test sets are observed in Figure A3. Results show that the proposed Wasserstein
distributional learning has stable performance under different simulation settings.

E REAL-WORLD APPLICATIONS

In this appendix section, we provide more details for the real-world applications.

E.1 Climate Modeling

E.1.1 Data Collection

In this appendix section, we apply the proposed Wasserstein distributional learning to understand how the radiative effect
of solar irradiance, volcanic eruptions, and CO2, as well as natural climate variability through the El-Niño Southern
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Figure A4: Daily trend of global average temperatures. The solid curve represents the median temperature of each day.
The dark gray band represents the 30% and 70% quantiles. The light gray band represents the 10% and 90% quantiles.

Oscillation (ENSO) are associated with annual temperature distributions. These factors have been suggested in climate
change literature (Fahey et al., 2017; Lewis and King, 2017), and represent natural and human drivers for climate variability
and change. We obtain the daily land-surface average temperatures from Berkeley Earth daily TAVG full dataset (Berkeley
Earth, 2021), where temperatures are reported as daily anomalies relative to the Jan 1951∼Dec 1980 average. We calculate
the empirical quantile functions of daily average temperature anomalies for each year between 1880 and 2011 as functional
outputs. The global radiative effects, or “radiative forcings” used in this example have units of Wm−2 and represent the
global average energy balance that arises due to changes in atmospheric composition. Here, radiative forcings of solar
irradiance, volcanic eruptions, and CO2 as as calculated by the NASA Goddard Institute for Space Studies (GISS) analysis
checking the the historical (1850-2012) simulation of their dynamical climate model GISS Model E2 Miller et al. (2014).
In addition to the three radiative forcing predictors, year-to-year climate variability is summarized through the Niño3.4
index, a sea surface temperature index that captures the oscillatory of the ENSO system between warm El Niño events and
cool La Niña events McPhaden et al. (2020). Together, these four predictors have been shown to be highly predictive of
global annual mean temperature Suckling et al. (2017) and are therefore expected to be predictive of the distribution of
daily global mean temperature.

E.1.2 Additional Evaluations

In Figure A4, we visualize the daily trend of global average temperatures. Using data from 1880 to 2012, we calculate the
temperature quantiles (10%, 30%, 50%, 70%, 90%) for each day. An interesting finding is that spring and autumn have
a higher temperature in general than the other two seasons. Also, the temperature variability in summer is smaller than
the other seasons. A potential explanation would be that the temperatures were calculated by averaging the records from
multiple weather stations both from the north and south hemisphere. As a result, the averaged temperatures would display
a more complicated trend since the north and south hemispheres always have different seasons.

We also visualize the average component weights of each day in Figure A5. Specifically, for each day from 1880 and 2012,
we calculate the weight of each component using the predicted WDL model, and then average them across years. Finally,
we plot them using a calendar heatmap with each grid representing a day in the year 2020 (we chose 2020 because it is a
leap year with 366 days).

In Figure A6, we make the Individual Conditional Expectation (ICE) plots for each method. From the figure, WDL
and Fréchet regression are the only two methods that can give unbiased estimations of conditional quantiles due to their
choices of Wasserstein loss. Compared with Fréchet regression, WDL performs better when there exists nonlinearity in the
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Figure A5: Average component weights of each day. First row: Component I; Second row: Component II; Third row:
Component III. Component weights are represented using different colors.
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Figure A6: ICE plots of conditional temperature quantiles (10%) by solar irradiance. True conditional quantiles vs. solar
irradiance from raw data are represented as black dots.

conditional dependence. These findings explain the phenomenon that WDL is the only method that can predict the “cold
temperature plateau” between 1940 and 1960 in Figure 4. In Figure A7 to Figure A9, we visualize the predicted annual
temperature distributions for each method from 1880 to 2012. Also in those figures, WDL captures the tail behavior more
accurately than the others.

E.2 Income Modeling

E.2.1 Data Collection

In this experiment, we apply Wasserstein distributional learning to model the regional income distribution of the 167
counties in New York, California and Michigan, from which one could derive multiple indices simultaneously and explicitly
study their joint distributions. The income distribution data are from American Community Survey (ACS), which we used
with survey weights from 2014 ACS Public Use Microdata Sample (PUMS) (American Community Survey, 2014) to
produce the county-level income distributions. We also collected scalar county-level health indices of the same year (2014)
from County Health Rankings & Roadmaps 2014. Seven important variables were selected for our analysis: Education,
Environment, Population, Crime, GDP Per Capita, Diabetes, and Unemployment rate. With all the data in place, the
functional regression was conducted at the county level, which means each county served as an independent data point in
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the regression.

E.2.2 Additional Evaluations

In this part, similar with weather distribution modeling, we illustrate the predicted density for each county when it was in
the test fold. As shown in Figure A10, the income distributions vary across counties, and our method is able to capture the
distribution accurately. For example, the income distribution in New York has a larger variance, and the income distribution
in Orleans has a much higher peak in mode. The WDL framework is able to capture the distinctive features in these two
distributions. Also, we make the functional partial dependence plot for predicted conditional quantiles versus the input
scalar covariates in Figure A11. The abbreviation information are as follows, EDU: Education, ENV: Environment, PPL:
Population, GDP: GDP Per Capita, CRM: Crime Rate, DBT: Diabetes, EMP: Unemployment. Since there is no ground
truth in the real dataset, this figure only explains how each method interprets the functional dependence between the density
output and scalar covariates in different ways.
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Figure A7: Predictions of annual temperature distributions (Part I).
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Figure A8: Predictions of annual temperature distributions (Part II).
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Figure A9: Predictions of annual temperature distributions (Part III).
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Figure A10: Selected predictions of regional income distributions.
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Figure A11: Functional partial dependence plot for predicted conditional quantiles versus the input scalar variables.


