
Rethinking Initialization of the Sinkhorn Algorithm

James Thornton Marco Cuturi
University of Oxford † Apple

Abstract

While the optimal transport (OT) problem was
originally formulated as a linear program, the ad-
dition of entropic regularization has proven ben-
eficial both computationally and statistically, for
many applications. The Sinkhorn fixed-point al-
gorithm is the most popular approach to solve
this regularized problem, and, as a result, multiple
attempts have been made to reduce its runtime
using, e.g., annealing in the regularization param-
eter, momentum or acceleration. The premise
of this work is that initialization of the Sinkhorn
algorithm has received comparatively little atten-
tion, possibly due to two preconceptions: since
the regularized OT problem is convex, it may not
be worth crafting a good initialization, since any
is guaranteed to work; secondly, because the out-
puts of the Sinkhorn algorithm are often unrolled
in end-to-end pipelines, a data-dependent initial-
ization would bias Jacobian computations. We
challenge this conventional wisdom, and show
that data-dependent initializers result in dramatic
speed-ups, with no effect on differentiability as
long as implicit differentiation is used. Our ini-
tializations rely on closed-forms for exact or ap-
proximate OT solutions that are known in the
1D, Gaussian or GMM settings. They can be
used with minimal tuning, and result in consistent
speed-ups for a wide variety of OT problems.

1 Introduction

The optimal assignment problem and its generalization, the
optimal transport (OT) problem, play an increasingly impor-
tant role in modern machine learning. These problems de-
fine the Wasserstein geometry (Santambrogio, 2015; Peyré
et al., 2019), which is routinely used as a loss function

Proceedings of the 26th International Conference on Artificial Intel-
ligence and Statistics (AISTATS) 2023, Valencia, Spain. PMLR:
Volume 206. Copyright 2023 by the author(s).
†Work done during an internship at Apple.

in imaging (Schmitz et al., 2018; Janati et al., 2020), but
also used to reconstruct correspondences between datasets,
as for instance in domain adaptation (Courty et al., 2014,
2017) or single-cell genomics (Schiebinger et al., 2019).
Several recent applications use OT to obtain an intermediate
representation, as in self-supervised learning (Caron et al.,
2020), balanced attention (Sander et al., 2022), parameter-
ized matching (Sarlin et al., 2020), differentiable sorting and
ranking (Adams and Zemel, 2011; Cuturi et al., 2019, 2020;
Xie et al., 2020a), differentiable resampling (Corenflos et al.,
2021) and clustering (Genevay et al., 2019).

Sinkhorn as a subroutine for OT. A striking feature of all
of the approaches outlined above is that they do not rely
on the linear programming formulation of OT (Ahuja et al.,
1988, §9-11), but use instead an entropy regularized formu-
lation (Cuturi, 2013). This formulation is typically solved
with the Sinkhorn algorithm (1967), which has gained pop-
ularity for its versatility, efficiency and differentiability.

Ever Faster Sinkhorn. Given two discrete measures, the
Sinkhorn algorithm runs a fixed-point iteration that out-
puts two optimal dual vectors, along with their objective–a
proxy for their Wasserstein distance. Because Sinkhorn is
often used as an inner routine within more complex archi-
tectures, its contribution to the total runtime may result in a
substantial share of the entire computational burden. As a
result, accelerating the Sinkhorn algorithm is crucial, and
has been explored along two lines of works: through faster
kernel matrix-vector multiplications, using geometric prop-
erties (Solomon et al., 2015; Altschuler et al., 2019; Scetbon
and Cuturi, 2020), or by reducing the total number of itera-
tions needed to converge, using e.g. an annealing regular-
ization parameter (Kosowsky and Yuille, 1994; Schmitzer,
2019; Xie et al., 2020b), momentum (Thibault et al., 2021;
Lehmann et al., 2021), or Anderson acceleration (1965), as
considered in (Chizat et al., 2020).

Initialization as a Blind Spot. All methods above are,
however, implemented by default by setting initial dual vec-
tors naively at 0. To our knowledge, initialization schemes
have only been explored in a few restricted setups, such
as semi-discrete settings in 2/3D (Meyron, 2019), or for
discrete Wasserstein barycenter problems (Cuturi and Peyré,
2015). We argue that careful initialization of dual potentials
presents an overlooked opportunity for efficiency.

Rethinking Initialization of the Sinkhorn Algorithm

Contributions. We propose multiple methods to initialize
dual vectors. Contrary to concurrent and complementary
work by Amos et al. (2022), our initializers are not trained,
and not limited to fixed support setups. They require mini-
mal hyperparameter tuning and result in small to negligible
overheads. To do so, we leverage closed-form formulae and
approximate solutions for simpler OT problems, resulting
in the following procedures:

• We introduce a method to recover dual vectors when the
primal problem solution is known in closed-form, and
apply this to the non-regularized 1D problem. We show
that initializing Sinkhorn with these vectors results in
orders of magnitude speedups that can be readily applied
to differentiable sorting and ranking.

• When the ground cost is the squared L2 distance in Rd,
d > 1, we leverage closed-form dual potential functions
from the Gaussian approximation of source/target mea-
sures, and evaluate them on source points to initialize the
Sinkhorn algorithm. We extend this by introducing an
approximation of OT potentials for Gaussian mixtures.

• Finally we reformulate the multiscale approach of (Feydy,
2020, Alg. 3.6) as a subsample initializer.

We provide extensive empirical evaluation, and compare our
approaches to other acceleration methods. We show that
our initializations are robust and effective, outperforming
existing alternatives, yet can also work in combination with
them to achieve even better results.

2 Background material on OT

2.1 Entropic Regularization and Sinkhorn

Given two discrete probability measures µ = ∑n
i=1 aiδxi and

ν = ∑
m
j=1 bjδyj in P(Rd), where a = (a1, . . . , an),

b = (b1, . . . , bm) are probability weights and
(x1, . . . ,xn) ∈ Rd×n, (y1, . . . ,ym) ∈ Rd×m, the entropy
regularized OT problem between µ and ν parameterized by
ε ≥ 0 and a cost function c has two equivalent formulations,

min
P∈Rn×m

+
,P1m=a,PT 1n=b

⟨P,C⟩ − ε⟨P, log(P) − 1⟩ , (1)

max
f∈Rn,g∈Rm

Eµ,ν,c,ε(f ,g) ∶=⟨f ,a⟩+⟨g,b⟩ −ε⟨e
f
ε ,Ke

g
ε ⟩. (2)

where C ∶= [c(xi,yj)]i,j , with corresponding kernel K ∶=
e−C/ε. While (f ,g) are unconstrained for ε > 0, the regu-
larization term converges as ε→ 0 to an indicator function
that requires fi + gj ≤ c(xi,yj).

The Sinkhorn Algorithm. Algorithm 1 describes a se-
quence of updates to optimize f ,g in (2). When ω = 1,
these updates correspond to cancelling alternatively the gra-
dients ∇1Eµ,ν,c,ε(f ,g) (line 4) and ∇2Eµ,ν,c,ε(f ,g) (line
5) of the objective in (2). These updates use the row-wise

Algorithm 1: Sinkhorn’s Algorithm

1: Input: a,b,C, ε > 0, ω > 0, f (0),g(0).
2: Initialize: f ← f (0),g ← g(0)

3: while not converged do
4: f ← ω(ε loga −minε(C − f ⊕ g)) + f
5: g ← ω(ε logb −minε(C

T − g ⊕ f)) + g
6: end while
7: Return f ,g

soft-min operator minε, defined as:

Given S = [Si,j], minε(S) ∶= [−ε log (1
T e−Si,⋅/ε)]i ,

and the tensor addition notation f ⊕ g = [fi + gj]i,j . The
runtime of the Sinkhorn algorithm hinges on several factors,
notably the choice of ε. Several works report that hundreds
of iterations are typically required when using fairly small
regularization ε (e.g. 500 in Salimans et al. 2018, App.B).
These scalability issues are compounded in advanced appli-
cations whereby multiple Sinkhorn layers are embedded in
a single computation or batched across examples (Cuturi
et al., 2019; Xie et al., 2020a; Cuturi et al., 2020). To miti-
gate runtime issues, popular acceleration techniques such
as fixed (Thibault et al., 2021) or adaptive (Lehmann et al.,
2021) momentum approaches, as well as Anderson accel-
eration (Chizat et al., 2020) have been considered. While
acceleration methods are known to work well when ini-
tialized not too far away from optima (d’Aspremont et al.,
2021), all common implementations (Flamary et al., 2021;
Cuturi et al., 2022) initialize these vectors to (0n,0m).

2.2 Dual Variables in the Sinkhorn Algorithm

On starting closer to the solution. While the Sinkhorn
algorithm will converge with any initialization, the speed of
convergence is bounded by (Peyré et al., 2019, Rem. 4.14):

∥f (ℓ) − f⋆∥var ≤ ∥f
(0)
− f⋆∥varλ(K)

2ℓ , (3)

where f (ℓ) denotes the potential vector f obtained after run-
ning Algorithm 1 for ℓ iterations, f⋆ the optimal potential,
and deviation is measured using the variation norm. λ(K)
reflects conditioning in K (Peyré et al., 2019, Theorem 4.1),
determined by the range and magnitude of costs evaluated
on (xi,yj) pairs relative to ε. Since 0 < λ(K) < 1, the
Sinkhorn algorithm converges more slowly as λ(K) ap-
proaches 1. The motivation to obtain a better initialization
relies on targeting the initial gap in ∥f (0) − f⋆∥var.

Two or One Dual Initializations? While Algorithm 1 lists
two initial vectors (f (0),g(0)), a closer inspection of the
updates shows that only a single dual variable is needed:
when starting with an iteration updating g, only f (0) is
required (the reference to g is only there for numerical
stability). Conversely, only g(0) is required when updating

James Thornton, Marco Cuturi

f . Since only one is needed, we supply by default the
smallest vector when n ≠m, and set the other to 0.

Differentiability and Dual initialization. Any output of
the Sinkhorn fixed-point algorithm can be differentiated us-
ing unrolling (Adams and Zemel, 2011; Hashimoto et al.,
2016; Genevay et al., 2018, 2019; Cuturi et al., 2019; Caron
et al., 2020). This approach has, however, two drawbacks:
its memory footprint grows as L(n +m), where L is the
number of iterations needed to converge, and, more fun-
damentally, it prevents us from using more efficient steps,
such as adaptive momentum and acceleration, because they
typically involve non-differentiable operations. These issues
can be avoided by relying instead on implicit differentia-
tion (Luise et al., 2018; Cuturi et al., 2020; Xie et al., 2020b;
Cuturi et al., 2022), which only requires access to solutions
f⋆,g⋆ to work. We recall how this can be implemented for
completeness. Introducing the following notations:

F ∶µ, ν, c, ε↦ f⋆,g⋆,optimal solutions to (2) ,

H ∶µ, ν, c, ε, f ,g ↦ [
∇1Eµ,ν,c,ε(f ,g)
∇2Eµ,ν,c,ε(f ,g)

] ,

one has that H(µ, ν, c, ε, F (µ, ν, c, ε)) = 0n+m, which is
the root equation that can be used to instantiate the implicit
function theorem, to recover the Jacobian of the outputs
of F (i.e. f⋆,g⋆) w.r.t. any variable “∎” within inputs.
As a result, the transpose-Jacobian of F applied to any
perturbation of the size of ∎ (the only operation needed
to implement reverse-mode differentiation) is recovered as
(where . . . is a shorthand notation for ∎, (f⋆,g⋆)):

JF,∎(. . .)
T z = −JH,∎(. . .)

T (JH,(f ,g)(. . .)
T)
−1

z

All of these operations can be instantiated easily using vjp
Jacobian operators (Bradbury et al., 2018) and linear sys-
tems that rely on linear functions (rather than matrices) as
detailed in (Cuturi et al., 2022). These computations only re-
quire access to optimal values f⋆,g⋆, not the computational
graph that was needed to reach them.

2.3 Closed-Form Expressions in Optimal Transport

A few closed-forms for unregularized (ε = 0) OT are known.
Some of these closed forms rely on the Monge formulation
of OT, recalled for completeness for two measures µ, ν ∈
P(Rd) in (4), using the push-forward ♯ notation, as well
as the dual formulation of OT in (5), using the convention
f c(y) ∶=minx c(x,y) − f(x), the c-transform of f .

min
T ∶Rd→Rd

T♯µ=ν
∫ c(x, T (x))dµ(x). (4)

max
f ∶Rd→R

∫ fdµ +∫ f cdν . (5)

We review two relevant cases, where either an optimal cou-
pling P⋆ (for ε = 0) in the primal formulation of (1), or an

Figure 1: Transport map (black) from Gaussian approxima-
tions (dashed) of S-curve (green) and two-moons (red)

optimal map T ⋆ to (4) can be obtained in closed form. We
show in §3 how these solutions can be leveraged to recover
initialization vectors f (0) and g(0) for Alg. 1.

OT in 1D. For univariate data (d = 1), and when the cost
function c is such that −c is supermodular (∂c/∂x∂y < 0),
a solution P⋆ to (1) can be recovered in closed form (Chi-
appori et al., 2017; Santambrogio, 2015, §3). Writing
σ, ρ for sorting permutations of the supports of µ and ν,
xσ1 ≤ ⋅ ⋅ ⋅ ≤ xσn and yρ1 ≤ . . . yρm , a solution P⋆ is given
by the north-west corner solution NW(aσ,bρ), where aσ
and bρ are the weight vectors a,b permuted using σ and ρ
respectively (Peyré et al., 2019, §3.4.2).

Gaussian. The Monge formulation of the OT problem (4)
from a Gaussian measure N1 = N (m1,Σ1),Σ1 > 0, to
another N2 = N (m2,Σ2), is solved by (see also Fig. 1):

T ⋆(x) ∶=A(x −m1) +m2,A =Σ
− 1

2

1 (Σ
1
2

1 Σ2Σ
1
2

1)
1
2Σ
− 1

2

1 .

The optimal dual potential f⋆ is a quadratic form given by

f⋆(x) = 1
2
xT
(I −A)x + (m2 −Am1)

Tx , (6)

which recovers T ⋆ = Id − ∇f⋆. The OT cost between N1

and N2 is known as the Bures-Wasserstein distance:

W 2
2 (N1,N2) = ∥m1 −m2∥

2
+ B

2
2(Σ1,Σ2) ,

B
2
2(Σ1,Σ2) ∶ = tr(Σ1 +Σ2 − 2(Σ

1
2

1 Σ2Σ
1
2

1)
1
2) .

(7)

3 Crafting Sinkhorn Initializations

We present important scenarios where careful initialization
can dramatically speed up the Sinkhorn algorithm. We start
with the 1D case (§3.1), where entropic transport has been
used recently as a possible approach to obtain differentiable
rank and sorting operators. We follow with the generic
and by now standard multivariate OT problem in Rd with
squared-L2 ground cost, using Gaussian approximations
(§3.2) and an extension to mixtures (§3.3).

3.1 Initialization for 1D Regularized OT

Ranking as an OT problem. Using a cost c on R × R
such that ∂c/∂x∂y < 0, sorting the entries of a vector x =

Rethinking Initialization of the Sinkhorn Algorithm

(x1, . . . , xn) ∈ Rn can be recovered using a solution P⋆ to
(1), setting ε = 0, a = 1n/n, and ν to a uniform measure on
n increasing numbers, e.g. y = (1,2, . . . , n). The ranks of
the entries of x are then nP⋆z, where z = (1,2, ..., n), and
its sorted entries as nP⋆Tx (Cuturi et al., 2019).

Differentiable Ranking. A differentiable and fractional
soft sorting/ranking operator can be derived from entropy
regularized couplings, using instead a solution Pε to (1,
ε > 0) to form nPεz and nPT

ε x (Cuturi et al., 2019), with
the possibility to use a different target size m or non-uniform
weights a,b. A practical challenge of that approach is that
the number of Sinkhorn iterations needed for the coupling
to converge can be typically quite large, see Figure 3 and
further results in Appendix B.1.

Dual 1D Initializers. Regularized 1D OT problems often
require a small regularization ε to be meaningful, in order
to recover rank approximations that are not too smoothed,
which then requires many Sinkhorn iterations to converge.
To address this, we introduce an initializer using potentials
for the non-regularized problem (ε = 0). Our strategy to
pick initialization vectors for Algorithm 1 is upon first
glance deceptively simple: sort x, recover a primal solution
P⋆ (the North-West corner solution) that is guaranteed to
solve (1); turn it into a pair of optimal dual vectors f⋆0 ,g

⋆
0 for

the same unregularized problem, and seed them to Alg. 1 to
solve 2 with ε > 0. While obtaining P⋆ only requires a sort,
efficiently recovering a corresponding dual pair (f⋆0 ,g

⋆
0) is

less straightforward. In principle, duals may be obtained
by solving an elementary cascading linear system using
primal-dual conditions (Peyré et al., 2019, §3.5.1). That
approach does not always work, however, when the size
of the support of P⋆ is strictly smaller than n +m − 1 (it
results in a system that has less equalities than variables),
which is the case in the original ranking problem, where
n =m. Sejourne et al. (2022, Alg.1) propose an algorithm
to construct f⋆0 ,g

⋆
0 in n+m sequential operations, interlaced

with conditional statements. We consider a more generic
algorithm that works in higher dimensions, but which, when
particularized to the 1D case, results in the DUALSORT
Algorithm 2 (see also Appendix E), a parallel approach with
larger O(nm) complexity, but simpler to deploy on GPU,
since it only requires a handful of iterations to converge,
each directly comparable to that of the Sinkhorn algorithm.
See application to experiments in §4.1 and §4.2.

Algorithm 2: DUALSORT Initializer
1: Input: Cost matrix C = [c(xσi , yρj)] for the sorted

entries of input vectors x,y entries, see §2.3.
2: Initialize: f = 0
3: while not converged do
4: f ←minaxis=1 (C − diag(C)1T + f1T)

5: end while
6: Return f

3.2 Computing Dual Initializers from Gaussian OT

From optimal potentials to dual initializers. We
leverage Gaussian approximations to obtain an efficient
initializer, coined GAUS, for the Sinkhorn problem, when
c(x, y) = ∥x − y∥22, notably when n≫ d.

To do so, and given two discrete empirical measures µ and
ν, compute their empirical means and covariance matri-
ces (mµ,Σµ) and (mν ,Σν), to recover a dual potential
function f⋆ from (6) that solves the Gaussian dual OT
problem, where A in that equation can be obtained by re-
placing Σ1 with Σµ and Σ2 with Σν . Next, evaluate that
quadratic potential on all observed points of the first mea-
sure [f (0)]i ← f⋆(xi) (or alternatively the second measure
if m < n) to seed the Sinkhorn algorithm.

Table 1: Toy examples, n =m = 1024, d = 2, 200 runs.

Dataset
Iterations (mean ± std)

Init 0 Init Gaus

2-moons 120.0 ± 0.0 11.0 ± 0.0
S curve / 2-moons 137.2 ± 16.7 49.6 ± 14.8
3 Gaussian blobs 236.0 ± 24.3 45.4 ± 9.7

Complexity. Solving OT on the Gaussian approximations
of µ, ν, requires computing means and covariance matrices
O((n + m)d2), as well as matrix square-roots and their
inverse, using the Newton-Schulz iterations (Higham, 2008)
at costO(d3). The GAUS initializer is therefore particularly
relevant in settings where d ≪ n, which is typically the
regime where OT has found practical relevance.

Implementation. Our experiments show that GAUS often
works significantly better, than the default null initialization,
notably with toy datasets (see Table 1), but also when
computing OT on latent space embeddings as shown in §4.3
and §4.4, or to word-embeddings as demonstrated in §4.5.
The overhead induced by the computations of dual solutions
is naturally dictated by the tradeoff between n (the number
of points) and d (their dimension). In all cases considered
here that overhead is negligible, but explored with more care
in Appendix C. Note that many of the matrix-squared-roots
computations can be pre-stored for efficiency, if the same
measure µ is to be compared repeatedly to other measures.

3.3 Gaussian Mixture Approximations

The Gaussian initialization approach can be extended to
Gaussian mixture models (GMMs), resulting in greater flex-
ibility, yet pending further approximations. This requires
the additional cost of pre-estimating GMMs for each input
measure. By further approximations above, we refer more
explicitly to the fact that, unlike for single Gaussians, we
do not have access to closed-form OT solutions between
GMMs, but instead only “efficient” couplings that return a

James Thornton, Marco Cuturi

cost that is an upper-bound on the true Wasserstein distance
between two GMMs, as introduced next.

OT in the space of Gaussian measures. Given two Gaus-
sian mixtures ρ = ∑

K
k=1 αkρk and τ = ∑

K
k=1 βkτk, assum-

ing each ρk and τk is itself a Gaussian measure, and that
weights αk and βk sum to 1. It was proposed in (Chen et al.,
2018) to approximate the continuous OT problem between
ρ and τ in the space Rd as a discrete OT problem in the
space of mixtures of Gaussians, where each mixture is a
discrete measure on K atoms (each atom being a Gaussian),
and the ground cost between them is set to the pairwise
Bures-Wasserstein distance, forming a cost matrix for (1)
as C = [W 2

2 (ρi, τj)]ij using (7). That optimization results
in two potentials f̃ and g̃ ∈ RK that solve the corresponding
regularized K ×K OT problem.

0 20 40 60 80
Index, i

0.00

0.05

0.10

0.15

0.20

|̂ f i
−
f* i
|2

5 Components
10 Components
25 Components
50 Components

Figure 2: Gap between the true dual f⋆ and the GMM ap-
proximate dual, for a pair of measures of word embeddings,
as a function of K, the number of mixture components.

Approximating Dual Potentials with GMMs. Our pro-
posed initializer, GMM, is computed as follows. Given
two empirical measures µ, ν, we fit first two K-component
GMMs τ and ρ, then obtain two potential vectors f̃ , g̃ ∈RK

using the Sinkhorn algorithm on a K ×K problem, as de-
scribed above. From those potentials, we propose to com-
pute an approximate f̂ dual potential function:

f̂(x) = f̃T p(x), [p(x)]k =
αkdρk(x)

∑
K
l=1 αldρl(x)

. (8)

that is then evaluated on all n points of µ. Intuitively this
approximation interpolates continuously the K potentials
depending on probability within mixture. This recovers, in
the limit where K → n, n components with means (xi)i
and zero covariance, resulting in the original potential f⋆.

Complexity. Fitting GMMs cost O(nKd2). Computing
the Bures-Wasserstein distances between two Gaussian mea-
sures would have complexity O(d3) for full covariance ma-
trices and O(d) for diagonal. Computing the cost matrix
for the GMM OT problem would then amount to O(K2d3)
or O(K2d). Since naive Sinkhorn requires O(Ln2) to run
between pointclouds of size n for L iterations, and so the

proposed GMM initialization may provide, very roughly
and not taking into account pre-storage, efficiency gains
when K2d≪ n2.

3.4 Subsample Initializer

We next bring attention to a multi-scale approach described
in detail in (Feydy, 2020, Alg. 3.6), which is a competi-
tive baseline for comparison. Although not how originally
described, this approach may be framed as a Sinkhorn ini-
tializer which we call the SUBSAMPLE initializer. The SUB-
SAMPLE initializer builds on the idea of the out-of-sample
extrapolated entropic potentials (Pooladian and Niles-Weed,
2021) that are derived readily from a first resolution of the
OT problem on a subset of points. Let µ̆, ν̆ denote uniformly
subsampled measures of µ and ν of size n̆≪ n and m̆≪m.
Write µ̆ = 1

n̆ ∑i δwi , ν̆ =
1
m̆ ∑i δzi and write f̆ , ğ the optimal

vector dual potentials obtained for (2) for the same regular-
ization ε and cost, but using µ̆ and ν̆ instead. An initializer
for f (0), can be then defined by using the entropic potential
function derived from ğ (or, alternatively from f̆ if n≪m):

[f (0)]i = f̆(xi),with f̆ ∶ x↦ −ε log 1
m̆

m̆

∑
j=1

e
ğj−c(x,zj)

ε . (9)

Although more general than the GMM initializer, the SUB-
SAMPLE initializer requires running Sinkhorn on a subsam-
ple of points n̆, m̆ that is typically larger than the K ×K
problem induced by K-components GMMs. While this may
show in runtime costs, as in Figure 7, the Sinkhorn initial-
izer, on the other hand, not affected by large dimensions.

4 Experiments

In this section we illustrate the benefits of our proposed ini-
tialization strategies. In particular, we apply DUALSORT for
differentiable sorting and soft-0/1 loss from (Cuturi et al.,
2019). We investigate Gaussian (GAUS) initializers for deep
differentiable clustering from (Genevay et al., 2019) and
differentiable particle filtering from (Corenflos et al., 2021).
Finally, we showcase GMM initializers with a document
similarity task. The purpose of these experiments is to show
the benefit of the initializer and not the performance in the
particular task, or in claiming these tasks are original. With
that in mind, we have not performed extensive network pa-
rameter tuning, though we do include some performance
metrics to illustrate that the setups are reasonable. Further
experimental details are given in Appendix B. Experiments
were carried out using OTT-JAX (Cuturi et al., 2022), no-
tably acceleration methods for comparison, but also, when
relevant, implicit differentiation of Sinkhorn’s outputs.

We compare our proposed approaches to the default 0 initial-
ization typical in most Sinkhorn implementations, in addi-
tion to fixed (Thibault et al., 2021) and adaptive (Lehmann
et al., 2021) momentum, ε − decay, as well as Anderson
acceleration (Chizat et al., 2020).

Rethinking Initialization of the Sinkhorn Algorithm

4.1 Differentiable Sorting

Arrays of size n ∈ {16,32,64,128,256,512,1024} were
sampled in this experiment from the Gaussian blob dataset
(Pedregosa et al., 2011) for 200 different seeds. For each
seed, 1-dimensional Gaussian data was generated from
5 random centers with centers uniformly distributed in
(−10,10) with standard deviation 3. The Sinkhorn algo-
rithm was then ran with the proposed initialization, DU-
ALSORT, and with the default zero initializer, labelled 0.
Other Sinkhorn acceleration methods were also investigated
including Anderson acceleration (And= 5), momentum
(mom. = 1.05), regularization decay (ε decay = 0.8) and
adaptive momentum (adapt= 10, meaning adaptation is re-
computed after 10 iterations). The parameter values for
these competing methods were pre-tuned following an ini-
tial hyper-parameter sweep.

2
4

2
5

2
6

2
7

2
8

2
9

2
10

Array size, n

2
2

2
4

2
6

2
8

2
10

2
12

Ite
ra

tio
ns

0 + Default
0 + And.=5
0 + ω mom.=1.05
0 + adapt.=10
0 + ε decay=0.8
DualSort + Default

Figure 3: DUALSORT with a default Sinkhorn setup domi-
nates all existing acceleration methods implemented when
run with a default 0 initialization. We plot median, upper
and lower quartiles of iterations needed to converge over
200 seeds for various array sizes (iterations for DUALSORT
include steps for the primal-dual procedure).

Figures 3 and 4 illustrate the dramatic speed-up effect from
using the DUALSORT procedure, with just 3 vectorized
iterations. Figure 3 compares Sinkhorn algorithm with ini-
tialization to Sinkhorn enhanced through other acceleration
method. Figure 4 illustrates the relative-speed up from in-
cluding initialization along with other enhancements where
speed-up is defined as the ratio of iterations using the zero
initializer and the DUALSORT initializer, hence > 1 indicates
an improvement using DUALSORT. DUALSORT comple-
ments existing acceleration methods. When the DUALSORT
initializer is paired with other acceleration methods, we still
observe, no matter which one is used, very large speedups.

Runtime cost. The DUALSORT initializer’s runtime cost
is negligible and took just 0.0012 seconds (s) to run for all
experiments. The resulting absolute speed-up was 0.06s
to 0.13s per OT problem. See further timing details in
Appendices B.1. Note that this speed-up is compounded
when running many thousands of OT problems.

2
4

2
5

2
6

2
7

2
8

2
9

2
10

Array size, n

2
0

2
2

2
4

2
6

2
8

2
10

S
pe

ed
-u

p

Default
And.=5
ω mom.=1.05
adapt.=10
ε decay=0.8
No speed-up

Figure 4: Relative speed-up (higher is better). Median, up-
per and lower quartiles of iterations needed to converge over
200 seeds for various array sizes (iterations for DUALSORT
include steps for the primal-dual procedure).

Table 2: Average time in seconds for DualSort with 3 itera-
tions and Sinkhorn iterations to convergence over 200 soft
sorting problems for Gaussian blob data of dimension n

n Initializer Initialization Iterations

32 0 - 0.28
DualSort 0.0012 0.22

64 0 - 0.22
DualSort 0.0012 0.088

128 0 - 0.17
DualSort 0.0012 0.066

256 0 - 0.17
DualSort 0.0012 0.049

512 0 - 0.13
DualSort 0.0012 0.050

1024 0 - 0.14
DualSort 0.0012 0.058

4.2 Soft Error Classification

The following experiment demonstrates the differentiability
of the soft-sorting and ranking operations as well as how the
DUALSORT initializer improves computational performance
for real tasks. Let hθ ∶ X → RK be a parameterized K-label
classifier and R the differentiable ranking operator described
in §3.1. For input x ∈ X , the soft-0/1 loss (or soft-error)
evaluated at labeled (x, y), y ≤K, is therefore max(0,K −
R(hθ(x))y), see (Cuturi et al., 2019) for details.

We follow the experimental setup from (Cuturi et al., 2019).
The classifier network from (Cuturi et al., 2022) is used
for CIFAR-100, consisting of four CNN layers, and a fully
connected hidden layer, full details given in §B.2.

The ε regularization was set to 0.01 and the network was
trained until convergence over 10 seeds. DUALSORT initial-
izer was ran with 3 iterations, which, as discussed in §3.1,
is slightly cheaper than two Sinkhorn iterations.

James Thornton, Marco Cuturi

0 50 100 150 200 250 300
Epoch

0.0

0.2

0.4

0.6

A
cc

ur
ac

y

0 + ε decay=0.8
0 + ω mom.=1.05
0 + And.=5
0 + adapt.=10
0 + Default
DualSort + Default
DualSort + adapt.=10
DualSort + And.=5

Figure 5: Accuracy of CNN classifier by Sinkhorn methods
for CIFAR-100 with soft-error loss and ε = 0.01

Table 3: Soft-Error: CIFAR 100, mean ± std of Sinkhorn
iter./ training step, over 10 seeds

Iterations Runtime (×10−2s)

Zero 17.9 ± 0.1 8.23 ± 0.2
Anderson 12.3 ± 0.2 5.74 ± 0.2
Momentum 15.7 ± 0.2 7.70 ± 0.2
Adaptive 15.2 ± 0.2 7.38 ± 0.3
ε-decay 17.0 ± 0.1 7.99 ± 0.2
DUALSORT 9.7 ± 0.1 5.07 ± 0.3
DUALSORT, Adap. 10.3 ± 0.1 5.27 ± 0.3
DUALSORT, Ande. 8.2 ± 0.1 3.72 ± 0.3

Accuracy on the evaluation set is shown in Figure 5 for
300 epochs. It is clear that, as expected, the Sinkhorn ini-
tialization procedure does not affect training nor accuracy.
However, Table 3 shows that the DUALSORT initializer dras-
tically reduces the number of Sinkhorn iterations needed for
convergence, to compute the soft-error loss and its gradients
at each evaluation.

4.3 Differentiable Clustering

We demonstrate the performance improvement from the
Gaussian initializer on the task of deep differentiable clus-
tering, with the experimental setup of (Genevay et al., 2018).
Differentiable clustering aims at producing a latent repre-
sentation amenable to clustering. This is achieved using a
variational autoencoder (Kingma et al., 2014) with learn-
able, discrete cluster embeddings, and an additional loss
term allocating encodings to cluster embeddings using OT.

For data of dimension dx and latent dimension dz , let Eθ ∶

Rdx → R2×dz and Dθ ∶ Rdz → Rdx denote an encoder and
decoder respectively, parameterized by θ. Let µϕ ∈ RK×dz

denote cluster embeddings for K clusters. The objective of
differentiable clustering is to learn Eθ,Dθ and embeddings
µϕ ∈ RK×dz . This may be achieved by minimizing the loss
ℓae(θ)+ ℓOT(ϕ, θ) for each batch of data (xi)i. Here ℓae(θ)

Table 4: Avg. Sinkhorn iter./training step and runtime /
training step mean ± std for differentiable clustering VAE,
10 seeds, ϵ = 0.001

Iterations Runtime (×10−3 s)

Zero 354.1 ± 7.0 25.4 ± 0.2
ε-decay 340.5 ± 17.8 25.1 ± 0.1
Anderson 844.4 ± 26.2 144 ± 6.7
Momentum 342.5 ± 3.7 33.1 ± 1.7
Adaptive 96.6 ± 4.1 9.35 ± 0.02
Gaus 196.6 ± 6.7 16.2 ± 0.6
Gaus, Adapt. 68.7 ± 1.3 8.00 ± 0.1

is the standard variational auto-encoder loss and ℓOT(ϕ, θ) is
the regularized OT loss from (1) between µ = ∑

K
k=1

1
K
δµϕk

and ν = ∑
n
i=1

1
n
δzi . zi = mi + σiui, where (mi, σi) =

Eθ(xi), ui ∼ N (0dz , Idz), and x̃i =Dθ(zi).

We demonstrate this task for MNIST (Deng, 2012) over 10
seeds. Fully connected networks with 4 hidden layers were
used for Eθ and Dθ, where dz = 32 and dx = 784, further
experimental details are given in §B.3. Table 4 shows that
the Gaussian initializer outperforms the zero initialization
for default Sinkhorn and all other combinations of default
Sinkhorn plus acceleration techniques. Performance met-
rics and samples from the generative model are given in
Appendix B.3.

4.4 Differentiable Particle Filtering

As introduced in Corenflos et al. (2021), the Sinkhorn al-
gorithm provides an approximate differentiable resampling
scheme, hence enables end-to-end differentiable particle
filtering. Consider a simple linear state space model con-
sisting of latent states xt ∈ R2 where x0 = 0,Xt∣xt−1 ∼
f(⋅∣xt−1) = N (0.5Ixt−1, I) and observations yt ∈ R2,
yt ∼ g(⋅∣xt) = N (xt, I) for t ∈ {1, . . . , T}, and time se-
ries length T = 500. Differentiable resampling via OT con-
sists of applying the Sinkhorn algorithm between weighted
and unweighted pointclouds of N simulated latent states at
each timepoint t, for each forward pass. For full details see
Corenflos et al. (2021).

For batch size B = 4 involves and time steps T = 500, each
forward pass requires T × B Sinkhorn layers evaluations.
This can be quite slow. As shown in Table 5, the Gaussian
initializer is effective at reducing the runtime by reducing
the number of Sinkhorn iterations by approximately 33% to
50% relative to default Sinkhorn with 0 initialization.

4.5 Document Similarity

In this experiment, we compare the GAUS, GMM and SUB-
SAMPLE initializers. Documents were gathered from the 20
Newsgroup dataset (Lang, 1995) and each word, (wi)

n
i=1, in

the vocabulary across documents is embedded using the pre-

Rethinking Initialization of the Sinkhorn Algorithm

Table 5: Mean ± std number of Sinkhorn iterations and
runtime over 3 seeds for the forward pass of a particle filter
with N particles, batch size 4 of simple linear state space
model, T = 500.

N Initializer Iterations (’000s) Runtime /s
32 Gaus 440 ± 2.5 12.08 ± 0.25

0 611 ± 3.4 15.46 ± 0.35
64 Gaus 349 ± 2.9 9.62 ± 1.29

0 532 ± 3.4 12.49 ± 0.69
128 Gaus 269 ± 0.7 7.03 ± 1.21

0 471 ± 2.3 10.18 ± 0.88
256 Gaus 216 ± 1.5 6.340.78

0 439 ± 1.9 11.01 ± 0.59
512 Gaus 176 ± 1.3 14.43 ± 1.40

0 422 ± 1.7 30.17 ± 1.06

trained GloVe word embeddings (Pennington et al., 2014)
as (ei)ni=1 where ei ∈ R50.

Figure 6: Distribution of number of Sinkhorn iterations
required for Sinkhorn convergence between 1225 pairs of
Newsgroup documents, represented as word embeddings
histograms, n being the total vocabulary size. The same
convergence threshold for Sinkhorn is used for all n.

In a similar setup to Kusner et al. (2015), each document
may be represented as a histogram with weights (ai)ni=1 cor-
responding to word-frequency, νi = ∑n

i=1 aiδei , and we com-
pute pairwise OT distances between 50 documents, resulting
in 1,225 pairs. We report the number of Sinkhorn iterations
and runtime required for convergence for the default zero
intializer (0), the proposed GAUS initializer, the GMM ini-
tializers with full covariance matrices and K ∈ {10,25,50}
components, and the SUBSAMPLE initializer. A subset of
the vocabulary of size n ∈ {2 × 103,5 × 103,104} was used,
and corresponding subsample of size 100,500 and 1,000 for
the SUBSAMPLE initializer. Regularization was ε = 0.001.

The distribution of results are shown in Figure 6 and Figure 7
illustrating that improvements can be obtained for a range
of K. Notice however that GAUS beats the GMM for low
K, we suspect this is due to the additional approximation
(8). Although often resulting in lower number of fine-tuning
Sinkhorn iterations, the preprocessing cost of running the
SUBSAMPLE initializer is expensive, and only exhibits better
aggregate runtime performance for large n = 10,000, which
was expected. A GMM was first fitted to each document,
before being used for initializing Sinkhorn potentials. As
Figure 7 shows, although the cost of fitting GMMs results in
limited runtime savings for n = 2,000, there are significant
runtime savings for n = 5,000 and n = 10,000. See further
discussion in §C.

Figure 7: Average wall clock time for computing OT be-
tween each pair of word-embeddings (1,225 problems) for
vocabulary of size n = 2 × 103; 5 × 103; 104; split by ini-
tialization time (Init), time to compute Gaussian mixture
models (Fit GMM) and Sinkhorn iterations (Sinkhorn).

5 Conclusion

We have introduced efficient and robust Sinkhorn poten-
tial initialization schemes: DUALSORT, GAUS, GMM and
demonstrated how these carefully chosen initializers can
significantly improve the performance of the Sinkhorn algo-
rithm for a variety of tasks. These GPU-friendly initializers
may also be embedded in end-to-end differentiable proce-
dures by relying on implicit differentiation, as demonstrated
in various tasks presented in our experiments (ranking, clus-
tering, filtering), and are complementary to most common
acceleration methods, creating an interesting space to opti-
mize further the execution of Sinkhorn. Initialization is a
neglected area of computational OT, and we hope that these
promising results can inspire new research to other areas,
such as initalizing calls to Sinkhorn in the internal loops of
the Gromov-Wasserstein or barycenter problem. We also
hope they can help extending OT’s reach to data-hungry ap-
plication areas, such as single-cell or NLP tasks that involve
typically a large number of samples.

James Thornton, Marco Cuturi

References
Adams, R. P. and Zemel, R. S. (2011). Ranking via sinkhorn

propagation. arXiv preprint arXiv:1106.1925.

Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1988).
Network flows.

Altschuler, J., Bach, F., Rudi, A., and Niles-Weed, J. (2019).
Massively scalable sinkhorn distances via the nyström
method. Advances in neural information processing sys-
tems, 32.

Amos, B., Cohen, S., Luise, G., and Redko, I. (2022). Meta
optimal transport.

Anderson, D. G. (1965). Iterative procedures for nonlin-
ear integral equations. Journal of the ACM (JACM),
12(4):547–560.

Bertsimas, D. and Tsitsiklis, J. N. (1997). Introduction to
linear optimization, volume 6. Athena Scientific Belmont,
MA.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas,
J., Wanderman-Milne, S., et al. (2018). Jax: composable
transformations of python+ numpy programs. Version
0.2, 5:14–24.

Brenier, Y. (1987). Décomposition polaire et réarrangement
monotone des champs de vecteurs. CR Acad. Sci. Paris
Sér. I Math., 305:805–808.

Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P.,
and Joulin, A. (2020). Unsupervised learning of visual
features by contrasting cluster assignments. Advances in
Neural Information Processing Systems, 33:9912–9924.

Chen, Y., Georgiou, T. T., and Tannenbaum, A. (2018).
Optimal transport for gaussian mixture models. IEEE
Access, 7:6269–6278.

Chiappori, P.-A., McCann, R. J., and Pass, B. (2017). Multi-
to one-dimensional optimal transport. Communications
on Pure and Applied Mathematics, 70(12):2405–2444.

Chizat, L., Roussillon, P., Léger, F., Vialard, F.-X., and
Peyré, G. (2020). Faster wasserstein distance estima-
tion with the sinkhorn divergence. Advances in Neural
Information Processing Systems, 33:2257–2269.

Corenflos, A., Thornton, J., Deligiannidis, G., and Doucet,
A. (2021). Differentiable particle filtering via entropy-
regularized optimal transport. In International Confer-
ence on Machine Learning, pages 2100–2111. PMLR.

Courty, N., Flamary, R., Habrard, A., and Rakotomamonjy,
A. (2017). Joint distribution optimal transportation for
domain adaptation. Advances in Neural Information Pro-
cessing Systems, 30.

Courty, N., Flamary, R., and Tuia, D. (2014). Domain
adaptation with regularized optimal transport. In Joint
European Conference on Machine Learning and Knowl-
edge Discovery in Databases, pages 274–289. Springer.

Cuturi, M. (2013). Sinkhorn distances: Lightspeed computa-
tion of optimal transport. Advances in neural information
processing systems, 26.

Cuturi, M., Meng-Papaxanthos, L., Tian, Y., Bunne, C.,
Davis, G., and Teboul, O. (2022). Optimal transport tools
(ott): A jax toolbox for all things wasserstein. arXiv
preprint arXiv:2201.12324.

Cuturi, M. and Peyré, G. (2015). A smoothed dual approach
for variational wasserstein problems. arXiv preprint
arXiv:1503.02533.

Cuturi, M., Teboul, O., Niles-Weed, J., and Vert, J.-P. (2020).
Supervised quantile normalization for low rank matrix
factorization. In International Conference on Machine
Learning, pages 2269–2279. PMLR.

Cuturi, M., Teboul, O., and Vert, J.-P. (2019). Differentiable
ranking and sorting using optimal transport. Advances in
neural information processing systems, 32.

Dantzig, G. B., Ford Jr, L. R., and Fulkerson, D. R. (1956).
A primal–dual algorithm. Technical report, RAND CORP
SANTA MONICA CA.

Deng, L. (2012). The mnist database of handwritten digit
images for machine learning research. IEEE Signal Pro-
cessing Magazine, 29(6):141–142.

d’Aspremont, A., Scieur, D., Taylor, A., et al. (2021). Ac-
celeration methods. Foundations and Trends® in Opti-
mization, 5(1-2):1–245.

Feydy, J. (2020). Geometric data analysis, beyond convolu-
tions. PhD thesis, Université Paris-Saclay Gif-sur-Yvette,
France.

Flamary, R., Courty, N., Gramfort, A., Alaya, M. Z., Bois-
bunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras,
K., Fournier, N., et al. (2021). Pot: Python optimal trans-
port. Journal of Machine Learning Research, 22(78):1–8.

Genevay, A., Dulac-Arnold, G., and Vert, J.-P. (2019). Dif-
ferentiable deep clustering with cluster size constraints.
arXiv preprint arXiv:1910.09036.

Genevay, A., Peyré, G., and Cuturi, M. (2018). Learning
generative models with sinkhorn divergences. In Interna-
tional Conference on Artificial Intelligence and Statistics,
pages 1608–1617. PMLR.

Hashimoto, T., Gifford, D., and Jaakkola, T. (2016). Learn-
ing Population-Level Diffusions with Generative Recur-
rent Networks. volume 33.

Higham, N. J. (2008). Functions of matrices: theory and
computation. SIAM.

Janati, H., Bazeille, T., Thirion, B., Cuturi, M., and Gram-
fort, A. (2020). Multi-subject meg/eeg source imag-
ing with sparse multi-task regression. NeuroImage,
220:116847.

Kingma, D. P., Mohamed, S., Jimenez Rezende, D., and
Welling, M. (2014). Semi-supervised learning with deep

Rethinking Initialization of the Sinkhorn Algorithm

generative models. Advances in neural information pro-
cessing systems, 27.

Kosowsky, J. and Yuille, A. L. (1994). The invisible hand al-
gorithm: Solving the assignment problem with statistical
physics. Neural networks, 7(3):477–490.

Kusner, M., Sun, Y., Kolkin, N., and Weinberger, K. (2015).
From word embeddings to document distances. In Inter-
national conference on machine learning, pages 957–966.
PMLR.

Lang, K. (1995). Newsweeder: Learning to filter netnews.
In Proceedings of the Twelfth International Conference
on Machine Learning, pages 331–339.

Lehmann, T., Von Renesse, M.-K., Sambale, A., and
Uschmajew, A. (2021). A note on overrelaxation in the
sinkhorn algorithm. Optimization Letters, pages 1–12.

Luise, G., Rudi, A., Pontil, M., and Ciliberto, C. (2018). Dif-
ferential properties of sinkhorn approximation for learn-
ing with wasserstein distance. Advances in Neural Infor-
mation Processing Systems, 31.

Meyron, J. (2019). Initialization procedures for discrete and
semi-discrete optimal transport. Computer-Aided Design,
115:13–22.

Monge, G. (1781). Mémoire sur la théorie des déblais et des
remblais. Histoire de l’Académie Royale des Sciences,
pages 666–704.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
(2011). Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research, 12:2825–2830.

Pennington, J., Socher, R., and Manning, C. D. (2014).
Glove: Global vectors for word representation. In Empir-
ical Methods in Natural Language Processing (EMNLP),
pages 1532–1543.

Peyré, G., Cuturi, M., et al. (2019). Computational optimal
transport: With applications to data science. Foundations
and Trends® in Machine Learning, 11(5-6):355–607.

Pooladian, A.-A. and Niles-Weed, J. (2021). Entropic esti-
mation of optimal transport maps.

Salimans, T., Zhang, H., Radford, A., and Metaxas, D.
(2018). Improving GANs using optimal transport. In
International Conference on Learning Representations.

Sander, M. E., Ablin, P., Blondel, M., and Peyré, G. (2022).
Sinkformers: Transformers with doubly stochastic atten-
tion. In International Conference on Artificial Intelli-
gence and Statistics, pages 3515–3530. PMLR.

Santambrogio, F. (2015). Optimal transport for applied
mathematicians. Birkhauser.

Sarlin, P.-E., DeTone, D., Malisiewicz, T., and Rabinovich,
A. (2020). Superglue: Learning feature matching with

graph neural networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR).

Scetbon, M. and Cuturi, M. (2020). Linear time sinkhorn
divergences using positive features. Advances in Neural
Information Processing Systems, 33:13468–13480.

Schiebinger, G., Shu, J., Tabaka, M., Cleary, B., Subra-
manian, V., Solomon, A., Gould, J., Liu, S., Lin, S.,
Berube, P., et al. (2019). Optimal-Transport Analysis of
Single-Cell Gene Expression Identifies Developmental
Trajectories in Reprogramming. Cell, 176(4).

Schmitz, M. A., Heitz, M., Bonneel, N., Ngole, F., Coeur-
jolly, D., Cuturi, M., Peyré, G., and Starck, J.-L. (2018).
Wasserstein dictionary learning: Optimal transport-based
unsupervised nonlinear dictionary learning. SIAM Jour-
nal on Imaging Sciences, 11(1):643–678.

Schmitzer, B. (2019). Stabilized sparse scaling algorithms
for entropy regularized transport problems. SIAM Journal
on Scientific Computing, 41(3):A1443–A1481.

Sejourne, T., Vialard, F.-X., and Peyré, G. (2022). Faster
unbalanced optimal transport: Translation invariant
sinkhorn and 1-d frank-wolfe. In Camps-Valls, G., Ruiz,
F. J. R., and Valera, I., editors, Proceedings of The 25th
International Conference on Artificial Intelligence and
Statistics, volume 151 of Proceedings of Machine Learn-
ing Research, pages 4995–5021. PMLR.

Sinkhorn, R. (1967). Diagonal equivalence to matrices with
prescribed row and column sums. American Mathemati-
cal Monthly, 74:402–405.

Solomon, J., De Goes, F., Peyré, G., Cuturi, M., Butscher,
A., Nguyen, A., Du, T., and Guibas, L. (2015). Convo-
lutional Wasserstein distances: efficient optimal trans-
portation on geometric domains. ACM Transactions on
Graphics, 34(4):66:1–66:11.

Thibault, A., Chizat, L., Dossal, C., and Papadakis, N.
(2021). Overrelaxed sinkhorn–knopp algorithm for regu-
larized optimal transport. Algorithms, 14(5):143.

Xie, Y., Dai, H., Chen, M., Dai, B., Zhao, T., Zha, H.,
Wei, W., and Pfister, T. (2020a). Differentiable top-k
with optimal transport. In Larochelle, H., Ranzato, M.,
Hadsell, R., Balcan, M., and Lin, H., editors, Advances
in Neural Information Processing Systems, volume 33,
pages 20520–20531. Curran Associates, Inc.

Xie, Y., Wang, X., Wang, R., and Zha, H. (2020b). A fast
proximal point method for computing exact wasserstein
distance. In Uncertainty in artificial intelligence, pages
433–453. PMLR.

James Thornton, Marco Cuturi

A Dual Potential Comparison

For balanced OT problems, as considered here, Dual potentials f , g are unique up to constant shifts i.e. f − s, g + s for s ∈ R.
Therefore, in order to compare potentials f ∈ Rn, we center f , as f ← f − 1

n ∑i fi.

A.1 From Optimal Primal to Dual Vectors

Properties of the optimal primal P⋆. Taking the 1D case as motivation, we introduce a method to recover optimal dual
potentials f⋆,g⋆ from an optimal primal solution P⋆. To that end, one can cast an OT problem as a min-cost-flow problem
on a bipartite graph G = (V,E), with vertices composed of source nodes S = {1, . . . , n} and target nodes T = {1′, . . . ,m′},
V = S ∪ T , and edge set E = {(i, j′), i = 1, . . . , n; j = 1, . . . ,m} linking them. The KKT conditions state that, writing
E(P) = {(i, j′)∣Pi,j > 0} one has that the graph (V,E(P⋆)) is necessarily a forest (Peyré et al., 2019, Prop. 3.4). We
write T1, . . . ,TK for the K trees forming that forest, where 1 ≤ K ≤ min(n,m), and write tk for their size. We use the
lexicographic order to define the root node of each tree, chosen to be the smallest source node s(k) contained in Tk. For
convenience, we assume that trees are ordered following s(k), and therefore that T1 has 1 as its root node. For each tree k,
we introduce pk = (pk1 , . . . , p

k
tk−1) for a pre-order breadth-first-traversal of Tk originating at s(k), enumerating tk − 1 edges,

namely pairs in S × T or T × S, guaranteed to be such that any parent node in the tree is visited before its descendants. ι(j)
denotes the smallest source index i such that (i, j′) ∈ E(P⋆).

Algorithm 3: Recover dual from primal
1: Input: Cost matrix C and graph (V,E(P⋆))
2: Initialize: f = 0.
3: while not converged do
4: for k ∈ {2, . . . ,K} do
5: fs(k) ←minj cs(k),j − cι(j),j + fι(j)
6: end for
7: for k ∈ {1, . . . ,K} do
8: f ← UPDATETREE(C, f , k)
9: end for

10: end while
11: Return f

Algorithm 4: UPDATETREE

1: Input: Cost matrix C, f , tree index k
2: for e = (a, b) ∈ pk do
3: if a ∈ S, b ∈ T then
4: g ← ca,b − fa
5: else
6: fa ← ca,b − g
7: end if
8: end for
9: Return f

Complementary and Feasibility Constraints. Complementary slackness provides a set of n +m −K linear equations
(10), while feasibility constraints are given in (11).

(i, j′) ∈ E(P⋆)⇔ f⋆i + g
⋆
j = ci,j , (10)

∀i ≤ n, j ≤m, fi + gj ≤ ci,j . (11)

For the special case K = 1, which happens for instance when n and m are co-primes and weights are uniform, the set of
linear equations (10) suffices to recover the n +m dual variables, with the convention that the first entry be 0. When, on the
contrary, K > 1, that set of n+m−K equations is no longer sufficient. For example, K = n =m for the optimal assignment
problem, in which (V,E(P⋆)) describes a set of n isolated trees, and only n equality relations are available for 2n variables.

Rethinking Initialization of the Sinkhorn Algorithm

In such cases, one must additionally use the feasibility constraint (11) to obtain optimal dual variables (Peyré et al., 2019,
Prop 3.3).

The c-transform gc
i ∶=minj ci,j − gj can be used to enforce constraints (11), however, it may no longer satisfy the com-

plementary condition (10). This is remedied by updating all source nodes i in tree k by starting from s(k) as detailed in
Algorithm 4. Repeated application of these updates, Algorithm 3, guarantees convergence.

Lemma 1. Given the optimal coupling matrix P∗ solving OT problem (1) with ε = 0, the procedure defined in Algorithm 3
converges to the optimal dual potentials for dual problem (5).

The proof is provided in §E, and uses the fact that Algorithm 3 is a primal-dual method (Dantzig et al., 1956), tweaked
because the primal solution P⋆ is known.

B Further Experimental Details

B.1 Differentiable Sorting Details

Regularization ε = 0.01 was used, as per (Cuturi et al., 2019). In this experiment arrays of size n ∈

{16,32,64,128,256,512,1024} were sampled from the Gaussian blob dataset (Pedregosa et al., 2011) for 200 differ-
ent seeds. At each seed, 1-dimensional Gaussian data is generated from 5 random centers with centers uniformly distributed
in (−10,10) with standard deviation 3.

Baseline acceleration methods (Anderson acceleration, momentum, adaptive momentum, ϵ decay) were considered to
augment the Sinkhorn algorithm, using the implementations from (Cuturi et al., 2022). The momentum hyper-parameter
ω was set at 1.05 from a grid search of {0.8,1.05,1.1,1.3}. Adaptive momentum consists of adjusting the momentum
parameters every adapt_iters number of iterations where adapt_iters was set to 10 from a search on {10,20,50,200}. ϵ
decay consisted of gradually reducing the regularization term from 5ϵ to ϵ by a factor of 0.8, from a search of decay factors
from {0.8,0.95}. The Anderson acceleration parameter was set to 5 from a search on {3,5,8,10,15}.

B.2 Soft Error Details

Regularization ϵ = 0.01 was used for the soft-error task. The soft 0/1 error objective described in (Cuturi et al., 2019) was
used, with a neural network classifier consisting of two CNN blocks with 32 and 64 features respectively, and a hidden layer
of hidden size 512. Each CNN block consists of two CNN layers with 3× 3 kernel, relu activations between CNN layers and
a max pooling layer at the end of each block. Implementation including neural network architecture was taken from (Cuturi
et al., 2022)1. Our proposed method was compared to other acceleration baselines using the same grid of hyperparameters
as described in §B.1. Batch size was set to 64 and learning rate 0.001.

B.3 Differentiable Clustering Details

The experiment was repeated for ϵ = 0.1 and ϵ = 0.01 and again compared to other acceleration baselines using the same
grid of hyperparameters as described in §B.1. Batch size was set to 256 and learning rate 0.001.

Latent dimension was set to dz = 32 and MNIST (Deng, 2012) images are of size dx = 28×28.The decoder Dθ ∶ Rdx → R2×dz

consists of 4 hidden [512,512,256,256] followed by a final linear layer converting the outputted embedding to a vector
of dimension 784. The encoder Eθ ∶ Rdx → R2×dz consists of 4 hidden layers of depths [512,512,256,256] with relu
activations, the final embeddings is mapped to mi ∈ Rdz and logvari ∈ Rdz by two separate linear layers without activations,
where σi = exp (0.5 × logvari). For batch (xi)i, the standard VAE loss ℓae(θ) = ∑i ∣∣xi − x̃i∣∣

2
2 − 0.5∑i(1 + 2 ∗ log(σi) −

m2
i − σ

2
i). Recall x̃i =Dθ(zi) and zi =mi + σiui, ui ∼ N (0dz , Idz).

As discussed in (Genevay et al., 2019), clusters may be used as an unsupervised classifier and accuracy is reported in Table 6,
illustrating that the clusters are meaningful. In addition, samples from the clustered latent space may be used to generate
new samples as a form of conditional generation, again shown in Figure 8.

Accuracy for each cluster is defined as in (Genevay et al., 2019), as follows. Accuracy for label l in cluster k is by
accl,k =

∑i Iyi==l,ỹi==k

∑i Iyi==k
where ỹi = argmink ∣∣zi − µϕ,k ∣∣

2
2 and yi is the true label of xi. We write the top label accuracy for

1https://github.com/ott-jax/ott/tree/main/ott/examples/soft_error

https://github.com/ott-jax/ott/tree/main/ott/examples/soft_error

James Thornton, Marco Cuturi

Figure 8: Generated Samples

each cluster k as maxl accl,k. When using 10 clusters for 10 labels for MNIST, each cluster’s top label accuracy corresponds
to a different label, one cluster for each digit. Table 6 shows that the clusters manage to capture geometrically meaningful
information corresponding to each label.

Table 6: Evaluation Accuracy of trained clustered VAE for MNIST

Digit 0 1 2 3 4 5 6 7 8 9
Accuracy 0.91 0.66 0.42 0.56 0.80 0.61 0.68 0.64 0.90 0.78

C Overhead Analysis

Although timings are highly dependent on hardware and implementation, we provide some experimental examples running on
a single V100 GPU and 4 CPUs. This shows that the time overhead for DualSort and Gaussian initializers are inconsequential
relative to speed-up in terms of both time and iteration count for the savings in Sinkhorn iterations. The Gaussian mixture
model (GMM) is computationally more expensive than the other proposed initializers, however the table below shows that it
can also result in time savings.

C.1 Differentiable Sorting

Table 7: Average time in seconds for DualSort with 3 iterations and Sinkhorn iterations to convergence over 200 soft sorting
problems of dimension n

n Initializer Initialization Iterations

32 0 - 0.28
DualSort 0.0012 0.22

64 0 - 0.22
DualSort 0.0012 0.088

128 0 - 0.17
DualSort 0.0012 0.066

256 0 - 0.17
DualSort 0.0012 0.049

512 0 - 0.13
DualSort 0.0012 0.050

1024 0 - 0.14
DualSort 0.0012 0.058

It can be seen that the DualSort initialization procedure is extremely efficient and does not have significant impact on the
total run-time. The timings above are averaged per OT problem over 200 runs with different seeds.

Rethinking Initialization of the Sinkhorn Algorithm

C.2 Gaussian and GMM

In this section we consider timings for the word embedding/ document similarity experiment.

For the GMM initializer, the pre-compute is the average time to compute each GMM (1 per document), divided by the
number of OT problems. Each GMM is reused multiple times, so the cost is split. Each GMM was computed using
scikit-learn (Pedregosa et al., 2011) on CPU, for lack of a convenient GPU implementation. There exists open-source GPU
implementations 2 of Gaussian mixture models for diagonal component covariance matrices which are significantly faster,
and may be worth further investigation for more efficient implementation. Similarly, one may amortize inference in GMMs
or provide a warm-start from a pooled GMM to initialize fitting the GMM. We use the default K-means initializer from
scikit learn. The Initialization field reports the time to compute the approximate dual potentials given the GMM parameters.

For the Gaussian initializer, the mean and variance parameters are inexpensive to compute, hence were not computed and
cached but instead computed repeatedly on the fly for each OT problem. Hence the total initialization compute time is
reported in the Initialization column. Further computational savings could be made by caching the Gaussian parameters for
each document. Note that the dimension for the Gaussian OT approximation is d = 50 and given the Gaussian initialization
is negligible here, it would also be negligible for lower dimensional settings.

Table 8: Time, in seconds, per OT problem split by task, averaged over 1,225 OT problems, from each pair of 50 documents
from the Newsgroup 20 dataset with a subset of vocabulary of size n.

n Initializer Pre-compute Initialization Sinkhorn Iter. Total

2,000

0 - - 0.059 0.059
Subsample - 0.016 0.051 0.067
Gaus - 0.0028 0.045 0.048
GMM K = 10 0.0027 0.023 0.047 0.073
GMM K = 25 0.0037 0.026 0.035 0.065
GMM K = 50 0.0047 0.033 0.027 0.063

5,000

0 - - 0.28 0.28
Subsample - 0.048 0.15 0.20
Gaus - 0.0036 0.22 0.22
GMM K = 10 0.0035 0.013 0.23 0.24
GMM K = 25 0.0070 0.030 0.18 0.22
GMM K = 50 0.012 0.035 0.13 0.17

10,000

0 - - 1.05 1.05
Subsample - 0.082 0.45 0.53
Gaus - 0.0053 0.81 0.81
GMM K = 10 0.0042 0.013 0.86 0.88
GMM K = 25 0.012 0.019 0.70 0.73
GMM K = 50 0.022 0.035 0.56 0.62

D Gaussian Potential

In this section we derive explicitly the Gaussian potential. The transport map T solving the Monge problem (4) from a
non-degenerate Gaussian measure µ = N (mµ,Σµ) to another Gaussian ν = N (mν ,Σν) can be recovered in closed-form

as T ⋆(x) ∶=A(x−mµ)+mν , where A =Σ−
1
2

µ (Σ
1
2
µΣνΣ

1
2
µ)

1
2Σ
− 1

2
µ , see e.g. (Peyré et al., 2019, Chapter 2.6) for a discussion.

Brenier’s theorem (Brenier, 1987) states that for cost c ∶ (x, y)→ ∥x−y∥2
2

this map is uniquely defined as the gradient of a
convex function φ, and it can be verified that T ⋆(x) = ∇φ(x) where φ(x) = 1

2
(x −mµ)

TA(x −mµ) +m
T
ν x.

The convex function φ(x) is related to dual potential f through φ(x) = ∣∣x∣∣
2

2
− f(x) hence

f⋆(x) =
∣∣x∣∣2

2
−
1

2
(x −mµ)

TA(x −mµ) −m
T
ν x.

For cost c ∶ (x, y)→ ∥x − y∥2, the optimal potential is therefore

f⋆(x) = ∣∣x∣∣2 − (x −mµ)
TA(x −mµ) − 2m

T
ν x.

2https://github.com/borchero/pycave

https://github.com/borchero/pycave

James Thornton, Marco Cuturi

E Convergence of Sorting Initializer and DualSort Details

E.1 Proof of Primal Dual Convergence

Recovering optimal dual potentials corresponding to the primal solution is equivalent to finding any vector of shortest paths
f from a single node e.g. node 1, in the network to each of the other nodes, see e.g. (Bertsimas and Tsitsiklis, 1997, Theorem
7.17) and (Ahuja et al., 1988, Chapter 9).

Algorithm 3 computes the shortest path using a particular case of a method known as label correcting (Bertsimas and
Tsitsiklis, 1997, Chapter 7). Given there are no cycles, the proposed method recovers the shortest path by (Bertsimas and
Tsitsiklis, 1997, Theorem 7.18) and hence recovers the optimal dual potentials.

Algorithm 3 exploits the primal solution efficiently by correcting all nodes in the same tree, hence the iterations are dependent
on the number of trees and not necessarily the number of nodes.

The minimization step, fs(k) ←minj cs(k),j − cι(j),j + fι(j) follows traditional label correcting methods. However, a key
insight is updating nodes along tree of s(k) is equivalent to updating the minimum path to each node in the tree.

fi is the shortest path to node i if fi ≤ ci,j − cι(j),j + fι(j) ∀j, which is equivalent to fi + gj ≤ ci,j and may be interpreted as
fi being less than the route to any other source node fι(j) then to fi via sink node j, at cost ci,j − cι(j),j .

E.2 DualSort Algorithm

The DUALSORT algorithm is given sequentially below in Algorithm 2. Without loss of generality, we assume that xi

is rearranged in increasing order, so that the sorting permutation σ is the identity. Let diag denote the operator used to
extract the diagonal of a matrix, so that diag(C) ∈ Rn and one has [diag(C)]i = ci,i, and write 1 for the vector of size
n with all entries 1. The inner loop can be carried out in two different ways, either using a vectorized update or looping
through coordinates one at a time. These two updates are distinct, and we do observe that cycling through coordinates in
Gauss-Seidel fashion converges faster in terms of total number of updates. However, that perspective misses the fact that
vectorized updates utilize more efficiently accelerators from a runtime perspective. Additionally, these updates are equal
to, in terms of complexity to the Sinkhorn iterations, making it easier to discuss the benefits of our initializers. For these
reasons, we use the vectorized=True flag in our experiments.

Algorithm 5: DUALSORT Initializer
1: Input: Cost matrix C, primal solution, P, vectorized flag
2: Initialize: f = 0
3: while not converged do
4: if vectorized then
5: f ←minaxis=1 (C − diag(C)1T + f1T)

6: else
7: for i ∈ {1, . . . , n} do
8: fi ← (minj ci,j − cj,j + fj)
9: end for

10: end if
11: end while
12: Return f

E.3 Number of DualSort Iterations

Figure 9 illustrates the convergence of the DualSort algorithm when compared to the true potentials found from linear
programming. Visually, from the right plot of Figure 9, the approximate dual is close to the true dual after just one iteration.
However the squared error (left plot) is still large. After 3 iterations, the error is significantly reduced and after 10, the error
is not noticeable.

Figure 10 shows how the performance of the initializer improves significantly from 1 initialization iteration to 3 or 10 for
the CIFAR-100 soft-error classification task. Here performance is measured in how many additional Sinkhorn iterations are
required after initialization for convergence. Note however that empirically there is not much difference between 3 and 10,

Rethinking Initialization of the Sinkhorn Algorithm

Figure 9: Single sample of size 32 from Gaussian blob dataset with 5 centers. Left: squared error vs true potential by
number of DualSort iterations. Right: Potential from linear solver vs DualSort approximations.

hence 3 was used in experiments.

0 50 100 150 200 250 300
Epoch

0

5

10

15

20

25

30

Ite
ra

tio
ns

0 + ε decay=0.8
0 + ω mom.=1.05
0 + And.=5
0 + adapt.=10

0 + Default
DualSort + Default
DualSort + adapt.=10
DualSort + And.=5

0 50 100 150 200 250 300
Epoch

0

5

10

15

20

25

30

0 50 100 150 200 250 300
Epoch

0

5

10

15

20

25

30

0 50 100 150 200 250 300
Epoch

0

2

4

6

8

10

12

14

Ite
ra

tio
ns

0 + ε decay=0.8
0 + ω mom.=1.05
0 + And.=5
0 + adapt.=10

0 + Default
DualSort + Default
DualSort + adapt.=10
DualSort + And.=5

0 50 100 150 200 250 300
Epoch

0

2

4

6

8

10

12

14

0 50 100 150 200 250 300
Epoch

0

2

4

6

8

10

12

14

Figure 10: Number of Sinkhorn iterations per training step when using soft error loss for CIFAR-100 classifier. Top:
threshold=0.01, bottom: threshold=0.05. Number of vectorized DualSort iterations 1,3,10 (left to right)

F Threshold Analysis

Convergence of each the Sinkhorn for each problem was determined according to a threshold tolerance, τ , for how close the
marginals from the coupling derived from potentials are to the true marginals. For OT problem between µ = ∑

n
i=1 aiδxi

and ν = ∑
n
j=1 biδyj , and denote potentials after l Sinkhorn iterations as f (l), g(l), then the corresponding coupling may be

James Thornton, Marco Cuturi

written elementwise as p(l)i,j = exp
f
(l)
i +g

(l)
j −ci,j
ϵ

and the threshold condition may be written

∑
i

∣∑
j

p
(l)
i,j − ai∣ +∑

j

∣∑
i

p
(l)
i,j − bj ∣ < τ.

We use τ = 0.01 for speed. But also note that a higher threshold τ = 0.05 leads to faster convergence without drop in
performance, as evidenced in Figure 11 for the soft error classification task on CIFAR-100. Figure 10 also illustrates that
the DualSort initializer appears to exhibit relatively better performance to the zero initialization for a higher convergence
threshold.

0 50 100 150 200 250 300
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
cc

ur
ac

y

0 + ε decay=0.8
0 + ω mom.=1.05
0 + And.=5
0 + adapt.=10
0 + Default
DualSort + Default
DualSort + adapt.=10
DualSort + And.=5

0 50 100 150 200 250 300
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 50 100 150 200 250 300
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 50 100 150 200 250 300
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
cc

ur
ac

y

0 + ε decay=0.8
0 + ω mom.=1.05
0 + And.=5
0 + adapt.=10
0 + Default
DualSort + Default
DualSort + adapt.=10
DualSort + And.=5

0 50 100 150 200 250 300
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 50 100 150 200 250 300
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 11: Evaluation accuracy through training when using soft error loss for CIFAR-100 classifier. Top: threshold=0.01,
bottom: threshold=0.05. Number of vectorized DualSort iterations 1,3,10 (left to right)

G Other Details

Societal Impact. We are not aware of any direct negative societal impacts in this work. We acknowledge that the Sinkhorn
algorithm may be used in various applications across compute vision and tracking with negative impacts, and this work may
enable further such applications.
Code. Code for initializers will be incorporated into OTT library (Cuturi et al., 2022).
Open source software and licences. (Cuturi et al., 2022) has an Apache licence.

	Introduction
	Background material on OT
	Entropic Regularization and Sinkhorn
	Dual Variables in the Sinkhorn Algorithm
	Closed-Form Expressions in Optimal Transport

	Crafting Sinkhorn Initializations
	Initialization for 1D Regularized OT
	Computing Dual Initializers from Gaussian OT
	Gaussian Mixture Approximations
	Subsample Initializer

	Experiments
	Differentiable Sorting
	Soft Error Classification
	Differentiable Clustering
	Differentiable Particle Filtering
	Document Similarity

	Conclusion
	Dual Potential Comparison
	From Optimal Primal to Dual Vectors

	Further Experimental Details
	Differentiable Sorting Details
	Soft Error Details
	Differentiable Clustering Details

	Overhead Analysis
	Differentiable Sorting
	Gaussian and GMM

	Gaussian Potential
	Convergence of Sorting Initializer and DualSort Details
	Proof of Primal Dual Convergence
	DualSort Algorithm
	Number of DualSort Iterations

	Threshold Analysis
	Other Details

