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Abstract

In contextual linear bandits, the reward function
is assumed to be a linear combination of an un-
known reward vector and a given embedding of
context-arm pairs. In practice, the embedding
is often learned at the same time as the reward
vector, thus leading to an online representation
learning problem. Existing approaches to repre-
sentation learning in contextual bandits are either
very generic (e.g., model-selection techniques or
algorithms for learning with arbitrary function
classes) or specialized to particular structures
(e.g., nested features or representations with cer-
tain spectral properties). As a result, the under-
standing of the cost of representation learning in
contextual linear bandit is still limited. In this
paper, we take a systematic approach to the prob-
lem and provide a comprehensive study through
an instance-dependent perspective. We show that
representation learning is fundamentally more
complex than linear bandits (i.e., learning with
a given representation). In particular, learning
with a given set of representations is never sim-
pler than learning with the worst realizable rep-
resentation in the set, while we show cases where
it can be arbitrarily harder. We complement this
result with an extensive discussion of how it re-
lates to existing literature and we illustrate posi-
tive instances where representation learning is as
complex as learning with a fixed representation
and where sub-logarithmic regret is achievable.

1 INTRODUCTION

Stochastic contextual linear bandits (CLBs) focus on the in-
terplay between exploration and exploitation when the re-
ward f⋆(x, a) of each context-arm pair (x, a) ∈ X ×A is a
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linear function of a known feature map ϕ⋆ : X×A → Rdϕ⋆

and an unknown parameter θ⋆. CLBs have been widely
studied due to their broad applicability and strong theoret-
ical guarantees (e.g., Lattimore and Szepesvári, 2020, and
references therein). Unfortunately, the assumption that a
realizable linear representation is known is often violated
in real applications, where one only observes raw context-
arm data and a suitable representation has to be learned on-
line. Representation learning in CLBs relaxes this assump-
tion by providing the learner with a set of representations
Φ = {ϕ : X × A → Rdϕ} (e.g., a neural network) among
which a realizable one exists (i.e., ϕ⋆ ∈ Φ).

Representation learning can be viewed as a special case
of learning with a general realizable function class (i.e.,
FΦ := {f(·, ·) = ϕ(·, ·)Tθ | ϕ ∈ Φ, θ ∈ Rdϕ}), which
has been extensively studied in the literature (e.g., Agar-
wal et al., 2014; Foster and Rakhlin, 2020; Simchi-Levi and
Xu, 2020) with algorithms achieving O(

√
AT log(|FΦ|))

worst-case regret, where |FΦ| is the covering number of
FΦ. However, these algorithms do not explicitly leverage
the bi-linear structure of the function class FΦ. Another
direction is to leverage model-selection techniques. While
generic model-selection approaches (e.g. Abbasi-Yadkori
et al., 2020; Pacchiano et al., 2020; Cutkosky et al., 2021)
can be directly applied when Φ is finite, more special-
ized techniques can be used when Φ has additional struc-
ture (e.g., nested features (Foster et al., 2019)). Interest-
ingly, some of these algorithms (e.g., Foster et al., 2019;
Cutkosky et al., 2021; Ghosh et al., 2021) achieve regret
guarantees matching the performance of the best represen-
tation in the set, up to a representation learning cost that
depends on the number of representations |Φ|, the problem
horizon T , or other quantities specific to the structure of Φ.
Nonetheless, these results are worst-case in nature and gen-
eral model-selection algorithms are limited by an unavoid-
able Ω(

√
T ) regret (Pacchiano et al., 2020), which may

hinder them from fully exploiting the structure of Φ and
achieve instance-optimal performance (e.g., logarithmic re-
gret). Alternatively, Papini et al. (2021) and Tirinzoni et al.
(2022) proposed specialized representation learning algo-
rithms that exploit the bi-linear structure of FΦ to obtain
the instance-dependent regret bound of the best unknown
realizable representation up to a logarithmic factor in |Φ|.
Furthermore, they showed that constant regret is achievable
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(i.e., after a finite time τ the algorithm only plays optimal
arms) when a realizable representation satisfies a certain
spectral property. However, these results rely on the strong
assumption that either all the representations in Φ are real-
izable or any misspecified representation can be identified
by playing any sequence of arms.

In this paper, we focus on the following question:

What is the cost of representation learning compared to a
CLB with a given representation?

In order to address this question, we first provide a system-
atic analysis of representation learning in CLBs through
an instance-dependent lens. By specializing existing re-
sults, we derive an instance-dependent lower bound on
the regret of any “good” representation learning algo-
rithm which shows that the asymptotic regret must be
at least C(f⋆,FΦ) log(T ), where C(f⋆,FΦ) is a com-
plexity measure depending both on the reward function
f⋆ and the given set of representations Φ. Moreover,
this complexity is tight, as there exist algorithms attain-
ing C(f⋆,FΦ) log(T ) regret in the large T regime. This
instance-dependent view allows us to have a more fine
grained comparison to CLBs with a given representation,
thus providing insights on the complexity of representation
learning that may remain “hidden” in worst-case studies.

Leveraging this lower bound we are then able to derive the
following results: (1) We show that the regret of repre-
sentation learning is never smaller than the regret of learn-
ing with the worst realizable representation in the set, i.e.,
C(f⋆,FΦ) ≥ supϕ∈Φ,realizable C(f⋆,F{ϕ}). This reveals a
fundamental limit to representation learning, showing that
it is impossible to adapt to representations with better com-
plexity. Surprisingly, this result holds even for instances
f⋆ where all representations ϕ ∈ Φ are realizable. Indeed,
this is due to a subtle but crucial effect of representation
learning: as in general all representations ϕ ∈ Φ may be
misspecified for some of the reward functions f ′ ∈ FΦ,
an algorithm needs to be robust to such misspecification
and it cannnot fully adapt to cases that are favorable for
some representations. (2) We further strengthen this re-
sult by showing examples where the inequality is strict and
the gap arbitrarily large. In particular, we construct in-
stances where all representations are realizable and have
small dimensionality and yet the regret can be as large
as learning with “tabular” features assigning a distinct di-
mension to each context-arm pair. (3) We characterize
favorable instances where misspecified representations in
Φ can be discarded without increasing the regret so that
C(f⋆,FΦ) = supϕ∈Φ,realizable C(f⋆,F{ϕ}).

Finally, we instantiate our analysis in widely studied repre-
sentation structures (e.g., tabular, nested features, features
with spectral properties, and the special case where all rep-
resentations are realizable) and provide novel insights on
the complexity of representation learning in these settings.

2 PRELIMINARIES

We consider a stochastic contextual bandit problem with
a finite set of contexts X and a finite set of arms A. Let
X := |X | and A := |A|. At each time step t ∈ N, the
learner first observes a context xt ∈ X drawn i.i.d. from
a distribution ρ1, it selects an arm at ∈ A, and it receives
a scalar reward drawn from a Gaussian distribution with
mean f⋆(xt, at) and unit variance.

Let Φ be a set of representations, where each ϕ ∈ Φ is a
dϕ-dimensional feature map ϕ : X ×A → Rdϕ . We define
the associated function class FΦ := {f(·, ·) = ϕ(·, ·)Tθ |
ϕ ∈ Φ, θ ∈ Rdϕ}. The set Φ and function class FΦ are
realizable when:

Assumption 1 (Realizability). There exist ϕ⋆ ∈ Φ and
θ⋆ ∈ Rd⋆

, where d⋆ := dϕ⋆ , such that

f⋆(x, a) = ϕ⋆(x, a)Tθ⋆ ∀x ∈ X , a ∈ A.

This assumption is required only for a representation ϕ⋆ ∈
Φ (which is said to be realizable), while, for any ϕ ̸= ϕ⋆,
the approximation error maxx,a |f⋆(x, a)−ϕ(x, a)Tθ| may
be non-zero for any θ, meaning that f⋆ cannot be approx-
imated as a linear function of ϕ. In this case, we shall say
that representation ϕ is misspecified.

Learning problem. We consider the problem of (bi-
linear) representation learning for regret minimization.

Definition 1 (Representation learning problem (f⋆,FΦ)).
Consider an unknown stochastic contextual bandit problem
with reward function f⋆. The learner is provided only with
a set of representations Φ (equiv. function class FΦ) satis-
fying Assumption 1 (ϕ⋆ unknown) and it aims at minimizing
the cumulative regret over T steps,

RT (f
⋆) :=

T∑
t=1

(
max
a∈A

f⋆(xt, a)− f⋆(xt, at)

)
. (1)

When Φ = {ϕ⋆}, the learning problem (f⋆,F{ϕ⋆}) is
known as stochastic contextual linear bandit (CLB), where
the learner knows the realizable representation ϕ⋆, while in
representation learning the learner needs to learn within the
realizable non-linear function class FΦ. Note also that Φ
may be an infinite uncountable set.

Notation We use M† to denote the pseudo-inverse of a
matrix M ∈ Rn×m, while Im(M) and Ker(M) denote its
column and null spaces, respectively. For a vector v ∈ Rd

and a matrix M ∈ Rd×d, we let ∥v∥2M := vTMv. We
use π⋆

f⋆(x) := argmaxa∈A f⋆(x, a) to denote the optimal
arm for context x when facing a problem with reward f⋆.
We assume π⋆

f⋆(x) to be unique for all x. We define the

1We assume ρ to be full-support over X w.l.o.g.
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sub-optimality gap of arm a ∈ A for context x ∈ X as
∆f⋆(x, a) := f⋆(x, π⋆

f⋆(x)) − f⋆(x, a). Note that, under
Assumption 1, we have ∆f⋆(x, a) = z⋆ϕ⋆(x, a)Tθ⋆, where
we call z⋆ϕ(x, a) := ϕ(x, π⋆

f⋆(x))−ϕ(x, a) the feature gap.

We will often use a matrix notation for all quantities. We
denote by f⋆ ∈ RXA a vectorized reward function and by
Dη := diag({η(x, a)}x∈X ,a∈A) the XA×XA matrix con-
taining a function η : X × A → [0,∞). For any ϕ ∈ Φ,
let Fϕ ∈ RXA×dϕ be the matrix containing the feature vec-
tors {ϕ(x, a)}x∈X ,a∈A as rows and Vη(ϕ) := FT

ϕ DηFϕ =∑
x,a η(x, a)ϕ(x, a)ϕ(x, a)

T. Note that f⋆ = Fϕ⋆θ⋆.

Using this notation, ∥f⋆ − Fϕθ∥2Dη
is exactly the mean

square error of the function ϕ(·, ·)Tθ in predicting f⋆ when
the learner has η(x, a) samples from each (x, a). We de-
fine θ⋆η(ϕ) := argmin

θ∈Rdϕ ∥f⋆ − Fϕθ∥2Dη
as the best fit

for the reward parameter using representation ϕ. By stan-
dard regression theory, it is easy to show that θ⋆η(ϕ) =

Vη(ϕ)
†∑

x,a η(x, a)ϕ(x, a)f
⋆(x, a). Similarly, the quan-

tity ∥f⋆ −Fϕθ
⋆
η(ϕ)∥2Dη

is related to the misspecification of
representation ϕ: it is zero for all η if ϕ is realizable, while
it is positive for at least one η if ϕ is misspecified.

3 INSTANCE-DEPENDENT REGRET
LOWER BOUND

We start by stating a novel asymptotic regret lower bound
for the representation learning problem (f⋆,FΦ) (see Def-
inition 1). Let A be any bandit strategy, i.e., a sequence
{At}t≥1 where each At : (X ×A× R)t−1 × X → A is a
measurable mapping w.r.t. the history up to time step t− 1.
We say that a A is uniformly good on a function class F
if EA

f

[
RT (f)

]
= o(Tα) for any α > 0 and any f ∈ F2,

where EA
f denotes the expectation under algorithm A in a

contextual bandit problem with reward function f ∈ F .

Theorem 1. Let A be a uniformly good strategy on the
class FΦ and suppose that π⋆

f⋆ is unique. Then,

lim inf
T→∞

EA
f⋆

[
RT (f

⋆)
]

log(T )
≥ C(f⋆,FΦ),

where C(f⋆,FΦ) is the value of the optimization problem

inf
{η(x,a)}≥0

∑
x∈X

∑
a∈A

η(x, a)∆f⋆(x, a) s.t.

inf
ϕ∈Φ

min
x,a ̸=π⋆

f⋆ (x)

(
∥f⋆ − Fϕθ

⋆
η(ϕ)∥2Dη

+ cηx,a(f
⋆, ϕ)

)
≥ 2,

2Our analysis easily extends to the weaker notion of uniformly
good algorithm requiring O(Tα) regret on all f ∈ F only for
some α ∈ (0, 1). In this case, the stated lower bound remains the
same as in Theorem 1 up to a factor 1−α (Tirinzoni et al., 2021).

with

cηx,a(f
⋆, ϕ) =


0 if z⋆ϕ(x, a)

Tθ⋆η(ϕ) ≤ 0,

0 if z⋆ϕ(x, a) /∈ Im(Vη(ϕ)),
(z⋆

ϕ(x,a)
Tθ⋆

η(ϕ))
2

∥z⋆
ϕ(x,a)∥

2

Vη(ϕ)†
otherwise.

The proof (see Appendix B) builds on the asymptotic re-
gret lower bound for contextual bandits with general func-
tion classes (a.k.a. structured bandits), which can be ex-
tracted as a special case of the one for Markov decision
processes (Ok et al., 2018). While Ok et al. (2018) provide
an implicit complexity measure C(f,F) for learning any
instance f when knowing that it belongs to a given class F ,
we derive a more explicit complexity measure C(f⋆,FΦ)
for representation learning. The general lower bound fol-
lows from a fundamental result stating that any uniformly
good algorithm must guarantee

∑T
t=1 EA

f⋆ [(f⋆(xt, at) −
f(xt, at))

2] ≥ 2 log(T ) as T → ∞ for any alternative
reward f ∈ F that induces a different optimal policy than
π⋆
f⋆ . Our explicit complexity follows by leveraging a novel

reformulation of the set of such alternative rewards for rep-
resentation learning which allows us to derive a closed-
form expression of the above general condition.

As common in existing instance-dependent lower bounds
(e.g., Combes et al., 2017; Ok et al., 2018), the complexity
C(f⋆,FΦ) is the value of an optimization problem which
seeks an allocation of samples η minimizing the regret
while collecting sufficient information about the instance
f⋆. Such an information constraint is the peculiar compo-
nent in our setting as it formally establishes the minimal
level of exploration that any uniformly good representation
learning algorithm must guarantee. In particular, for any
representation ϕ ∈ Φ, context x ∈ X , and sub-optimal ac-
tion a ̸= π⋆

f⋆(x), any feasible allocation η must guarantee

∥f⋆ − Fϕθ
⋆
η(ϕ)∥2Dη︸ ︷︷ ︸

misspecification

+ cηx,a(f
⋆, ϕ)︸ ︷︷ ︸

sub-optimality

≥ 2. (2)

Here we recognize the contribution of two terms. The first
one is related to the misspecification error of representation
ϕ induced by η (i.e., the minimum achievable mean square
error when linearly estimating f⋆ with ϕ using samples col-
lected according to η). It is trivially zero for any η if ϕ is
realizable. The second term is related to the complexity for
learning that a is a sub-optimal action for context x when
using representation ϕ to estimate the reward. Interestingly,
cηx,a(f

⋆, ϕ) resembles the complexity term appearing in the
existing lower bound for a CLB problem with given repre-
sentation ϕ (e.g., Hao et al., 2020; Tirinzoni et al., 2020).

The constraint requires the sum of these two terms to
be large. This means that any feasible allocation η, and
thus any uniformly good representation learning algorithm,
must either learn that ϕ is misspecified or that a is sub-
optimal in context x under the best fit of f⋆ with represen-
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tation ϕ. We now discuss relevant possible cases to better
undestand the complexity for achieving so.

Case 1. ϕ is realizable and z⋆ϕ(x, a) ∈ Im(Vη(ϕ)). In
this case, the misspecification term in (2) is zero for any
η and z⋆ϕ(x, a)

Tθ⋆η(ϕ) = ∆f⋆(x, a) > 0 by realizabil-
ity, definition of z⋆ϕ, and sub-optimality of a. From (2),
this implies that η must guarantee that ∥z⋆ϕ(x, a)∥2Vη(ϕ)†

≤
∆f⋆(x, a)2/2. It turns out that this is exactly the same
complexity measure we have for learning that (x, a) is sub-
optimal in the CLB (f⋆,F{ϕ}). Since ∥z⋆ϕ(x, a)∥Vη(ϕ)†

represents the uncertainty that allocation η has on the re-
wards of (x, a) and (x, π⋆

f⋆(x)), this condition simply re-
quires any uniformly good algorithm to reduce such uncer-
tainty below a factor of the gap of (x, a).

Case 2. ϕ is realizable and z⋆ϕ(x, a) /∈ Im(Vη(ϕ)). In
this case, both the misspecification term and cηx,a(f

⋆, ϕ)
are zero. From (2), this means that η is infeasible. This
is intuitive since, when the feature gap z⋆ϕ(x, a) is not in
the column space of the design matrix Vη(ϕ), the alloca-
tion η does not provide any information about arm a in the
representation space of ϕ, and thus it cannot learn whether
a is sub-optimal or not. Therefore, any feasible η must
guarantee z⋆ϕ(x, a) ∈ Im(Vη(ϕ)) for all (x, a) when ϕ is
realizable, i.e., any good algorithm must explore all fea-
ture directions. This has an interesting implication: when
span({ϕ(x, a)}x,a) = dϕ, any feasible design matrix must
be invertible. This result was already proved by Lattimore
and Szepesvári (2017) in the linear bandit setting using an
ad-hoc derivation, while here we establish it in greater gen-
erality as a consequence of our lower bound.

Case 3. ϕ is misspecified and cηx,a(f
⋆, ϕ) = 0. This can

happen in two cases: either z⋆ϕ(x, a)
Tθ⋆η(ϕ) ≤ 0, which

means that the sub-optimality gap of (x, a) cannot be ac-
curately estimated using representation ϕ, or z⋆ϕ(x, a) /∈
Im(Vη(ϕ)). In both cases, a feasible η must make the first
term in (2) large, i.e., it must learn that ϕ is misspecified.
Interestingly, this implies that, differently from the realiz-
able case, a feasible allocation does not need to explore the
whole feature space for ϕ (e.g., it does not have to make
the design matrix Vη(ϕ) invertible). This is particularly rel-
evant when ϕ is high-dimensional, as identifying the mis-
specification may be easier than covering all dimensions.

Case 4. ϕ is misspecified and cηx,a(f
⋆, ϕ) > 0. This is

the case with most freedom: a feasible allocation can either
learn that ϕ is misspecified or that (x, a) is sub-optimal. As
we shall see in Section 4.3, this flexibility may be exploited
to find allocations that manage to “discard” representations
without significantly affecting the regret.

3.1 Known-Representation Case

As expected, when instantiating Theorem 1 in the standard
CLB (f⋆,F{ϕ⋆}), we recover the existing lower bound for

such a setting (Hao et al., 2020; Tirinzoni et al., 2020).3

Corollary 1. Let span({ϕ⋆(x, a)}x,a) = d⋆. In the CLB
(f⋆,F{ϕ⋆}), the complexity C(f⋆,F{ϕ⋆}) of Theorem 1 is

inf
η:Vη(ϕ⋆)−1exists

∑
x,a

η(x, a)∆f⋆(x, a)

s.t. min
x,a̸=π⋆

f⋆ (x)

∆f⋆(x, a)2

∥zϕ⋆(x, a)∥2Vη(ϕ⋆)−1

≥ 2.

Comparing this result with Theorem 1, we notice that
adding one representation to the set Φ implies adding one
constraint to the optimization problem, hence making the
problem harder. On the positive side, Theorem 1 does
not impose the strong constraint of Corollary 1 for every
ϕ ∈ Φ, which would require any good algorithm to learn
an optimal action at every context for all representations. In
fact, it may be possible to leverage the misspecification of
a representation ϕ to lower the additional complexity w.r.t.
the one imposed in the realizable case (see Equation 2 and,
e.g., Case 4 above). In Section 4, we further elaborate on
how the complexity of representation learning is impacted
by these elements and how it compares with the complexity
of CLBs when given a realizable representation.

3.2 The Lower Bound Is Attainable

It is known that instance-dependent lower bounds in the
general form of Ok et al. (2018) can be attained. Since
Theorem 1 is an instantiation of such a result, this implies
that C(f⋆,FΦ) is a tight complexity measure for represen-
tation learning as there exist algorithms matching it.

Proposition 1. There exists an algorithm A (e.g., Dong and
Ma, 2022) such that, for any representation learning prob-
lem (f⋆,FΦ),

lim sup
T→∞

EA
f⋆

[
RT (f

⋆)
]

log(T )
≤ C(f⋆,FΦ).

While, to the best of our knowledge, the algorithm of Dong
and Ma (2022) is the only one attaining instance-optimal
complexity in contextual bandits with general function
classes, it is actually easy to adapt existing strategies for
non-contextual bandits to our setting (Combes et al., 2017;
Degenne et al., 2020; Jun and Zhang, 2020). In partic-
ular, the algorithm of Jun and Zhang (2020) would ob-
tain an anytime regret of order O(C(f⋆,FΦ) log(T ) +
log log(T )). This shows that C(f⋆,FΦ) is also a relevant
finite-time complexity measure (and not only asymptotic),
up to a O(log log(T )) term depending on other instance-
dependent factors.

3Existing lower bounds are derived under the assumption that
the full set of features {ϕ⋆(x, a)}x,a span Rd⋆ . This is without
loss of generality since one can always remove redundant features
by computing the low-rank SVD of Fϕ⋆ .
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4 COMPLEXITY OF REPRESENTATION
LEARNING

We now provide a series of results to better character-
ize the instance-dependenet complexity C(f⋆,FΦ) of rep-
resentation learning in comparison with the complexity
C(f⋆,F{ϕ⋆}) of the single-representation CLB problem.

4.1 Representation Learning Cannot Be Easier Than
Learning With A Given Representation

We first prove that the complexity of learning with a single
representation is a lower bound for representation learning.

Proposition 2. For any Φ such that f⋆ ∈ FΦ, C(f⋆,FΦ) ≥
supϕ∈Φ:f⋆∈F{ϕ}

C(f⋆,F{ϕ}).

This result leverages the instance-dependent nature of the
complexity derived in Theorem 1 to compare representa-
tion learning with a single-representation CLB for every re-
ward function f⋆. This is in contrast with a worst-case anal-
ysis, where we would compare the two approaches w.r.t.
their respective worst-case reward functions.

Whenever there is only one realizable representation ϕ⋆ in
Φ, the result is intuitive, since adding misspecified rep-
resentations to Φ cannot make the problem any easier.
Nonetheless, Proposition 2 has another, less obvious, im-
plication: representation learning is at least as hard as the
hardest CLB (f⋆,F{ϕ}) among all realizable representa-
tions. More surprisingly, this result holds even when all
the representations in Φ are realizable for f⋆. In fact, this
is the unavoidable price for an algorithm to be robust (i.e.,
uniformly good) to any other reward function f ′ ∈ FΦ for
which some representation ϕ may not be realizable and it
defines an intrinsic limit to the level of adaptivity to f⋆ that
we can expect in representation learning (see Section 5 for
a discussion on how this result relates to existing literature).

4.2 There Exist Instances Where Representation
Learning Is Strictly Harder Than Learning With
A Given Representation

After establishing that representation learning cannot be
easier than CLBs, a natural question is: how much harder
can it be? Here we show that, for any reward function f⋆,
there exists a set of representations Φ with f⋆ ∈ FΦ such
that any uniformly good representation learning algorithm
must suffer regret scaling linearly with the number of con-
texts and actions, whereas the regret of learning with any
realizable representation in the set only scales with the fea-
ture dimensionality d ≪ XA.

Proposition 3. Let X,A ≥ 1 and 2 ≤ d ≤ XA. Fix
an arbitrary instance f⋆ : X × A → R and denote by
∆min its minimum positive gap. Then, there exists a set
of d-dimensional representations Φ of cardinality |Φ| =

⌈X(A−1)
d−1 ⌉ such that f⋆ ∈ ∩ϕ∈ΦF{ϕ} and

C(f⋆,FΦ) =
∑
x∈X

∑
a ̸=π⋆

f⋆ (x)

2

∆f⋆(x, a)
.

Moreover, for any ϕ ∈ Φ,

C(f⋆,F{ϕ}) ≤
2(d− 1)

∆min
.

Note that the complexity C(f⋆,FΦ) of the representation
learning problem built in Proposition 3 is exactly the com-
plexity for learning the contextual bandit problem f⋆ when
ignoring the set of representations Φ, i.e., the (unstructured)
tabular setting4. Therefore, Proposition 3 proves that there
exist “hard” representation learning problems whose com-
plexity is the same as learning without any prior knowledge
about f⋆. While this may be expected as the set Φ is con-
structed to be worst-case for f⋆, the second statement of
Proposition 3 is more surprising. In fact, Φ is constructed
using only realizable representations for f⋆ with dimension
d ≪ XA. As such, the complexity C(f⋆,F{ϕ}) for learn-
ing with any ϕ ∈ Φ only scales (in the worst case) with d
and it can be arbitrarily smaller than C(f⋆,FΦ).

Remark 1. Rather than constructing a single hard in-
stance (f⋆,FΦ) where representation learning is difficult,
we prove that for any reward function f⋆ we can find a
set Φ such that (f⋆,FΦ) is difficult. Hence, representation
learning can be difficult regardless of the reward function.

4.3 There Exist Instances Where Representation
Learning Is Not Harder Than Learning With A
Given Representation

Unlike the previous hardness results, here we show that
there exist favorable instances (f⋆,FΦ) where the com-
plexity of representation learning is the same as the one of a
CLB with a realizable representation in Φ. This means that
representation learning comes “for free” on such instances.

Proposition 4. Let η⋆(x, a) = 1
(
a = π⋆

f⋆(x)
)

. Let Φ
contain a unique realizable representation ϕ⋆ and sup-
pose that there exists ε > 0 such that, for all ϕ ∈ Φ
with f⋆ /∈ F{ϕ}, ∥f⋆ − Fϕθ

⋆
η⋆(ϕ)∥2Dη⋆

≥ ε. Then,
C(f⋆,FΦ) = C(f⋆,F{ϕ⋆}).

Intuitively, the condition on Φ in Proposition 4 requires ev-
ery misspecified representation to have a minimum positive
mean square error in fitting f⋆ when samples are collected
by an optimal policy. This means that a learner is able to

4Since the context-action space is finite, we can always
run a trivial variant of UCB (Auer et al., 2002a) that esti-
mates the reward of each (x, a) independently and achieve regret
Ef⋆ [RT (f

⋆)] ≲
∑

x∈X
∑

a ̸=π⋆
f⋆ (x)

log(T )
∆f⋆ (x,a)

. This is also the

instance-optimal rate of the unstructured setting (Ok et al., 2018).
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detect all misspecified representation by playing optimal
actions, i.e., while suffering zero regret, hence making rep-
resentation learning costless in the long run.

Consider the following scheme as an example of how a
simple strategy can leverage the condition Proposition 4.
Assuming finite Φ, take any algorithm with sub-linear re-
gret on the class FΦ, e.g., any of the algorithms for general
function classes (e.g., Foster and Rakhlin, 2020; Simchi-
Levi and Xu, 2020). Run the algorithm in combination
with an elimination rule for misspecified representations
(e.g., the one proposed by Tirinzoni et al. (2022)) until
only one representation remains active. When this hap-
pens, switch to playing an instance-optimal algorithm for
CLBs on the remaining representation. It is easy to see
that, since the starting algorithm has sub-linear regret, it
plays optimal actions linearly often and, thus, thanks to the
assumption in Proposition 4, it collects sufficient informa-
tion to eliminate all misspecified representations in a finite
time. This means that the algorithm suffers only constant
regret for eliminating misspecified representations, while it
never discards ϕ⋆ with high probability. After that, playing
an instance-optimal strategy on ϕ⋆ implies that the total re-
gret is roughly C(f⋆,F{ϕ⋆}) log(T ) in the long run, which
is exactly the same regret we would have by running the in-
stance optimal algorithm on ϕ⋆ from the very beginning.

5 SPECIFIC REPRESENTATION
STRUCTURES

We now discuss some of the specific representation learn-
ing problems studied in the literature, while providing ad-
ditional insights on their instance-dependent complexity.

5.1 Trivial Representations

It is well known that the realizability of FΦ (Assumption 1)
is crucial for efficient learning, as sub-linear regret may be
impossible otherwise (Lattimore et al., 2020). In practice,
when little prior knowledge about the reward function f⋆

is available to design a suitable class FΦ, a common tech-
nique is to reduce the approximation error by expanding Φ,
in the hope of ensuring realizability.

When the context-arm pairs are finite, a trivial realizable
representation can always be constructed as the canonical
basis of RXA. Let {(xi, ai)}Ni=1 be an enumeration of all
N = XA context-arm pairs. Then, we can define the XA-
dimensional features ϕ̄ as ϕ̄i(x, a) := 1 (x = xi, a = ai).
It is easy to see that f⋆ = Fϕ̄θ for θi = f⋆(xi, ai).

A natural idea to build a class for representation learning
is thus to start from a set Φ of “good” features (e.g., low
dimensional or with nice spectral properties) and then add
the trivial representation ϕ̄ so as to ensure realizability. The
hope is that a good algorithm would still be able to leverage

the “good” representations to achieve better results when-
ever possible. The following result shows that this is impos-
sible: every uniformly good algorithm must pay the com-
plexity of learning without any prior knowledge on f⋆ as
far as ϕ̄ is in the set of candidate representations.
Proposition 5. Let Φ be any set of representations (not
necessarily realizable for f⋆). Then,

C(f⋆,FΦ∪{ϕ̄}) =
∑
x∈X

∑
a̸=π⋆

f⋆ (x)

2

∆f⋆(x, a)
.

As already noted in the discussion of Proposition 3, the
complexity C(f⋆,FΦ∪{ϕ̄}) of Proposition 5 is equivalent
to the complexity of learning f⋆ without any prior knowl-
edge. Hence, no uniformly good algorithm can leverage
the representations in Φ when ϕ̄ is also considered, no mat-
ter how good they are. For instance, the set Φ could even
be a singleton {ϕ⋆} containing a realizable representation
of dimension d ≪ XA, and still representation learning
over the set {ϕ⋆, ϕ̄} so as to achieve regret scaling with the
properties of ϕ⋆ is impossible. A similar result was derived
by Réda et al. (2021), who showed that learning an instance
f⋆ which is known to be approximately linear in given fea-
tures ϕ without knowing the amount of misspecification is
as complex as learning f⋆ without any prior knowledge.

5.2 Nested Features

A popular design choice for representation learning is to be
build a set of nested features (Foster et al., 2019; Pacchiano
et al., 2020; Cutkosky et al., 2021; Ghosh et al., 2021) Φ =
{ϕ1, . . . , ϕN} of increasing dimension (i.e., such that di :=
dϕi < di+1 := dϕi+1 for all i ∈ [N − 1]) that satisfy the
following property: for all i ∈ [N − 1] and (x, a), the
first di components of ϕi+1(x, a) are equal to ϕi(x, a). Let
i⋆ ∈ [N ] be such that ϕi⋆ is the realizable representation of
smallest dimension (which exists by Assumption 1). The
nestedness implies that ϕi is realizable for all i ≥ i⋆.

Several approaches have been proposed for this setting.
While Foster et al. (2019) designed a strategy with regret
Õ(

√
di⋆T + T 3/4), model-selection algorithms (e.g., Pac-

chiano et al., 2020; Cutkosky et al., 2021) achieve regret
of order Õ(poly(N)

√
di⋆T ). Interestingly, Ghosh et al.

(2021) obtained Õ(
√
di⋆T ) regret, that is of the same or-

der as the worst-case regret achievable by, e.g., LinUCB on
the (unknown) smallest realizable representation ϕi⋆ .

We show that things are considerably more complex from
an instance-dependent perspective.
Proposition 6. Let Φ be a set of N nested features and
f⋆ ∈ FΦ. Then,

C(f⋆,FΦ) = C(f⋆,F{ϕN}). (3)

This result claims that representation learning on a set of
nested features Φ is as difficult as a CLB problem with the
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realizable representation of largest dimension (ϕN ). This
is somehow surprising since it essentially states that repre-
sentation learning over nested features is useless, and one
may simply learn with the highest dimensional represen-
tation (which is known to be realizable) from the very be-
ginning. The intuition is that, while the learner knows ϕN

to be realizable for any reward function (by assumption),
it does not know whether this is true for ϕN−1, ϕN−2, etc.
Even if, say, ϕN−1 is realizable for f⋆, there might be an-
other reward function f ′ where this is not true. Any good
algorithm must explore sufficiently to eventually discrimi-
nate between f⋆ and f ′ in the long run, and it turns out that
the complexity for doing so is exactly C(f⋆,F{ϕN}), hence
making any finer level of adaptivity impossible. Moreover,
we prove in Appendix D that there exist problems with
di⋆ ≪ dN where C(f⋆,F{ϕN}) ≳ dN but C(f⋆,F{ϕi⋆}) ≲
di⋆ . This implies that, in the worst-case, any uniformly
good algorithm must suffer a dependence on the dimen-
sionality of the largest representation, regardless of the fact
that a smaller realizable representation is nested into it.

Note that this does not contradict existing results for model-
selection (e.g., Foster et al., 2019; Ghosh et al., 2021;
Cutkosky et al., 2021). In fact, while they achieve a de-
pendence on the worst-case regret of the best represen-
tation ϕi⋆ , they also feature some representation learning
cost which dominates in the long run. For instance, the
bound of Ghosh et al. (2021) has a O(d2N log(T )) addi-
tive term. Therefore, while some gains are possible in
the small T regime (e.g., scaling with

√
di⋆T instead of√

dNT ), in the long run the logarithmic term dominates and
C(f⋆,F{ϕN}) log(T ) becomes the optimal complexity.

5.3 Hls Representations And Sub-Logarithmic
Regret

Hao et al. (2020) and Papini et al. (2021) recently showed
that in a CLB (f⋆, F{ϕ}) it is possible to achieve constant
regret when the given realizable representation ϕ satisfies a
certain spectral condition.

Definition 2 (HLS representation). A representation ϕ is
HLS for an instance f⋆ if, for all x ∈ X and a ̸= π⋆

f⋆(x),
ϕ(x, a) ∈ span({ϕ(x, π⋆

f⋆(x))}x∈X ).5

Intuitively, a representation satisfying this property allows
exploring the full feature space by playing an optimal pol-
icy. That is, playing optimal actions allows refining the re-
ward estimates at all (x, a), even those that are not played.
Interestingly, Papini et al. (2021) showed that this condition
is both necessary and sufficient to achieve constant regret.

Theorem 2 (Papini et al. (2021)). Constant regret is

5The original definition (Hao et al., 2020) requires the stronger
condition span({ϕ(x, π⋆

f⋆(x))}x∈X ) = Rdϕ . This is because the
authors assumed that span({ϕ(x, a)}x,a) = Rdϕ . Here we state
a generalization that works even without such an assumption.

achievable on an instance f⋆ if, and only if, the learner
is provided with a HLS realizable representation ϕ⋆.

When a realizable HLS representation ϕ⋆ is not known
a-priori and one must perform representation learning, it
is natural to ask whether such a strong result can still
be achieved. Papini et al. (2021); Tirinzoni et al. (2022)
showed that this is indeed the case under strong conditions
on Φ: either 1) all the representation are realizable or 2)
misspecified representations are detectable by any policy
(i.e., such that min

θ∈Rdϕ ∥f⋆ − Fϕθ∥2Dη
> 0 for any η).

We now provide a necessary and sufficient condition on the
representations Φ to allow C(f⋆,FΦ) = 0. This implies
that, whenever such a condition is not met, any form of
sub-logarithmic regret (e.g., constant) is impossible for any
uniformly good algorithm. On the other hand, when the
condition is met, sub-logarithmic regret is achievable (and
it is achieved by the algorithm mentioned in Section 3.2).6

Proposition 7. A necessary and sufficient condition for
C(f⋆,FΦ) = 0 is that the following two properties hold
for any ϕ ∈ Φ such that min

θ∈Rdϕ ∥f⋆ − Fϕθ∥2Dη⋆
= 0

and for all x ∈ X , a ̸= π⋆
f⋆(x):

1. z⋆ϕ(x, a)
Tθ⋆η⋆(ϕ) > 0;

2. ϕ(x, a) ∈ Im(Vη⋆(ϕ)).

Proposition 7 can be read as follows. Any representation
ϕ whose misspecification is detectable by an optimal pol-
icy (i.e., such that min

θ∈Rdϕ ∥f⋆−Fϕθ∥2Dη⋆
> 0) does not

bring any contribution to the regret lower bound, as already
noted in Section 4.3. For any other representation ϕ, the op-
timal policy must be able to detect that all sub-optimal pairs
(x, a) of f⋆ are indeed sub-optimal. This, in turns, requires
ϕ(x, a) to be in the span of Vη⋆(ϕ) (i.e., the optimal policy
explores the direction ϕ(x, a)) and that z⋆ϕ(x, a)

Tθ⋆η⋆(ϕ) >
0 (i.e., the best approximation to the gap of (x, a) using
ϕ remains strictly positive). On the other hand, suppose
that, for some ϕ ∈ Φ with zero misspecification under an
optimal policy, one of the two properties in Proposition
7 does not hold. Then, if z⋆ϕ(x, a)

Tθ⋆η⋆(ϕ) ≤ 0, (x, a)
has higher reward than (x, π⋆

f⋆(x)) in the linear instance
(ϕ, θ⋆η⋆(ϕ)), which means that it is impossible to learn its
sub-optimality. Similarly, if ϕ(x, a) /∈ Im(Vη⋆(ϕ)), an
optimal policy does not explore the direction ϕ(x, a) at
all, which means that it cannot estimate the correspond-
ing reward. In both cases, it is necessary to repeatedly
play at least some sub-optimal action, which implies that
C(f⋆,FΦ) > 0 and sub-logarithmic is thus impossible.

Perhaps surprisingly, an immediate consequence of Propo-
sition 7 is that sub-logarithmic regret is impossible if Φ
contains at least one realizable non-HLS representation.

6The best algorithm mentioned in Section 3.2 achieves
O(log log(T )) regret when Φ satisfies Proposition 7. How to
achieve constant regret in this setting remains an open question.
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Corollary 2. If there exists a realizable representation ϕ ∈
Φ which does not satisfy the HLS condition (Definition 2),
C(f⋆,FΦ) > 0 (i.e., sub-logarithmic regret is impossible).

This implies that, even when Φ contains only realizable rep-
resentations and all but one are HLS, constant regret cannot
be attained by any uniformly good algorithm.

5.4 Fully-Realizable Representations

Another specific structure is when all representantions in
Φ are realizable for all reward functions of interest. Pap-
ini et al. (2021) proved that, in this case, a LinUCB-based
algorithm can adapt to the best instance-dependent regret
bound of a representation in Φ (e.g., it achieves constant
regret when at least one representation is HLS). While our
Proposition 2 and Corollary 2 seem to contradict their re-
sult, it turns out that Papini et al. (2021) consider a simpler
problem: they assume the learner to be aware of Φ contain-
ing only realizable representations, while we consider the
more general setting where it only knows that one of them
is realizable. Intuitively, when the learner has such a strong
prior knowledge, specialized strategies can be designed to
achieve better results. However, such strategies would not
be uniformly good on all problems in our class FΦ as they
do not account for misspecified representations. Therefore,
the price to pay for being robust to misspecification is in
general very large, no matter how “good” Φ is.

As a complement to the results of Papini et al. (2021), in
Appendix F we show that the instance-optimal complex-
ity of representation learning with prior knowledge about
full realizability is indeed never larger than the instance-
optimal complexity of a CLB with any representation in Φ,
while there even exist cases where the former complexity
is significantly smaller. This makes the problem of fully-
realizable representation learning statistically “easier” than
CLBs, as opposed to our general setting (Definition 1).

6 GENERAL FUNCTIONS AND
WORST-CASE REGRET

While the instance-dependent viewpoint we considered so
far allowed us to provide sharp insights on the complex-
ity of representation learning, it is still asymptotic in na-
ture and may “hide” other phenomena happening in the
finite-time regime. Existing algorithms for general function
classes (e.g., Foster and Rakhlin, 2020; Simchi-Levi and
Xu, 2020) achieve O(

√
AT log(|F|)) regret when given an

arbitrary class F . This is known to be optimal in the worst
possible choice of F (Agarwal et al., 2012). When applied
to representation learning with finite |Φ|, i.e., to learn any
instance f⋆ ∈ FΦ given FΦ, their regret bound reduces to
O(
√

AT (log(|Φ|) + d)) and it is an open question whether
this is optimal in the worst possible set Φ. A similar result
was obtained by Moradipari et al. (2022).

In particular, one might be wondering whether a poly-
nomial dependence on the number of actions A is re-
ally unavoidable even when the learner is provided with
a set of d-dimensional representations with d ≪ A. The
question arises mostly because some model-selection algo-
rithms (Cutkosky et al., 2021) achieve O(

√
dT log(A)) re-

gret on this problem, with some extra dependences on other
problem-independent variables, like |Φ| or T . Such bounds
give hope that adapting to the worst-case complexity of a
CLB with one of the realizable representations in Φ may
be possible at least in the small T regime. Once again, we
show that this is impossible. We state a worst-case lower
bound for representation learning proving that a polyno-
mial depedence on the number of actions is unavoidable.

Theorem 3. Let N ≥ 1, A ≥ 4 and d ≥ 12 log2(A). There
exists a context distribution, a set of d-dimensional repre-
sentations Φ of size |Φ| = N over A arms, and a universal
constant c > 0 such that, for any learning algorithm A and
T ≥ max{⌊log(dN)/ log(A)⌋, d/ log2(A)},

sup
f∈FΦ

EA
f [RT (f)] ≥ c

√
T

(
d log2(A) +A

⌊
log(dN)

log(A)

⌋)
.

The proof of this result combines techniques used to
derive two existing lower bounds: the Ω(

√
dT log(A))

lower bound for CLB problems of He et al. (2022) and
the Ω(

√
AT log(|F|)) lower bound for general function

classes of Agarwal et al. (2012). Differently from existing
upper bounds that scale as Ω(

√
Ad), our lower bound de-

couples the polynomial dependencies on A and d. Whether
this is matchable by a specialized algorithm for represen-
tation learning, or whether existing algorithm for general
function classes are already worst-case optimal in our set-
ting, remains an intriguing open question.

7 DISCUSSION

Our main contributions can be summarized in two funda-
mental hardness results. 1) Through an instance-dependent
lens, representation learning is never easier than a CLB
with a given realizable representation, while the former
problem can be strictly harder, up to the point that know-
ing that one of some given low-dimensional represen-
tations is realizable is useless. 2) Adaptivity to the
best representation is impossible in general, both in the
instance-dependent long-horizon and in the worst-case
small-horizon regimes. In particular, as opposed to worst-
case results, instance-dependent adaptivity is impossible
for representation learning on nested features, and the same
holds when all representations are realizable if the learner
does not know it a-priori. On the positive side, we char-
acterized “simple” instances where representation learning
is not harder than a CLB and where sub-logarithmic regret
can be achieved.
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Following literature on linear bandits (Tirinzoni et al.,
2020; Kirschner et al., 2021), an interesting open ques-
tion is how to design computationally-efficient representa-
tion learning strategies with good (e.g., worst-case optimal)
finite-time regret and asymptotically instance-optimal per-
formance.
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exploration in linear contextual bandit. In AISTATS, vol-
ume 108 of Proceedings of Machine Learning Research,
pages 3536–3545. PMLR, 2020.

Jiahao He, Jiheng Zhang, and Rachel Q. Zhang. A reduc-
tion from linear contextual bandit lower bounds to esti-
mation lower bounds. In Proceedings of the 39th Inter-
national Conference on Machine Learning, volume 162
of Proceedings of Machine Learning Research, pages
8660–8677. PMLR, 17–23 Jul 2022.

Kwang-Sung Jun and Chicheng Zhang. Crush optimism
with pessimism: Structured bandits beyond asymptotic
optimality. Advances in Neural Information Processing
Systems, 33:6366–6376, 2020.

Johannes Kirschner, Tor Lattimore, Claire Vernade, and
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A NOTATION

Symbol Meaning

Learning problem

X Finite set of X = |X | contexts
A Finite set of A = |A| arms
ρ Context distribution (full-support)
f⋆ : X ×A → R Reward function
RT (f

⋆) Cumulative regret when learning f⋆ (see Equation 1)
ϕ : X ×A → Rdϕ A dϕ-dimensional representation
Φ Set of representations known to the agent
ϕ⋆ The true realizable representation for f⋆

θ⋆ The true parameter in Rdϕ⋆ such that f⋆(x, a) = ϕ⋆(x, a)Tθ⋆

FΦ := {f(·, ·) = ϕ(·, ·)Tθ | ϕ ∈ Φ, θ ∈ Rdϕ} Function class known to the agent (s.t. f⋆ ∈ FΦ)
π⋆
f (x) = argmaxa∈A f(x, a) Optimal policy for reward function f

∆f (x, a) := maxa′∈A f(x, a′)− f(x, a) Sub-optimality gap of (x, a) with reward f
KLx,a(f, f

′) := 1
2
(f(x, a)− f ′(x, a))2 KL divergence between the (Gaussian) observations in (x, a) under rewards f and f ′

η : X ×A → [0,∞) An allocation of samples
z⋆ϕ(x, a) := ϕ(x, π⋆

f⋆(x))− ϕ(x, a) Different between optimal and sub-optimal features

Matrix notation

Fϕ ∈ RXA×dϕ Feature matrix for representation ϕ (containing {ϕ(x, a)}x∈X ,a∈A as rows)
f ∈ RXA Vectorized reward function (s.t. f⋆ = Fϕ⋆θ⋆)
Dη := diag({η(x, a)}x∈X ,a∈A) Diagonal matrix containing allocation η
Vη(ϕ) := FT

ϕDηFϕ Design matrix for representation ϕ (equiv. Vη(ϕ) :=
∑

x,a η(x, a)ϕ(x, a)ϕ(x, a)
T)

∥f⋆ − Fϕθ∥2Dη
MSE of model ϕ(·, ·)Tθ in predicting f⋆ under allocation η

θ⋆η(ϕ) := argmin
θ∈Rdϕ ∥f⋆ − Fϕθ∥2Dη

Best fit for f⋆ using representation ϕ and allocation η

θ⋆η(ϕ) = Vη(ϕ)
† ∑

x,a η(x, a)ϕ(x, a)f
⋆(x, a) Closed-form expression for θ⋆η(ϕ) (equiv. θ⋆η(ϕ) = Vη(ϕ)

†FT
ϕDηf

⋆)

Linear algebra

M† Pseudo-inverse of a matrix M ∈ Rn×m

Im(M) Column space of a matrix M ∈ Rn×m

Row(M) Row space of a matrix M ∈ Rn×m

Ker(M) Null space of a matrix M ∈ Rn×m

∥v∥2M := vTMv Weighted norm for a vector v ∈ Rd and a matrix M ∈ Rd×d

Table 1: The notation adopted in this paper.

Additional notation We introduce some additional terms w.r.t. those considered in the main paper.

Given two mean-reward functions f, f ′ : X × A → R, we define the Kullback-Leibler (KL) divergence between the
corresponding distributions in a context-arm pair (x, a) as KLx,a(f, f

′) := 1
2 (f(x, a)− f ′(x, a))2.

B INSTANCE-DEPENDENT LOWER BOUNDS

B.1 General Lower Bound

We state the lower bound of Ok et al. (2018), which defines a complexity measure C(f⋆,F) for learning any reward f⋆ in
any given function class F . Our lower bound for representation learning (Theorem 1) will be derived by instantiating this
result for the specific class FΦ.

Theorem 4 (Ok et al. (2018)). Let A be a uniformly good strategy on a class F . Then, for any f⋆ ∈ F such that π⋆
f⋆ is

unique,

lim inf
T→∞

EA
f⋆

[
RT (f

⋆)
]

log(T )
≥ C(f⋆,F),

where C(f⋆,F) is the value of the optimization problem

inf
{η(x,a)}≥0

∑
x∈X

∑
a∈A

η(x, a)∆f⋆(x, a) s.t. inf
f∈Λ(f⋆,F)

∑
x∈X

∑
a∈A

η(x, a)KLx,a(f
⋆, f) ≥ 1,
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where Λ(f⋆,F) := {f ∈ F | ∃x ∈ X , a ̸= π⋆
f⋆(x) : f(x, a) > f(x, π⋆

f⋆(x))} is the set of alternatives for f .

Proposition 8 (Monotonicity of C(f⋆,F)). For any two function classes F ,F such that F ⊆ F and f⋆ ∈ F ∩ F ,
C(f⋆,F) ≤ C(f⋆,F).

Proof. This result is immediate from Theorem 4: F ⊆ F implies Λ(f⋆,F) ⊆ Λ(f⋆,F) by definition of alternative set,
which in turns implies that the feasibility set of the optimization problem Λ(f⋆,F) includes the one of the optimization
problem Λ(f⋆,F). The objective functions are the same, hence the second value must be smaller.

B.2 The Unstructured Case

Let Funs denote the set of all possible functions mapping X×A into R. Note that an algorithm learning an instance f⋆ with
Funs as input has no prior knowledge about f⋆ itself. We call this setting “unstructured”, as opposed to the “structured”
setting where we are given F ⊂ Funs (e.g., F = FΦ). The following result formally shows that the complexity measure
from Theorem 4 for such an unstructured setting reduces exactly to the sum of inverse gaps appearing both in Proposition
3 and 5.
Theorem 5. For any f⋆ ∈ F such that π⋆

f⋆ is unique,

C(f,Funs) =
∑
x∈X

∑
a ̸=π⋆

f⋆ (x)

2

∆f⋆(x, a)
.

Proof. Note that the alternative set Λ(f⋆,Funs) can be decomposed into a union of X(A− 1) half-spaces, each associated
to a sub-optimal context-arm pair (x, a) containing those instances such that f(x, a) > f(x, π⋆

f⋆(x)). It is easy to see that
the closest alternative for the half-space associated with (x, a) (i.e., the one minimizing the KL divergence in the constraint
of Theorem 4) is f(x, a) = f⋆(x, a) + ∆f⋆(x, a) and f(x′, a′) = f⋆(x′, a′) for all (x′, a′) ̸= (x, a). Therefore, the
constraint associated with (x, a) yields η(x, a) ≥ 2/∆f⋆(x, a)2. There is one such constraint for each suboptimal (x, a),
hence yielding the stated lower bound.

B.3 Proof of Theorem 1

The result follows by instantiating the general lower bound of Theorem 4 to our specific function class FΦ := {f(·, ·) =
ϕ(·, ·)Tθ | ϕ ∈ Φ, θ ∈ Rdϕ}. First note that the resulting set of alternatives can be decomposed into a union of half-spaces,

Λ(f⋆,FΦ) :=
⋃
ϕ∈Φ

⋃
x∈X

⋃
a̸=π⋆

f⋆ (x)

{
θ ∈ Rdϕ | ϕ(x, a)Tθ > ϕ(x, π⋆

f⋆(x))Tθ
}
. (4)

Moreover, for any f ∈ FΦ such that f(x, a) = ϕ(x, a)Tθ,∑
x∈X

∑
a∈A

η(x, a)KLx,a(f
⋆, f) =

1

2

∑
x∈X

∑
a∈A

η(x, a)
(
f⋆(x, a)− ϕ(x, a)Tθ

)2
.

Therefore, the infimum over alternatives in the constraint of Theorem 4 can be computed by performing one minimization
of a quadratic function over (the closure of) each half-space in (4). Formally, for each ϕ ∈ Φ, x̄ ∈ X , ā ̸= π⋆

f⋆(x̄), we
compute

Iη(f⋆, ϕ, x̄, ā) := min
θ∈Rdϕ

1

2

∑
x∈X

∑
a∈A

η(x, a)
(
f⋆(x, a)− ϕ(x, a)Tθ

)2
s.t. ϕ(x̄, ā)Tθ ≥ ϕ(x̄, π⋆

f⋆(x̄))Tθ. (5)

This can be re-written in matrix notation as

Iη(f⋆, ϕ, x̄, ā) = min
θ∈Rdϕ

1

2
∥f⋆ − Fϕθ∥2Dη

s.t. (ϕ(x̄, ā)− ϕ(x̄, π⋆
f⋆(x̄)))Tθ ≥ 0. (6)

The optimal value can be found in closed-form by using Lemma 1 (proved below) with z = ϕ(x̄, ā) − ϕ(x̄, π⋆
f⋆(x̄)).

Theorem 1 is then proved by plugging this result into Theorem 4, while noting that the constraint in the latter lower bound
can be written as

Iη(f⋆, ϕ, x, a) ≥ 1 ∀ϕ ∈ Φ, x ∈ X , a ̸= π⋆
f⋆(x). (7)
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B.4 Implicit Formulation of Theorem 1

An immediate corollary from the proof of Theorem 1 (see in particular Equation 7) is the following implicit version of our
lower bound for representation learning.

Corollary 3. For any Φ and f⋆ ∈ FΦ such that π⋆
f⋆ is unique,

C(f⋆,FΦ) = inf
{η(x,a)}≥0

∑
x∈X

∑
a∈A

η(x, a)∆f⋆(x, a) s.t. Iη(f⋆, ϕ, x, a) ≥ 1 ∀ϕ ∈ Φ, x ∈ X , a ̸= π⋆
f⋆(x).

B.5 Minimizing Over Half-Spaces

We derive a general result which gives a closed-form expression for the minimization of the mean-square error for predict-
ing a function f⋆ using the linear space F{ϕ} subject to the constraint that the parameter θ lies into some half-space.

Lemma 1. Let ϕ ∈ Φ, z ∈ Rdϕ , and Dη be any XA × XA diagonal matrix with non-negative entries. Consider the
optimization problem

Iη(f⋆, ϕ, z) := min
θ∈Rdϕ

{
1

2
∥f⋆ − Fϕθ∥2Dη

s.t. zTθ ≥ 0

}
. (8)

Let θη(f⋆, ϕ, z) be a parameter attaining the minimum. Then,

Iη(f⋆, ϕ, z) =
1

2
∥f⋆ − Fϕθ

⋆
η(ϕ)∥2Dη

+ 1
(
zTθ⋆η(ϕ) ≤ 0, z ∈ Im(Vη(ϕ))

) (zTθ⋆η(ϕ))2
2∥z∥2

Vη(ϕ)†
,

θη(f
⋆, ϕ, z) = θ⋆η(ϕ)− 1

(
zTθ⋆η(ϕ) ≤ 0, z ∈ Im(Vη(ϕ))

) zTθ⋆η(ϕ)

∥z∥2
Vη(ϕ)†

Vη(ϕ)
†z.

Proof. Note that, for any vector y ∈ RXA, ∥y∥2Dη
= ∥D1/2

η y∥22. The Lagrange dual problem corresponding to (8) is

max
λ∈R≥0

min
θ∈Rdϕ

{
1

2
∥D1/2

η f⋆ −D1/2
η Fϕθ∥22 − λzTθ

}
︸ ︷︷ ︸

:=g(θ,λ)

.

Let us fix λ and optimize g(θ, λ) over θ. Let (U,Σ, V ) be an SVD decomposition of D1/2
η Fϕ, i.e., such that D1/2

η Fϕ =
UΣV T with U ∈ RXA×XA, Σ ∈ RXA×dϕ (diagonal), and V ∈ Rdϕ×dϕ . Since both U and V are orthogonal matrices
(i.e., UTU = UUT = IXA and V TV = V V T = Idϕ

),

g(θ, λ) =
1

2
∥UTD1/2

η f⋆ − ΣV Tθ∥22 − λzTV V Tθ.

Note that this follows since, for any two vectors x, y ∈ RXA, by orthogonality of U ,

∥x− Uy∥22 = ∥UUTx− Uy∥22 = (UTx− y)TUTU(UTx− y) = ∥UTx− y∥22.

We can now perform a change of variables y = V Tθ and define the function

g̃(y, λ) =
1

2
∥UTD1/2

η f⋆ − Σy∥22 − λzTV y.

Since V is invertible and V T = V −1, if yλ is a minimizer of g̃(y, λ), then θλ = V yλ is a minimizer of g(θ, λ).

Let us thus minimize g̃(y, λ) as a function of y. Its gradient w.r.t. y is

∇y g̃(y, λ) = −ΣT(UTD1/2
η f⋆ − Σy)− λV Tz.

Equating it to zero, we obtain the inequality

ΣTΣy = ΣTUTD1/2
η f⋆ + λV Tz.

We now distinguish three cases.
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Case 1: z = 0dϕ
Note that ΣTΣ is a dϕ × dϕ diagonal matrix with {σ2

i }i∈[dϕ] on its diagonal, i.e., the squared singular

values of D1/2
η Fϕ or, equivalently, the eigenvalues of (D1/2

η Fϕ)
TD

1/2
η Fϕ = FT

ϕ DηFϕ = Vη(ϕ). Note that some of these
might be zero as Vη(ϕ) might not be full rank. In this case, it is easy to see that a solution is

yλ = (ΣTΣ)†ΣTUTD1/2
η f⋆ = Σ†UTD1/2

η f⋆,

where we used Property 2 of the pseudo-inverse (see Appendix G). Note that λ has no impact on the optimization problem
(in other words, there is no constraint to be satisfied). That is, the optimal θ solving the original optimization problem (8)
is

θ = V yλ = V Σ†UTD1/2
η f⋆ (a)

= (D1/2
η Fϕ)

†D1/2
η f⋆ (b)

= (FT
ϕ DηFϕ)

†FT
ϕ Dηf

⋆ = Vη(ϕ)
†FT

ϕ Dηf
⋆ = θ⋆η(ϕ),

where (a) uses the definition of pseudo-inverse of D1/2
η Fϕ, (b) uses Property 2 of the pseudo-inverse, and the last two

equalities use respectively the definition of Vη(ϕ) and of θ⋆η(ϕ) (see Appendix A).

Case 2: z ∈ Ker(Vη(ϕ)) and z ̸= 0dϕ
Suppose that Vη(ϕ) has rank d′ < dϕ and that the singular values in Σ are sorted

in non-increasing order. Then, since the columns of V from index d′+1 to index dϕ span Ker(Vη(ϕ)), the vector V Tz has
at least one non-zero element in a coordinate i ∈ {d′ + 1, . . . , dϕ}. However, the vectors ΣTΣy and ΣTUTD

1/2
η f⋆ have

clearly all zero components in those coordinates. This means that the gradient cannot be equated to zero. In particular, this
implies that, for any λ ̸= 0, we can find y such that g̃(y, λ) = −∞. That is, the optimal solution must be at λ = 0, in
which case we reduce to Case 1 (the constraint has no impact) and we get the same optimal parameter/value.

Case 3: z /∈ Ker(Vη(ϕ)) In this case, [V Tz]i = 0 for all i ∈ {d′ + 1, . . . , dϕ}. That is, the gradient can now be equated
to zero yielding, by Property 2 of the pseudo-inverse,

yλ = (ΣTΣ)†ΣTUTD1/2
η f⋆ + λ(ΣTΣ)†V Tz = Σ†UTD1/2

η f⋆ + λ(ΣTΣ)†V Tz.

Then,

g̃(yλ, λ) =
1

2
∥UTD1/2

η f⋆ − ΣΣ†UTD1/2
η f⋆ − λΣ(ΣTΣ)†V Tz∥22 − λzTV Σ†UTD1/2

η f⋆ − λ2zTV (ΣTΣ)†V Tz.

Note that Σ(ΣTΣ)† = (ΣT)†, Σ†UTD
1/2
η f⋆ = V Tθ⋆η(ϕ) (proved in Case 1), and, by Property 4 of pseudo-inverses,

V (ΣTΣ)†V T = V Σ†(ΣT)†V T = V Σ†UTU(ΣT)†V T = (D1/2
η Fϕ)

†((D1/2
η Fϕ)

T)† = ((D1/2
η Fϕ)

TD1/2
η Fϕ)

† = Vη(ϕ)
†.

Hence,

g̃(yλ, λ) =
1

2
∥UTD1/2

η f⋆ − ΣV Tθ⋆η(ϕ)︸ ︷︷ ︸
:=w

−λ(ΣT)†V Tz∥22 − λzTθ⋆η(ϕ)− λ2∥z∥2Vη(ϕ)†

=
1

2
∥w∥22 +

λ2

2
∥(ΣT)†V Tz∥22︸ ︷︷ ︸

=∥z∥2

Vη(ϕ)†

−λzTV Σ†w − λzTθ⋆η(ϕ)− λ2∥z∥2Vη(ϕ)†

=
1

2
∥w∥22 − λzT V Σ†UTD1/2

η f⋆︸ ︷︷ ︸
=θ⋆

η(ϕ)

+λzT V Σ†ΣV Tθ⋆η(ϕ)︸ ︷︷ ︸
=θ⋆

η(ϕ)

−λzTθ⋆η(ϕ)−
λ2

2
∥z∥2Vη(ϕ)†

=
1

2
∥w∥22 − λzTθ⋆η(ϕ)−

λ2

2
∥z∥2Vη(ϕ)†

.

Differentating w.r.t. λ,

dg̃(yλ, λ)

dλ
= −zTθ⋆η(ϕ)− λ∥z∥2Vη(ϕ)†

.

If zTθ⋆η(ϕ) ≤ 0, then the optimum is obtained with λ = −zTθ⋆η(ϕ)/∥z∥2Vη(ϕ)†
, otherwise the optimum is at λ = 0.

Therefore, the optimal λ is

λ = −
zTθ⋆η(ϕ)1

(
zTθ⋆η(ϕ) ≤ 0

)
∥z∥2

Vη(ϕ)†
.



Andrea Tirinzoni, Matteo Pirotta, Alessandro Lazaric

Plugging this into the expression of yλ and then into θλ = V yλ, we find that

θλ = θ⋆η(ϕ)−
zTθ⋆η(ϕ)1

(
zTθ⋆η(ϕ) ≤ 0

)
∥z∥2

Vη(ϕ)†
V (ΣTΣ)†V Tz = θ⋆η(ϕ)−

zTθ⋆η(ϕ)1
(
zTθ⋆η(ϕ) ≤ 0

)
∥z∥2

Vη(ϕ)†
Vη(ϕ)

†z.

Final result Combining the three cases, it is easy to see that the optimal parameter is

θη(f
⋆, ϕ, z) = θ⋆η(ϕ)− 1

(
zTθ⋆η(ϕ) ≤ 0, z ∈ Im(Vη(ϕ))

) zTθ⋆η(ϕ)

∥z∥2
Vη(ϕ)†

Vη(ϕ)
†z.

The corresponding optimal value is

Iη(f⋆, ϕ, z) :=
1

2
∥f⋆ − Fϕθη(f

⋆, ϕ, z)∥2Dη

=
1

2
∥f⋆ − Fϕθ

⋆
η(ϕ)∥2Dη

+ 1
(
zTθ⋆η(ϕ) ≤ 0, z ∈ Im(Vη(ϕ))

)( (zTθ⋆η(ϕ))
2

2∥z∥2
Vη(ϕ)†

+
zTθ⋆η(ϕ)

∥z∥2
Vη(ϕ)†

α

)
,

where

α = zTVη(ϕ)
†FT

ϕ Dη(f
⋆ − Fϕθ

⋆
η(ϕ)) = zTθ⋆η(ϕ)− zTVη(ϕ)

†Vη(ϕ)θ
⋆
η(ϕ)

= zTθ⋆η(ϕ)− zTVη(ϕ)
†Vη(ϕ)Vη(ϕ)

†FT
ϕ Dηf

⋆

= zTθ⋆η(ϕ)− zTVη(ϕ)
†FT

ϕ Dηf
⋆ = zTθ⋆η(ϕ)− zTθ⋆η(ϕ) = 0.

This concludes the proof.

C PROOF OF PROPOSITIONS 2-7

C.1 Proof of Proposition 2

This result follows easily from the definition of C(f⋆,FΦ) in Theorem 1: for any realizable ϕ ∈ Φ (i.e., such that
f⋆ ∈ F{ϕ}), it is sufficient to drop the constraints associated with all representations except those for ϕ itself. The re-
sulting optimization problem yields exactly the lower bound for the CLB (f⋆,F{ϕ}) (Corollary 1). Then it must be that
C(f⋆,FΦ) ≥ C(f⋆,F{ϕ}) since we enlarged the feasibility set.

Alternatively, one can see this as a consequence of Proposition 8 by noting that FΦ = ∪ϕ∈ΦF{ϕ}.

C.2 Proof of Proposition 3

Suppose, for simplicity, that X(A− 1)/(d− 1) is an integer value.7 Let Z = {(x, a) ∈ X ×A : a ̸= π⋆
f⋆(x)} be the set of

sub-optimal context-arm pairs for f⋆. Note that it has cardinality X(A− 1). Let us partition it in n = X(A− 1)/(d− 1)
subsets Z1, . . . ,Zn, each of size d − 1. Let us enumerate the sub-optimal context-arm pairs as follows: for i ∈ [n], j ∈
[d− 1], (xij , aij) denotes the j-th context-arm pair contained in Zi.

Let us define a set Φ = {ϕ1, . . . , ϕn} of n d-dimensional representations as follows. For each i ∈ [n], we choose

ϕi(x, a) =


f⋆(x, a)

∆f⋆(x, a)1 ((x, a) = (xi1, ai1))
...

∆f⋆(x, a)1
(
(x, a) = (xi(d−1), ai(d−1))

)


Moreover, for each sub-optimal pair (xij , aij), let us define the function fij as

fij(x, a) =

{
f⋆(x, a) + ∆f⋆(x, a) if (x, a) = (xij , aij)

f⋆(x, a) otherwise.

7The proof trivially extends to the case where X(A− 1)/(d− 1) is not an integer by consider ⌈X(A− 1)/(d− 1)⌉ instead.
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Then, it is easy to see that f ∈ F{ϕi} for each f ∈ {f⋆, fi1, . . . , fi(d−1)}. In particular, f⋆ is realized by choosing
θ = (1, 0, . . . , 0)T, while fij with θ = (1, 0, . . . , 1, 0, . . . , 0)T with the second 1 in position j + 1. This implies that all
ϕ ∈ Φ are realizable for f⋆.

Lower bounding C(f⋆,FΦ) Note that, by our choice of Φ, fij ∈ FΦ for all i ∈ [n], j ∈ [d − 1]. Moreover, fij
corresponds to the closest alternative for the half-space associated with the suboptimal pair (xij , aij) in the unstructured
lower bound (see the proof of Theorem 5). This implies that, if we evaluate the constraint at (xij , aij) and ϕi in the implicit
form of Theorem 1 (see Corollary 3), we obtain that

Iη(f⋆, ϕi, xij , aij) = min
θ:ϕi(xij ,aij)Tθ≥ϕi(xij ,π⋆

f⋆ (xij))Tθ

1

2

∑
x∈X

∑
a∈A

η(x, a)
(
f⋆(x, a)− ϕi(x, a)

Tθ
)2

=
1

2
η(xij , aij)∆f⋆(xij , aij),

since the optimum is attained by θ such that ϕi(x, a)
Tθ = fij(x, a). The constraint imposes that the right-hand side is

larger than 1. This holds for all sub-optimal pairs (xij , aij). Therefore, if we call η̄ an optimal feasible allocation,

C(f⋆,FΦ) =
∑
x∈X

∑
a∈A

η̄(x, a)∆f⋆(x, a) =
∑
x∈X

∑
a̸=π⋆

f⋆ (x)

2

∆f⋆(x, a)
.

Upper bounding supϕ∈Φ C(f⋆,F{ϕ}) Now take some ϕi ∈ Φ for i ∈ [n]. From Corollary 3, we know that any feasible
η for the optimization problem in C(f⋆,F{ϕi}) must satisfy

inf
θ:ϕi(x̄,ā)Tθ≥ϕi(x̄,π⋆

f⋆ (x̄))Tθ

∑
x∈X

∑
a∈A

η(x, a)
(
f⋆(x, a)− ϕi(x, a)

Tθ
)2

≥ 2 ∀x̄ ∈ X , ā ̸= π⋆
f⋆(x̄).

For any θ, from the definition of ϕi,∑
x∈X

∑
a∈A

η(x, a)
(
f⋆(x, a)− ϕi(x, a)

Tθ
)2

=
∑
x∈X

∑
a∈A

η(x, a)
(
f⋆(x, a)(1− θ1)−∆f⋆(x, a)

∑
j:(x,a)=(xij ,aij)

θj+1

)2

=
∑

(x,a)/∈{(xij ,aij)}j∈[d−1]

η(x, a)
(
f⋆(x, a)(1− θ1)

)2
+

d−1∑
j=1

η(xij , aij)
(
f⋆(xij , aij)(1− θ1)−∆f⋆(xij , aij)θj+1

)2
.

Let us now minimize this quantity for θ such that ϕi(x̄, ā)
Tθ ≥ ϕi(x̄, π(x̄))

Tθ for some fixed (x̄, ā).

Clearly, for any (x̄, ā) /∈ {(xij , aij)}j∈[d−1], we have ϕi(x̄, ā)
Tθ = f⋆(x̄, ā). This implies that there is no constraint

associated with such a pair (x̄, ā) (the set of which we take the infimum is actually empty). Thus, we can set η(x̄, ā) = 0
for such pairs.

For (x̄, ā) = (xij , aij) for some j ∈ [d − 1], the condition on θ becomes θj+1∆f⋆(xij , aij) ≥ θ1∆f⋆(xij , aij) which is
equivalent to θj+1 ≥ θ1 since ∆f⋆(xij , aij) > 0. Let us suppose that η(x, π⋆

f⋆(x)) = ∞ (or a very large value) for all x.
Note that this has no impact on the final objective value since we pay zero regret for playing optimal actions. Then, it is
easy to see that the solution to the optimization problem above is attained with θ1 = 1 (otherwise the first term would be
extremely large), θj+1 = 1, and θl+1 = 0 for l ̸= j. The corresponding constraint is thus η(xij , aij) ≥ 2/∆f⋆(xij , aij)

2

for all j ∈ [d − 1]. Therefore, the resulting optimal allocation η̄ requires playing (1) exactly 2/∆f⋆(xij , aij)
2 times all

pairs in {(xij , aij)}j∈[d−1], (2) a large number of times the optimal pairs, and (3) zero times all the other pairs. Its regret
is trivially

∑
x∈X

∑
a∈A

η̄(x, a)∆f⋆(x, a) =

d−1∑
j=1

2

∆f⋆(xij , aij)
≤ 2(d− 1)

∆min
.

This holds for all i ∈ [n], which concludes the proof.
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C.3 Proof of Proposition 4

We already proved in Proposition 2 that C(f⋆,FΦ) ≥ supϕ∈Φ:f⋆∈F{ϕ}
C(f⋆,F{ϕ}) = C(f⋆,F{ϕ⋆}), where the equality

holds since ϕ⋆ is the unique realizable representation in Φ. We now prove that C(f⋆,FΦ) ≤ C(f⋆,F{ϕ⋆}). Combining
these two results clearly proves the statement.

Consider any optimal feasible allocation η̄ for the optimization problem associated to C(f⋆,F{ϕ⋆}) (i.e., the CLB with
known ϕ⋆). Let η̃ = η̄ + 2

εη
⋆. Clearly, since η⋆ plays only optimal actions (i.e., with zero regret),

∑
x,a

η̃(x, a)∆f⋆(x, a) =
∑
x,a

η̄(x, a)∆f⋆(x, a) = C(f⋆,F{ϕ⋆}).

Moreover, for any ϕ ∈ Φ such that ϕ ̸= ϕ⋆,

∥f⋆ − Fϕθ
⋆
η̃(ϕ)∥2Dη̃

= min
θ∈Rdϕ

∥f⋆ − Fϕθ∥2Dη̃
≥ 2

ε
min
θ∈Rdϕ

∥f⋆ − Fϕθ∥2Dη⋆ =
2

ε
∥f⋆ − Fϕθ

⋆
η⋆(ϕ)∥2Dη⋆ ≥ 2,

where the last inequality follows by the assumption on all misspecified representations. This implies that η̃ is feasible in
the optimization problem of C(f⋆,FΦ), which, together with the equality above, proves that C(f⋆,FΦ) ≤ C(f⋆,F{ϕ⋆}).

C.4 Proof of Proposition 5

First note that F{ϕ̄} is the set of all possible reward functions. In fact, for any mapping f : X×A → R, f(x, a) = ϕ̄(x, a)Tθ
for θ the vectorization of f , which implies that f ∈ F{ϕ̄}. Then, since F{ϕ̄} ⊆ FΦ∪{ϕ̄} by definition, FΦ∪{ϕ̄} is also the
set of all possible reward functions, which implies that C(f⋆,FΦ∪{ϕ̄}) is exactly the complexity of Theorem 5 for learning
f⋆ without any prior knowledge. This is exactly the one stated in Proposition 5.

C.5 Proof of Proposition 6

The inequality C(f⋆,FΦ) ≥ C(f⋆,F{ϕN}) is an immediate consequence of Proposition 2 since ϕN is realizable. The
equality follows since one could simply run an instance optimal algorithm for CLB problems (e.g., Tirinzoni et al., 2020)
on representation ϕN and obtain regret asymptotically approaching C(f⋆,F{ϕN}) log(T ).

C.6 Proof of Proposition 7

Note that a necessary and sufficient condition for C(f⋆,FΦ) = 0 is that there exists a feasible allocation η with η(x, a) = 0
for all x ∈ X and a ̸= π⋆

f⋆(x). That is, a feasible allocation which plays only optimal arms.

Let us start by proving that the condition is necessary for C(f⋆,FΦ) = 0. Let us proceed by contradiction. Suppose that
there exists ϕ with minθ ∥f⋆ − Fϕθ∥2Dη⋆

= 0 and x ∈ X , a ̸= π⋆
f⋆(x) such that zϕ(x, a)Tθ⋆η⋆(ϕ) ≤ 0 or zϕ(x, a) /∈

Im(Vη⋆(ϕ)), while C(f⋆,FΦ) = 0. Clearly, if C(f⋆,FΦ) = 0, there exists a value M > 0 (possibly very large) such
that the allocation η⋆ scaled by M is feasible . Note that scaling by a constant does not affect the column space of
the resulting design matrix (i.e., Im(Vη⋆(ϕ)) = Im(VMη⋆(ϕ))), nor does it affect the best fit in F{ϕ} (i.e., θ⋆η⋆(ϕ) =
θ⋆Mη⋆(ϕ)). However, the negation of the stated condition implies that there exists (ϕ, x, a) such that IMη⋆(f⋆, ϕ, x, a) =
Iη⋆(f⋆, ϕ, x, a) = 0. Here Iη⋆(f⋆, ϕ, x, a) = 0 is the constraint function associated to (ϕ, x, a) in Corollary 3. That is,
Mη⋆ is infeasible. This is clearly a contradiction, and thus the stated condition is necessary.

Let us now prove that the condition is sufficient for C(f⋆,FΦ) = 0. Take any ϕ. We consider two cases.

Case 1: minθ ∥f⋆ − Fϕθ∥2Dη⋆
> 0 Simply rescaling η⋆ by M > 0 yields minθ ∥f⋆ − Fϕθ∥2DMη⋆

= M minθ ∥f⋆ −
Fϕθ∥2Dη⋆

. Since the latter term is strictly positive, we can set M = 1/minθ ∥f⋆ − Fϕθ∥2Dη⋆
to guarantee that

IMη⋆(f⋆, ϕ, x, a) ≥ 1. That is Mη⋆ is feasible while maintaining the objective value to zero.
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Case 2: minθ ∥f⋆−Fϕθ∥2Dη⋆
= 0 Take any sub-optimal (x, a). We shall prove that zϕ(x, a)Tθ⋆η⋆(ϕ) > 0 and zϕ(x, a) ∈

Im(Vη⋆(ϕ)) imply that Mη⋆ is feasible for some sufficiently large M . We have

IMη⋆(f⋆, ϕ, x, a) =
(zϕ(x, a)

Tθ⋆η⋆(ϕ))2

2∥zϕ(x, a)∥2VMη⋆ (ϕ)†
.

Let (U,Σ, V ) be the SVD of D1/2
Mη⋆Fϕ. Note that

∥zϕ(x, a)∥2VMη⋆ (ϕ)† = ∥zϕ(x, a)∥2(FT
ϕDMη⋆Fϕ)†

= ∥zϕ(x, a)∥2((D1/2

Mη⋆Fϕ)TD
1/2

Mη⋆Fϕ)†

= ∥zϕ(x, a)∥2V (ΣTΣ)†V T

= zϕ(x, a)
TV (ΣTΣ)†V Tzϕ(x, a).

Suppose that VMη⋆(ϕ) has rank d′ ≤ dϕ and that the singular values in Σ are sorted in non-increasing order. It is easy
to see that the first d′ singular values of Σ are

√
Mσ1, . . . ,

√
Mσd′ , where {σi}i∈[d′] are the first d′ singular values of

D
1/2
η⋆ Fϕ and are all strictly positive (this is because rank(VMη⋆(ϕ)) = rank(Vη⋆(ϕ))). All other singular values are zero.

Thus, we have

∥zϕ(x, a)∥2Vη(ϕ)†
=

d′∑
i=1

[V Tzϕ(x, a)]
2
i

Mσ2
i

.

Recall that Im(VMη⋆(ϕ)) = Im(Vη⋆(ϕ)) = span(v1, . . . , v
′
d), where {vi}i∈[d′] denote the columns of V associated with a

non-zero singular value in Σ. Since zϕ(x, a) ∈ Im(Vη⋆(ϕ)), the vector V Tzϕ(x, a) has some non-zero element among the
first d′ components and all zeros in the remaing dϕ − d′. This implies that we can set M to

M =
2
∑d′

i=1
[V Tzϕ(x,a)]

2
i

σ2
i

(zϕ(x, a)Tθ⋆η⋆(ϕ))2
,

which implies that IMη⋆(f⋆, ϕ, x, a) ≥ 1 and thus Mη⋆ is feasible. Overall we proved that there exists a sufficiently large
M such that Mη⋆ satisfy all the constraints while achieving an objective value of zero. This concludes the proof.

C.7 Proof of Corollary 2

The proof is trivial from Proposition 7: if there exists a realizable non-HLS representation ϕ, we have by definition that
min

θ∈Rdϕ ∥f⋆ − Fϕθ∥2Dη
= 0 for any η, while there exist x ∈ X , a ̸= π⋆

f⋆(x) such that ϕ(x, a) ∈ Im(Vη⋆(ϕ)). This
violates the conditions of Proposition 7, hence C(f⋆,FΦ) > 0.

D ADDITIONAL RESULTS ON NESTED FEATURES

While learning with nested features Φ cannot reduce the instance-dependent complexity with respect to learning with
ϕN alone, when di⋆ ≪ dN one may still be wondering whether the complexity C(f⋆,F{ϕN}) can really be much larger
than C(f⋆,F{ϕi⋆}). After all, if f⋆ can be described by a low-dimensional representation (ϕi⋆ ) that is nested into ϕN ,
it essentially means that ϕN is highly redundant and it might easily be compressed. We show that even in the single
representation case, this is not possible in the worst case: there are instances where the regret of any uniformly good
algorithm must scale with dN even though di⋆ ≪ dN .

Proposition 9. Let 2 ≤ dmin < dmax ≤ X(A−1) and 2 ≤ N ≤ dmax−dmin+1. There exists an instance f⋆ : X×A → R
with minimum positive gap ∆min and a set Φ = {ϕ1, . . . , ϕN} of N nested features with ϕN of dimension dmax, ϕi⋆ = ϕ1

of dimension dmin, and

C(f⋆,F{ϕi⋆}) ≤
2dmin

∆min
, C(f⋆,F{ϕN}) ≥

dmax

∆min
.

Proof. Let π : X → A be any policy and define an instance f⋆ as f⋆(x, π(x)) = ∆min for all x ∈ X and f⋆(x, a) = 0 for
all x ∈ X , a ̸= π(x). Clearly, π⋆

f⋆ = π and all sub-optimal context-arm pairs have gap ∆min. Let (x1, a1), . . . , (xm, am)
be an arbitrary enumeration of all m = X(A− 1) sub-optimal context-arm pairs.
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We define the set of N nested features Φ = {ϕ1, . . . , ϕN} as follows. For each i ∈ [N ], representation ϕi has dimension
di ∈ {dmin, . . . , dmax} with dmin ≥ 2 and dmax ≤ X(A − 1) + 1. In particular, d1 < d2 < · · · < dN , d1 = dmin, and
dN = dmax. Representation ϕi is defined as

ϕi(x, a) =


f⋆(x, a)

∆min1 ((x, a) = (x1, a1))
...

∆min1 ((x, a) = (xdi−1, adi−1))


That is, all representations contain the true reward function in their first component, while the i-th representation contains
indicators over the first di − 1 sub-optimal context-arm pairs in the remaining di − 1 components. Note that these repre-
sentations are nested and all realizable (i.e., i⋆ = 1). To prove the proposition, we only need to compute the complexities
C(f⋆,F{ϕ1}) and C(f⋆,F{ϕN}). For all i ∈ [N ], is it easy to see from Case 2 of the proof of Proposition 3 that,

C(f⋆,F{ϕi}) =

di−1∑
j=1

2

∆f⋆(xj , aj)
=

2(di − 1)

∆min
.

Then, C(f⋆,F{ϕ1}) ≤ 2dmin

∆min
is trivial since d1 = dmin, while C(f⋆,F{ϕN}) ≥ dmax

∆min
follows since dn = dmax and

dmax ≥ 3.

Proposition 9 implies that achieving regret scaling with the dimensionality di⋆ of the smallest realizable representation is
impossible in general. In the worst-case, any uniformly good algorithm must suffer a dependence on the dimensionality of
the largest representation, regardless of the fact that a smaller realizable representation is nested into it.

E WORST-CASE LOWER BOUND (PROOF OF THEOREM 3)

We start by proving two important lemmas. Then, we use them to prove a Ω(
√
AT log(|Φ|)) lower bound (Theorem 6)

and a Ω(
√
dT log(A)) lower bound (Theorem 7). Theorem 3 (formally stated in Theorem 8 below with precise constants)

will then follow by combining these two.

Lemma 2. Let T ∈ N>0 and denote by Pf |x1:T
,Ef |x1:T

the probability and expectation operators over the full T -step
history when learning problem f with some fixed algorithm conditioned on the sequence of contexts x1, . . . , xT . For any
couple of bandit instances f1, f2 : X ×A → R and any (x̄, ā) ∈ X ×A,

Ef1|x1:T
[NT (x̄, ā)] ≤ Ef2|x1:T

[NT (x̄, ā)] +
NT (x̄)

2

√∑
x,a

Ef2|x1:T
[NT (x, a)](f1(x, a)− f2(x, a))2.

Proof. By Lemma 1 of Garivier et al. (2019), we have that, for any random variable ZT with values in [0, 1] and that is
measurable w.r.t. the T -step history conditioned on the context sequence x1:T ,

KL(Pf2|x1:T
,Pf1|x1:T

) ≥ kl(Ef2|x1:T
[ZT ],Ef1|x1:T

[ZT ]),

where kl denotes the KL divergence between two bernoulli distributions with parameter Ef2|x1:T
[ZT ] and Ef1|x1:T

[ZT ],
respectively. The left-hand side can be simplified as in Equation 8 of Garivier et al. (2019) by using the chain rule of KL
divergences together with the fact that rewards are Gaussian with unit variance:

KL(Pf2|x1:T
,Pf1|x1:T

) =
1

2

∑
x,a

Ef2|x1:T
[NT (x, a)](f1(x, a)− f2(x, a))

2.

On the other hand, by Pinsker’s inequality,

kl(Ef2|x1:T
[ZT ],Ef1|x1:T

[ZT ]) ≥ 2(Ef1|x1:T
[ZT ]− Ef2|x1:T

[ZT ])
2.

Choosing ZT = NT (x̄, ā)/NT (x̄) and rearranging concludes the proof.
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Lemma 3 (Worst-case lower bound for unstructured contextual bandits). Take any X ≥ 1, A ≥ 2. Let Π be the set of all
deterministic policies mapping [X] to [A] and, for ε > 0, define FΠ := {fπ : π ∈ Π} where fπ(x, a) := ε1 (a = π(x))

for all x, a. Then, choosing ε =
√

XA
20T , for any learning algorithm A and T ≥ X ,

max
f⋆∈FΠ

EA
f⋆ [RT (f

⋆)] ≥
√
XAT

8
√
5

.

Proof. The proof follows a construction of Auer et al. (2002b). Let us consider a uniform context distribution. Take any
π ∈ Π and consider the corresponding instance fπ ∈ FΠ. Note that, on such an instance, each action not prescribed by π
is sub-optimal with a gap of ε. Then, the expected regret of any algorithm A is

EA
fπ [RT (f

⋆)] = ε
∑
x∈X

∑
a̸=π(x)

EA
fπ [NT (x, a)] = ε

(
T −

∑
x∈X

EA
fπ [NT (x, π(x))]

)
.

We can lower bound the maximum regret over FΠ as

max
f⋆∈FΠ

EA
f⋆ [RT (f

⋆)] = max
π∈Π

EA
fπ [RT (fπ)] ≥

1

|Π|
∑
π∈Π

EA
fπ [RT (fπ)] = ε

(
T −

∑
x∈X

1

|Π|
∑
π∈Π

EA
fπ [NT (x, π(x))]

)
.

We shall thus focus on upper bounding the second term within brackets. Fix any context x̄. Since the context distribution
is independent of the specific instance,

1

|Π|
∑
π∈Π

EA
fπ [NT (x̄, π(x̄))] = Ex1:T

[
1

|Π|
∑
π∈Π

EA
fπ|x1:T

[NT (x̄, π(x̄))]

]
.

Take any π. Let f̄π(x̄, a) = 0 ∀a and f̄π(x, a) = fπ(x, a) ∀x ̸= x̄, a. Applying Lemma 2 on the couple (x̄, π(x̄)) with
f1 = fπ and f2 = f̄π ,

EA
fπ|x1:T

[NT (x̄, π(x̄))] ≤ Ef̄π|x1:T
[NT (x̄, π(x̄))] +

NT (x̄)ε

2

√
Ef̄π|x1:T

[NT (x̄, π(x̄))].

Now take A policies π1, . . . , πA which are equal to π in all contexts except x̄, where they play each a different action. Note
that one of these policies must be π itself. Averaging both sides over these policies, and using Jensen’s inequality,

1

A

∑
a∈A

EA
fπa |x1:T

[NT (x̄, πa(x̄))] ≤
1

A

∑
a∈A

Ef̄π|x1:T
[NT (x̄, πa(x̄))] +

NT (x̄)ε

2

√
1

A

∑
a∈A

Ef̄π|x1:T
[NT (x̄, πa(x̄))]

= Ef̄π|x1:T

[
1

A

∑
a∈A

NT (x̄, a)

]
+

NT (x̄)ε

2

√√√√Ef̄π|x1:T

[
1

A

∑
a∈A

NT (x̄, a)

]

=
NT (x̄)

A
+

NT (x̄)
3/2ε

2
√
A

,

where the first equality holds since f̄π does not depend on the choice of πa.

Let ΠX\{x̄} be the set of all policies defined on the context space X \{x̄} and, for π ∈ ΠX\{x̄}, let πa be the corresponding
policy extended to x̄, where πa(x̄) = a. We have

1

|Π|
∑
π∈Π

EA
fπ|x1:T

[NT (x̄, π(x̄))] =
1

|ΠX\{x̄}|
∑

π∈ΠX\{x̄}

1

A

∑
a∈A

EA
fπa |x1:T

[NT (x̄, πa(x̄))] ≤ NT (x̄)

A
+

NT (x̄)
3/2ε

2
√
A

,

where in the last step we used the inequality derived above. Thus, by Jensen’s inequality,

1

|Π|
∑
π∈Π

EA
fπ [NT (x̄, π(x̄))] ≤

Ex1:T
[NT (x̄)]

A
+

Ex1:T
[NT (x̄)

3/2]ε

2
√
A

≤ T

XA
+

√
Ex1:T

[NT (x̄)3]ε

2
√
A

.
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With a uniform context distribution, NT (x̄) ∼ Bin(T, 1/X) and its third moment has the closed-form expression

Ex1:T
[NT (x̄)

3] =
T

X
+

3T (T − 1)

X2
+

T (T − 1)(T − 2)

X3
≤ 5

T 3

X3

for T ≥ X . Plugging everything back into our regret bound,

max
f⋆∈FΠ

EA
f⋆ [RT (f

⋆)] ≥ ε

(
T − T

A
− ε

√
5T 3

4XA

)
≥ ε

(
T

2
− ε

√
5T 3

4XA

)
,

where we used A ≥ 2. The proof is concluded by optimizing over ε.

Theorem 6. Let N, d ≥ 1, A ≥ 2. There exist a context distribution and a set of d-dimensional representations Φ of size
|Φ| = N over A arms such that, for any learning algorithm A and T ≥ ⌊log(dN)/ log(A)⌋,

max
f⋆∈FΦ

EA
f⋆ [RT (f

⋆)] ≥
√
AT ⌊log(dN)/ log(A)⌋

8
√
5

.

Proof. Let X = ⌊log(dN)/ log(A)⌋. We shall build a set of d-dimensional representations Φ over X contexts and A arms
such that FΦ ⊇ FΠ, where FΠ is the set of functions from [X] to [A] defined in Lemma 3. Then, from Lemma 3 we
directly have

max
f⋆∈FΦ

EA
f⋆ [RT (f

⋆)] ≥ max
f⋆∈FΠ

EA
f⋆ [RT (f

⋆,FΦ)] ≥
√
XAT

8
√
5

.

Recall that FΠ := {fπ : π ∈ Π} where fπ(x, a) := ε1 (a = π(x)) for all x, a. Suppose we want to represent the AX

functions FΠ in FΦ. Clearly, with a single representation ϕ we can represent at least d policies π1, . . . , πd by setting

ϕ(x, a) =

1 (a = π1(x))
...

1 (a = πd(x))

 .

Then, the corresponding functions fπ1
, . . . , fπd

are realized by choosing parameters with value ε on a single component
and zero on all the others. In total we have N feature maps, so that we can represent at least Nd functions. Thus, it is
enough to have AX ≤ Nd to guarantee FΦ ⊇ FΠ. Rearranging this condition, we find that X = ⌊log(dN)/ log(A)⌋
contexts are enough. This concludes the proof.

Theorem 7. Let N ≥ 1, A ≥ 4 and d ≥ 12 log2(A). There exist a context distribution and a set of d-dimensional
representations Φ of size |Φ| = N over A arms such that, for any learning algorithm A and T ≥ d/ log2(A),

max
f⋆∈FΦ

EA
f⋆ [RT (f

⋆)] ≥
√

Td log2(A)

16
√
5

.

Proof. To gain intuition, let us start from A = 2. Suppose d is even and consider a set X = {x1, . . . , xd/2} of X = d/2
contexts. Consider a problem with 2 arms a1, a2 and a d-dimensional representation

ϕ(x, a) =


1 (x = x1, a = a1)
1 (x = x1, a = a2)

...
1
(
x = xd/2, a = a1

)
1
(
x = xd/2, a = a2

)

 .

It is clear that with ϕ we can represent any function from X to {a1, a2}. Let Π be the set of all 2X policies mapping X to
{a1, a2}. Then, F{ϕ} ⊇ FΠ, where FΠ is defined in Lemma 3. Thus, from Lemma 3, as far as T ≥ d/2,

max
f⋆∈F{ϕ}

EA
f⋆ [RT (f

⋆,F{ϕ})] ≥
√
dT

8
√
5
.
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Let us now extend this reasoning to A ≥ 2 arms.

We use a construction inspired by He et al. (2022). Let us define a representation ϕ̄ of dimension ⌊d/⌊log2(A)⌋⌋ for a
2-armed problem defined over X = ⌊⌊d/⌊log2(A)⌋⌋/2⌋ contexts and arms {ā1, ā2} as

∀x ∈ [X], a ∈ {ā1, ā2} : ϕ̄(x, a) =


1 (x = x1, a = ā1)
1 (x = x1, a = ā2)

...
1 (x = xX , a = ā1)
1 (x = xX , a = ā2)

 .

For a ∈ [2⌊log2(A)⌋], let b(a) denote the binary vector of size ⌊log2(A)⌋ encoding arm a, and let bi(a) denote its i-th
component (such that b1(a) is the least significant digit and viceversa for b⌊log2(A)⌋(a)) Then, we define the feature map
for our A-armed problem as

∀x ∈ [X], a ∈ [2⌊log2(A)⌋] : ϕ(x, a) =



ϕ̄(x, ā1+b1(a))
...

ϕ̄(x, a1+b⌊log2(A)⌋(a))

0
...
0


,

where the number of zeros is d − ⌊d/⌊log2(A)⌋⌋⌊log2(A)⌋. If A is not a power of 2, for all remaining arms, we set
ϕ(x, a) = 0. Intuitively, ϕ encodes ⌊log2(A)⌋ copies of the linear bandit problem defined by ϕ̄. Moreover, selecting an
action a ∈ [2⌊log2(A)⌋] in the problem represented by ϕ is equivalent to selecting actions {ā1+bi(a)}i∈[⌊log2(A)⌋] in the
⌊log2(A)⌋ copies of the problem represented by ϕ̄.

Now fix some parameter θ ∈ Rd and split it into consecutive vectors {θi}i∈[⌊log2(A)⌋] each of size ⌊d/⌊log2(A)⌋⌋ (and
disregard the remaining components). It is easy to see that, for any x ∈ [X] and a ∈ [2⌊log2(A)⌋],

max
a′∈A

ϕ(x, a′)Tθ − ϕ(x, a)Tθ =

⌊log2(A)⌋∑
i=1

(
max

a′∈{ā1,ā2}
ϕ̄(x, a′)Tθi − ϕ̄(x, ā1+bi(a))

Tθi

)
.

That is, the sub-optimality gap of (x, a) in the A-armed instance (ϕ, θ) is equal to the sum of gaps of the “binarized arms”
over the instances {(ϕ̄, θi)}i∈[⌊log2(A)⌋]. Note also that we can always choose θ such that the reward of optimal arms is
strictly positive, so that the remaining A− 2⌊log2(A)⌋ arms are sub-optimal.

For an instance f⋆ that is linear in ϕ and θ, let us rewrite the regret EA
f⋆ [RT (f

⋆)] in the more explicit form EA
ϕ,θ[RT (ϕ, θ)].

Then, the derivation above implies that

max
θ∈Rd

EA
ϕ,θ[RT (ϕ, θ)] ≥ max

θ∈Rd

⌊log2(A)⌋∑
i=1

EA
ϕ̄,θi

[RT (ϕ̄, θi)] =

⌊log2(A)⌋∑
i=1

max
θ∈R⌊d/⌊log2(A)⌋⌋

EA
ϕ̄,θ[RT (ϕ̄, θ)]

≥
⌊log2(A)⌋

√
2T ⌊⌊d/⌊log2(A)⌋⌋/2⌋

8
√
5

≥
√
T (d⌊log2(A)⌋ − 3⌊log2(A)⌋2)

8
√
5

≥
√
Td log2(A)

16
√
5

,

where in the second inequality we used Lemma 3 to lower bound the regret in each of the 2-armed instances using that
T ≥ d/ log2(A), exactly as we did in the initial example. In the third and fourth inequalities we simplified the expression
using the conditions A ≥ 4 and d ≥ 12 log2(A).

Therefore, we proved that there exists a linear bandit problem (with a single representation) that satisfies the stated result.
Clearly, the same applies to representation learning with N > 1 by simply ignoring the extra representations.
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Theorem 8. [Restatement of Theorem 3] Let N ≥ 1, A ≥ 4 and d ≥ 12 log2(A). There exist a context distribution
and a set of d-dimensional representations Φ of size |Φ| = N over A arms such that, for any learning algorithm A and
T ≥ max{⌊log(dN)/ log(A)⌋, d/ log2(A)},

max
f⋆∈FΦ

EA
f⋆ [RT (f

⋆)] ≥
√
T (d log2(A) +A⌊log(dN)/ log(A)⌋)

32
√
5

.

Proof. This is easy by contradiction. Suppose the statement does not hold. Then, for any set of representations and context
distribution, there exists an algorithm such that the maximum regret over the family is at most the stated quantity. Using
the sub-additivity of the square root followed by upper bounding the sum of the resulting two terms by twice the maximum
among them, we find that such an algorithm must violate either the lower bound of Theorem 6 or the one of Theorem 7.
This is a contradiction.

F THE FULLY-REALIZABLE CASE

We provide novel insights on the complexity of representation learning in the setting studied by Papini et al. (2021), where
the agent knows that f⋆ is a linear function of all representations ϕ ∈ Φ. That is, we consider the set of instances

FFR
Φ :=

{
f : X ×A → R | ∀ϕ ∈ Φ,∃θ ∈ Rdϕ : f(x, a) = ϕ(x, a)Tθ ∀x, a

}
. (9)

Clearly, FFR
Φ ⊆ FΦ and thus learning with FFR

Φ is not harder than learning with FΦ. This is intuitive since the agent is
given more prior knowledge about f⋆ itself.

F.1 Instance-dependent Lower Bound

The following result formally establishes the complexity of a representation learning problem (f⋆,FFR
Φ ).

Theorem 9. Let f⋆ ∈ FFR
Φ be an instance with unique optimal policy. Then, the complexity C(f⋆,FFR

Φ ) of Theorem 4 is

C(f⋆,FFR
Φ ) = inf

η(x,a)≥0

∑
x∈X

∑
a∈A

η(x, a)∆f⋆(x, a) s.t. Iη(f⋆, x, a) ≥ 1 x ∈ X , a ̸= π⋆
f⋆(x),

where

Iη(f⋆, x, a) := max
ϕ∈Φ

∆f⋆(x, a)21 (zϕ(x, a) ∈ Im(Vη(ϕ)))

2∥ϕ(x, a)− ϕ(x, π⋆
f⋆(x))∥2Vη(ϕ)†

.

Proof. It is easy to see that the constraint in Theorem 4 decomposes into X(A− 1) constraints, one for each sub-optimal
context-arm pair. In particular, the constraint associated with x̄ ∈ X , ā ̸= π⋆

f⋆(x̄) is that the following quantity is larger
than one:

inf
f∈FFR

Φ

∑
x∈X

∑
a∈A

η(x, a)KLx,a(f
⋆, f) s.t. f(x̄, ā) > f(x̄, π⋆

f⋆(x̄)). (10)

Clearly, FFR
Φ = ∩ϕ∈ΦF{ϕ}. This implies that the infimum over the former set is equal to the maximum of the infima over

the latter sets. This implies that the quantity above is

Iη(f⋆, x̄, ā) := max
ϕ∈Φ

{
min
θ∈Rdϕ

1

2

∑
x∈X

∑
a∈A

η(x, a)
(
f⋆(x, a)− ϕ(x, a)Tθ

)2
s.t. ϕ(x̄, ā)Tθ ≥ ϕ(x̄, π⋆

f⋆(x̄))Tθ

}
.

The inner problem is a minimization over a single half-space (the same as the one we compute in the realizable single-
representation setting). Using Lemma 1 while noting that f⋆(x, a) ∈ F{ϕ} for all ϕ ∈ Φ,

Iη(f⋆, x̄, ā) := max
ϕ∈Φ

∆f⋆(x, a)21 (zϕ(x, a) ∈ Im(Vη(ϕ)))

2∥ϕ(x, a)− ϕ(x, π⋆
f⋆(x))∥2Vη(ϕ)†

.
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F.2 Complexity of Representation Learning

We provide a series of results to characterize the complexity of representation learning in the fully-realizable setting. In
particular, we show that the problem is significantly easier than in our general setting (Assumption 1).

Fully-realizable representation learning is never harder than learning with a given representation
Proposition 10. For any Φ such that f⋆ ∈ FFR

Φ , C(f⋆,FFR
Φ ) ≤ C(f⋆,F{ϕ}) ≤ C(f⋆,FΦ).

Proof. The second inequality is proved by Proposition 2 while noting that f⋆ ∈ F{ϕ} for all ϕ ∈ Φ. The first one is an
immediate consequence of Theorem 9: it is sufficient to lower bound the maximum over ϕ in each constraints using a
single representation.

Remark 2. An immediate consequence of this result is that representation learning in the fully-realizable setting is never
harder than a CLB with any of the representations in Φ. This is in striking contrast with the general setting of Assumption
1, where representation learning is never easier than learning with any representation in Φ. The intuition from Theorem 9
is that, in the fully-realizable setting, we are allowed to choose a different representation for each x, a in order to facilitate
satisfying the exploration constraints, while in Theorem 1 we have one independent constraint for each representation.

Fully-realizable representation learning can be much easier than learning with a given representation We present
an example inspired by Lattimore and Szepesvári (2017). In our context, learning with each single representation yields a
dependence on the minimum gap, while representation learning in the fully-realizable setting does not.

Proposition 11. For any ε > 0, there exist an instance f⋆, a universal constant c, and a set of representations Φ such that
f⋆ ∈ ∩ϕ∈ΦF{ϕ} and C(f⋆,FFR

Φ ) ≤ c, while minϕ∈Φ C(f⋆,F{ϕ}) ≥ c/ε.

Proof. Let us consider a finite-armed (non-contextual) bandit problem with 4 arms. The mean-reward vector is f⋆ =
(1, 1− ε, 1− ε, 0)T. We have two realizable representations ϕ1, ϕ2 of dimension d = 3 defined as

ϕ1(a1) =

10
0

 ϕ1(a2) =

1− ε
ε
0

 ϕ1(a3) =

 0
0

1− ε

 ϕ1(a4) =

01
0



ϕ2(a1) =

00
1

 ϕ2(a2) =

1− ε
0
0

 ϕ2(a3) =

 0
ε

1− ε

 ϕ2(a4) =

01
0


The parameter realizing f⋆ is in both cases θ = (1, 0, 1)T.

We start by computing the lower bound in the FR representation learning setting. We shall look for an upper bound to the
optimal value C(f⋆,FFR

Φ ) which does not scale by 1/ε. Let us choose an allocation η for which η(a1) = M (some very
large quantity), η(a2) = η(a3) = 0. We need to find the required number of pulls to a4. Since we are looking for an upper
bound to the optimal value, it is enough to find η(a4) such that η satisfies the constraints in Theorem 9 for some specific
representations (possibly different for different sub-optimal arms). We choose ϕ1 for a2 and a4, and ϕ2 for a3. These yield
the constraints

∆f⋆(a2)
2

2∥ϕ1(a2)− ϕ1(a1)∥2Vη(ϕ1)†
=

ε2

2∥(−ε, ε, 0)T∥2
Vη(ϕ1)†

≥ 1.

∆f⋆(a3)
2

2∥ϕ2(a3)− ϕ2(a1)∥2Vη(ϕ2)†
=

ε2

2∥(0, ε,−ε)T∥2
Vη(ϕ2)†

≥ 1.

∆f⋆(a4)
2

2∥ϕ1(a4)− ϕ1(a1)∥2Vη(ϕ1)†
=

1

2∥(−1, 1, 0)T∥2
Vη(ϕ1)†

≥ 1.

Note that, by our choice of η, Vη(ϕ1) and Vη(ϕ2) are diagonal matrices with diagonal elements (M,η(a4), 0) and
(0, η(a4),M), respectively. Therefore, the constraints above reduce to

ε2

ε2/M + ε2/η(a4)
≥ 2,

ε2

ε2/η(a4) + ε2/M
≥ 2,

1

1/M + 1/η(a4)
≥ 2.
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Letting M go to infinity (which does not alter the objective value), we find that η(a4) ≥ 2 suffices. Therefore, we proved
that the allocation η = (∞, 0, 0, 2)T is feasible, and thus the optimal value is bounded by C(f⋆,FFR

Φ ) ≤ 2.

We now show that the regret when learning with each of the single representations scales at least by 1/ε. Let us do it for
ϕ1. For ϕ2 the argument will be the same since the two representations are equal up to a permutation of the first and third
component.

Clearly, since we want to lower bound the optimal value C(f⋆,F{ϕ1}), we can drop all constraints but the one associated
with a3, i.e.,

∆f⋆(a3)
2

2∥ϕ1(a3)− ϕ1(a1)∥2Vη(ϕ1)†
=

ε2

2∥(−1, 0, 1− ε)T∥2
Vη(ϕ1)†

≥ 1.

Let us set once again η(a1) = M (some very large value). Since the constraint associated with a3 requires to make the
feature norm of ϕ1(a3)− ϕ1(a1) = (−1, 0, 1− ε)T small, clearly both a2 and a4 do not serve to this purpose (they do not
cover the third dimension). So the optimal strategy must have η(a2) = η(a4) = 0. The matrix Vη(ϕ1)

† is then diagonal
with elements (M, 0, (1− ε)2η(a3)). Thus, the constraint reduces to

ε2

1/M + 1/η(a3)
≥ 2.

This implies that η(a3) ≥ 2/ε2. Plugging this into the regret, recalling that action a3 has gap ε, we obtain that
C(f⋆,F{ϕ1}) ≥ 2/ε.

F.3 Necessary and Sufficient Condition for Constant Regret

Proposition 12. A necessary and sufficient condition for C(f⋆,FFR
Φ ) = 0 is that, for all x ∈ X , a ̸= π⋆

f⋆(x), there exists
ϕ ∈ Φ such that zϕ(x, a) ∈ Im(Vη⋆(ϕ)) (equiv. ϕ(x, a) ∈ Im(Vη⋆(ϕ))).

Remark 3. This result shows that the mixing HLS condition assumed by Papini et al. (2021) (see their Definition 1) is
actually necessary for constant regret.

Proof. Proving that the condition is necessary can be easily done by contradiction. If C(f⋆,FFR
Φ ) = 0, then a rescaling of

η⋆ must be feasible. However, if for some sub-optimal (x, a) we have zϕ(x, a) /∈ Im(Vη⋆(ϕ)) for all ϕ, that would imply
that any rescaling of η⋆ is actually infeasible, hence yielding a contradiction.

The proof that the condition is sufficient can be done as a simple extension of the one of Proposition 7. Simply take any
sub-optimal (x, a) and show that a re-scaling of η⋆ is feasible by following exactly the same steps as in Proposition 7.

G USEFUL LINEAR ALGEBRA RESULTS

G.1 Singular value decomposition

We recall that the SVD of a real matrix A ∈ Rn×m is a factorization of the form A = UΣV T, with U ∈ Rn×n orthogonal
(i.e., such that UTU = UUT = I), Σ ∈ Rn×m diagonal, and V ∈ Rm×m orthogonal. Suppose A has rank d ≤ min{n,m}
and that the diagonal entries of Σ (i.e., the singular values of A) are in decreasing order (σ1 ≥ · · · ≥ σmin{n,m} ≥ 0). We
list some well-known properties of the SVD decomposition.

Properties

• The number of non-zero entries in Σ correspond to the rank of A.

• Let u1, . . . , ud be the columns of U (i.e., the left singular vectors) corresponding to non-zero singular values. Then
span(u1, . . . , ud) = Im(A).

• Let v1, . . . , vd be the columns of V (i.e., the right singular vectors) corresponding to non-zero singular values. Then
span(v1, . . . , vd) = Row(A).
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• Let vd+1, . . . , vmin{n,m} be the columns of V (i.e., the right singular vectors) corresponding to zero singular values.
Then span(vd+1, . . . , vmin{n,m}) = Ker(A).

Let A ∈ Rn×m with n ≥ m and rank(A) = d. Then,

• rank(ATA) = rank(A).

• Im(ATA) = Row(A) = span(v1, . . . , vd).

• Ker(ATA) = Ker(A) = span(vd+1, . . . , vmin{n,m}).

G.2 Pseudo-inverse

We recall that the pseudo-inverse of a matrix A ∈ Rn×m is defined as A† = V Σ†UT, where (U,Σ, V ) is the SVD of A
and Σ† is a diagonal matrix with the inverse of the non-zero elements of Σ.

Properties

1. AA†A = A and A†AA† = A†.

2. (ATA)†AT = A†.

3. (A†)T = (AT)†.

4. (AAT)† = (AT )†A†.

5. If either ATA = I or BBT = I or A = BT: (AB)† = B†A†.


