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Abstract

This work considers multiple agents traversing a
network from a source node to the goal node.
The cost to an agent for traveling a link has a
private as well as a congestion component. The
agent’s objective is to find a path to the goal
node with minimum overall cost in a decentral-
ized way. We model this as a fully decentralized
multi-agent reinforcement learning problem and
propose a novel multi-agent congestion cost min-
imization (MACCM) algorithm. Our MACCM
algorithm uses linear function approximations
of transition probabilities and the global cost
function. In the absence of a central controller
and to preserve privacy, agents communicate the
cost function parameters to their neighbors via
a time-varying communication network. More-
over, each agent maintains its estimate of the
global state-action value, which is updated via
a multi-agent extended value iteration (MAEVI)
sub-routine. We show that our MACCM algo-
rithm achieves a sub-linear regret. The proof re-
quires the convergence of cost function parame-
ters, the MAEVI algorithm, and analysis of the
regret bounds induced by the MAEVI triggering
condition for each agent. We implement our al-
gorithm on a two node network with multiple
links to validate it. We first identify the opti-
mal policy, the optimal number of agents going
to the goal node in each period. We observe that
the average regret is close to zero for 2 and 3
agents. The optimal policy captures the trade-
off between the minimum cost of staying at a
node and the congestion cost of going to the goal
node. Our work is a generalization of learning
the stochastic shortest path problem.
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1 INTRODUCTION

The shortest path problems are ubiquitous in many do-
mains, such as driving directions on Google maps, auto-
mated warehouse systems, fleet management, and commu-
nication and computer networks. However, in most theoret-
ical research, it is assumed that a single agent is traversing
the network Bellman (1958); Min et al. (2022); Vial et al.
(2022). So, the actual traversal cost does not factor in the
crucial components such as congestion due to other agents
and the agent’s private travel efficiency. In this work, we
consider a multi-agent setup where a set of agents traverse
through a given network from a fixed initial/source node
to a pre-specified goal node in a fully decentralized way.
The cost to an agent for traveling a network link depends
on two components: 1) congestion and 2) its private op-
erational/fuel efficiency factor. Here the congestion is the
number of agents using same link. The common objective
of the agents is to find a path to the goal node in a com-
pletely decentralized way, and minimizing overall conges-
tion cost while maintaining the agents’ privacy. The de-
centralized setup has two major benefits over a centralized
setup: 1) it can handle humongous state and action spaces,
and 2) the agents can preserve the privacy of their actions
and actual rewards. This is a generalization of the well-
known learning stochastic shortest path (SSP) problem.

We model it as a fully decentralized multi-agent reinforce-
ment learning (MARL) problem and propose a multi-agent
congestion cost minimization (MACCM) algorithm. To
incorporate privacy, we first parameterize the global cost
function and share its parameters across the neighbors via
a consensus matrix. Moreover, an agent’s transition proba-
bility of going to the next node is also unknown to an agent.
To this end, we propose the linear mixture MDP model,
where the model parameters are expressed as the linear
mixture of a given basis function. Our MACCM algorithm
considers the privacy and works in an episodic manner.
Each episode begins at a fixed initial node and ends if all
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the agents reach the goal node. In the MACCM algorithm,
each agent maintains an estimate of the global state-action
value function and takes actions accordingly. This estimate
is updated according to a multi-agent extended value iter-
ation (MAEVI) sub-routine when a ‘doubling criteria’ is
triggered. The intuition of using this updated estimate is
that it will suggest a ‘better’ policy. We show that the up-
dated optimistic estimator indeed provides a better policy,
and our algorithm achieves a sub-linear regret. Specifically,
our main contributions are:

a) In Section 3 we introduce a multi-agent version of SSP
and propose a fully decentralized MACCM algorithm and
show that it achieves a sub-linear regret (in Section 4). The
regret depends on

√
nK and cmin, where n is the number

of agents, K is the number of episodes, and cmin is the
minimum cost of staying at any node except the goal node.

b) To prove the regret bound (in Section 4), we first show
the convergence of the consensus based cost function pa-
rameters via the stochastic approximation method. More-
over, we show the convergence of the MAEVI algorithm.
Finally, we separately bound the regret terms induced by
the agents for whom MAEVI is triggered or not. The re-
sults of Min et al. (2022) and Vial et al. (2022) that consider
learning SSP are special cases of our work (Remark 1).

c) To validate the usefulness of our algorithm, we provide
some computational evidence on a hard instance in Section
5. In particular, we consider a network with two nodes and
multiple links on each node. The average regret is very
close to zero for 2 and 3 agents’ cases. The regret com-
putation requires an optimal policy, the optimal number of
agents going to the goal node in each period. This optimal
policy captures the agents trade-off between the minimum
cost of staying at the initial node and the congestion based
cost of going to the goal node.

2 PROBLEM SETTING

Let (Z,E) be a given network, where Z =
{sinit, 1, 2, . . . , q, g} is the set of nodes and
E = {(i, j) | i, j ∈ Z} are the set of edges in the
network, where sinit and g are fixed initial and the goal
nodes respectively. Let N = {1, 2, . . . , n} be the set of
agents. The common objective of agents is to traverse
through the network from initial node sinit to a goal node
g while minimizing the sum of all agents’ path travel costs.
The cost incurred by an agent includes a private efficiency
component and another component that is congestion
based, as given in Eq. (1) below. To achieve this objective
and to preserve privacy, we model this problem as a fully
decentralized multi-agent reinforcement learning (MARL)
and provide a Multi-Agent Congestion Cost Minimization
(MACCM) algorithm that achieves a sub-linear regret.

Formally, an instance of MACCM problem is described as

(N,S ∪ {sinit}, g, {Ai}i∈N , {ci}i∈N ,P, {Gt}t≥0). Here
S ∪ {sinit} is the global state space with a fixed source
state sinit. Each s ∈ S is a vector of size n representing
the node at which each agent is present in that order, that is
s = (s1, s2, . . . , sn), where si ∈ Z for each agent i ∈ N .
Often we write s = (si, s−i) to denote the state s, where
agent i is at node si and s−i = (s1, . . . , si−1, si+1, . . . , sn)
is the node of all but agent i.

Let Ai(s) be the set of links available to agent i ∈ N when
the global state is s. So, the global action at the state s is
A(s) =

∏
i∈N Ai(s). A typical element in A(s) is a vector

of size n, one for each agent as (a1(s), a2(s), . . . , an(s)),
where ai(s) ∈ Ai(s). Here ai(s) represents the action taken
by agent i when the global state is s. However, the action
taken by each agent is private information and not known to
other agents. For a global state s, and global action a, each
agent i ∈ N realizes a local cost ci(s, a). It is important
to note that the cost of agent i depends on the action taken
by other agents also. In this work, we assume that the cost
ci(s, a) depends on two components. The first one is the
private component that is local to the agent, and the second
is the congestion component. The private component might
represent the agent’s efficiency. The congestion is defined
as the number of agents using the same link. In particular,

ci(s, a) = Ki(s, a) ·
∑
j∈N

1{ai(s)=aj(s)}, (1)

where Ki(s, a) is a bounded private component of the i-th
agent cost, not known to other agents, and the summation
of indicators is the congestion seen by agent i in the state
s. This implies, ci(·, ·) is bounded. We assume all the costs
are realized/incurred just before a period ends.

Moreover, we assume that ci(·, ·) ≥ cmin > 0. This
assumption is common in many recent works for single
agent Stochastic Shortest Path (SSP) problem (Rosenberg
et al., 2020; Tarbouriech et al., 2020). cmin > 0 en-
sures that agents do not have the incentive to wait indefi-
nitely at any node for the clearance of congestion. Suppose
s = (g, s−i), that is agent i has reached the goal state g
and the other agents are somewhere else in the network,
then agent i stays at goal node, and ci((g, s−i), a) = 0.
Moreover, once an action a is taken in state s the state will
change to s′ with probability P(s′|s, a) and this continue till
s = (g, . . . , g) = g, i.e., all the agents reach goal state.

Let Tπ(s) be the time to reach the goal state g starting from
the state s and following policy π. A stationary and deter-
ministic policy π : S → A is called a proper policy if
Tπ(s) < ∞ almost surely. Let Πp be the set of all sta-
tionary, deterministic and proper policies. We make the
following assumption about proper policy, common in SSP
literature Tarbouriech et al. (2020); Cohen et al. (2021).

Assumption 1 (Proper Policy Existence). There exists at
least a proper policy, meaning Πp ̸= ∅.
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Next, we define the cost-to-go or the value function for a
given policy π

V π(s) := lim
T→∞

Eπ

[ T∑
t=1

c̄(st, π(st))
∣∣∣s1 = s

]
, (2)

where c̄(st, π(st)) := 1
n

∑n
i=1 c

i(st, π(st)). So, our global
objective translates to finding a policy π⋆ such that π⋆ =
argminπ∈Πp

V π(sinit). Let V ⋆ = V π⋆

be the value of
the optimal policy π⋆. We also define the state-action value
function Qπ(s, a) of a policy π as

lim
T→∞

Eπ

[
c̄(s1, a1)+

T∑
t=2

c̄(st, π(st))
∣∣∣s = s1, a = a1

]
. (3)

Since c̄(·, ·) is bounded, for any proper policy π ∈ Πp,
both V π(·) and Qπ(·, ·) are also bounded. This work as-
sumes that the transition probability function P is written
as the linear mixture of given basis functions (Min et al.,
2022; Vial et al., 2022). In particular, we make the follow-
ing assumption about the transition probability function.
Assumption 2 (Transition probability approximation).
Suppose the feature mapping ϕ : S × A × S → Rnd

is known and pre-given. There exists a θ⋆ ∈ Rnd with
||θ⋆||2 ≤

√
nd such that P(s′|s, a) = ⟨ϕ(s′|s, a),θ⋆⟩ for

any triplet (s′, a, s) ∈ S×A×S. Also, for a bounded func-
tion V : S 7→ [0, B], it holds that ||ϕV (s, a)||2 ≤ B

√
nd,

where ϕV (s, a) =
∑

s′∈S ϕ(s
′|s, a)V (s′).

For simplicity of notation, given any function V :
S → [0, B] we define PV (s, a) =

∑
s′∈S P(s′|s, a)V (s′),

∀ (s, a) ∈ S ×A. Then, under the Assumption 2 we have,

PV (s, a) =
∑
s′∈S
⟨ϕ(s′|s, a),θ⋆⟩V (s′) = ⟨ϕV (s, a),θ⋆⟩.

Moreover, for any function V : S → [0, B], we define
the Bellman operator L as LV (s) := mina∈A{c̄(s, a) +
PV (s, a)}. Throughout, we assume that B⋆ is the up-
per bound on the optimal value function V ⋆, i.e., B⋆ =
maxs∈S V

⋆(s). Without loss of generality, we assume that
B⋆ ≥ 1, and denote the optimal state-action value by
Q⋆ = Qπ⋆

, which satisfy the following Bellman equation
for all (s, a) ∈ S ×A

Q⋆(s, a) = c̄(s, a) + PV ⋆(s, a);V ⋆(s) = min
a∈A

Q⋆(s, a).

However, in our decentralized model, the global cost c̄(·, ·)
is unknown to any agent. So, at every decision epoch, each
agent shares some parameters of the model using a time-
varying communication network Gt to its neighbors. To
this end, we propose to estimate the globally averaged cost
function c̄. Let c̄(·, ·;w) : S×A → R be the class of param-
eterized functions where w ∈ Rk for some k << |S||A|.
To obtain the estimate c̄(·, ·;w) we seek to minimize the
following least square estimate

min
w

Es,a[c̄(s, a)− c̄(s, a;w)]2. (OP 1)

A key result that ensures the working of a decentralized
algorithm is the following; see also Zhang et al. (2018);
Trivedi and Hemachandra (2022)

Proposition 1. The optimization problem in Eq. (OP 1) is
equivalently characterized as (both have the same station-
ary points)

min
w

n∑
i=1

Es,a[c
i(s, a)− c̄(s, a;w)]2. (OP 2)

The proof details are available in the Appendix A.1. Note
that the objective function in Eq. (OP 2) has the same form
with separable objectives over agents as in the distributed
optimization literature Nedic and Ozdaglar (2009); Boyd
et al. (2006). This motivates the following updates for pa-
rameters of the global cost function estimate by agent i, wi

to minimize the objective in Eq. (OP 2)

w̃i
t ← wi

t + γt · [cit(·, ·)− c̄(·, ·;wi
t)] · ∇wc̄(·, ·;wi

t)

wi
t+1 =

∑
j∈N

lt(i, j)w̃
j
t ,

(4)

where lt(i, j) is the (i, j)-th entry of the consensus matrix
Lt obtained using communication network Gt at time t. γt
is the step-size satisfying

∑
t γt =∞ and

∑
t γ

2
t <∞, and

c̄(·, ·;wi
t) is the estimate of global cost function by agent

i at time t. In the above equation, at time t, each agent
updates an intermediate cost function parameters w̃i

t using
the stochastic gradient descent method to get the minima
of the optimization problem given in (OP 2). Each agent
shares these intermediate parameters to the neighbors via
the communication matrix and update the true parameters
wi.

The central idea of using the communication/consensus
matrix in decentralized RL algorithms is to share some
information among the consensus matrix neighbors while
preserving privacy. Actions, which are private information,
are not shared. However, a global objective cannot be at-
tained without a central controller and without sharing any
information or parameters. Thus, the cost function param-
eters w’s (not actual costs) are shared with the neighbors
as per the communication matrix. They converge to their
true parameters a.s. (Theorem 2). Such a sharing of the
cost function parameters via communication matrix to the
neighbors is an intermediate construct that maintains pri-
vacy of each actions and costs, but, achieves the global
objective, Equation (2). We make following assumption
(Zhang et al., 2018; Bianchi et al., 2013) on communica-
tion matrix {Lt}t≥0.

Assumption 3 (Consensus matrix). The consensus matri-
ces {Lt}t≥0 ⊆ Rn×n satisfy (i) Lt is row stochastic, i.e.,
Lt1 = 1 and E(Lt) is column stochastic, i.e., 1⊤E(Lt) =
1⊤. Further, there exists a constant κ ∈ (0, 1) such that for
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any lt(i, j) > 0, we have lt(i, j) ≥ κ; (ii) Consensus ma-
trix Lt respects Gt, i.e., lt(i, j) = 0, if (i, j) /∈ Et; (iii) The
spectral norm of E[L⊤

t (I − 11⊤/n)Lt] is less than one.

We make the following assumption (Zhang et al., 2018;
Trivedi and Hemachandra, 2022) on the features associated
with the cost function while showing the convergence of
the cost function parameters w (Theorem 2).
Assumption 4 (Full rank). For each agent i ∈ N , the
cost function c̄(s, a) is parameterized as c̄(s, a;w) =
⟨ψ(s, a),w⟩. Here ψ(s, a) = [ψ1(s, a), . . . , ψk(s, a)] ∈ Rk

are the features associated with pair (s, a). Further, we as-
sume that these features are uniformly bounded. Moreover,
let the feature matrix Ψ ∈ R|S||A|×k have [ψm(s, a), s ∈
S, a ∈ A]⊤ as its m-th column for any m ∈ [k], then Ψ
has full column rank.

Since the global cost is unknown, each agent uses the pa-
rameterized cost and maintains its estimate of V (·) and
Q(·, ·). Let V i(·) andQi(·, ·) be the estimate of these func-
tions by agent i. So, the modified Bellman optimality equa-
tion for all (s, a) and for all agents i ∈ N is

Qi⋆(s, a;wi) = c̄(s, a;wi) + PV i⋆(s, a;wi)

V i⋆(s;wi) = min
a∈A

Qi⋆(s, a;wi)
(5)

We later show in Theorem 2 that wi
t → w⋆. Hence

c̄(s, a;wi
t) → c̄(s, a;w⋆), Qi⋆(s, a;wi

t) → Qi⋆(s, a) and
V i⋆(s;wi

t) → V i⋆(s) as c̄(s, a;wi
t), Qi⋆(s, a;wi

t) and
V i⋆(s;wi

t) are continuous functions of wi, where Qi⋆(s, a)
and V i⋆(s) are defined as

Qi⋆(s, a) = c̄(s, a;w⋆)+PV i⋆(s, a); V i⋆(s) = min
a∈A

Qi⋆(s, a).
(6)

With the above assumptions, we aim to design an algo-
rithm for the episodic setting where an episode begins from
a common initial state sinit and ends at g such that the fol-
lowing regret over K episodes is minimized

RK =

K∑
j=1

Ij∑
l=1

1

n

∑
i∈N

(
c̄(sj,l, aj,l;wi

j,l)−K · V i⋆(sinit)
)
,

(7)
here Ij is the length of the episode j = 1, . . . ,K, and
c̄(sj,l, aj,l;wi

j,l) is the estimate of the global cost function
by agent i in the l-th step of the j-th episode. Note that
in the above regret expression, instead of the global opti-
mal value, we use the average of V i⋆, averaged over all the
agents. This is because (1) V ⋆ is not available to any agent;
however as mentioned above, each agent i maintains its es-
timate V i⋆. (2) Theorem 2 implies V i⋆ = V ⋆ for all i ∈ N ;
however, we write V i⋆ in the regret definition to avoid any
confusions, in both the Equations (6) and (7). Our proofs
will remain the same, with this minor change. (3) We em-
pirically observe that V i⋆ = V ⋆ for all i ∈ N . So, the
regret definition in Equation (7) is the same as the true re-
gret in terms of true optimal values. In the next section, we

present the MACCM algorithm that is fully decentralized
and achieves a sub-linear regret.

3 MACCM ALGORITHM

We next describe the MACCM algorithm design. It is in-
spired by the single agent UCLK algorithm for discounted
linear mixture MDPs of Zhou et al. (2021). It also uses
some structure of the LEVIS algorithm of Min et al. (2022).

Let t be the global time index, and K be the number
of episodes. Each episode starts at fixed state sinit =
(sinit, sinit, . . . , sinit) and ends when all the agents reach
to the goal state g = (g, g, . . . , g). An episode k is decom-
posed into many epochs; let ji denote the j-th epoch of the
agent i. Within this epoch, agent i usesQi

ji
as an optimistic

estimator of the global state-action value function.

Initially, for each agent i ∈ N , the estimate of the global
state value function V i and the global state-action value
function Qi is taken as 1 for all s ̸= g, and 0 for s = g. In
each episode k, if an agent i ∈ N is not at the goal node,
it takes action using the current optimistic estimator of the
global state-action valueQi

ji
. In particular, the action taken

by agent i is according to the minmax criteria that captures
its best action against the worst possible action in terms of
congestion by other agents. However, if agent i has reached
the goal node, it will stay there until the episode gets over,
i.e., till all other agents reach the goal node (lines 5-12).

(Lines 16-20) Apart from executing a policy that uses an
optimistic estimator, each agent i ∈ N also updates the
Σt and bt. These updates are used to estimate the true
model parameters. Σt and bt together are inspired from the
ridge regression based minimizer of the model parameters;
similar updates were used by Zhou et al. (2021); Abbasi-
Yadkori et al. (2011) in single agent model. The doubling
criteria are used to update the optimistic estimator of the
state-action value function. The determinant doubling cri-
teria reflects the diminishing returns of the underlying tran-
sition. However, more than this update is required as it
cannot guarantee the finite length of the epoch, so a simple
time doubling criteria is used. Moreover, the cost function
parameters are also updated as given in Eq. (4).

In lines 21-26 of the algorithm, we maintain a set St con-
taining those agents for whom the doubling criteria are sat-
isfied at time t. The determinant doubling criteria is used
in many previous works of linear bandits, and RL (Abbasi-
Yadkori et al., 2011; Zhou et al., 2021). It is often referred
to as lazy policy update. It reflects the diminishing returns
of learning the underlying transitions. However, the de-
terminant doubling criteria alone is insufficient and can-
not guarantee the finite length of each epoch since feature
norm ||ϕV i(·, ·)|| are not bounded from below. So, a sim-
ple time doubling criteria is introduced. This criterion pos-
sesses many excellent properties, including the easiness of
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Algorithm 1 MACCM
1: Input: regularization parameter λ, confidence radius
{βt}, an estimate B ≥ B⋆.

2: Initialize: set t ← 1. For each agent i ∈ N , set
ji = 0, ti0 = 0,Σi

0 = λI, bi0 = 0, Qi
0(s, ·), V i

0 (s) =
1, ∀ s ̸= g, and 0 otherwise; wi

0 = 0; γt = 1
t+1 .

3: for k = 1, . . . ,K do
4: Set st = sinit = (sinit, sinit, . . . , sinit).
5: while st ̸= g do
6: for i ∈ N do
7: if sit ̸= g then
8: ait = argmin

a∈Ai
t

max
a−i
t ∈A−i

t

Qi
ji
(st, a, a−i

t )

9: else
10: ait = g
11: end if
12: end for
13: Set at = (a1t , a2t , · · · , ant )
14: receive cost c̄t(st, at;w) = 1

n

∑n
i=1 c̄(st, at;wi

t)
15: next state st+1 ∼ P(·|st, at)
16: for i ∈ N do
17: Set w̃i

t ← wi
t + γt[c

i(st, at) − c̄(st, at;wi
t)] ·

∇wc̄(st, at;wi
t)

18: Set Σi
t ← Σi

t−1 + ϕV i
ji
(st, at)ϕV i

ji
(st, at)

⊤

19: Set bit ← bit−1 + ϕV i
ji
(st, at)V i

ji
(st+1)

20: end for
21: Set St = ∅, Sc

t = N
22: for i ∈ N do
23: if det(Σi

t) ≥ 2det(Σi
tiji

) or t ≥ 2tiji then
24: Set St = St ∪ {i}; and Sc

t = Sc
t \ {i}

25: end if
26: end for
27: for i ∈ St do
28: Set ji ← ji + 1; tiji ← t, and ϵji ← 1

tiji

29: θ̂iji ← Σi−1

t bit

30: Set Ciji ←
{
θ : ||Σi1/2

tiji
(θ − θ̂iji)||2 ≤ βtji

}
31: Set Qi

ji
(·, ·)←MAEVI(Ciji , ϵji ,

1
tiji
,wi

t)

32: Set V i
ji
(·) = minai∈Ai Qi

ji
(·, ai, a−i)

33: end for
34: Send parameters to the neighbors
35: Get wi

t+1 =
∑

j∈N lt(i, j)w̃
j
t

36: Set t← t+ 1
37: end while
38: end for

implementation and the low space and time complexity.

(Lines 27-33) We switch the epoch for all agents i ∈ St and
update their optimistic estimator of the state-action value
function using the multi-agent extended value iteration
(MAEVI) subroutine. Moreover, we set the MAEVI er-
ror parameter ϵji =

1
tji

to bound the cumulative error from

the value iterations by a constant, i.e., (2tji − tji) · ϵji = 1.

The optimism in the MACCM algorithm in period t is
due to the construction of confidence set Ciji for all the
agents i ∈ St, which is input to the MAEVI sub-routine.
The MAEVI sub-routine requires a confidence ellipsoid
Ciji containing true model parameters. This confidence
set is constructed in line 30 of the MACCM algorithm,
which is obtained via minimization of a suitable ridge re-
gression problem with confidence radius βt. Moreover,
we construct a set B to ensure that the model parameters
form a valid transition probability function. In particu-
lar, the model parameters are taken from Ciji ∩ B. Here
B := {θ : ∀(s, a), ⟨ϕ(·|s, a),θ⟩ is probability distribution
and ⟨ϕ(s′|s, a)⟩ = 1{s′ ̸=g}}. In Theorem 3 we prove that
the true model parameters θ⋆ are in the set Ciji ∩ B with
high probability.

The MAEVI algorithm uses a discount term q, which is
key in the convergence of the MAEVI sub-routine. This
is because ⟨·, ϕV i(·, ·)⟩ is not a contractive map, so we use
an extra discount term (1 − q) that provides the contrac-
tion property. This may lead to an additional bias that can
be suppressed by suitably choosing a q. Particularly, we
choose q = 1

tji
, and it will yield an additional regret of

O(log T ) in the final regret. The term (1 − q) biases the
estimated transition kernel towards the goal state g, which
also encourages further optimism. Similar design is also
available in Min et al. (2022); Tarbouriech et al. (2021).

It is important to note that we use the stochastic approx-
imation based rule to update the cost function parameters
wi. We want to emphasize that MAEVI uses the most re-
cent cost function parameters. These parameters are up-
dated at each time period t via the consensus matrix in
line 35 of the MACCM algorithm. The convergence of the
cost function parameters ensures the convergence of state-
action value function and these are used in regret analysis
of the MACCM algorithm (Theorems 1 and 2).

4 MAIN RESULTS AND OUTLINE OF
PROOFS

In this Section, we outline the main results. Due to space
considerations, we defer all the proof details to the Ap-
pendix A. The following Theorem provides the bound on
the regret RK given in Eq. (7) for the MACCM algorithm.

Theorem 1. Under the Assumptions 1, 2, for any δ > 0, let

βt = B
√
nd log

(
4
δ

(
nt2 + nt3B2

λ

))
+
√
λnd, for all t ≥ 1,

where B ≥ B⋆ and λ ≥ 1. Then, with a probability of at
least 1− δ, the regret of the MACCM algorithm satisfies

RK = Õ
(
B1.5d

√
nK/cmin · log2

(
KBnd

cminδ

)
+
B2nd2

cmin
log2

(
KBnd

cminδ

))
.

(8)
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Algorithm 2 Multi-Agent EVI routine
1: Input: Set of agents S; Confidence set
Ck; ϵk;wk, ∀ k ∈ S; discount term q.

2: Initialize: SetQk,(0)(·, ·), V k,(0)(·) = 0, V k,(−1)(·) =
∞, ∀ k ∈ S

3: for k ∈ S do
4: if Ck ∩ B ̸= ∅ then
5: while ||V k,(l) − V k,(l−1)||∞ ≥ ϵk do
6: Qk,(l+1)(·, ·) = c̄(·, ·;wk)

+ (1− q) minθ∈Ck∩B ⟨θ, ϕV k,(l)(·, ·)⟩
7: V k,(l+1)(·) = mina∈AQ

k,(l+1)(·, a)
8: end while
9: Set l← l + 1

10: end if
11: end for
12: Set Qk(·, ·)← Qk,(l+1)(·, ·), ∀k ∈ S
13: Output: Qk(·, ·), ∀k ∈ S

If B = O(B⋆), then the regret is Õ(B1.5
⋆ d

√
nK/cmin).

The proof of Theorem 1 includes three major steps: 1)
convergence of cost function parameters (Theorem 2); 2)
MAEVI analysis (Theorem 3); 3) regret decomposition
(Theorem 4). The proof is available in Appendix A.2

Convergence of cost function parameters: We next show
the convergence of the cost function parameters wi. To this
end, let d(s) be the probability and stationary distribution
of the Markov chain {st}t≥0 under policy π, and π(s, a) be
the probability of taking action a in state s. Moreover, let
Ds,a = diag[d(s) · π(s, a), s ∈ S, a ∈ A] be the diagonal
matrix with d(s) · π(s, a) as diagonal entries.

Theorem 2. Under assumptions 3 and 4, with sequence
{wi

t}, we have limt wi
t = w⋆ almost surely for each agent

i ∈ N , where w⋆ is unique solution to

Ψ⊤Ds,a(Ψw⋆ − c̄) = 0. (9)

The proof of this theorem uses the stochastic approxima-
tions of the single time-scale algorithms of Borkar (2022).
The detailed proof is deferred to the Appendix A.3. The
equation in above theorem is obtained by taking the first-
order derivative of the least square minimization of the dif-
ference between the actual cost function and its linear pa-
rameterization.

Multi-Agent EVI analysis: Next, we show that the
MAEVI algorithm converges in finite time to the optimistic
estimator of the state-action value function. Specifically,
we have the following theorem.

Theorem 3. Let βt = B
√
nd log

(
4
δ

(
nt2 + nt3B2

λ

))
+

√
λnd, for all t ≥ 1. Then with probability at least 1−δ/2,

and for each agent i ∈ N , for all ji ≥ 1, MAEVI converges
in finite time, and the following hold: θ⋆ ∈ Ciji ∩ B, 0 ≤
Qi

ji
(·, ·) ≤ Qi⋆(·, ·;wi), and 0 ≤ V i

ji
(·) ≤ V i⋆(·;wi).

The proof of this theorem is deferred to Appendix A.4 due
to space considerations.

Regret Decomposition: Next, we give the details of the
regret decomposition. To this end, we first show that the
total number of calls J to the MAEVI algorithm in the
entire analysis is bounded. Let J i be the total number of
calls to the MAEVI algorithm made by agent i. Note that
J ≤

∑
i∈N J i. An agent i ∈ N makes a call to the MAEVI

algorithm if either the determinant doubling criteria or the
time doubling is satisfied. Let J i

1 be the number of calls to
MAEVI made via determinant doubling criteria, and J i

2 be
the calls to the EVI algorithm via the time doubling criteria.
Therefore, J i ≤ J i

1 + J i
2.

Lemma 1. The total number of calls to the MAEVI algo-
rithm in the entire analysis, J , is bounded as

J ≤ 2n2d log

(
1 +

TB2
⋆nd

λ

)
+ 2n log(T ). (10)

The proof of the above lemma is deferred to the Appendix
A.5. For the regret decomposition, we divide the time hori-
zon into disjoint intervals m = 1, 2, . . . ,M . The endpoint
of an interval is decided by one of the two conditions: 1)
MAEVI is triggered for at least one agent, and 2) all the
agents have reached the goal node. This decomposition is
explicitly used in the regret analysis only and not in the ac-
tual algorithm implementation. It is easy to observe that
the interval length (number of periods in the interval) can
vary; letHm denote the length of the intervalm. Moreover,
at the end of the M th interval, all the K episodes are over.
Therefore, the total length of all the intervals is

∑M
m=1Hm,

which is the same as
∑K

k=1 Tk, where Tk is the time to fin-
ish the episode k. Hence, both representations reflect the
total time T to finish all the K episodes. Using the above
interval decomposition, we write the regret RK as

RK = R(M) ≤
M∑

m=1

Hm∑
h=1

1

n

n∑
i=1

c̄(sm,h, am,h,wi)

+1−
∑

m∈M(M)

1

n

n∑
i=1

V i
ji(m)(sinit),

(11)

hereM(M) is the set of all intervals that are the first inter-
vals in each episode. In RHS we add 1 because |V i

0 | ≤ 1.
In the Theorem below, we decompose the regret RK as

Theorem 4. Assume that the event in Theorem 3 holds,
then we have the following upper bound on the regret

R(M) ≤ E1 + E2 + 2n2dB⋆ log

(
1 +

TB2
⋆nd

λ

)
+ 2nB⋆ log(T ) + 2

(12)
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where E1 and E2 are defined as

E1 =

M∑
m=1

Hm∑
h=1

[
1

n

n∑
i=1

{
c̄(sm,h, am,h,wi)

+ PV i
ji(m)(sm,h, am,h)− V i

ji(m)(sm,h)

}]
,

E2 =

M∑
m=1

Hm∑
h=1

[
1

n

n∑
i=1

V i
ji(m)(sm,h+1)

− 1

n

n∑
i=1

PV i
ji(m)(sm,h, am,h)

]
.

The proof of this theorem is deferred to the Appendix A.6.
To complete the proof of Theorem 1, we bound E1 and E2

separately (Appendix C.3, C.4). Bounding E1 uses all the
intrinsic properties of MACCM algorithm 1. Unlike the
single-agent setup, here, we separately consider the set of
all agents for whom the MAEVI is triggered or not. Thus,
E1 is decomposed into E1(Sm) and E1(S

c
m) where Sm

is the set of agents for whom MAEVI is triggered in m-
th interval, and Sc

m are remaining agents. The bounds on
E1(Sm) andE1(S

c
m) are specifically required in our multi-

agent setup and are novel. Moreover, E2 is the martingale
difference sum, so it is bounded using the concentration
inequalities.

5 COMPUTATIONAL EXPERIMENTS

In this Section, we provide the details of the computations
to validate the usefulness of our MACCM algorithm. Con-
sider a network with two nodes {sinit, g}. Thus, the num-
ber of states is 2n, where n is the number of agents. In
each state the actions available to each agent are Ai =
{−1, 1}d−1, for some given d ≥ 2. So, the total num-
ber of actions is 2nd. Since the number of states and ac-
tions is exponentially large, we parameterize the transition
probability. For each (s′, a, s) ∈ S × A × S , the global
transition probability is parameterized as Pθ(s′|s, a) =
⟨ϕ(s′|s, a),θ⟩. The features ϕ(s′|s, a) are described below.

(ϕ(s′
1 |s1, a1), . . . , ϕ(s′n |sn, an)), if s ̸= g,

0nd, if s = g, s′ ̸= g,
(0nd−1, 2

n−1), if s = g, s′ = g,

where ϕ(s′
i |si, ai) is defined as

ϕ(s′
i

|si, ai) =



(
−ai, 1−δ

n

)⊤
, if si = s′

i

= sinit(
ai, δ

n

)⊤
, if si = sinit, s

′i = g

0⊤
d , if si = g, s′

i

= sinit(
0d−1,

1
n

)⊤
, if si = g, s′

i

= g.

Here 0⊤
d = (0, 0, . . . , 0)⊤ is a vector of d dimension

with all zeros. Thus, the features ϕ(s′
i |si, ai) ∈ Rnd.

Moreover, the transition probability parameters are taken
as θ =

(
θ1, 1

2n−1 ,θ
2, 1

2n−1 . . . ,θ
n, 1

2n−1

)
where θi ∈{

− ∆
n(d−1) ,

∆
n(d−1)

}d−1

, and ∆ < δ.

Lemma 2. The features ϕ(s′|s, a) satisfy the following:
(a)

∑
s′⟨ϕ(s′|s, a),θ⟩ = 1, ∀ s, a; (b) ⟨ϕ(s′ = g|s =

g, a),θ⟩ = 1, ∀ a; (c) ⟨ϕ(s′ ̸= g|s = g, a),θ⟩ = 0, ∀ a.

The proof is deferred to the Appendix B.1. Recall, from
Assumption 4, c̄(s, a;w) = ⟨ψ(s, a),w⟩. We take the fea-
tures as ψ(s, a) = (ψ(s1, a1), ψ(s2, a2), . . . , ψ(sn, an)),
where ψ(sinit, ai) =

∑n
j=1 1{ai=aj |sj=sinit}, and

ψ(g, ai) = 0 for any ai ∈ Ai. That is the feature
ψ(sinit, ai) captures the congestion realized by any agent
i present at sinit. For each agent i ∈ N and for each s, a
pair the private componentKi(s, a) ∼ Uniform(cmin, 1).
Further, each entry of the consensus matrix is taken as 1/n,
where n is the number of agents.

The intent of this small 2 node network is 3 fold: (1) This 2
node network is common in RL literature Min et al. (2022),
as it depicts the worst-case performance in the form of a
lower bound on the regret. (2) Though the network seems
very small, the number of states is 2n, and both the number
of actions and model parameters are 2nd, i.e., exponential
in the number of agents, and the feature dimension. So, the
model complexity increases exponentially in the number of
agents offering a computationally challenging model. (3)
The major computational head in our algorithm is due to
the MAEVI sub-routine; in each step, we solve a compu-
tationally challenging discrete combinatorial optimization
problem in model parameters. Given these constraints, we
consider a small network with a low number of agents;
however, our algorithm achieves sub-linear regret even in
this hard instance. For a general network with any number
of agents, a separate feature design and a suitable model
parameters choice can make the MAEVI algorithm easy;
such a feature design in itself is a complex problem.

Next, we compute the value of the optimal policy for the
above model. We require it in the regret computations.
First, note that the value of the optimal policy is defined as
the sum of expected costs if all agents reach the goal state
exactly in 1 time period, in 2 time period, and so on. Let xj
be the number of agents move to the goal node at each pe-
riod j = 1, 2, . . . , t− 1, and remaining xt = n−

∑t−1
j=1 xj

agents move to the goal node by t-th period. We call this
sequence of departures of agents to the goal node as the
‘departure sequence’. For the above departure sequence,
the cost incurred is Cα(x1, . . . , xt−1, xt) =

α

t−1∑
j=1

x2j +

t−1∑
j=1

(
n−

j∑
i=1

xi

)
· cmin + αx2t , (13)

where α is the mean of the uniform distribution U(cmin, 1),
i.e., α = cmin+1

2 . We use this α instead of the private cost
to compute the optimal value. The first term in the above
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equation is because all xj agents have moved to the goal
node in time period j; hence the congestion is xj . More-
over, each agent incurs the private cost α in this period. So,
the cost incurred to any agent as per Eq. (1) is αxj , and the
number of agents moved are xj , and hence the total cost in-
curred is (αxj)× xj = αx2j . This happens for all the time
periods j = 1, 2, . . . , t − 1, so we sum this for (t − 1) pe-
riods. The remaining agents at each time period incurred a
waiting cost of cmin; thus, we have a second term. Finally,
the third term is because the remaining agents move to the
goal node at the last period t. So, the optimal value, V ⋆ is

V ⋆ =

∞∑
t=1

P[x⋆1, . . . , x⋆t ] · Cα(x
⋆
1, . . . , x

⋆
t ) (14)

where x⋆1, . . . , x
⋆
t are the optimal departure sequence.

These x⋆j are obtained by minimizing the cost function
Cα(x1, . . . , xt) in Eq. (13). Moreover, P[x⋆1, . . . , x⋆t ] is
the probability of occurrence of this optimal departure se-
quence. Note that, unlike the regret defined in Eq. (7) that
use the cost function parameters, here we take the value of
the optimal policy defined above. The following Theorem
provides x⋆1, . . . , x

⋆
t and its cost Cα(x

⋆
1, . . . , x

⋆
t ).

Theorem 5. The optimal departure sequence is given by

x⋆j =

⌊
n

t
+

(
t+ 1

2
− j
)
· cmin

2α

⌋
, ∀ j ∈ [t− 1],

x⋆t = n−
t−1∑
j=1

x⋆j (15)

The costCα(x
⋆
1, x

⋆
2, . . . , x

⋆
t ) of using the above optimal de-

parture sequence is

αt
(n
t

)2
+n(t−1) · cmin

2α
− t(t− 1)(t+ 1)

12
· c

2
min

4α2
. (16)

The proof of above theorem is deferred to the Appendix
B.2. The above cost captures the trade-off between the min-
imum cost to an agent for staying at the initial node and the
congestion cost. In particular, the first term captures all
agents’ total cost of going to the goal node. The remaining
terms capture the minimum cost of staying at sinit.

Apart from the cost of the optimal departure sequence, we
also require the probability of this departure sequence to
compute V ⋆. To this end, we recall the feature design of
transition probability that allows an agent to stay or depart
from the initial node sinit. Note that agent i stays or departs
from initial state iff the sign of the action ai matches the
sign of the transition probability function parameter θi, i.e,
sgn(aij) = sgn(θi

j) for all j = 1, 2, . . . , d−1 (more details
are available in SM). Using this sign matching property, we
have the following theorem for the transition probability.
Theorem 6. The transition probability P[x⋆1, . . . , x⋆t ] is
given by

t−1∏
k=1

(
1−γn+(γ−η)

k∑
j=1

x⋆j
)
×
(
γn−(γ−η)

t−1∑
j=1

x⋆j
)
, (17)

where γ =
(
∆
n + δ

n·2n−1

)
and η = 1

n·2n−1 .

The proof of this Theorem is deferred to the Appendix B.3.
Using the above transition probability along with cost in
Eq. (16) get V ⋆. However, it is hard to get the closed form
expression of V ⋆, so we use its approximate value for regret
computation. The approximate optimal value V ⋆

T in terms
of a given large T <∞ is

V ⋆
T =

T∑
t=1

P[x⋆1, . . . , x⋆t ] · Cα(x
⋆
1, . . . , x

⋆
t ), (18)

To obtain a better approximation of the optimal value V ⋆,
we tune T . Moreover, note that we are approximating the

Figure 1: Average regret for n = 2 agents in green and n =
3 agents in red. Here d = 2, δ = 0.1,∆ = 0.2,K = 7000.
V ⋆
T = 2.15 and 4.365 for 2 and 3 agents respectively. All

the values are averaged over 15 runs.

private component of the cost by α. Thus, the above V ⋆
T

will have some error; we minimize it in our computations
by running the MAACM algorithm for multiple runs and
average the regret over these runs. The average regret for 2
and 3 agents are very close to zero, as shown in Figure 1.

Remark 1. Suppose n = 1 and c(s, a) = cmin = 1 for
all s, a. Then, the optimal departure sequence is x⋆1 =
· · · = x⋆t−1 = 0, x⋆t = 1. So, from Eq. (13), the op-
timal cost is t. Moreover, the probability in Eq. (17)
reduces to (1 − ∆ − δ)t−1(∆ + δ) and hence V ⋆ =∑∞

t=1(1 − ∆ − δ)t−1(∆ + δ) · t = 1
δ+∆ . Thus, we re-

cover Min et al. (2022) results for 2 node network with 1
agent (and hence with no congestion cost). Also, the fea-
tures used in Min et al. (2022) and Vial et al. (2022) are
interchangeable. So, we have more general results with ex-
tra complexity regarding congestion and privacy.

6 RELATED WORK

The single agent SSP is well known for decades (Bertsekas,
2012). However, these assume the knowledge of the transi-
tion probabilities and the cost of each edge. Recently, there
has been much work on the online SSP problem when the
transition or the cost is not known or random. In such cases,



Prashant Trivedi, Nandyala Hemachandra

the RL based algorithms are proposed (Min et al., 2022;
Vial et al., 2022; Tarbouriech et al., 2020, 2021). Many in-
stances of SSP are run over multiple episodes using these
algorithm, and the regret over K episodes of the SSP is
defined.

The online SSP problem is first described in Tarbouriech
et al. (2020) with Õ(K2/3) regret. Later this is improved
in Rosenberg et al. (2020). They gave a upper bound of
Õ(B⋆|S|

√
|A|K), and a lower bound of Ω(B⋆

√
|S||A|K)

where B⋆ is an upper bound on the expected cost of the
optimal policy. However, they assume that the cost func-
tions are known and deterministic. Authors in Cohen et al.
(2021) assume the cost function to be i.i.d. and initially
unknown. They give an upper and a lower bound prov-
ing the optimal regret of Θ̃(

√
(B2

⋆ +B⋆)|S||A|K) The
algorithms proposed by Rosenberg et al. (2020) and Tar-
bouriech et al. (2020) uses the “optimism in the face of un-
certainty (OFU)” principle that in-turn uses the ideas from
UCRL2 algorithm of Jaksch et al. (2010) for average re-
ward MDPs. Cohen et al. (2021) uses a black-box reduc-
tion of SSP to finite horizon MDPs. Similar reduction is
used in Chen and Luo (2021); Chen et al. (2021) for SSP
with adversarially changing costs. Cohen et al. (2021) gave
a new algorithm named ULCVI for regret minimization in
finite-horizon MDPs. Tarbouriech et al. (2021) extended
the work of Cohen et al. (2021) to obtain a comparable re-
gret bound for SSP without prior knowledge of expected
time to reach the goal state.

Often the cost and the transition probabilities are unknown,
and the state and action space is humongous. To this
end, many researchers use function approximations of the
transition probabilities, the per-period cost, or both (Wang
et al., 2020; Yang and Wang, 2020). Some recent works
in this direction are Jia et al. (2020); Min et al. (2022);
Jin et al. (2020); Zhou et al. (2021). In particular, Min
et al. (2022) proposes a LEVIS algorithm that uses the op-
timistic update of the estimated Q function using the ex-
tended value iteration (EVI) algorithm. Unlike Min et al.
(2022), authors in Vial et al. (2022) uses OFU principle and
parameterize the cost function also. Moreover, the feature
design of the transition probabilities is also different; how-
ever, the features in these works are interchangeable. The
regrets obtained in these works depend K, B⋆, and cmin.
In our work, we simultaneously use the linear function ap-
proximations of the transition probabilities and the global
cost function. We also provide a decentralized multi-agent
algorithm incorporating congestion cost and agents’ pri-
vacy of cost.

7 DISCUSSION

This work considers a multi-agent variant of the optimal
path-finding problem on a given network with pre-specified
initial and goal nodes. The cost of traversing a link of the

network depends on the private cost of the agent (capturing
the agent’s travel efficiency) and the congestion on the link.
The unknown transition probability is the linear function of
a given basis function. Moreover, each agent maintains an
estimate of global cost function parameters, that are shared
among the agents via a communication matrix.

We propose a fully decentralized multi-agent congestion
cost minimization (MACCM) algorithm that achieves a
sub-linear regret. In every episode of the MACCM algo-
rithm, each agent maintains an optimistic estimate of the
state-action value function; this estimate is updated ac-
cording to a MAEVI sub-routine. The update happens if
the ‘doubling criteria’ is triggered for any agent. To our
knowledge, this is the first work that considers the multi-
agent version of the congestion cost minimization problem
over a network with linear function approximations. It has
broader applicability in many real-life scenarios, such as
decentralized fleet management. Experiments for 2 and 3
agent cases on a network validate our results.

The work we consider offers many challenges and future
directions, and we mention some of these here. The cur-
rent algorithm is based on the optimistic state-action value
function updated according to doubling criteria. A better
optimistic estimator with tighter regret bounds can be tried.
For example, one can use a parameterized policy space and
incorporate the feedback from the policy parameter in the
state-action value function. For large networks we can ex-
plore a distinct feature design and suitable model param-
eters to address the scalability of computations. Further,
a lower bound on the regret of our multi-agent congestion
cost minimization, MACCM, algorithm is desirable. De-
centralized learning of a multi-agent congestion cost mini-
mization with capacity constraints on the network links (a
generalization of capacitated multi-commodity flow prob-
lems) is a further possible research direction.
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APPENDIX

In this appendix we give the details of proofs omitted in the main results in Section A; further details of the feature design
and the computations in Section B; proofs of the intermediate lemmas and propositions in Section C; and some useful
results that we use from the existing literature in Section D.

For better readability, we first reiterate the result, and then give its proof.

A PROOFS AND DETAILS OF THE MAIN RESULTS

First, we give proofs of the results we omitted in the main paper.

A.1 Proof of Proposition 1

We first provide the equivalence of the optimization problems (OP 1) and (OP 2) obtain from the least square minimizer of
the global cost function. Recall the optimization problem (OP 1) is

min
w

Es,a[c̄(s, a)− c̄(s, a;w)]2. (OP 1)

Recall the proposition: The optimization problem in (OP 1) is equivalently characterized as (both have the same stationary
points)

min
w

n∑
i=1

Es,a[c
i(s, a)− c̄(s, a;w)]2. (OP 2)

Proof. Taking the first order derivative of the objective function in optimization problem (OP 1) w.r.t. w, we have:

−2× Es,a[c̄(s, a)− c̄(s, a;w)]×∇wc̄(s, a;w), = −2× Es,a

[
1

n

∑
i∈N

ci(s, a)− c̄(s, a;w)

]
×∇wc̄(s, a;w),

= − 2

n
× Es,a

[∑
i∈N

ci(s, a)− n · c̄(s, a;w)

]
×∇wc̄(s, a;w),

= − 2

n
× Es,a

[∑
i∈N

(
ci(s, a)− c̄(s, a;w)

)]
×∇wc̄(s, a;w).

Ignoring the factor 1
n in the above equation, we exactly have the first order derivative of the objective function in (OP 2).

Thus, both optimization problems have the same stationary points. Hence, (OP 1) is an equivalent characterization of the
optimization problem (OP 2).

A.2 Proof of Theorem 1

In this section, we give the proof of our main result (Theorem 1). It provides the upper bound on the regret of our MACCM
algorithm. The proof of this theorem relies on an intermediate Lemma 3 (given below).

Recall the theorem: Under the Assumptions 1, 2, for any δ > 0, let βt = B
√
nd log

(
4
δ

(
nt2 + nt3B2

λ

))
+
√
λnd, for all

t ≥ 1, where B ≥ B⋆ and λ ≥ 1. Then, with probability at least 1− δ, the regret of the MACCM algorithm satisfies

RK = O
(
B1.5d

√
nK/cmin · log2

(
KBnd

cminδ

)
+
B2nd2

cmin
log2

(
KBnd

cminδ

))
(19)

Proof. Note that the total cost incurred by each agent in K episodes is upper bounded by RK + KB⋆ and it is lower
bounded by cmin · n · T . This provides the relation between a fixed quantity K and the random quantity T . To complete
the proof we use the following lemma.
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Lemma 3. Under Assumptions 1 and 2, for any δ > 0, let βt = B
√
nd log

(
4
δ

(
nt2 + nt3B2

λ

))
+
√
λnd for all t ≥ 0,

where B ≥ B⋆ where λ ≥ 1. Then with the probability of at least 1− δ, the regret of the MACCM algorithm satisfies

RK ≤ 10βT

√
Td log

(
1 +

TB2
⋆

λ

)
+ 16n2dB⋆ log

(
T +

T 2B2
⋆nd

λ

)
,

where T is the total number of time periods.

The proof of this lemma is given in Appendix C.1. Using the above lemma, with probability at least 1− δ, we have

cmin · n · T ≤ 10βT

√
Td log

(
1 +

TB2
⋆

λ

)
+ 16n2dB⋆ log

(
T +

T 2B2
⋆nd

λ

)
+KB⋆.

Solving the above equation for T , we have

T = O
(
log2

(n
δ

)
·
(
KB⋆

ncmin
+
B2

⋆d
2

c2min

))
.

Plugging this back into Lemma 3, we have the desired result of Theorem 1.

To complete the proof of above theorem, we need to prove the above Lemma 3. To this end, we require the convergence
of the cost function parameters as stated in Theorem 2. Let d(s) be the probability and stationary distribution of the
Markov chain {st}t≥0 under policy π, and π(s, a) be the probability of taking action a is state s. Moreover, let Ds,a =
diag[d(s) · π(s, a)] be the diagonal matrix with d(s) · π(s, a) as diagonal elements.

A.3 Proof of Theorem 2

Recall the theorem: Under the Assumptions 3 and 4, with sequence {wi
t}, we have limt wi

t = w⋆ a.s. for each agent i ∈ N ,
where w⋆ is unique solution to

Ψ⊤Ds,a(Ψw⋆ − c̄) = 0.

Proof. To prove the convergence of the cost function parameters, we use the following proposition to give bounds on wi
t

for all i ∈ N . For proof, we refer to Zhang et al. (2018).

Proposition 2. Under Assumptions 3, and 4 the sequence {wi
t} satisfy supt ||wi

t|| <∞ a.s., for all i ∈ N .

Let Ft = σ(cτ ,wτ , sτ , aτ , Lτ−1, τ ≤ t) be the filtration which is an increasing σ-algebra over time t. Define the following
for notation convenience. Let ct = [c1t , . . . , c

n
t ]

⊤ ∈ Rn , and wt = [(w1
t )

⊤, . . . , (wn
t )

⊤]⊤ ∈ Rnk. Moreover, let A ⊗ B
represent the Kronecker product of any two matrices A and B. Let yt = [(y1t )

⊤, . . . , (ynt )
⊤]⊤, where yit+1 = [(cit+1 −

ψ⊤
t wi

t)ψ
⊤
t ]

⊤. Recall, ψt = ψ(st, at). Let I be the identity matrix of the dimension k×k. Then update of wt can be written
as

wt+1 = (Lt ⊗ I)(wt + γt · yt+1). (20)

Let 1 = (1, . . . , 1) represents the vector of all 1’s. We define the operator ⟨w⟩ = 1
n (1

⊤ ⊗ I)w = 1
n

∑
i∈N wi. This

⟨w⟩ ∈ Rk represents the average of the vectors in {w1,w2, . . . ,wn}. Moreover, let J = ( 1n11
⊤) ⊗ I ∈ Rnk×nk is the

projection operator that projects a vector into the consensus subspace {1⊗u : u ∈ Rk}. Thus Jw = 1⊗⟨w⟩. Now define
the disagreement vector w⊥ = J⊥w = w− 1⊗ ⟨w⟩, where J⊥ = I −J . Here I is nk × nk dimensional identity matrix.
The iteration wt can be decomposed as the sum of a vector in disagreement space and a vector in consensus space, i.e.,
wt = w⊥,t + 1⊗ ⟨wt⟩. The proof of convergence consists of two steps.

Step 01: To show limt w⊥,t = 0 a.s. From Proposition 2 we have P[supt||wt|| < ∞] = 1, i.e., P[∪K1∈Z+ {supt||wt|| <
K1}] = 1. It suffices to show that limt w⊥,t1{supt||wt||<K1} = 0 for any K1 ∈ Z+. Lemma 5.5 in Zhang et al. (2018)
proves the boundedness of E

[
||β−1

t w⊥,t||2
]

over the set {supt||wt|| ≤ K1}, for any K1 > 0. We state the lemma here.

Proposition 3 (Lemma 5.5 in Zhang et al. (2018)). Under assumptions 3, and 4 for any K1 > 0, we have

supt E[||β−1
t w⊥,t||21{supt||wt||≤K}] <∞.
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From Proposition 3 we obtain that for any K1 > 0, ∃ K2 < ∞ such that for any t ≥ 0, E[||w⊥,t||2] < K2γ
2
t over the

set {supt ||wt|| < K1}. Since
∑

t γ
2
t < ∞, by Fubini’s theorem we have

∑
t E(||w⊥,t||21{supt ||wt||<K1}) < ∞. Thus,∑

t ||w⊥,t||21{supt ||wt||<K1} < ∞ a.s. Therefore, limt w⊥,t1{supt||wt||<K1} = 0 a.s. Since {supt||wt|| < ∞} with
probability 1, thus limt w⊥,t = 0 a.s. This ends the proof of Step 01.

Step 02: To show the convergence of the consensus vector 1 ⊗ ⟨wt⟩, first note that the iteration of ⟨wt⟩ (Equation (20))
can be written as

⟨wt+1⟩ =
1

N
(1⊤ ⊗ I)(Lt ⊗ I)(1⊗ ⟨wt⟩+ w⊥,t + γt yt+1)

= ⟨wt⟩+ γt⟨(Lt ⊗ I)(yt+1 + γ−1
t w⊥,t)⟩

= ⟨wt⟩+ γt E(⟨yt+1⟩|Ft) + βtξt+1, (21)

where

ξt+1 = ⟨(Lt ⊗ I)(yt+1 + γ−1
t w⊥,t)⟩ − E(⟨yt+1⟩|Ft), and

⟨yt+1⟩ = [(c̄t+1 − ψ⊤
t ⟨wt⟩)ψ⊤

t ]
⊤.

Note that E(⟨yt+1⟩|Ft) is Lipschitz continuous in ⟨wt⟩. Moreover, ξt+1 is a martingale difference sequence and satisfies

E[||ξt+1||2 | Ft] ≤ E[||yt+1 + γ−1
t w⊥,t||2Rt

| Ft] + ||E(⟨yt+1⟩ | Ft)||2, (22)

where Rt =
L⊤

t 11
⊤Lt⊗I
n2 has bounded spectral norm. Bounding first and second terms in RHS of Equation (22), we have,

for any K1 > 0
E(||ξt+1||2|Ft) ≤ K3(1 + ||⟨wt⟩||2),

over the set {supt ||wt|| ≤ K1} for some K3 <∞. Thus condition (3) of Assumption 5 is satisfied. The ODE associated
with the Equation (21) has the form

⟨ẇ⟩ = −Ψ⊤Ds,aΨ⟨w⟩+Ψ⊤Ds,ac̄. (23)

Let the RHS of Equation (23) be h(⟨w⟩). Note that h(⟨w⟩) is Lipschitz continuous in ⟨w⟩. Also, recall that Ds,a =
diag[d(s) · π(s, a), s ∈ S, a ∈ A]. Hence the ODE given in Equation (23) has unique globally asymptotically stable
equilibrium w⋆ satisfying

Ψ⊤Ds,a(c̄−Ψw⋆) = 0.

Moreover, from Propositions 2, and 3, the sequence {wt} is bounded almost surely, so is the sequence {⟨wt⟩}. Specializing
Corollary 8.1 and Theorem 8.3 on page 114-115 in Borkar (2022) we have limt ⟨wt⟩ = w⋆ a.s. over the set {supt ||wt|| ≤
K1} for any K1 > 0. This concludes the proof of Step 02.

The proof follows from Proposition 2 and results from Step 01. Thus, we have limt wi
t = w⋆ a.s. for each i ∈ N .

Apart from the convergence of the cost function parameter, we also require the MAEVI analysis; in particular, we now
prove the Theorem 3.

A.4 Proof of Theorem 3

Recall the theorem: Let βt = B
√
nd log

(
4
δ

(
nt2 + nt3B2

λ

))
+
√
λnd, for all t ≥ 1. Then with probability at least 1−δ/2,

and for each agent i ∈ N , for all ji ≥ 1, MAEVI converges in finite time, and the following holds

θ⋆ ∈ Ciji ∩ B, 0 ≤ Q
i
ji(·, ·) ≤ Q

i⋆(·, ·;wi), 0 ≤ V i
ji(·) ≤ V

i⋆(·;wi)

Proof. To prove this Theorem, for each agent i ∈ N , we decompose t into different rounds. Each round ji ≥ 1 of
agent i corresponds to t ∈ [tiji + 1, tiji+1], during which the action-value function estimator is the output Qi

ji
of MAEVI

sub-routine by agent i. We will apply the induction argument on the rounds to show that optimism holds for all ji ≥ 1.

Consider round ji = 1 for agent i ∈ N . In this round, let t ∈ [1, ti1]. We have V i
0 ≤ B⋆, from the algorithm’s initialization.

Define ηit = V i
0 (st+1)− ⟨ϕV i

0
(st, at),θ

⋆⟩ for t ∈ [1, ti1]. Then {ηit}
ti1
t=1 are B⋆-sub-Gaussian.
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Applying Theorem 7 of Abbasi-Yadkori et al. (2011) in our case, with probability at least
(
1− δ

n·ti1(ti1+1)

)
we have,∥∥∥∥∥Σi−1/2

t

t∑
k=1

ϕV i
0
(sk, ak)η

i
k

∥∥∥∥∥
2

≤ B⋆

√
2 log

(
det(Σi

t)
1/2

δ/(n · ti1(ti1 + 1)) · det(Σi
t−1)

1/2

)
(i)
= B⋆

√
2 log

(
det(Σi

t)
1/2

δ/(n · ti1(ti1 + 1)) · λnd/2

)

(ii)

≤ B⋆

√√√√√√2 log


(
λ+

tB2
⋆nd
nd

)nd/2
δ/(n · ti1(ti1 + 1)) · λnd/2



= B⋆

√√√√√√2 log

 λnd/2 ·
(
1 +

tB2
⋆

λ

)nd/2
δ/(n · ti1(ti1 + 1)) · λnd/2

× (δ/(n · ti1(ti1 + 1)))nd/2

(δ/(n · ti1(ti1 + 1)))nd/2



= B⋆

√√√√√√2 log


(
1 +

tB2
⋆

λ

)nd/2
(δ/(n · ti1(ti1 + 1)))nd/2

× (δ/(n · ti1(ti1 + 1)))nd/2

δ/(n · ti1(ti1 + 1))


= B⋆

√√√√2 log

(
1 +

tB2
⋆

λ

δ/(n · ti1(ti1 + 1))

)nd/2

+ 2 log

(
δ

n · ti1(ti1 + 1)

)nd/2−1

(iii)

≤ B⋆

√√√√2 log

(
1 +

tB2
⋆

λ

δ/(n · ti1(ti1 + 1))

)nd/2

= B⋆

√√√√nd log

(
1 +

tB2
⋆

λ

δ/(n · ti1(ti1 + 1))

)

= B⋆

√√√√nd log

(
n · ti1(ti1 + 1) +

n·t·ti1(ti1+1)B2
⋆

λ

δ

)
, (24)

where (i) follows from the fact that det(Σi
t−1) = λnd; (ii) uses the determinant trace inequality (Theorem 8) along with

the assumption that ||ϕV i
0
|| ≤ B⋆

√
nd; and (iii) uses the fact that 0 < δ

n·ti1(ti1+1)
≤ 1 hence log

(
δ

n·ti1(ti1+1)

)
< 0.

Next, we consider the LHS of Equation (24) and give the lower bound for the same.∥∥∥∥∥Σi−1/2

t

t∑
k=1

ϕV i
0
(sk, ak)ηik

∥∥∥∥∥
2

(i)
=

∥∥∥∥∥Σi−1/2

t

t∑
k=1

ϕV i
0
(sk, ak) · (V i

0 (sk+1)− ⟨ϕV i
0
(sk, ak),θ∗⟩)

∥∥∥∥∥
2

=

∥∥∥∥∥Σi1/2

t Σi−1

t

t∑
k=1

ϕV i
0
(sk, ak) · V i

0 (sk+1)−Σi1/2

t Σi−1

t (Σi
t − λI)θ

⋆

∥∥∥∥∥
2

(ii)
=
∥∥∥Σi1/2

t θ̂
i

t −Σi1/2

t θ⋆ + λΣi−1/2

t θ⋆
∥∥∥
2

(iii)

≥
∥∥∥Σi1/2

t (θ̂
i

t − θ⋆)
∥∥∥
2
−
∥∥∥λΣi−1/2

t θ⋆
∥∥∥
2

(iv)

≥
∥∥∥Σi1/2

t (θ̂
i

t − θ⋆)
∥∥∥
2
−
√
λnd, (25)

where (i) follows by the definition of ηik; (ii) uses the updates of Σi
t and definition of θ̂

i

t in the algorithm; (iii) is the
consequence of the triangle inequality, i.e., ||a||−||b|| ≤ ||a+b|| ; and finally (iv) follows from the fact that ||θ⋆|| ≤

√
nd.
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From Equations (24) and (25) we have the following:

B⋆

√√√√nd log

(
n · ti1(ti1 + 1) +

n·t·ti1(ti1+1)B2
⋆

λ

δ

)
≥
∥∥∥Σi1/2

t (θ̂
i

t − θ⋆)
∥∥∥
2
−
√
λnd.

From the definition of βt in this Theorem, we have

∥∥∥Σi1/2

t (θ̂
i

t − θ⋆)
∥∥∥
2
≤ B⋆

√√√√nd log

(
n · ti1(ti1 + 1) +

n·t·ti1(ti1+1)B2
⋆

λ

δ

)
+
√
λnd ≤ βti1 .

Since above holds for all t ∈ [1, ti1] with probability at least 1− δ
n·ti1(ti1+1)

, the true parameters θ⋆ ∈ Ci1 ∩ B. This implies

in round 1, for each agent i ∈ N , the true parameters are in set Ci1 ∩ B. To complete round 1, we need to show that
the output Qi

1 and V i
1 of MAEVI are optimistic for each agent i ∈ N . This will be done using the second induction

argument on the loop of MAEVI. For the base step, it follows from the non-negativity of the Qi⋆(·, ·;wi) and V i⋆(·;wi)
that Qi,(0)(·, ·) ≤ Qi⋆(·, ·;wi) and V i,(0)(·) ≤ V i⋆(·;wi).

Now, assume that Qi,(l)(·, ·) and V i,(l)(·, ·) are optimistic. For the (l + 1)-th iterate in MAEVI algorithm, we have

Qi,(l+1)(·, ·) = c̄(·, ·;wi) + (1− q) min
θ∈Ci

1∩B
⟨θ, ϕV i,(l)(·, ·)⟩

(i)
= c̄(·, ·;wi) + (1− q) ⟨θ⋆, ϕV i,(l)(·, ·)⟩
(ii)
= c̄(·, ·;wi) + (1− q) PV i,(l)(·, ·)
(iii)

≤ c̄(·, ·;wi) + PV i,(l)(·, ·)
(iv)

≤ Qi⋆(·, ·;wi),

where (i) holds because θ⋆ is the minimizer; (ii) is by definition of the linear function approximation of the cost-to-go
function. (iii) is because (1 − q) is a positive fraction. The last inequality uses the definition of Qi⋆(·, ·;wi) and the
induction hypothesis on l, V i,(l)(·) is optimistic, i.e., V i,(l)(·) ≤ V i⋆(·;wi). Therefore, by induction Qi,(l+1)(·, ·) is also
optimistic for all l, and hence the final output Qi

1(·, ·) and V i
1 (·) are optimistic. This finishes the proof of round 1.

For the outer induction, suppose that the event in Theorem 3 holds for round 1 to ji − 1 for each agent i ∈ N with high
probability. Therefore, θ⋆ ∈ Cik ∩ B for rounds k = 1, 2, . . . , ji − 1. And in each round k = 1, 2, . . . , ji − 1, the output
of the MAEVI algorithms are optimistic, i.e., Qi

k(·, ·) ≤ Qi⋆
k (·, ·;wi) and V i

k (·) ≤ V i⋆
k (·;wi), ∀ i ∈ N . So, for each agent

i ∈ N , we define the following event

E iji−1 = {θ⋆ ∈ Cik ∩ B; Qi
k(·, ·) ≤ Qi⋆(·, ·;wi), V i

k (·) ≤ V i⋆(·;wi) for each k = 1, 2, . . . , ji − 1}.

and assume that the P(E iji−1) ≥ 1− δ′

n for some δ′ > 0. We now show that the event E iji also holds with high probability.
To do this, we will construct the auxiliary sequence of functions for each agent i ∈ N as follows:

Ṽ i
k (·) := min{V i

k (·), B⋆}, ∀ k = 1, 2, . . . , ji − 1.

Moreover, for any k = 1, 2, . . . , ji and for any t ∈ [tik−1 + 1, tik], define the following:

η̃it = V i
k−1(st+1)−

〈
ϕṼ i

k−1
(st, at),θ⋆

〉
Σ̃i

t = λI+

t∑
r=1

ϕṼ i
k(r)−1

(sr, ar)ϕṼ i
k(r)−1

(sr, ar)⊤

θ̃
i

t = Σ̃i−1

t

t∑
r=1

ϕṼ i
k(r)−1

(sr, ar)Ṽ i
k(r)−1(sr+1)

C̃ik = {θ ∈ Rnd :
∥∥∥Σ̃i1/2

tik
(θ̃

i

tik
− θ)

∥∥∥
2
≤ βtik},
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where k(r) is the round that contains the time period r, i.e., r ∈ [tik−1 + 1, tik].

By construction {η̃it}
tiji
t=1 are almost surely B⋆ sub-Gaussian. Moreover, using the similar computations as above and

Abbasi-Yadkori et al. (2011) result (Theorem 7), we can say that event Ẽ iji will hold with high probability where

Ẽ iji = {θ
⋆ ∈ C̃iji ∩ B; Q

i
ji(·, ·) ≤ Q

i⋆(·, ·;wi); V i
ji(·) ≤ V

i⋆(·;wi)},

and Qi
ji

is the output of MAEV I(C̃iji , ϵ
i
ji
, 1
tiji
,wi).

Moreover, under the event E iji−1, the optimism implies that Ṽ i
k = V i

k for all k = 1, 2, . . . , ji − 1 and for all i ∈ N . Also,

under the event E iji−1, we have η̃it = ηit, Σ̃
i
t = Σi

t, θ̃
i

t = θ̂
i

t for all t ≤ tiji , and thus C̃iji = C
i
ji

. So, for each agent i ∈ N ,
we have

E iji = E
i
ji−1 ∩ Ẽ iji , ∀ i ∈ N.

Therefore, using the union bound, we have P(E iji) ≥ 1 − δ′

n −
δ

n·tiji (t
i
ji
+1)

. Now, by induction argument and taking the

union bound, we have
Ji∑

ji=1

δ

n · tiji(t
i
ji
+ 1)

=

Ji∑
ji=1

δ

n
·

(
1

tiji
− 1

(tiji + 1)

)
≤ δ

n
,

from here we conclude that with a probability of at least 1 − δ
n , the good event holds for all the ji ≤ J i, where J i is the

number of calls to the MAEVI algorithm by agent i ∈ N .

Next, it remains to show that the MAEVI will converge in finite time with ϵi tolerances for any agent i ∈ N . To do
so, it suffices to show that ∥V i,(l) − V i,(l−1)∥∞ shrinks exponentially. We now claim that ∥Qi,(l) − Qi,(l−1)∥∞ shrinks
exponentially, which together with Qi update in algorithm gives the desired result since ∥V i,(l) − V i,(l−1)∥∞ ≤ ∥Qi,(l) −
Qi,(l−1)∥∞. To show this, first note that for any (s, a) pair we have,

|Qi,(l)(s, a)−Qi,(l−1)(s, a)| = (1− q) ·
∣∣∣∣ min
θ∈Ci∩B

⟨θ, ϕV i,(l−1)(s, a)⟩ − min
θ∈Ci∩B

⟨θ, ϕV i,(l−2)(s, a)⟩
∣∣∣∣

= (1− q) ·
∣∣∣∣ min
θ∈Ci∩B

⟨θ, ϕV i,(l−1)(s, a)⟩+ max
θ∈Ci∩B

⟨θ,−ϕV i,(l−2)(s, a)⟩
∣∣∣∣

= (1− q) ·
∣∣∣∣− max

θ∈Ci∩B
⟨θ,−ϕV i,(l−1)(s, a)⟩+ max

θ∈Ci∩B
⟨θ,−ϕV i,(l−2)(s, a)⟩

∣∣∣∣
(i)

≤ (1− q) · max
θ∈Ci∩B

|−⟨θ,−ϕV i,(l−1)(s, a)⟩+ ⟨θ,−ϕV i,(l−2)(s, a)⟩|

= (1− q) · max
θ∈Ci∩B

|⟨θ, ϕV i,(l−1)(s, a)− ϕV i,(l−2)(s, a)⟩|

(ii)
= (1− q) ·

∣∣⟨θ̄, ϕV i,(l−1)(s, a)− ϕV i,(l−2)(s, a)⟩
∣∣

= (1− q) · |Pθ̄(V
i,(l−1) − V i,(l−2))(s, a)|

(iii)

≤ (1− q) ·max
s′∈S

∣∣∣V i,(l−1)(s′)− V i,(l−2)(s′)
∣∣∣

= (1− q) ·max
s′∈S

∣∣∣∣min
a′

Qi,(l−1)(s′, a′)−min
a′

Qi,(l−2)(s′, a′)
∣∣∣∣

(iv)

≤ (1− q) · max
s′∈S,a′∈A

∣∣∣Qi,(l−1)(s′, a′)−Qi,(l−2)(s′, a′)
∣∣∣

= (1− q) · ||Qi,(l−1) −Qi,(l−2)||∞,

where (i) holds because max is a contraction. (ii) holds because θ̄ is the θ in the non-empty set Ci ∩ B that achieves the
maximum. Since, Pθ̄(·|s, a) is a probability distribution we have (iii). Finally, (iv) holds again because of the contraction
property of the maximum function. Since (s, a) are arbitrary in the above, we conclude that ∥Qi,(l) − Qi,(l−1)∥∞ ≤
(1 − q)∥Qi,(l−1) − Qi,(l−2)∥∞. Applying this recursively, we have a term that is exponentially decaying and hence
||Qi,(l) −Qi,(l−1)||∞ shrinks exponentially implying ∥V i,(l) − V i,(l−1)∥∞ also shrinks exponentially.



Prashant Trivedi, Nandyala Hemachandra

This concludes the MAEVI analysis. Next, we show that the total number of calls, J to the MAEVI algorithm in the entire
analysis is bounded. Note that an agent i ∈ N calls the MAEVI algorithm if at least one of the doubling criteria is satisfied,
i.e., either the determinant doubling criteria or the time doubling criteria is satisfied. Let J i be the total number of calls
to the MAEVI algorithm made by agent i. We will show that J i is bounded. For agent i, let J i

1 be the number of calls to
MAEVI made via determinant doubling criteria, and J i

2 be the calls to the MAEVI algorithm via the time doubling criteria.
Note that J i ≤ J i

1 + J i
2. The inequality is taken because there are cases when both the doubling criteria are satisfied. In

particular, we use Lemma 1 that ensures the number of calls, J to the MAEVI algorithm is bounded.

A.5 Proof of Lemma 1

Recall the lemma: The total number of calls to the MAEVI algorithm in the entire analysis J , is bounded as

J ≤ 2n2d log

(
1 +

TB2
⋆nd

λ

)
+ 2n log(T ).

Proof. To prove this result, let us consider an agent i ∈ N . We bound the number of calls to MAEVI algorithm J i, for
each agent i ∈ N and use the fact that J ≤

∑
i∈N J i.

Consider agent i ∈ N , since V i
0 ≤ B⋆. It is easy to see that

||Σi
T ||2 =

∥∥∥∥∥∥λI+
Ji∑
j=0

tj+1∑
t=tij+1

ϕV i
j
(st, at)ϕV i

j
(st, at)⊤

∥∥∥∥∥∥
≤ λ+

Ji∑
j=0

tij+1∑
t=tij+1

||ϕV i
j
(st, at)||2

≤ λ+ TB2
⋆nd.

The first inequality is because of the triangle inequality. The second one uses the fact that ||ϕV || ≤ B⋆

√
nd and V i

j ≤ B⋆

for all j ≥ 0 (from Assumption 2).

For the determinant doubling criteria, we have det(ΣT ) ≤ (λ+ TB2
⋆nd)

nd. This implies

(λ+ TB2
⋆nd)

nd ≥ 2J
i
1 · det(Σ0) = 2J

i
1 · λnd,

taking log on both sides, we have

J i
1 ≤ nd log2

(
1 +

TB2
⋆nd

λ

)
≤ 2nd log

(
1 +

TB2
⋆nd

λ

)
.

This bounds the number of calls to the MAEVI algorithm when the determinant doubling criteria is satisfied. Next, we
consider the number of calls to the MAEVI algorithm when the time doubling criteria is satisfied, i.e., we will bound J i

2.
Note that t0 = 1, so we have 2J

i
2 ≤ T , this implies J i

2 ≤ log2(T ) ≤ 2 log(T ). Now, summing up the bounds for J i
1 and

J i
2 we have the bounds for J i, i.e.,

J i ≤ J i
1 + J i

2 ≤ 2nd log

(
1 +

TB2
⋆nd

λ

)
+ 2 log(T ).

This proves that the number of calls to the MAEVI algorithm made by an agent i ∈ N is bounded. So, the total number of
calls to MAEVI in the entire analysis is bounded as

J ≤
∑
i∈N

J i =
∑
i∈N

2nd log

(
1 +

TB2
⋆nd

λ

)
+ 2 log(T ) = 2n2d log

(
1 +

TB2
⋆nd

λ

)
+ 2n log(T ).

This ends the proof.
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The next step is to decompose the regret and bound each term. To this end, we prove Theorem 4. First, we divide the
time horizon into disjoint intervals m = 1, 2, . . . ,M , where the endpoint of each interval is decided by one of the two
conditions: 1) at least for one agent, the MAEVI is triggered, and 2) all the agents have reached the goal state. Note that
this decomposition is explicitly used in the regret analysis only and not in the actual algorithm implementation. Let Hm

denote the length of the interval m. Moreover, at the end of the M -th interval, all the K episodes are over. Therefore, we
have the total length of all the intervals as

∑M
m=1Hm, which is the same as

∑K
k=1 Tk, where Tk is the time to finish the

episode k. Within an interval, the optimistic estimator of the state-value function for each agent remains the same. An
agent for whom the MAEVI is not triggered in the m-th interval will continue using the same optimistic estimator of the
state-action value function in the (m+1)-th interval. Later we separate the set of agents depending on whether the MAEVI
is triggered for them or not. Let Sm be the set of agents for whom the MAEVI is triggered in the m-th interval. Using the
above interval decomposition, the regret RK can be written as

RK = R(M) ≤
M∑

m=1

Hm∑
h=1

1

n

n∑
i=1

c̄(sm,h, am,h;wi) + 1−
∑

m∈M(M)

1

n

n∑
i=1

V i
ji(m)(sinit), (26)

hereM(M) is the set of all intervals that are the first intervals in each episode. In RHS we add 1 because |V i
0 | ≤ 1. Recall,

the above equation is the same as Equation (11) in the main paper.

A.6 Proof of Theorem 4

Recall the theorem: Assume that the event in Theorem 3 holds, then we have the following upper bound on the regret given
in Equation (26),

R(M) ≤
M∑

m=1

Hm∑
h=1

[
1

n

n∑
i=1

c̄(sm,h, am,h;wi) +
1

n

n∑
i=1

PV i
ji(m)(sm,h, am,h)−

1

n

n∑
i=1

V i
ji(m)(sm,h)

]
︸ ︷︷ ︸

E1

+

M∑
m=1

Hm∑
h=1

[
1

n

n∑
i=1

V i
ji(m)(sm,h+1)−

1

n

n∑
i=1

PV i
ji(m)(sm,h, am,h)

]
︸ ︷︷ ︸

E2

+ 2n2dB⋆ log

(
1 +

TB2
⋆nd

λ

)
+ 2nB⋆ log(T ) + 2.

(27)

Proof. The proof relies on the following proposition that is key result for the regret decomposition.

Proposition 4. Conditioned on the event given in Theorem 3, for the above mentioned interval decomposition, we have
the following:

M∑
m=1

(
Hm∑
h=1

{
1

n

n∑
i=1

V i
ji(m)(sm,h)−

1

n

n∑
i=1

V i
ji(m)(sm,h+1)

})
−

∑
m∈M(M)

1

n

n∑
i=1

V i
ji(m)(sinit)

≤ 1 + 2n2dB⋆ log

(
1 +

TB2
⋆nd

λ

)
+ 2nB⋆ log(T ).

The proof this proposition is given in Section C.2 of this appendix. Using this Proposition in the regret expression given in
Equation (26), we get the regret decomposition as desired.

In the next Section, we provide the details of feature design of the transition probabilities and the details of the optimal
policy value used in the computations.
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B DETAILS OF THE FEATURE DESIGN AND THE OPTIMAL POLICY FOR
COMPUTATIONAL EXPERIMENTS

In this section, we will provide the details of the optimal policy and related results. Recall, for each (s′, a, s) ∈ S ×A×S,
the global transition probability is parameterized as Pθ(s′|s, a) = ⟨ϕ(s′|s, a),θ⟩. The features ϕ(s′|s, a) are

ϕ(s′|s, a) =


(ϕ(s′

1 |s1, a1), . . . , ϕ(s′
n |sn, an)), if s ̸= g,

0nd, if s = g, s′ ̸= g,
(0nd−1, 2

n−1), if s = g, s′ = g,

where ϕ(s′
i |si, ai) are defined as

ϕ(s′
i

|si, ai) =



(
−ai, 1−δ

n

)⊤
, if si = s′

i

= sinit(
ai, δ

n

)⊤
, if si = sinit, s

′i = g

0⊤
d , if si = g, s′

i

= sinit(
0d−1,

1
n

)⊤
, if si = s′

i

= g.

Here 0⊤
d = (0, 0, . . . , 0)⊤ is a vector of d dimension with all zeros. Thus, the features ϕ(s′

i |si, ai) ∈ Rnd.
Moreover, the transition probability parameters are taken as θ =

(
θ1, 1

2n−1 ,θ
2, 1

2n−1 . . . ,θ
n, 1

2n−1

)
, where θi ∈{

− ∆
n(d−1) ,

∆
n(d−1)

}d−1

, and ∆ < δ.

We first proof Lemma 2 to show that these transition probability function features satisfy some basic properties.

B.1 Proof of Lemma 2

Recall the lemma: The features ϕ(s′|s, a) satisfy the following: (a)
∑

s′⟨ϕ(s′|s, a),θ⟩ = 1, ∀ s, a; (b) ⟨ϕ(s′ = g|s =
g, a),θ⟩ = 1, ∀ a; (c) ⟨ϕ(s′ ̸= g|s = g, a),θ⟩ = 0, ∀ a.

Proof. To prove this lemma, we consider two cases. In case 1, s ̸= g and case 2, s = g.

Case 01: (s ̸= g ). Without loss of generality we consider the following state s = (sinit, sinit, . . . , sinit︸ ︷︷ ︸
k times

, g, g, . . . , g︸ ︷︷ ︸
(n−k) times

), i.e.,

k ̸= 0 agents are at sinit and remaining n − k are at g. Consider an agent i, who is at sinit node. Out of total 2n next
possible states, there are exactly 2n

2 states in which agent i will remain at sinit, and in 2n

2 states in which the agents move
to goal node. The probability that the next node of agent i is sinit given that the current node of agent i is sinit is given
by −⟨ai,θi⟩+ 1−δ

n ×
1

2n−1 . And the probability that the next node of agent i is g given that the current node of agent i is
sinit is ⟨ai,θi⟩ + δ

n ×
1

2n−1 . These probabilities are obtained using the features defined for our two agent model. Since,
this is true for all the agents 1, 2, . . . , k which are at sinit. So, the contribution to the probability term from these k agents
who are at sinit is

k∑
i=1

{(
−⟨ai,θi⟩+ 1− δ

n
× 1

2n−1

)
× 2n

2

}
+

k∑
i=1

{(
⟨ai,θi⟩+ δ

n
× 1

2n−1

)
× 2n

2

}
=
k

n
.

Next, consider an agent whose state is g; for this agent, there are two possibilities, stay at g or go to sinit. The probability
of going to sinit is zero, however if the agent stays at g then the probability corresponding to that is 1

n ×
1

2n−1 . So the total
probability of going to the next state for the agent whose state is g is

0× 2n

2
+

(
1

n
× 1

2n−1

)
2n

2
.

Again this is true for the agents k + 1, k + 2, . . . , n who are at g, so the overall probability is

n∑
i=k+1

{(
0× 2n

2
+

(
1

n
× 1

2n−1

)
2n

2

)}
=
n− k
n

.
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So, the sum of these linearly approximated probabilities is∑
s′
⟨ϕ(s′|s, a),θ⟩ =

k

n
+
n− k
n

= 1.

This ends the proof of the first case.

Case 02: (s = g). For this case, the probability is∑
s′
⟨ϕ(s′|s = g, a),θ⟩ =

∑
s′ ̸=g

⟨ϕ(s′|s = g, a),θ⟩+ ⟨ϕ(s′ = g|s = g, a),θ⟩

= ⟨0,θ⟩+ ⟨(0nd−1, 2
n−1),θ⟩ = 1.

Therefore, in both cases, we have ∑
s′
⟨ϕ(s′|s = g, a),θ⟩ = 1, ∀ s, a.

The other two statements of the lemma follow by feature design and model parameter space.

Next, we provide the details of the value of the optimal policy for the above model. We require it in the regret computations.
First, note that the value of the optimal policy can be defined in terms of expected cost if all agents reach the goal state
exactly in a 1 time period, in a 2 time period, and so on. Suppose the agents reach to the goal state exactly by t steps such
that xj agents move to the goal node at each step j = 1, 2, . . . , t− 1 and remaining xt = n−

∑t−1
j=1 xj agents move to the

goal node by t-th step. We call this sequence of departures of agents to the goal node as the ‘departure sequence’. For the
above departure sequence, the cost incurred is

Cα(x1, . . . , xt) = α×
t−1∑
j=1

x2j +

t−1∑
j=1

(
n−

j∑
i=1

xi

)
· cmin + α× x2t

= α×
t−1∑
j=1

x2j +

t−1∑
j=1

(
n−

j∑
i=1

xi

)
· cmin + α×

(
n−

t−1∑
j=1

xj

)2

.

(28)

where α is the mean of the uniform distribution U(cmin, 1), i.e., α = cmin+1
2 . We use this α instead of the private cost

to compute the optimal value. The first term in the above equation is because all xj agents have moved to the goal node
in time period j; hence the congestion is xj . Moreover, each agent incurs the private cost α in this period. So, the cost
incurred to any agent is αxj , and the number of agents moved are xj , and hence the total cost incurred is (αxj)×xj = αx2j .
This happens for all the time periods j = 1, 2, . . . , t− 1, so we sum this for (t− 1) periods. The remaining agents at each
time period incurred a waiting cost of cmin; thus, we have a second term. Finally, the third term is because the remaining
agents, xt will move to the goal node at the last time period t. The optimal value of a policy π⋆, V ⋆ := V π⋆

, can be written
as

V ⋆ =

∞∑
t=1

P[x⋆1, . . . , x⋆t ] · Cα(x
⋆
1, . . . , x

⋆
t ), (29)

where x⋆1, x
⋆
2, . . . , x

⋆
t−1, x

⋆
t is the optimal departure sequence. These x⋆j are obtained by minimizing the cost of function

Cα(x1, . . . , xt). Moreover, P[x⋆1, . . . , x⋆t ] is the probability of occurrence of this optimal departure sequence. In Theorem
5 we provide the optimal departure sequence x⋆1, . . . , x

⋆
t , and the corresponding value Cα(x

⋆
1, . . . , x

⋆
t ).

B.2 Proof of Theorem 5

Recall the theorem: The optimal departure sequence is given by

x⋆j =

⌊
n

t
+

(
t+ 1

2
− j
)
· cmin

2α

⌋
, ∀ j = 1, 2, . . . , t− 1; x⋆t = n−

t−1∑
j=1

x⋆j .

Moreover, the optimal cost Cα(x
⋆
1, . . . , x

⋆
t ) of using the above optimal departure sequence is

αt
(n
t

)2
+ n(t− 1) · cmin

2α
− t(t− 1)(t+ 1)

12
· c

2
min

4α2
.
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Proof. First, recall for the departure sequence x1, . . . , xt, the cost function is given by

Cα(x1, . . . , xt) = α×
t−1∑
j=1

x2j +

t−1∑
j=1

(
n−

j∑
i=1

xi

)
· cmin + α× x2t

= α×
t−1∑
j=1

x2j +

t−1∑
j=1

(
n−

j∑
i=1

xi

)
· cmin + α×

(
n−

t−1∑
j=1

xj

)2

.

The proof of this theorem follows by taking the partial derivative of the cost function with respect to the xj’s and equating
them to zero. The first order conditions are necessary and sufficient because the Hessian of the above cost function is
positive definite (shown below), and hence the minima exist. The partial derivative of the cost function with respect to xj
is given by

∂C

∂xj
= 2αxj − 2α

(
n−

t−1∑
i=1

xi

)
− (t− j)cmin = 0, ∀ j = 1, 2, . . . , t− 1. (30)

From the above equations, we have

xj − xj+1 =
cmin

2α
, ∀ j = 1, 2, . . . , t− 2.

Converting all the variables x2, x3, . . . , xt−1 in terms of x1, we have

xj = x1 − (j − 1) · cmin

2α
, ∀ j = 2, 3, . . . , t− 1. (31)

Also, from Equation (30), for j = 1, we have

∂C

∂x1
= 2αx1 − 2α

(
n−

t−1∑
i=1

xi

)
− (t− 1)cmin = 0.

Substituting the variables x2, x3, . . . , xt−1 in terms of x1 in above equation, and solving for x1 using Equation (31), we
have

2αx1 − 2α

(
n−

t−1∑
i=1

xi

)
− (t− 1)cmin = 2αx1 − 2α

(
n−

t−1∑
i=1

(
x1 − (i− 1) · cmin

2α

))
− (t− 1)cmin = 0.

Solving for x1, we have

x⋆1 =
n

t
+
t− 1

2
· cmin

2α
. (32)

Putting them in Equation (31), we have

x⋆j =
n

t
+

(
t− 1

2
− (j − 1)

)
· cmin

2α
=

⌊
n

t
+

(
t+ 1

2
− j
)
· cmin

2α

⌋
, ∀ j = 1, 2, . . . , t− 1.

x⋆t = n−
∑

j = 1t−1x⋆j

Next, we show that the Hessian of the cost function is positive definite. It is easy to see that the Hessian is given by

∇2Cα(x1, . . . , xt−1) =


4α 2α 2α . . . 2α
2α 4α 2α . . . 2α
...

...
...

...
...

2α 2α 2α . . . 4α

 ,
i.e., all the diagonal elements are 4α, and all off-diagonal elements are 2α. For such a matrix with the n × n order one
eigenvalue is 2(n + 1)α, and the remaining eigenvalues are 2α. So, all the eigenvalues are positive; hence Hessian is
positive definite. So, the function is convex.

To complete the proof, we put back all x⋆j ’s in the cost function and simplify it further

C(x⋆j ; j = 1, 2, . . . , t− 1) = αt
(n
t

)2
+ n(t− 1) · cmin

2α
− t(t− 1)(t+ 1)

12
· c

2
min

4α2
.

This ends the proof.
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Apart from the cost of the optimal departure sequence, we also require the probability of this departure sequence to compute
V ⋆. To this end, we recall the feature design of transition probability that allows an agent to stay or depart from the initial
node sinit to the goal node g iff the sign of the action ai taken by agent i matches the sign of the transition probability
function parameter θi, i.e, sgn(aij) = sgn(θi

j) for all j = 1, 2, . . . , d− 1. This is because for each agent i ∈ N , we have
⟨ϕ(s′i |si, ai), (θi, 1

2n−1 )⟩ as follows:

〈
ϕ(s′

i

|si, ai),

(
θi,

1

2n−1

)〉
=


−⟨ai,θi⟩+ 1−δ

n ×
1

2n−1 , if si = s′
i

= sinit

⟨ai,θi⟩+ δ
n ×

1
2n−1 , if si = sinit, s

′i = g

0, if si = g, s′
i

= sinit
1
n ×

1
2n−1 if si = s′

i

= g.

(33)

Hence the transition probability is as follows

P(s′|s, a) =
n∑

i=1

〈
ϕ(s′

i

|si, ai),

(
θi,

1

2n−1

)〉
. (34)

Using the sign matching property, we have the following theorem for the transition probability.

B.3 Proof of Theorem 6

Recall the theorem: The transition probability P[x1 = x⋆1, . . . , xt = x⋆t ] is given by

P[x1 = x⋆1, . . . , xt = x⋆t ] =

t−1∏
k=1

(
1−

(
γn− (γ − η)

k∑
j=1

x⋆j

))
×
(
γn− (γ − η)

t−1∑
j=1

x⋆j

)
,

where γ =
(
∆
n + δ

n·2n−1

)
and η = 1

n·2n−1 .

Proof. To find the probability of optimal departure sequence, we first find the probability of all agents reaching the goal
state g exactly by t time period starting from initial state sinit. Formally, we find the following probability

P[x1 = x⋆1, . . . , xt−1 = x⋆t−1, xt = x⋆t ] = P(st+1 = g, st ̸= g, st−1 ̸= g, . . . , s2 ̸= g|s1 = sinit, a1).

This is because, the agents will reach to the goal state in exactly t time periods while using x⋆1, . . . , x
⋆
t−1, x

⋆
t is the optimal

departure sequence. So, t time periods will end if st+1 = g.

The above probability can be written as

P(st+1 = g, st ̸= g, . . . , s2 ̸= g|s1 = sinit, a1) = P(s2 ̸= g|s1 = sinit, a1)× P(s3 ̸= g|s1 = sinit, s2, a1, a2)
× · · · × P(st ̸= g|s1 = sinit, s2, . . . , st−1, a1, . . . , at−1)× P(st+1 = g|s1 = sinit, s2, . . . , st, a1, . . . , at).

This can be written as follows

P(st+1 = g, st ̸= g, . . . , s2 ̸= g|s1 = sinit, a1) =

t−1∏
k=1

P(sk+1 ̸= g|s1 = sinit, s2, . . . , sk, a1, . . . , ak)

×P(st+1 = g|s1 = sinit, s2, . . . , st, a1, . . . , at)

=

t−1∏
k=1

(1− P(sk+1 = g|s1 = sinit, s2, . . . , sk, a1, . . . , ak))

×P(st+1 = g|s1 = sinit, s2, . . . , st, a1, . . . , at). (35)

To find this probability first consider the following probability for any k = 1, 2, . . . , t− 1

P(sk+1 = g|s1 = sinit, s2, . . . , sk, a1, . . . , ak)) =
∑

{i:sik=sinit}

(
⟨ai

k,θ
i
k⟩+

δ

n · 2n−1

)
+

∑
{i:sik=g}

(
1

n · 2n−1

)
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=
∑

{i:sik=sinit}

(
∆

n
+

δ

n · 2n−1

)
+

∑
{i:sik=g}

(
1

n · 2n−1

)
. (36)

The above equation uses the definition of transition probability, depending on the number of agents that have moved from
the initial node to the goal node and the number of agents already at the goal node. Moreover, we also note that the agent
i will move to goal node from the initial node with highest probability if the sign of aik matches the sign of θi

k for each
component and for all k = 1, 2, . . . , t− 1. Thus, ⟨aik,θ

i
k⟩ = ∆

n , for all k = 1, 2, . . . , t− 1.

Substituting Eq. (36) in Eq. (35), we have the following

P(st+1 = g, st ̸= g, . . . , s2 ̸= g|s1 = sinit, a1)

=

t−1∏
k=1

(1− P(sk+1 = g|s1 = sinit, s2, . . . , sk, a1, . . . , ak))

× P(st+1 = g|s1 = sinit, s2, . . . , st, a1, . . . , at)

=

t−1∏
k=1

1−

 ∑
{i:sik=sinit}

(
∆

n
+

δ

n · 2n−1

)
+

∑
{i:sik=g}

(
1

n · 2n−1

)


×
∑

{i:sit−1=sinit}

(
∆

n
+

δ

n · 2n−1

)
+

∑
{i:sit−1=g}

(
1

n · 2n−1

)

=

t−1∏
k=1

1−


n− k∑

j=1

xj

 · (∆

n
+

δ

n · 2n−1

)
+

 k∑
j=1

xj

 · ( 1

n · 2n−1

)


×


n− t−1∑

j=1

xj

 · (∆

n
+

δ

n · 2n−1

)
+

 k∑
j=1

xj

 · ( 1

n · 2n−1

) ,

where in the last inequality, we use the fact that the departure sequence is x1, x2, . . . , xt−1.

The above probability is the same as the probability of optimal departure sequence x⋆j , i.e.,

P[x1 = x⋆1, . . . , xt−1 = x⋆t−1, xt = x⋆t ] =

t−1∏
k=1

(
1−

(
γn− (γ − η)

k∑
j=1

x⋆j

))
×
(
γn− (γ − η)

t−1∑
j=1

x⋆j

)
,

where γ =
(
∆
n + δ

n·2n−1

)
and η = 1

n·2n−1 .

Since it is hard to get the closed form expression of the above optimal value we obtain an approximation of the optimal
value function for regret computation. So, we define the approximate optimal value in terms of a given large T <∞, as

V ⋆
T =

T∑
t=1

P[x⋆1, . . . , x⋆t ] · Cα(x
⋆
1, . . . , x

⋆
t ).

We use this approximate value in the computations, where T is tuned suitably.

C PROOF OF THE INTERMEDIATE LEMMAS AND PROPOSITIONS

In this section, we will provide the proof details of Lemmas and Propositions stated in this appendix.

C.1 Proof of Lemma 3

Proof. The proof of this lemma involves three major steps: 1) the convergence of the cost function parameters (Theorem
2); 2) convergence of the optimistic estimator of the state-action value function whenever MAEVI is triggered (Theorem
3); 3) the regret given in Equation (19) will be decomposed into two components (Theorem 4), and each component will
be bounded (Propositions 5, 6). This decomposition further depends on the agents for whom the MAEVI is triggered or
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not. The decomposition of regret in this manner is novel to our multi-agent congestion cost minimization. To best of our
knowledge this is not available in literature.

To complete the proof, we need to bound both E1 and E2. The following proposition gives the bound to E1, which uses
all the intrinsic properties of our algorithm design.

Proposition 5. The term E1 is upper bounded as follows

E1 ≤ 8βT

√
2Td log

(
1 +

TB2
⋆

λ

)
+ 8nd(B⋆ + 1)

[
log

(
1 +

TB2
⋆nd

λ

)
+ 2 log(T )

]
+ 4(n+ 1). (37)

Proof of this proposition is available in Section C.3 of this appendix. Next, we bound the other term E2, which uses the
Azuma-Hoeffding inequality. The following proposition provides the bound to E2.

Proposition 6. The term E2 is upper bounded as follows

E2 =
1

n

n∑
i=1

2B⋆

√
2T log

(
2nT

δ

)
= 2B⋆

√
2T log

(
2nT

δ

)
. (38)

The proof of this lemma is present in Section C.4. The proof of Lemma 3 follows by substituting bounds of E1 and E2

from Equations (37) and (38) in Theorem 4,

R(M) ≤ 8βT

√
2Td log

(
1 +

TB2
⋆

λ

)
+ 8nd(B⋆ + 1)

[
log

(
1 +

TB2
⋆nd

λ

)
+ 2 log(T )

]
+ 4(n+ 1)

+ 2B⋆

√
2T log

(
2nT

δ

)
+ 2n2dB⋆ log

(
1 +

TB2
⋆nd

λ

)
+ 2nB⋆ log(T ) + 2.

Combining the lower order terms, we have

RK ≤ 10βT

√
Td log

(
1 +

TB2
⋆

λ

)
+ 16n2dB⋆ log

(
T +

T 2B2
⋆nd

λ

)
.

This ends the proof of Lemma 3.

C.2 Proof of Proposition 4

Proof. The proof uses the ideas for the single agent SSP in Tarbouriech et al. (2020) and Min et al. (2022); however, for
the multi-agent setup, we have some extra challenges. Consider the following

M∑
m=1

(
Hm∑
h=1

{
1

n

n∑
i=1

V i
ji(m)(sm,h)−

1

n

n∑
i=1

V i
ji(m)(sm,h+1)

})
(i)
=

M∑
m=1

(
1

n

n∑
i=1

V i
ji(m)(sm,1)−

1

n

n∑
i=1

V i
ji(m)(sm,Hm+1)

)
(ii)
=

M−1∑
m=1

(
1

n

n∑
i=1

V i
ji(m+1)(sm+1,1)−

1

n

n∑
i=1

V i
ji(m)(sm,Hm+1)

)

+

M−1∑
m=1

(
1

n

n∑
i=1

V i
ji(m)(sm,1)−

1

n

n∑
i=1

V i
ji(m+1)(sm+1,1)

)

+
1

n

n∑
i=1

V i
ji(M)(sM,1)−

1

n

n∑
i=1

V i
ji(M)(sM,HM+1)

(iii)
=

M−1∑
m=1

(
1

n

n∑
i=1

V i
ji(m+1)(sm+1,1)−

1

n

n∑
i=1

V i
ji(m)(sm,Hm+1)

)



Prashant Trivedi, Nandyala Hemachandra

+
1

n

n∑
i=1

V i
ji(1)

(s1,1)−
1

n

n∑
i=1

V i
ji(M)(sM,1)

+
1

n

n∑
i=1

V i
ji(M)(sM,1)−

1

n

n∑
i=1

V i
ji(M)(sM,HM+1)

=

M−1∑
m=1

(
1

n

n∑
i=1

V i
ji(m+1)(sm+1,1)−

1

n

n∑
i=1

V i
ji(m)(sm,Hm+1)

)

+
1

n

n∑
i=1

V i
ji(1)

(s1,1)−
1

n

n∑
i=1

V i
ji(M)(sM,HM+1)

(iv)

≤
M−1∑
m=1

(
1

n

n∑
i=1

V i
ji(m+1)(sm+1,1)−

1

n

n∑
i=1

V i
ji(m)(sm,Hm+1)

)
+

1

n

n∑
i=1

V i
ji(1)

(s1,1), (39)

where (i) follows from the telescopic summation over h; in (ii) we add and subtract 1
n

∑n
i=1 V

i
ji(m+1)(sm+1,1) inside

the summation. (iii) again uses the telescopic summation. Finally, (iv) follows by dropping a non-negative term with a
negative sign.

Now consider the first term of the RHS of the Equation (39). Note that the interval ends if either of the two conditions are
satisfied: 1) MAEVI is triggered by at least one agent i ∈ N ; 2) all the agents reach the goal state. Let us suppose, all the
agents reach the goal state hence sm+1,1 = sinit, and sm,Hm+1 = g. This implies

1

n

n∑
i=1

V i
ji(m+1)(sm+1,1)−

1

n

n∑
i=1

V i
ji(m)(sm,Hm+1) =

1

n

n∑
i=1

V i
ji(m+1)(sinit)−

1

n

n∑
i=1

V i
ji(m)(g)

=
1

n

n∑
i=1

V i
ji(m+1)(sinit). (40)

Next, suppose the interval ended because MAEVI is triggered for some agent i ∈ N . Then we apply a trivial upper bound,
i.e.,

1

n

n∑
i=1

V i
ji(m+1)(sm+1,1)−

1

n

n∑
i=1

V i
ji(m)(sm,Hm+1) ≤

1

n

n∑
i=1

max
ji
||V i

ji ||∞. (41)

Also recall the total number of calls to the MAEVI algorithm from Lemma 1 is given by

J ≤ 2n2d log

(
1 +

TB2
⋆nd

λ

)
+ 2n log(T ).

Thus, from Equation (39) we have,

M∑
m=1

(
Hm∑
h=1

{
1

n

n∑
i=1

V i
ji(m)(sm,h)−

1

n

n∑
i=1

V i
ji(m)(sm,h+1)

})

≤
M−1∑
m=1

(
1

n

n∑
i=1

V i
ji(m+1)(sm+1,1)−

1

n

n∑
i=1

V i
ji(m)(sm,Hm+1)

)
+

1

n

n∑
i=1

V i
ji(1)

(s1,1)

(i)

≤
M−1∑
m=1

(
1

n

n∑
i=1

V i
ji(m+1)(sinit) · 1{m+1∈M(M)}

)
+

1

n

n∑
i=1

V i
ji(1)

(s1,1)

+

[
2n2d log

(
1 +

TB2
⋆nd

λ

)
+ 2n log(T )

]
· 1
n

n∑
i=1

max
ji
||V i

ji ||∞

(ii)

≤
∑

m∈M(M)

(
1

n

n∑
i=1

V i
ji(m)(sinit)

)
+

1

n

n∑
i=1

V i
0 (sinit)

+

[
2n2d log

(
1 +

TB2
⋆nd

λ

)
+ 2n log(T )

]
· 1
n

n∑
i=1

B⋆
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(iii)
=

∑
m∈M(M)

(
1

n

n∑
i=1

V i
ji(m)(sinit)

)
+ 1 + 2n2dB⋆ log

(
1 +

TB2
⋆nd

λ

)
+ 2nB⋆ log(T ), (42)

where the first inequality is the same as Equation (39). (i) uses the combination of Equations (40) and (41) along with the
fact that if the goal state is reached by all the agents, then m + 1 ∈ M(M). In (ii) we use the fact that V i

ji(1)
(s1,1) =

V i
0 (sinit) for all agents i ∈ N . Also, ||V i

ji
||∞ ≤ B⋆ for all i ∈ N . Finally (iii) follows from the fact that V i

0 (sinit) = 1
for all i ∈ N . The proof follows by arranging the terms of the above Equation (42).

C.3 Proof of Proposition 5 (Bounding E1)

Proof. Recall, from Equation (4) we have

E1 =

M∑
m=1

Hm∑
h=1

[
1

n

n∑
i=1

c̄(sm,h, am,h;wi) +
1

n

n∑
i=1

PV i
ji(m)(sm,h, am,h)−

1

n

n∑
i=1

V i
ji(m)(sm,h)

]
.

First note that V i
ji(m)(sm,h) = minaQ

i
ji(m)(sm,h, a) = Qi

ji(m)(sm,h, am,h), therefore E1 can be written as

E1 =

M∑
m=1

Hm∑
h=1

[
1

n

n∑
i=1

c̄(sm,h, am,h;wi) +
1

n

n∑
i=1

PV i
ji(m)(sm,h, am,h)−

1

n

n∑
i=1

Qi
ji(m)(sm,h, am,h)

]
.

Since the interval, m ends if the MAEVI is triggered for at least one agent or all the agents reach the goal state. Let Sm be
the set of agents for whom the MAEVI is triggered in the interval m. We can decompose the above summation over Sm

and Sc
m. In particular, we have

E1 =

M∑
m=1

Hm∑
h=1

[
1

n

∑
i∈Sm

c̄(sm,h, am,h;wi) +
1

n

∑
i∈Sm

PV i
ji(m)(sm,h, am,h)−

1

n

∑
i∈Sm

Qi
ji(m)(sm,h, am,h)

]

+

M∑
m=1

Hm∑
h=1

 1

n

∑
i∈Sc

m

c̄(sm,h, am,h;wi) +
1

n

∑
i∈Sc

m

PV i
ji(m)(sm,h, am,h)−

1

n

∑
i∈Sc

m

Qi
ji(m)(sm,h, am,h)


=

M∑
m=1

Hm∑
h=1

[E1(Sm) + E1(S
c
m)].

To bound E1, we need to bound both E1(Sm) and E1(S
c
m) for each m. As opposed to the single agent SSP of Min et al.

(2022), we need separate bounds for E1(Sm) and E1(S
c
m). First consider E1(Sm).

Bounding E1(Sm)

First consider E1(Sm). To bound this, we will use the MAEVI update for each agent i ∈ Sm. Recall that the MAEVI
update is given by

Qi,(l)(sm,h, am,h) = c̄(sm,h, am,h;wi) + (1− q) min
θ∈Ci

ji(m)
∩B
⟨θ, ϕV i,(l−1)(sm,h)⟩

= c̄(sm,h, am,h;wi) + (1− q) · ⟨θm,h, ϕV i,(l−1)(sm,h)⟩
= c̄(sm,h, am,h;wi) + (1− q) · ⟨θm,h, ϕV i,(l)(sm,h)⟩+ (1− q) · ⟨θm,h, [ϕV i,(l−1) − ϕV i,(l) ](sm,h)⟩
= c̄(sm,h, am,h;wi) + (1− q) · ⟨θm,h, ϕV i,(l)(sm,h)⟩+ (1− q) · Pm,h[V

i,(l−1) − V i,(l)](sm,h)

= c̄(sm,h, am,h;wi) + (1− q) · Pm,hV
i,(l)(sm,h) + (1− q) · Pm,h[V

i,(l−1) − V i,(l)](sm,h)

≥ c̄(sm,h, am,h;wi) + (1− q) · Pm,hV
i,(l)(sm,h)− (1− q) · 1

tji(m)
,

where the last inequality follows from the fact that the stopping criteria for the MAEVI for agent i ∈ Sm is ||V i,(l) −
V i,(l−1)||∞ ≤ ϵiji =

1
tji(m)

. So, the above inequality implies that

c̄(sm,h, am,h;wi)−Qi,(l)(sm,h, am,h) ≤ (1− q) · 1

tji(m)
− (1− q) · Pm,hV

i,(l)(sm,h).
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Adding PV i
ji(m)(sm,h, am,h) on both sides in the above equation, we have

c̄(sm,h, am,h;wi) + PV i
ji(m)(sm,h, am,h)−Qi,(l)(sm,h, am,h)

≤ PV i
ji(m)(sm,h, am,h) + (1− q) · 1

tji(m)
− (1− q) · Pm,hV

i,(l)(sm,h)

= [P− Pm,h]V
i
ji(m)(sm,h, am,h) + q · Pm,hV

i,(l)(sm,h) + (1− q) · 1

tji(m)

(i)

≤ [P− Pm,h]V
i
ji(m)(sm,h, am,h) + qB⋆ + (1− q) · 1

tji(m)

(ii)
= [P− Pm,h]V

i
ji(m)(sm,h, am,h) +

B⋆

tji(m)
+ (1− q) · 1

tji(m)

(iii)

≤
〈
θ⋆ − θm,h, ϕV i

ji(m)
(sm,h, am,h)

〉
+
B⋆ + 1

tji(m)
, (43)

where (i) uses the fact that V i
ji(m) ≤ V i⋆ ≤ B⋆, (ii) is consequence of the fact that q = 1

tji(m)
, and (iii) follows by

dropping a negative term. Now taking summation over i ∈ Sm, we have the following:

1

n

∑
i∈Sm

c̄(sm,h, am,h;wi) +
1

n

∑
i∈Sm

PV i
ji(m)(sm,h, am,h)−

1

n

∑
i∈Sm

Qi,(l)(sm,h, am,h)

≤

〈
θ⋆ − θm,h,

1

n

∑
i∈Sm

ϕV i
ji(m)

(sm,h, am,h)

〉
+

1

n

∑
i∈Sm

B⋆ + 1

tji(m)
.

LetM0(M) = {m ≤ M : ji(m) ≥ 1, ∀ i ∈ N} be the set of all intervals for which the output of MAEVI algorithm is
Qi

ji(m) for all agents i ∈ N rather than the output Qi
0. We first consider the intervals fromM0(M). So, from the above

equation, we have

∑
m∈M0(M)

Hm∑
h=1

[
1

n

∑
i∈Sm

c̄(sm,h, am,h;wi) +
1

n

∑
i∈Sm

PV i
ji(m)(sm,h, am,h)−

1

n

∑
i∈Sm

Qi,(l)(sm,h, am,h)

]

≤
∑

m∈M0(M)

Hm∑
h=1

[〈
θ⋆ − θm,h,

1

n

∑
i∈Sm

ϕV i
ji(m)

(sm,h, am,h)

〉
+

1

n

∑
i∈Sm

B⋆ + 1

tji(m)

]

=
∑

m∈M0(M)

Hm∑
h=1

[〈
θ⋆ − θm,h,

1

n

∑
i∈Sm

ϕV i
ji(m)

(sm,h, am,h)

〉]
︸ ︷︷ ︸

A1

+
∑

m∈M0(M)

Hm∑
h=1

[
1

n

∑
i∈Sm

B⋆ + 1

tji(m)

]
︸ ︷︷ ︸

A2

. (44)

To bound the above, we need to bound A1 and A2. First consider A1.

A1 =
∑

m∈M0(M)

Hm∑
h=1

[〈
θ⋆ − θm,h,

1

n

∑
i∈Sm

ϕV i
ji(m)

(sm,h, am,h)

〉]

=
∑

m∈M0(M)

Hm∑
h=1

[
1

n

∑
i∈Sm

〈
θ⋆ − θm,h, ϕV i

ji(m)
(sm,h, am,h)

〉]
. (45)

To bound the above term, consider the inner term in the above equation for agent i ∈ Sm,〈
θ⋆ − θm,h, ϕV i

ji(m)
(sm,h, am,h)

〉
(i)

≤ ||θ⋆ − θm,h||Σi
t(m,h)

· ||ϕV i
ji(m)

(sm,h, am,h)||Σi−1

t(m,h)

= ||θ⋆ + θ̂
i

ji(m) − θ̂
i

ji(m) − θm,h||Σi
t(m,h)

· ||ϕV i
ji(m)

(sm,h, am,h)||Σi−1

t(m,h)
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(ii)

≤
(
||θ⋆ − θ̂

i

ji(m)||Σi
t(m,h)

+ ||θ̂
i

ji(m) − θm,h||Σi
t(m,h)

)
· ||ϕV i

ji(m)
(sm,h, am,h)||Σi−1

t(m,h)

(iii)

≤ 2
(
||θ⋆ − θ̂

i

ji(m)||Σi
t(m,h)

+ ||θ̂
i

ji(m) − θm,h||Σi
t(m,h)

)
· ||ϕV i

ji(m)
(sm,h, am,h)||Σi−1

t(m,h)

(iv)

≤ 4βT ||ϕV i
ji(m)

(sm,h, am,h)||Σi−1

t(m,h)

. (46)

where (i) uses the Cauchy-Schwartz inequality. In (ii) we apply the triangle inequality; (iii) uses the following: recall
tji(m) is the time at which the ji(m)-th MAEVI is triggered by agent i, and t(m,h) is the time period corresponding to
the h-th step in the m-th interval. Therefore, t(m,h) ≥ tji(m). Therefore, by determinant doubling criteria we must have
det(Σt(m,h)) ≤ 2 det(Σtji(m)

) otherwise, t(m,h) and tji(m) would not belong to the same interval m. The inequality
follows from λk(Σt(m,h)) ≤ 2λk(Σ)tji(m)

for all k ∈ [nd], where λk(·) is the k-th eigenvalue. Finally, (iv) follows from
the fact that θ⋆ and θm,h belong to the confidence ellipsoid Ciji(m).

Moreover, we also have the following:〈
θ⋆ − θm,h, ϕV i

ji(m)
(sm,h, am,h)

〉
≤

〈
θ⋆, ϕV i

ji(m)
(sm,h, am,h)

〉
= PV i

ji(m)(sm,h, am,h)

≤ B⋆. (47)

From Equations (46) and (47), we have〈
θ⋆ − θm,h, ϕV i

ji(m)
(sm,h, am,h)

〉
≤ min{B⋆, 4βT ||ϕV i

ji(m)
(sm,h, am,h)||Σi−1

t(m,h)

}

≤ 4βT min{1, ||ϕV i
ji(m)

(sm,h, am,h)||Σi−1

t(m,h)

}, (48)

where the second inequality is because of the fact that B⋆ ≤ βT ≤ 4βT . This implies from Equation (45) we have,

A1 ≤
∑

m∈M0(M)

Hm∑
h=1

[
4βT
n

∑
i∈Sm

min{1, ||ϕV i
ji(m)

(sm,h, am,h)||Σi−1

t(m,h)

}

]

≤ 4βT
n

√√√√√
 ∑

m∈M0(M)

Hm∑
h=1

1

 ·
 ∑

m∈M0(M)

Hm∑
h=1

[∑
i∈Sm

min{1, ||ϕV i
ji(m)

(sm,h, am,h)||2
Σi−1

t(m,h)

}

]

=
4βT
n

√√√√√T ·

 ∑
m∈M0(M)

Hm∑
h=1

[∑
i∈Sm

min{1, ||ϕV i
ji(m)

(sm,h, am,h)||2
Σi−1

t(m,h)

}

], (49)

the above inequality follows from the Cauchy-Schwartz inequality (product of inner term with 1. Hence summation will
become the inner product). To bound the other term in the above square root, we will use the Lemma 4 given in this SM as
follows:

∑
m∈M0(M)

Hm∑
h=1

[∑
i∈Sm

min{1, ||ϕV i
ji(m)

(sm,h, am,h)||2Σi−1

t(m,h)

}

]
(i)

≤
∑

m∈M0(M)

Hm∑
h=1

[
min

{∑
i∈Sm

1,
∑
i∈Sm

||ϕV i
ji(m)

(sm,h, am,h)||2Σi−1

t(m,h)

}]
(ii)

≤
∑

m∈M0(M)

Hm∑
h=1

[
min

{∑
i∈N

1,
∑
i∈N

||ϕV i
ji(m)

(sm,h, am,h)||2Σi−1

t(m,h)

}]

= n ·
∑

m∈M0(M)

Hm∑
h=1

[
min

{
1,

1

n

∑
i∈N

||ϕV i
ji(m)

(sm,h, am,h)||2Σi−1

t(m,h)

}]
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(iii)

≤ 2n

[
nd log

(
trace(λI) + T · 1n

∑
i∈N B2

⋆nd

nd

)
− log(det(λI))

]

= 2n

[
nd log

(
λnd+ TB2

⋆nd

nd

)
− log(λnd)

]
≤ 2n2d log

(
λnd+ TB2

⋆nd

λnd

)
= 2n2d log

(
1 +

TB2
⋆

λ

)
,

where (i) follows by interchanging the summation and min operator. In (ii) we replace the sum over i ∈ Sm by i ∈ N ; and
(iii) follows from Lemma 4 of Abbasi-Yadkori et al. (2011), and the fact that maxm∈M0(M) ||ϕV i

ji(m)
(·, ·)|| ≤ B⋆

√
nd.

Combining this with the Equation (49), we have

A1 ≤
4βT
n

√
T · 2n2d log

(
1 +

TB2
⋆

λ

)

= 4βT

√
2Td log

(
1 +

TB2
⋆

λ

)
. (50)

Next consider A2, recall

A2 =
∑

m∈M0(M)

Hm∑
h=1

[
1

n

∑
i∈Sm

B⋆ + 1

tji(m)

]
(i)

≤
∑

m∈M0(M)

Hm∑
h=1

[
1

n

∑
i∈N

B⋆ + 1

tji(m)

]

(ii)
= (B⋆ + 1) · 1

n

∑
i∈N

J∑
ji=1

tji+1∑
t=tji+1

1

tji

(iii)

≤ (B⋆ + 1) · 1
n

∑
i∈N

J∑
ji=1

2tji
tji

= 2(B⋆ + 1)J

(iv)

≤ 2(B⋆ + 1)

[
2n2d log

(
1 +

TB2
⋆nd

λ

)
+ 2n log(T )

]
= 4(B⋆ + 1)

[
n2d log

(
1 +

TB2
⋆nd

λ

)
+ n log(T )

]
(v)

≤ 4n2d(B⋆ + 1)

[
log

(
1 +

TB2
⋆nd

λ

)
+ log(T )

]
, (51)

where (i) follows by replacing the summation over i ∈ Sm by summation over i ∈ N . In (ii) we use the fact that the total
number of time steps can be represented either as

∑
m∈M0(M)

∑Hm

h=1 1 or
∑J

ji=1

∑tji+1

t=tji+1 1. Since the time doubling
condition t ≥ 2tji in the algorithm implies tji+1 ≤ 2tji for all ji, we have (iii). In (iv) we use the bound on J given in
Lemma 1. Finally, (v) follows from the fact that n log(T ) ≤ n2d log(T ).

Plugging Equations (50) and (51) in Equation (44) we have∑
m∈M0(M)

Hm∑
h=1

[
1

n

∑
i∈Sm

c̄(sm,h, am,h;wi) +
1

n

∑
i∈Sm

PV i
ji(m)(sm,h, am,h)−

1

n

∑
i∈Sm

Qi,(l)(sm,h, am,h)

]

≤ 4βT

√
2Td log

(
1 +

TB2
⋆

λ

)
+ 4n2d(B⋆ + 1)

[
log

(
1 +

TB2
⋆nd

λ

)
+ log(T )

]
. (52)

Finally, to bound E1(Sm), we need to bound∑
m∈Mc

0(M)

Hm∑
h=1

[
1

n

∑
i∈Sm

c̄(sm,h, am,h;wi) +
1

n

∑
i∈Sm

PV i
ji(m)(sm,h, am,h)−

1

n

∑
i∈Sm

Qi,(l)(sm,h, am,h)

]
.



Multi-Agent congestion cost minimization with linear function approximations

Recall thatMc
0(M) is the set of all intervals m such that ji(m) = 0 for all i ∈ N , i.e., the intervals before the first call of

MAEVI sub-routine. Since t0 = 1 by triggering condition t ≥ 2t0 for all agent, so the first MAEVI will be called at t = 2
by all the agents. Therefore, we have

∑
m∈Mc

0(M)

Hm∑
h=1

[
1

n

∑
i∈Sm

c̄(sm,h, am,h;wi) +
1

n

∑
i∈Sm

PV i
ji(m)(sm,h, am,h)−

1

n

∑
i∈Sm

Qi,(l)(sm,h, am,h)

]

=

2∑
h=1

[
1

n

∑
i∈Sm

c̄(sm,h, am,h;wi) +
1

n

∑
i∈Sm

PV i
ji(m)(sm,h, am,h)−

1

n

∑
i∈Sm

Qi,(l)(sm,h, am,h)

]
(i)

≤
2∑

h=1

[
1

n

∑
i∈N

c̄(s1,h, a1,h,wi) +
1

n

∑
i∈N

PV i
ji(1)

(s1,h, a1,h)

]

=

2∑
h=1

[
1

n

∑
i∈N

c̄(s1,h, a1,h,wi) +
1

n

∑
i∈N

PV i
0 (s1,h, a1,h)

]
(ii)

≤ 2(n+ 1), (53)

where (i) follows by dropping a negative term and (ii) is because c̄(s1,h, a1,h;wi) ≤ n as the maximum congestion
observed by any agent is n and the private component of the cost to each agent is Ki ≤ 1 moreover, |V i

0 (s)| ≤ 1.

Combining Equations (52) and (53), we have

M∑
m=1

Hm∑
h=1

E1(Sm) ≤ 4βT

√
2Td log

(
1 +

TB2
⋆

λ

)
+ 4nd(B⋆ + 1)

[
log

(
1 +

TB2
⋆nd

λ

)
+ log(T )

]
+ 2(n+ 1). (54)

Now, to bound E1, we need to bound
∑M

m=1

∑Hm

h=1E1(S
c
m).

Bounding E1(S
c
m)

To bound E1(S
c
m) we first observe the following: Since i ∈ Sc

m, this implies that the MAEVI is not called for agent i in
m-th interval; therefore, agent i will not update its optimistic estimator. So, in the m-th interval, agent i uses the same
optimistic estimator used in the (m− 1)-th interval. Thus, there is some 1 < ki < m for agent i such that the last MAEVI
call made by agent i was at (m − ki)-th interval, i.e., Qi

ji(m) = Qi
ji(m−1) = Qi

ji(m−2) = · · · = Qi
ji(m−ki)

. And this
Qi

ji(m−ki)
is obtained from the MAEVI update, hence i ∈ Sm−ki , whereas i ∈ Sc

m−ki+1, S
c
m−ki+2, · · · , Sc

m. So, from
the analysis done for those agents for whom the MAEVI is called at (m − ki)-th interval, and Equation (48) we have for
all agents i ∈ Sm−ki〈

θ⋆ − θm−ki,h, ϕV i
ji(m−ki)

(sm,h, am,h)
〉
≤ 4βT min

{
1, ||ϕV i

ji(m−ki)
(sm,h, am,h)||Σi−1

t(m−ki,h)

}
.

Moreover, from equation (43), we have

c̄(sm,h, am,h;wi) + PV i
ji(m−ki)

(sm,h, am,h)−Qi,(l)(sm,h, am,h)

≤
〈
θ⋆ − θm−ki,h, ϕV i

ji(m−ki)
(sm,h, am,h)

〉
+

B⋆ + 1

tji(m−ki)

≤ 4βT min{1, ||ϕV i
ji(m−ki)

(sm,h, am,h)||Σi−1

t(m−ki,h)

}+ B⋆ + 1

tji(m−ki)
.

Also, note that V i
ji(m) = V i

ji(m−1) = V i
ji(m−2) = · · · = V i

ji(m−ki)
, this is because MAEVI is not called in the intermediate

intervals by agent i, as V i
ji(m)(sm,h) = mina Q

i
ji(m)(sm,h, a). So for each agent, i ∈ Sc

m, the above equation can be
written as

c̄(sm,h, am,h;wi) + PV i
ji(m)(sm,h, am,h)−Qi,(l)(sm,h, am,h) ≤ 4βT min{1, ||ϕV i

ji(m)
(sm,h, am,h)||Σi−1

t(m,h)

}+ B⋆ + 1

tji(m)
.
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Furthermore, this is true for all the agents i ∈ Sc
m. Taking summation over i ∈ Sc

m, we have

1

n

∑
i∈Sc

m

[
c̄(sm,h, am,h;wi) + PV i

ji(m)(sm,h, am,h)−Qi,(l)(sm,h, am,h)
]

≤ 4βT
n

∑
i∈Sc

m

min{1, ||ϕV i
ji(m)

(sm,h, am,h)||Σi−1

t(m,h)

}+ 1

n

∑
i∈Sc

m

B⋆ + 1

tji(m)

(i)

≤ 4βT
n

min

∑
i∈Sc

m

1,
∑
i∈Sc

m

||ϕV i
ji(m)

(sm,h, am,h)||Σi−1

t(m,h)

+
1

n

∑
i∈Sc

m

B⋆ + 1

tji(m)

(ii)

≤ 4βT
n

min

{∑
i∈N

1,
∑
i∈N

||ϕV i
ji(m)

(sm,h, am,h)||Σi−1

t(m,h)

}
+

1

n

∑
i∈N

B⋆ + 1

tji(m)

≤ 4βT min

{
1,

1

n

∑
i∈N

||ϕV i
ji(m)

(sm,h, am,h)||Σi−1

t(m,h)

}
+

1

n

∑
i∈N

B⋆ + 1

tji(m)
,

where (i) follows by interchanging min and summation. In (ii) we replace summation over i ∈ Sc
m by summation over

i ∈ N .

Since, Qi
ji(m) is same as Qi

ji(m−ki)
, taking summation over m, and h in the above we will have the same bound as we

have for E1(Sm). This implies,

E1(S
c
m) =

M∑
m=1

Hm∑
h=1

 1

n

∑
i∈Sc

m

[
c̄(sm,h, am,h;wi) + PV i

ji(m)(sm,h, am,h)−Qi,(l)(sm,h, am,h)
]

≤
M∑

m=1

Hm∑
h=1

[
4βT min

{
1,

1

n

∑
i∈N

||ϕV i
ji(m)

(sm,h, am,h)||Σi−1

t(m,h)

}
+

1

n

∑
i∈N

B⋆ + 1

tji(m)

]

≤ 4βT

√
2Td log

(
1 +

TB2
⋆

λ

)
+ 4nd(B⋆ + 1)

[
log

(
1 +

TB2
⋆nd

λ

)
+ log(T )

]
+ 2(n+ 1), (55)

the last inequality uses the same ideas as used for bounding
∑M

m=1

∑Hm

h=1E1(Sm). Combining Equations (54) and (55),
we have the bound for E1 as follows:

E1 =

M∑
m=1

Hm∑
h=1

[E1(Sm) + E1(S
c
m)]

≤ 8βT

√
2Td log

(
1 +

TB2
⋆

λ

)
+ 8nd(B⋆ + 1)

[
log

(
1 +

TB2
⋆nd

λ

)
+ 2 log(T )

]
+ 4(n+ 1).

This ends the proof.

C.4 Proof of Proposition 6 (Bounding E2)

Proof. Recall E2 is given by

E2 =

M∑
m=1

Hm∑
h=1

[
1

n

n∑
i=1

V i
ji(m)(sm,h+1)−

1

n

n∑
i=1

PV i
ji(m)(sm,h, am,h)

]
.

The first thing to note is that E2 is the sum of the martingale differences. However, the function V i
ji(m) is random, not

necessarily bounded. So we can apply Azuma-Hoeffding inequality. Let us define an filtration {Fm,h}m,h such that Fm,h

is the σ-field of all the history up until (sm,h, am,h) but doesn’t contain sm,h+1. Thus, (sm,h, am,h) is Fm,h-measurable.
Moreover, V i

ji(m) is Fm,h measurable. By definition of operator P, we have E[V i
ji(m)|Fm,h] = PV i

ji(m) for all i ∈ N ,
which shows that E2 is martingale difference sequence. To deal with the problem that V i

ji(m) might not be bounded, define
an auxiliary sequence

Ṽ i
ji(m) := min{B⋆, V

i
ji(m)},
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It follows that Ṽ i
ji(m) is Fm,h-measurable.

E2 =

M∑
m=1

Hm∑
h=1

[
1

n

n∑
i=1

Ṽ i
ji(m)(sm,h+1)−

1

n

n∑
i=1

PṼ i
ji(m)(sm,h, am,h)

]

+

M∑
m=1

Hm∑
h=1

[
1

n

n∑
i=1

[V i
ji(m) − Ṽ

i
ji(m)](sm,h+1)−

1

n

n∑
i=1

P[V i
ji(m) − Ṽ

i
ji(m)](sm,h, am,h)

]
.

Since Ṽ i
ji(m) is bounded, we can apply the Azuma-Hoeffding inequality Lemma 5 and get with probability at least 1−δ/2n

that

E2 =
1

n

n∑
i=1

2B⋆

√
2T log

(
T

δ/2n

)
+

M∑
m=1

Hm∑
h=1

[
1

n

n∑
i=1

[V i
ji(m) − Ṽ

i
ji(m)](sm,h+1)−

1

n

n∑
i=1

P[V i
ji(m) − Ṽ

i
ji(m)](sm,h, am,h)

]
.

Note that under the MAEVI analysis and optimism, we have Ṽ i
ji(m) = V i

ji(m) for all ji(m) ≥ 1 for all i ∈ N . Moreover,

initialization Ṽ i
0 = V i

0 for all i ∈ N implies the second term in RHS is zero. Thus, with probability at least 1− δ we have

E2 =
1

n

n∑
i=1

2B⋆

√
2T log

(
2nT

δ

)
= 2B⋆

√
2T log

(
2nT

δ

)
,

This ends the proof.

D SOME USEFUL RESULTS

Theorem 7 (Theorem 1, Abbasi-Yadkori et al. (2011)). Let {Ft}∞t=0 be a filtration. Suppose {ηt}∞t=1 is a R-valued
stochastic process such that ηt is Ft-measurable and ηt|Ft−1 is B-sub-Gaussian. Let {ϕt}∞t=1 be an Rd-valued stochastic
process such that ϕt is Ft−1-measurable. Assume that Σ is an d× d positive definite matrix. For any t ≥ 1, define

Σt = Σ+

t∑
k=1

ϕkϕ
⊤
k and at =

t∑
k=1

ηkϕk.

Then, for any δ > 0, with probability at least δ, for all t, we have

∥Σ−1/2
t at∥2 ≤ B

√
2 log

(
det(Σt)1/2

δ · det(Σ)1/2

)
.

Theorem 8 (Determinant-trace inequality; Lemma 11 Abbasi-Yadkori et al. (2011)). Assume ϕ1, ϕ2, . . . , ϕt ∈ Rd and for
any s ≤ t , ||ϕs||2 ≤ L. Let λ > 0 and Σt = λI+

∑t
s=1 ϕsϕ

⊤
s . Then

det(Σt) ≤ (λ+ tL2/d)d.

Lemma 4 (Lemma 11 in Abbasi-Yadkori et al. (2011)). Let {ϕt}∞t=1 be in Rd such that ||ϕt|| ≤ L for all t. Assume Σ0 is
psd matrix in Rd×d, and let Σt = Σ0 +

∑t
s=1 ϕsϕ

⊤
s . Then we have

t∑
s=1

min{1, ||ϕs||Σ−1
s−1
} ≤ 2

[
d log

(
trace(Σ0) + tL2

d

)
− log det(Σ0)

]
.

Lemma 5 (Azuma-Hoeffding inequality, anytime version). Let {Xt}∞t=0 be a real-valued martingale such that for every
t ≥ 1, it holds that |Xt −Xt − 1| ≤ B for some B ≥ 0. Then for any 0 < δ ≤ 1/2, with probability at least 1 − δ, the
following holds for all t ≥ 0

|Xt −X0| ≤ 2B

√
2t log

(
t

δ

)
.



Prashant Trivedi, Nandyala Hemachandra

Lemma 6 (Kushner-Clark Lemma Kushner and Yin (2003); Metivier and Priouret (1984)). Let X ⊆ Rp be a compact set
and let h : X → Rp be a continuous function. Consider the following recursion in p-dimensions

xt+1 = Γ{xt + γt[h(xt) + ζt + βt]}. (56)

Let Γ̂(·) be transformed projection operator defined for any x ∈ X ⊆ Rp as

Γ̂(h(x)) = lim
0<η→0

{
Γ(x+ ηh(x))− x

η

}
,

then the ODE associated with Equation (56) is ẋ = Γ̂(h(x)).

Assumption 5. Kushner-Clark lemma requires the following assumptions

1. Stepsize {γt}t≥0 satisfy
∑

t γt =∞, and γt → 0 as t→∞.

2. The sequence {βt}t≥0 is a bounded random sequence with βt → 0 almost surely as t→∞.

3. For any ϵ > 0, the sequence {ζt}t≥0 satisfy

lim
t

P

(
supp≥t

∥∥∥∥∥
p∑

τ=t

γτζτ

∥∥∥∥∥ ≥ ϵ
)

= 0.

Kushner-Clark lemma is as follows: suppose that ODE ẋ = Γ̂(h(x)) has a compact set K⋆ as its asymptotically stable
equilibria, then under Assumption 5, xt in Equation (56) converges almost surely to K⋆ as t→∞.
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