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Abstract

Principal Component Analysis (PCA) and its ex-
ponential family extensions have three compo-
nents: observations, latents and parameters of a
linear transformation. We consider a generalised
setting where the canonical parameters of the ex-
ponential family are a nonlinear transformation
of the latents. We show explicit relationships
between particular neural network architectures
and the corresponding statistical models. We
find that deep equilibrium models — a recently
introduced class of implicit neural networks —
solve maximum a-posteriori (MAP) estimates for
the latents and parameters of the transforma-
tion. Our analysis provides a systematic way
to relate activation functions, dropout, and layer
structure, to statistical assumptions about the ob-
servations, thus providing foundational princi-
ples for unsupervised DEQs. For hierarchical
latents, individual neurons can be interpreted as
nodes in a deep graphical model. Our DEQ fea-
ture maps are end-to-end differentiable, enabling
fine-tuning for downstream tasks.

1 INTRODUCTION

Deep learning provides a means of fitting highly flexible
but theoretically opaque functions to data. Functions are
defined as compositions of parameterised mappings called
layers. Parameters of layers are typically adjusted by ap-
plying first-order optimisation methods to an objective in-
volving data and the parameters. Layers may provide an
explicit description of a mapping. For example, given an
input x ∈ RD, the L-dimensional output of a layer with
parameters θ ∈ RL×D might be defined by σ

(
θx
)
, where

σ is a nonlinear activation function.
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Alternatively, layers may be defined implicitly as solutions
to certain problems. For example, given an input x ∈ RD,
a Deep Equilibrium Model (DEQ) (Bai et al., 2019) layer
might output a solution to the fixed point equation z =
σ
(
Γz + θx

)
, where θ ∈ RL×D and Γ ∈ RL×L are param-

eters and z ∈ RL is the implicitly defined output. Implicit
layers include DEQs which solve fixed point equations,
Neural ODEs (Chen et al., 2018) which solve ODEs and
Deep Declarative Networks (DDNs) (Gould et al., 2021)
which solve optimisation problems. All implicit layers and
in particular DEQs carry an issue of well-posedness, that is,
whether there exists a unique solution to the problem that
defines the layer (Winston and Kolter, 2020). Implicit net-
works’ parameters retain the ability of being easy to adjust
using first-order optimisation methods. Under mild condi-
tions, the gradient of the layer can be computed without
back-propagating through the solver that computes the out-
put of the implicit layer, via the implicit function theorem.

The use of DEQs, and deep learning models more gener-
ally, is usually motivated from a top-down view. One uses
a deep learning model for some combination of predictive
performance (measured empirically a posteriori), or repre-
sentational capacity (proven mathematically a priori). In
contrast, classical statistical models can often be motivated
from a bottom-up data generating process and are there-
fore interpretable (Rudin, 2019), but might not necessar-
ily achieve as good performance for a given task. Our pa-
per closes this gap, by understanding DEQ models through
data generating processes (Efron, 2020).

Contributions We present Principal Equilibrium Dimen-
sions (PED), a DEQ that solves the problem of joint MAP
estimation in a graphical model representing nonlinearly
parameterised exponential family PCA. We stress that our
contributions are mostly theoretical in nature, with the aim
of closing the gap between black box predictors and data
generating models. Our analysis provides a bottom-up jus-
tification for the use of particular DEQ layers in unsuper-
vised learning. PED layers have similar components to ex-
plicit networks, such as activation functions and dropout.
PED layers are end-to-end differentiable and may be fine-
tuned in supervised settings. Our contributions are as fol-
lows.
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Figure 1: (Left) The graphical model for nonlinearly parameterised exponential family PCA with observations Ys, latents
Zs, and parameters W, B. The likelihood of the observation Ys is an exponential family with a canonical parameter
R(WZs + B), for some nonlinearity R. (Right) MAP estimates can be found using PED. Latents are estimated by the
prediction of the DEQ layer given fixed parameters. Parameters of the DEQ layer are adjusted through backpropagation.

• We show that MAP estimates of the latents and param-
eters of nonlinearly parameterised exponential family
PCA can be computed by a DEQ layer. See Figure 1.

• We relate statistical assumptions about the data to a
choice of activation function, giving conceptual mean-
ing to the use of activations such as tanh, logistic
sigmoid, softmax, and ReLU, as well as a form of
learned dropout. See Table 1.

• In the nicest setting (Theorem 1), PED layers com-
pute solutions to strongly convex optimisation prob-
lems. Hence they are guaranteed to admit unique fixed
points. In less nice settings (Theorem 2), we ensure
that PED layers compute local minima.

• We derive a principled method for constructing a DEQ
that solves a graphical model with hierarchical latent
variables, called deep PED. See Figure 3.

• We provide an implementation for shallow and deep
PED and compare it to PCA, tSNE and UMAP on il-
lustrative synthetic datasets (Figure 7)1.

2 BACKGROUND AND NOTATION

Exponential Families An exponential family is a class of
probability distributions supported on Y ⊆ R whose suffi-
cient statistics admit a moment generating function defined
on an open set F ⊆ R. See Appendix B.1 for more details.
Such an exponential family possesses a base density (mass)
h : Y → R≥0, sufficient statistic T : Y → R and log
partition function A : F → R. Members of the exponen-
tial family are characterised by their canonical parameter
v ∈ F. The probability density (mass) function is

p(y | v) = h(y) exp
(
vT (y)−A(v)

)
. (1)

For such a family, A is infinitely differentiable and strictly
convex (Wainwright and Jordan, 2008, Proposition 3.1).

A acts as a cumulant generating function; in particular the
expected value under p(y | v) is µ = A′(v). We write

1PyTorch implementation and reproducible experiments are
available at https://github.com/RussellTsuchida/
ped.

y ∼ DA,χ(v) to mean that a scalar-valued random variable
y follows an exponential family with log partition function
A, scalar canonical parameter v and additional parameter
χ2. If Y = (y1, . . . , yd) and V = (v1, . . . , vd), we write
Y ∼ DA,χ(V ) to mean yi ∼ DA,χ(vi) for all 1 ≤ i ≤ d,
with each yi mutually conditionally independent given V .

Matrices and Data We use I to denote a square iden-
tity matrix, with dimensions defined from context. Let
Ys = (ys1; . . . ; ysd) ∼ DA,χ(Vs), where for each s,
Vs ∈ Rd is a vector consisting of canonical parameters.
Let Y ∈ Rd×N denote a matrix with N such vectors Ys,
1 ≤ s ≤ N , each sampled conditionally independently
given the canonical parameters. Each of the Ys are associ-
ated with a latent representation Zs ∈ Rl. Write Z ∈ Rl×N

for the matrix consisting of such latent representations. We
sometimes drop subscripts for cleanliness when they are
fixed. Functions are composed using ◦, and ⊙ represents
elementwise product of vectors.

Implicit Neural Networks Our analysis will reveal that
MAP estimates of nonlinearly parameterised exponential
family PCA can be computed by training a DEQ in an un-
supervised setting. Connections between DEQs and DDNs
(which solve optimisation problems) have previously been
explored by Tsuchida et al. (2022); Li et al. (2022). We
work with a prototype problem to represent a DEQ,

min
θ,Γ

N∑
s=1

L
(
FΓ

(
Z∗
s , Ys

)
, Ys

)
(2)

subject to Z∗
s = g(θ, Ys, Z

∗
s ), s = 1, . . . , N.

Here θ are parameters of the implicit layer, Z∗
s are out-

puts, FΓ is a neural network (that may also contain implicit
layers) parameterised by Γ, and L is a loss function. The
constraint is satisfied at a fixed point of a function g, which
depends on parameters θ and input data Ys.

2Some exponential families involve a parameter that is not
canonical. E.g. the univariate Gaussian with known variance has
a scale parameter (Nielsen and Garcia, 2009, p. 16), and Laplace
has a centering parameter. Both A and χ are fixed.

https://github.com/RussellTsuchida/ped
https://github.com/RussellTsuchida/ped
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Soft dropout Activation
R(η) A ◦R (η) ρ(η) := R′(η) σ(η) := (A ◦R)′ (η)

Linear R, Quadratic A (Classical PCA)
η η2/2 1 η

Linear R, General A (Exponential family PCA)
η log

(
1 + exp(η)

)
1 (1 + e−η)−1

η log cosh η 1 tanh(η)

η log eη−1
η 1 eη(η−1)+1

(eη−1)η

Nonlinear R, Quadratic A (Non-linearly parameterised classical PCA)
ReLUτ (η) ReLUτ

2(η)/2 Φτ (η) Φτ (η)ReLUτ (η)
ReLU(η) ReLU2(η)/2 Θ(η) ReLU(η)

η + log cosh η (η + log cosh η)2/2 1 + tanh(η) (tanh(η) + 1)(η + log cosh η)
Nonlinear R, General A (Non-linearly parameterised exponential family PCA)

−ReLUτ (η) − log ReLUτ (η) −Φτ (η) − Φτ (η)
ReLUτ (η)

ReLUτ (η) t log
(
1 + exp

(
ReLUτ (η)

))
Φτ (η) t

exp
(
ReLUτ (η)

)
1+exp

(
ReLUτ (η)

)Φτ (η)

ReLU(η) t log
(
1 + exp

(
ReLU(η)

))
Θ(η) t

exp
(
ReLU(η)

)
1+exp

(
ReLU(η)

)Θ(η)

−ReLUτ Lij+1

(
exp(−ReLUτ (η))

)
−Φτ (η) −Lij

(
exp(−ReLUτ (η))

)
Φτ (η)

Table 1: Different combinations of A and R induce different soft dropout and activation functions ρ and σ. The first
four rows represent cases of exponential family PCA with Gaussian, Bernoulli, non-interacting Ising and continuous
Bernoulli (Loaiza-Ganem and Cunningham, 2019) likelihoods respectively. Our setting allows for general A and R, all of
which can be solved using single-layer PED. Of particular interest is the case where A is quadratic but R is general, where
an extended setting involving a hierarchy of latent variables can be solved using deep PED. Further details of the proba-
bilistic interpretation of each of these cases is described in Appendix B. The function ReLUτ is discussed in Appendix C.
The functions Φτ and Θ are CDFs of a Gaussian with standard deviation |τ | and the Heaviside step function respectively.
The function Lij+1 is the polylogarithm of order j + 1. See also Nielsen and Garcia (2009) for the case ρ = 1.

The outer problem learns the parameters of the network,
and the inner constraint outputs predictions of the implicit
layer. The inner constraint is subject to questions of well-
posedness, that is, whether solutions to the problem exist
and are unique. The workhorse tools for analysing well-
posedness are contraction principles for fixed point equa-
tions (Hasselblatt and Katok, 2003) and convexity for op-
timisation problems (Wright and Recht, 2022, Chapter 2).
Following usual deep learning philosophy, we ignore such
questions for the outer parameter learning problem, which
is likely to be highly nonconvex. Our aim is to cast prob-
lems in the form (2) with well-posed inner constraints. A
problem cast in the form of (2) can use the machinery of
implicit deep learning — the implicit function theorem and
GPU-optimised libraries — to solve the problem.

Variants of PCA. PCA admits linear algebraic,
probabilistic (Bishop, 2006) and functional interpre-
tations (Schölkopf et al., 1997). We work with the
probabilistic view (Bishop, 1998; Collins et al., 2001;
Bishop, 2006; Mohamed et al., 2008; Avalos et al., 2018),
since it allows for extensions with intuitive statistical
meaning. Other variants of PCA are more extensively
reviewed by Smallman and Artemiou (2022).

3 DERIVATION OF PED

We propose to insert nonlinear mappings R : R → F called
the canonical nonlinearity into the exponential family. In
a sense to be made more precise, we work with a composi-
tion A ◦ R(·). Various combinations of A and R are given
in Table 1. The derivatives ρ := R′ and σ := (A ◦ R)′

(where defined) play important roles, and we call them the
soft dropout and activation functions respectively. We con-
sider the graphical model in Figure 1, which mirrors var-
ious versions of PCA (Bishop, 2006; Collins et al., 2001;
Mohamed et al., 2008) but allows non-identity R.

3.1 MAP Estimation Using DEQs

Setup Let H = WZ + B11×N , where W ∈ Rd×l,
B ∈ Rd and Z ∈ Rl×N . Equivalently Hs = WZs + B
where Zs ∈ Rl×1 are the latent variables for data Ys =
(ys1, . . . ysd). Typically l < d, although this need not be
the case. We introduce a (potentially nonlinear) canonical
map R(·). The canonical parameters of the distribution of
the observed variables Ys are R(Hs) ∈ F. In other words,
we assume that the observed vector of data Ys is drawn
from a nonlinear parameterisation of the exponential fam-
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ily DA,χ(R(Hs)) with log partition function A, and ad-
ditional parameter χ. This immediately implies that the
distribution is properly normalised. The nonlinear parame-
terisation does not violate the Fisher-Neyman factorisation
(see Deisenroth et al. (2020, Theorem 6.14)). That is, T is
still a sufficient statistic for WZs +B. The expectation pa-
rameter satisfies µ = σ(η)/ρ(η) when the right hand side
is defined (see Appendix B.8). Following (1), our proposed
nonlinear exponential family is

p(Y | Z,W, B) =

N∏
s=1

d∏
i=1

h
(
ysi
)

(3)

exp
(
R
(
(WZs +B)i

)
T (ysi)−A ◦R

(
(WZs +B)i

))
.

For each s, we place independent zero mean iid Gaussian
priors over Zs, Zs ∼ N (0, λ−1I), Z1 ⊥⊥ . . . ⊥⊥ ZN .

There are two settings of interest. In the first, the param-
eters W and B are fixed and belong to a nonempty set
W ⊆ Rd×l+d. The posterior over Z satisfies

p
(
Z | W, B,Y

)
= p
(
Y | Z,W, B

)
p(Z)/p(Y | W, B).

(4)

In the second setting, we place a prior P admitting a density
supported on W over W and B. The joint posterior is

p(Z,W, B | Y) = p(Y | Z,W, B)p(Z)p(W, B)/p(Y).
(5)

In Appendix A, we show the special case where the like-
lihood is Gaussian and R is the identity, i.e. probabilistic
PCA. This special case recovers the usual MAP estimate
for Z, as well as an auto-encoder style reprojection error
objective for the parameters W and B.

Results We now turn to the more general case of non-
linearly parameterised exponential family likelihoods (3).
Our conditions for well-posedness of PED layers can be
understood from the perspective of optimisation or fixed
points. Both views lead to a spectral constraint on W up to
a constant κ which includes effects from the observation Y,
log partition function A and canonical nonlinearityR.

Assumption 1. The support W satisfies

W ⊆
{
W ∈ Rd×l, B ∈ Rd | κ∥W⊤W∥2 < 1

}
,

where κ = λ−1
(
sup
η,s,i

T (ysi)ρ
′(η)− σ′(η)

)
.

Note that if R is the identity, W may be any subset of
Rd×l+d since ρ′ = 0 and σ′ is nonnegative by convex-
ity of A. Assumption 1 ensures well-posedness when R is
the identity or its second derivative is still relatively well-
behaved. However, cases of interest such as ReLU require
a different analysis (see § 3.2). Under Assumption 1, the

first order optimality conditions are sufficient to charac-
terise the unique global optima of the latents given a fixed
set of parameters. This first order optimality condition can
be rearranged to a fixed point equation, which yields the
following DEQ (8) of the form (2).

Theorem 1. Suppose Assumption 1 holds. Let

f(Z;Ys,W, B)

=
1

λ
W⊤(T (Ys)⊙ ρ(WZ +B)− σ(WZ +B)

)
. (6)

Any MAP estimate of (4) satisfies

Z∗
s = f(Z∗

s ;Ys,W, B), ∀1 ≤ s ≤ N, (7)

solutions of which are guaranteed to exist and be unique.
Any joint MAP estimate of (5) satisfies

W∗, B∗ ∈ argmin
W,B∈W

− log p(W, B)− log p(Z∗)+ (8)

N∑
s=1

1⊤d×1A ◦R (WZ∗
s +B)− T (Ys)

⊤R(WZ∗
s +B)

subject to Z∗
s = f(Z∗

s ;Ys,W, B), ∀1 ≤ s ≤ N.

The proof is given in Appendix D. Our analysis relies on
the quadratic negative log Gaussian prior log p(z), which
when differentiated yields λz. When this term is isolated,
a fixed point condition is obtained. When we extend our
analysis to hierachical latent variables, the prior p(z) will
be replaced by a layer-dependent likelihood, for example
p(Z(1) | Z(2)). This means that A for layers l > 1 must be
quadratic, but crucially, R may be nonlinear.

The fixed point (7) of a fully connected or convolutional
layer (6) represents a DEQ with activation σ, soft dropout
ρ, shared weights or convolutional kernel (see Appendix F)
W and biases B. We name ρ soft dropout because (a) as
shown in Table 1, it is often close to a {0, 1}-valued func-
tion, and (b) its role is to multiply inputs T (Ys) by a value
that is close to zero or one. This resembles common usage
of dropout in explicit networks but applied to an implicit
DEQ setting.

An existing but different DEQ dropout mechanism ex-
ists (Bai et al., 2019, 2020) — adapted from Gal and
Ghahramani (2016b)— where for each parameter update
and input Ys, a single static mask is sampled and re-
applied in each step of the fixed point solver. We offer
an alternative theoretically motivated dropout mechanism,
where the mask is a deterministic function of the current
solution in the fixed point solver. The mask is dynamic
(recalculated at each step of the fixed point solver). The
mask is elementwise multiplied by input T (Ys). In the case
σ ≡ ReLU and ρ ≡ Θ, where Θ is the Heaviside step func-
tion, the mask ρ(WZs +B) is {0, 1}-valued, hence “drop-
ping out” inputs. When R is the identity the mask is 1 (no
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Figure 2: Choosing A(r) = r2/2 and R = ReLUτ , (Left)
Activation function σ(η) = Φτ (η)ReLUτ (η) (Right) Soft
dropout function ρ(η) = Φτ (η) for different values of τ .

dropout). When using smooth ReLU functions ReLUτ , the
mask is the CDF of a Gaussian random variable with vari-
ance τ2. This is a kind of (0, 1)-valued smooth Heaviside
function, which becomes {0, 1}-valued as τ → 0. Another
setting is ρ(η) = 1 + tanh(η) as shown in Table 1, where
the mask is (0, 2)-valued which is also a smooth version of
the Heaviside function, up to a factor of 2. Because these
last two settings do not zero-out inputs exactly, but do mul-
tiply by the inputs similar to the mask in dropout, but in a
smooth manner, we call ρ “soft dropout”.

Equations (6) and (7) resemble what practitioners might
use as a generic black-box DEQ predictor, without any ex-
plicit intention to compute with an underlying statistical
model. The outer optimisation is a non-Gaussian exponen-
tial family generalisation of a squared reprojection error, as
detailed in Appendix A.

3.2 Rectified Activations and Hard Dropout

Smooth ReLU Define the ReLU by ReLU(η) = Θ(η)η,
where Θ(·) is the Heaviside function. Let ReLUτ (η) =∫
R ReLU(η + ϵ)pτ (ϵ) dϵ denote the τ -smoothed ReLU.

Here pτ is the PDF of a zero-mean Gaussian random vari-
able with standard deviation |τ |. We have

ReLUτ (η) = ηΦ
( η

|τ |

)
+

|τ |
2

√
2

π
exp

(
− η2/2τ2

)
∂

∂η
ReLUτ (η) = Φ(η/|τ |)

∂2

∂η2
ReLUτ (η) =

1√
2πτ2

exp
(
− η2

2τ2
)
= pτ (η),

where Φ is the cdf of the standard Gaussian random vari-
able. See Appendix C for details and Figure 2 for a visual-
isation of σ and ρ when A(r) = r2/2.

The Need for a Separate Analysis We consider the spe-
cial case of Theorem 1 when the exponential family is
Gaussian and R = ReLUτ . We find ρ(η) = Φτ (η)
and σ(η) = Φτ (η)ReLUτ (η). When τ is small, ρ
and σ begin to look like the Heaviside step function and

the ReLU. This amounts to using a DEQ consisting of
dropout and ReLU activations. Assumption 1 requires√

λ(0) max
s,i

ysi

τλ ∥W⊤W∥2 < 1, where
√
λ(0) is the standard

deviation of the Gaussian likelihood. As τ → 0, this con-
dition becomes impossible to satisfy for nontrivial W.

Instead of requiring that the inner constraint of a DEQ finds
a unique global minimum, we relax the constraint so that
it finds a local minimum. This allows us to use a weaker
assumption that may be satisfied by the ReLU.

Assumption 2. Suppose R(η) = ReLU(η). Let a < ∞ be
a Lipschitz constant of A′. The support W satisfies

W ⊆
{
W ∈ Rd×l, b ∈ Rd | κ∥W⊤W∥2 < 1

}
,

where κ = aλ−1.

An interesting property of the ReLU is that the dropout
function (where it is defined) maps to a finite set of val-
ues. We may form and analyse a set of nicely-behaved fixed
point equations for each dropout value instead of analysing
one fixed point equation involving Θ, whose derivative is
poorly behaved. This allows us to avoid dealing with the
non-continuous nature of the dropout function Θ.

Theorem 2. Suppose R(η) = ReLU(η) and fix some pa-
rameters

(
W, B

)
and data index s. Any stationary point

Z∗
s of objective (4) is a solution to

Z∗
s =

1

λ
W⊤(T (Ys)⊙Θ(WZ∗

s +B)− ReLU(WZ∗
s +B)

)
.

Under Assumption 2, there exists at least 1 and at most 2d

stationary points, all of which are local minima.

The proof is given in Appendix D. As expected, the fixed
point equations in Theorems 1 and 2 are identical, up
to a substitution and ignoring the nondifferentiable point.
Dropout (where defined) maps to a finite set for other ac-
tivations such as the Leaky ReLU and hard sigmoid, and
Theorem 2 can likely be extended to these cases.

3.3 Deep PED

It is well-known that compositions of linear transforma-
tions are linear transformations. This means that stacking
multiple PED layers when the likelihood is Gaussian and
R is the identity is trivial. When a nonlinearity is intro-
duced, the analysis becomes challenging, but might offer
the chance of more expressive neural network models due
to the deep nonlinear structure of the architecture (Poole
et al., 2016). As we now show, one may stack PED layers
in a principled manner to obtain a deep PED architecture
when A is quadratic and R is nonlinear.

We consider a natural generalisation of Figure 1 in Fig-
ure 3. Instead of a single latent prior node, we have L la-
tent nodes built as a hierarchical prior. Here every object is
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Ys

W(1)B(1)

Z
(1)
s

. . . Z
(L)
s

W(2)B(2) . . .. . .

s = 1, . . . , N

Figure 3: Restricting our attention to the Gaussian case
A(η) = η2/2, we consider a deep graphical model. Here
each of the latent Z(l) variables are Gaussian conditioned
on their parents, with variance 1/λ(l) and canonical param-
eter R(l+1)

(
W(l+1)Z

(l+1)
s +B(l+1)

)
. Surprisingly, a DEQ

can be used to find local minima in the latent variables.

given a superscript denoting the layer 1 ≤ l ≤ L to which
it belongs. The conditional distribution of the latent node in
layer l is Gaussian in exponential family form DA,χ, hav-
ing A(r) = r2/2 and an additional standard deviation pa-

rameter ν =
√
λ(l)

−1
. Variables carrying over from the

shallow case in § 3 are renamed Ys = Z
(0)
s , λ = λ(1) and

(W, B) = (W(1), B(1)). Let θ = {W(l), B(l)}Ll=1. With s
fixed, the joint posterior over θ, {Z(l)}Ll=1 of the graphical
model in Figure 3 satisfies

p
(
Z(1), . . . , Z(L), θ | Y

)
(9)

∝ p
(
Y | Z(1), θ

) (L−1)∏
l=1

p
(
Z(l) | Z(l+1), θ

)
p(Z(L))p(θ).

As in the shallow case, we find the fixed point condition
implied by the stationary points of the posterior, leading
to a DEQ layer. Let ζ = (Z(1); . . . ;Z(L)) ∈ RD be an
augmented state and write

G[1:L](ζ)

=
(
G(1)

(
Z(1);Z(0), Z(2)

)
; . . . ;G(L)

(
Z(L);Z(L−1), 0

))
(10)

where

G(l)
(
Z(l);Z(l−1), Z(l+1)

)
=

1√
λ(l)

R(l+1)
(
W (l+1)Z(l+1) + b(l+1)

)
+

1

λ(l)
W (l)⊤

(
ρ(l)(W (l)Z(l) + b(l))⊙

√
λ(l−1)Z(l−1)

− σ(l)
(
W (l)Z(l) + b(l)

))
.

In Appendix E, we show that fixed points of (10) are the
stationary points of (9) under certain conditions. This aug-
mentation of the state space shares an interesting connec-
tion to the construction used to argue that a single layer

DEQ is sufficient to represent multiple DEQ layers (Bai
et al., 2019, Theorem 2). Theorem 2 of Bai et al. (2019)
says that instead of stacking two DEQ layers with widths r
and d, one can use a single DEQ layer with width r + d to
represent the same function. We find that instead of stack-
ing L coupled DEQ layers for each latent Z(l), we may use
a single DEQ layer with a width that is the sum of individ-
ual widths. Interestingly, due to the way we constructed the
augmented state, we can identify different subsets of coor-
dinates as corresponding with latent variables at different
layers l. To the best of our knowledge, this is the first such
DEQ with this interpretable quality. Bai et al. (2019)’s
statement is about the representation or capacity that can
be obtained by increasing layer widths, whereas our ob-
servation is one about modelling, bias and interpretability.
A related augmentation and stacking of DEQ layers into
a single wide layer is exploited in the context of diffusion
models (Pokle et al., 2022, Equation 11).

Unfortunately, formally describing the nature of the sta-
tionary points which are the fixed points of G[1:L] is dif-
ficult — a limitation of our work. See Appendix E for a
sketch.

3.4 Related Work and Other Considerations

Several theoretical issues of DEQs have been investi-
gated. These include methods for ensuring certified ros-
bustness (Wei and Kolter, 2022), constraints and architec-
tures that ensure or help well-posedness of the fixed point
condition (Winston and Kolter, 2020; Revay et al., 2020;
El Ghaoui et al., 2021) and connections to nonparametric
statistical estimators (Tsuchida et al., 2022). Li et al. (2022)
design DEQ layers from a (non-statistically motivated) op-
timisation perspective. Other works view DEQs in light of
classical inverse problems (Gilton et al., 2021; Riccio et al.,
2022; Guan et al., 2022). We note that Jacobian regularisa-
tion (Bai et al., 2021) may be used as a soft penality on the
weights to allow Assumptions 1, 2 hold, where required.
Implicit networks offer the opportunity to inject a degree of
interpretability into neural network models, if the problem
that the implicit layer solves is itself interpretable. This is
especially true for optimisation-based layers (Monga et al.,
2021), but not necessarily for DEQ layers. Our work iden-
tifies problems which DEQ layers solve, and shows that
such problems have meaningful statistical interpretations.

Linearly Parameterised Exponential Families Expo-
nential families are widely used due to their flexibility and
the strict convexity and smoothness properties of the log
likeihood of (1) in r. Typically, the canonical parameters
are set to be a parameterised linear transformation of an in-
put (in supervised settings (McCullagh and Nelder, 1989;
Loader, 2006)) or a latent variable (in unsupervised set-
tings (Collins et al., 2001; Mohamed et al., 2008)). This ex-
tends when the linear transformation represents an element
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Figure 4: KDE of (11) in 1 dimension with τ = 0.5 using
10000 samples of W, z and y.

of an RKHS (Canu and Smola, 2006). Linear transforma-
tions compose well with exponential families because they
preserve convexity (in the parameters) and smoothness.

A is Not All You Need Using a non-identity R allows
for a number of potential benefits. If R is chosen to be
the identity, the activation function σ must be increasing
by strict convexity of A. Therefore, activations such as the
ReLU, GELU, (nonconstant) periodic functions, or Gaus-
sian activations are not obtainable with linear R, each of
which have been shown to posses useful properties (Nair
and Hinton, 2010; Hendrycks and Gimpel, 2016; Meronen
et al., 2021) (although perhaps in slightly different archi-
tectures). We further detail this lack of expressiveness for
A for the softplus activation in Appendices B.5 and B.6.

Another advantage of nonlinear R is that it can map inputs
into an acceptable range for the canonical parameter of the
exponential family. For example, an exponential distribu-
tion requires a negative canonical parameter, which can be
ensured by choosing R(η) = −ReLUτ (η), which may be
easier than constraining η to be negative.

Finally, R allows us to model situations that cannot be
modelled using the linearly parameterised exponential fam-
ily. For example, let A(r) = r2/2 and R(η) = ReLUτ (η).
In order to visualise what this means, consider the case
d = l = 1. With a N (0,

√
2) prior over W ∈ R and z ∈ R,

p(y) = EW,z∼N (0,1)

[
p
(
y | ReLUτ (Wz)

)]
(11)

is visualised by sampling 10000 W, z and y and plotting a
KDE for y. This is shown in Figure 8, where the variance
of the conditional distribution of y given Wz is λ−1.

A Recipe for Mapping σ and ρ to Nonlinearly Param-
eterised Gaussians Using the various relations between
A, R, σ and ρ, it is possible to understand soft dropout and
activation functions in terms of nonlinearly parameterised
exponential family likelihoods. We demonstrate this for
quadratic A(v) = v2/2 and nonlinear R. We have by defi-
nition that σ(η) = (A ◦R)′(η) = 1

2
d
dηR

2(η), so that

∣∣R(η)
∣∣ =√∫ 2σ(η) dη, ρ(η) = σ(η)/R(η). (12)

Figure 5: Choosing σ to be logistic sigmoid or softmax, the
nonlinearity R and soft dropout function ρ, in (12).

As discussed above and in Appendices B.5 and B.6, if σ
is the commonly used softplus activation, it does not have
an interpretation as the derivative of a log-partition func-
tion. However, we may understand it through a nonlin-

ear transformation R(η) =
√∫

2 log
(
1 + exp(η)

)
dη =√

−2Li2(−eη) of the canonical parameter of a Gaussian
distribution, allowing it to model real-valued data. Here
Li2 denotes the dilogarithm function. See Appendix B.6
for details. See Figure 5 for plots of R and ρ.

This construction can also be used to understand instances
of σ that are derivatives log-partition functions of non-
Gaussian exponential families alternatively as arising from
nonlinear transformations of Gaussians. For example, as
is well-known, the logistic sigmoid is the inverse-link
function of a Bernoulli random variable, suggesting that
it should be used to model binary-valued data. How-
ever, by (12), we may understand it through a nonlin-

ear transformation R(z) =

√∫
2
(
1 + exp(−z)

)−1
dz =√

2 log(1 + ez) of the canonical parameter of a Gaussian
distribution, allowing it to model real-valued data. See Ap-
pendix B.7 for details. See Figure 5 for plot of R and ρ.

Bregman Divergences The negative log-likelihood of an
exponential family can always be written as a Bregman di-
vergence Bϕ(y, µ) in terms of its expectation parameters
µ (with an additional factor that is constant with respect
to the expectation parameter) and convex conjugate ϕ of
A (Banerjee et al., 2005, Theorem 4). For each exponential
family, there is a unique Bregman divergence. For exam-
ple, the Gaussian corresponds with the squared loss, the
Poisson corresponds with relative entropy, and Exponen-
tial corresponds with the Itakura Saito divergence. Under
our nonlinear parameterisation, the expectation parameter
is µ = A′ ◦R (η), leading to a space of nonlinearly param-
eterised Bregman divergences. See Appendix B.8.

Convolutional Layers Operators that perform neural
network convolution may be represented as sparse ma-
trices with repeated entries. Our results apply when W
is a space of convolutional layers. The transpose opera-
tor can be computed using transposed convolution (Zeiler
et al., 2010). The constraints in Assumption 1 and 2
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may be computed efficiently when the norm is the spectral
norm (Sedghi et al., 2019). See Appendix F.

4 ILLUSTRATION ON A 2D LATENT
SPACE

Figure 6:
ground truth, Z

In this section, we compare the per-
formance and key features of PCA,
tSNE (Van der Maaten and Hinton,
2008), UMAP (McInnes et al., 2018)
and PED. It can be difficult to eval-
uate latent projections. Our evalua-
tion focuses on two issues: visualis-
ing the latent space, and performance
in a downstream classifier.

Ground Truth Latents We generate datasets through
graphical model in Figure 1, except that Z is fixed as shown
in Figure 6. Each latent Zs is 2-dimensional. For each dis-
tribution shown in the left column of Figure 7, we generate
100 parameters W according to the graphical model and
them sample the corresponding Y. Each observation Ys is
50-dimensional. This results in 100 different datasets for
each distribution, each with known ground truth Z.

Downstream Performance and Deep Learning Com-
patibility A key feature of PED is that it is compati-
ble with any other neural network layer. This means that
we can fine-tune backbone PED layers that are pretrained
in an unsupervised manner on a supervised task with a
head network. In contrast, since PCA is a linear mapping,
composing it with a head network and optimising the re-
sult is equivalent to just using the head network. Simi-
larly, other dimensionality reduction techniques that do not
posses neural network parameters such as UMAP cannot
benefit from fine-tuning. tSNE, which is better thought of
as a visualisation tool than a dimensionality reduction tool,
is even less suitable in this respect. The mapping produced
by tSNE on training data cannot be used on testing data, so
it is incompatible in a pipeline with downstream tasks.

We use a simple fully connected head with widths 2, 100, 1
and ReLU activations at width 100. Together with a PED
or (untrainable) PCA/UMAP backbone, we train the full
network to predict g(Zs) ∈ R given an input Ys ∈ R50 by
minimising the sum of squared errors. This is done for each
of the 100 randomly generated datasets. The corresponding
Zs ∈ R2 are not known to the network. This is a simple
to visualise and deceptively difficult task that relies heavily
on the quality of the latent embedding. Full hyperparameter
details and further experiments are given in Appendix G.

A limitation of our evaluation is that we did not tune hyper-
parameters of any algorithm. However, if latents were to
be used in a downstream task that was not known a priori,
there would be no way of objectively tuning hyperparame-

ters. We have demonstrated the important benefit that PED
has over all other techniques — it is end-to-end differen-
tiable and can be fine-tuned. PED motivates use of DEQ
layers for supervised tasks as using fine-tuned latents.

5 DISCUSSION AND CONCLUSION

We proposed a canonical nonlinear map for parameters of
an exponential family, and considered the problem of MAP
estimation in PCA. We derived shallow and deep DEQ ar-
chitectures that solve this problem, and called these shal-
low and deep PED respectively. Our main contribution is
the theoretical analysis. It grounds DEQ architectures in a
probabilistic framework, and shows how certain architec-
tural choices can be related back to statistical assumptions
on the observations. More generally, use of DEQ layers
admitting the same form as PED layers can be viewed as
fine-tuning for a supervised task.

As noted by Bai et al. (2019), DEQs built from contrac-
tion mappings may be understood as infinitely deep neural
networks with shared weights. In this sense, our analysis
motivates the use of such infinitely deep networks. Ma-
chine learning has a history of taking algorithms that at first
seem to require infinitely many samples or steps and run-
ning those algorithms for one or very few steps (Hinton,
2002; Sutskever and Tieleman, 2010; Kingma and Welling,
2013). In future, it might be possible that few steps of a
DEQ forward iteration can be understood using the theory
of infinitely many forward iterations, just as well-behaved
wide neural networks can now be understood using the the-
ory of infinitely wide neural networks (Jacot et al., 2018).

Another direction is to extend PED to a Bayesian setting
by taking the Hessian of the negative log likelihood eval-
uated at the MAP. Expressions of second order approxi-
mations are isolated in Appendix H, and may be useful
for future investigations, for example in Laplace approx-
imation (Daxberger et al., 2021). Interestingly, in some
cases the curvature at the MAP depends on a deterministic
dropout, which offer another (Srivastava et al., 2014; Gal
and Ghahramani, 2016a) perspective on dropout.

Empirical success stories of DEQs applied to language pre-
diction and computer vision usually other deep learning el-
ements such as activations that are not canonical inverse
link functions (such as the ReLU), attention and/or multi-
scale residual blocks (Bai et al., 2020). In future, we hope
to cast these elements in light of MAP estimation, and
further unpack the relationship between R and the statis-
tician’s inverse link function. Although we implicitly fo-
cused on the setting where l < d in the shallow case, and
d(0) < d(1) . . . < d(L) in the deep case, none of our analy-
sis actually requires this. This allows one to construct gen-
eral DEQ layers for use in unsupervised tasks, which may
be interpreted as fine-tuned nonlinearly parameterised ex-
ponential family PCA.
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PCA (sklearn) tSNE UMAP PED

Gaussian
A(r) = r2/2
R(η) = η 5 - 0 95

Bernoulli
A(r) = log

(
1 + er

)
R(η) = η 6 - 0 94

Poisson
A(r) = exp(r)
R(η) = η 0 - 16 84
Rectified-mean Gaussian (shallow)
A(r) = r2/2
R(η) = ReLU(η)
L = 1 0 - 11 89

Rectified-mean Gaussian (deep)
A(r) = r2/2
R(η) = ReLU(η)
L = 2, d(1) = 30, d(2) = 2 0 - 0 100

Figure 7: The left column describes the ground truth distribution, with latents as shown in Figure 6. The number in each
cell represents the number of times that model performed the best compared with others when used as the input for a
downstream task over 100 random trials. Interestingly, PCA and PED often produce visually quite similar results to each
other and the ground truth. However, PED is able to obtain much better results on downstream tasks on account of its ability
to be fine-tuned. While UMAP’s results are visually pleasing, its embeddings do not bear much similarity with the ground
truth, except in the Gaussian case. For non-Gaussian cases, UMAP sometimes places latents in good clusters, but fails
to globally position the clusters accurately relative to one another. tSNE is incompatible in a pipeline with a downstream
task. tSNE produces globally accurate positioning, but sometimes adds artefacts into the visualisation. Embeddings are
an equivalence class up to a rotation and scaling, since W and Z are non-identifiable; we rotated images by hand to align
them. For PED, we visualise the latents in an orthogonal basis, i.e. shown are RZ, where W = QR is a QR decomposition.

We hope that our link between neural network design
choices (activation functions, dropout, and layer struc-
ture) and their corresponding statistical distribution coun-
terparts (log partition function, canonical nonlinearity) en-
ables other researchers to gain a better understanding of
equilibrium networks.
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A The special case of Gaussian distributions

In this section, we work under the assumption is that the exponential family model is a Gaussian distribution in order to
illustrate a simple special case of Theorem 1. We follow (Deisenroth et al., 2020, §10.7) for probabilistic PCA, with some
small differences. Firstly, our setup allows for a prior over joint W, B, and we consider point estimates of Zs. Secondly,
our prior over Z has variance λ−1 and the Gaussian likelihood has unit variance, whereas in (Deisenroth et al., 2020,
§10.7) Z has a unit variance and the Gaussian likelihood has variance σ2. As we shall see, our resulting MAP estimates
are the same, up to this scaling reparameterisation.

For the Gaussian, we have T (y) = y/b, where b > 0 is a fixed scale parameter, A(v) = v2/2, and R = 1. Without loss of
generality, we take b = 1, since input data Y may be preprocessed to account for different scaling. Let ∥ · ∥F denote the
Frobenius matrix norm. Following (3), the negative log posterior of (4) is

− log p(Z | W, B,Y) = − log h(Y) +
λ

2
∥Z∥2F +

N∑
s=1

d∑
i=1

1

2
(WZs +B)2i − ysi(WZs +B)i.

This is a strongly convex objective, whose derivative is zero at the unique minima Z∗. Differentiating with repect to Zs,
we have that the minimiser Z∗ satisfies

0 = λZ∗
s +W⊤

(
WZ∗

s +B − Ys

)
Z∗
s =

1

λ
W⊤

(
Ys − (WZ∗

s +B)
)
. (13)

This is a DEQ with linear activation having evaluation (WZs +B). The dropout function is 1. The reprojection error loss
is obtained by considering the minimiser of the joint posterior

− log p(Z,W, B | Y) = − log p(W, B)− log p(Z | W, B,Y)

Z∗,W∗, B∗ = argmin
Z,W,B

− log p(W, B)− log p(Z | W, B,Y)

W∗, B∗ = argmin
W,B

− log p(W, B)− log p(Z∗ | W, B,Y), subject to Z∗ = argmin
Z

− log p(Z | W, B,Y).

The constraint is equivalent to (13). Substituting for the outer minimisaton problem, we have

W∗, B∗ = argmin
W,B

− log p(W, B) +

N∑
s=1

d∑
i=1

1

2
(WZs +B)2i − ysi(WZs +B)i

subject to Z∗
s =

1

λ
W⊤

(
Ys − (WZ∗

s +B)
)

∀s = 1, . . . , N.

Or, more explicitly as a squared reprojection error,

W∗, B∗ = argmin
W,B

− log p(W, B) +
1

2

N∑
s=1

d∑
i=1

(
(WZs +B)i − ysi

)2
(14)

subject to Z∗
s =

1

λ
W⊤

(
Ys − (WZ∗

s +B)
)

∀s = 1, . . . , N.

In this special case, we may rearrange the constraint to a more familiar form with the help of the push-through (Woodbury)
matrix identity,

λZ∗
s +W⊤WZ∗

s = W⊤(Ys −B)

Z∗
s =

(
λI+W⊤W

)−1
W⊤(Ys −B)

Z∗
s = W⊤(λI+WW⊤)−1

(Ys −B),

which is the same as Equation (10.74) of Deisenroth et al. (2020), up to a scaling reparameterisation.

Finally, we note a difference in approaches typically identified as “latent variable models” and “neural network autoencoder
models”. In the former, the marginal distribution p(Y | W, B) or p(W, B | Y) obtained by integrating out latent variables
Z is used as an objective for point estimation of parameters W and B (see Deisenroth et al. (2020, Remark p. 342)). In
the latter, a reprojection error like (14), which depends on the latent variable, is used as an objective for estimation the
parameters W and B.
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B Exponential family calculations

B.1 Construction of exponential families

Let Y ⊆ R and form a measurable space (Y,B) for some sigma algebra B. Let ω be some reference measure (nominally
Lebesgue or counting) and let h : Y → R≥0 be some ω-integrable function,

∫
Y h(y)dω(y) < ∞. Let T be some

measurable function and let F ⊆ R be the set of all canonical parameters r such that
∫
Y exp

(
T (y)r)h(y)dω(y) < ∞.

Assume that F is open. Define the log partition function A : F → R by A(r) = log
∫
Y exp

(
T (y)r)h(y)dω(y). Call

p(y | r) = h(y) exp
(
rT (y)−A(r)

)
(15)

the PDF of a minimal regular exponential family. For such a family, A is both infinitely differentiable and strictly con-
vex (Wainwright and Jordan, 2008, Proposition 3.1). Strictly convex and infinitely differentiable functions A are admissible
if and only if exp

(
A(ir)

)
is a positive definite function. See Lemma 1, Appendix B.2. A acts as a cumulant generating

function, so that in particular the expected value under p(y | r) is µ = A′(r). The parameter µ is called the expectation
parameter. Following common convention, we will use p(· | ·) to denote all (conditional) probability density functions,
with a meaning clear from the arguments. We write y ∼ DA,χ(r) to mean that a scalar-valued random variable y fol-
lows an exponential family with log partition function A, scalar canonical parameter r and additional parameter ν3. If
Y = (y1, . . . , yd) and V = (r1, . . . , rd), we write Y ∼ DA,χ(V ) to mean yi ∼ DA,χ(ri) for all 1 ≤ i ≤ d, with each yi
mutually conditionally independent given H .

B.2 How to check whether a log partition function is admissible

Lemma 1. An infinitely differentiable and strictly convex A is an admissible log partition function for a minimal, regular,
one-dimensional exponential family if and only if

• there exists some c such that c exp
(
A(r)

)
is the moment generating function of some random variable evaluated at

r ∈ F ⊆ R.

• exp
(
A(ir)

)
is a positive definite function evaluated at r ∈ R and is continuous at r = 0.

Proof. Define

q(y | r) = h(y) exp
(
T (y)r −A(r)

)
for some nonnegative h and A : F → R with F ⊆ R. For a given A, we would like to determine whether there exist an h
such that q(· | r) defines a valid probability density function (or mass function). This is true if and only if ch(·) for some
c > 0 is the probability density function (or probability mass function) of a random variable y satisfying

1

c
Ey∼ch(·)

[
exp

(
T (y)r −A(r)

)]
= 1 (16)

Ey∼ch(·)
[
exp

(
T (y)r

)]
= c exp

(
A(r)

)
,

which is the moment generating function of a random variable T (y). Alternatively, we may view ϕ(r) := c exp
(
A(ir)

)
as

the characteristic function of a random variable T (y) evaluated at real value r. Choose c = exp
(
− A(0)

)
. By Bochner’s

theorem, ϕ is a characteristic function if and only if is continuous at 0 and ϕ is positive definite.

B.3 Antiderivative of hyperbolic tangent

Choose A(r) =
∫
tanh(r) dr = log cosh(r). One readily observes that A is admissible since exp

(
A(ir)

)
= cos(r),

which is positive definite.

Since the characteristic function of the base pdf is 2π-periodic, it coincides with a discrete integer-valued random variable.
In fact, we can construct an exponential family supported on {−1, 1} with this choice of A, T (y) = y and uniform
h(y) = 1/2 by verifying that (16) holds with c = 1. This is a non-interacting Ising model.

3Some exponential families have an additional parameter that is not a canonical parameter. For example, Gaussian has a scale
parameter and Laplace has a centering parameter. Both A and ν are fixed and not learned.
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B.4 Rectified canonical parameters

Appendix C.1 and C.2 describe some special cases where R is ReLU or ReLUτ .

B.5 The Bose-Einstein integral

Let

Bj(r) =
1

Γ(j + 1)

∫ ∞

0

yj

ey−r − 1
dy, j > −1, r < 0

denote the complete Bose-Einstein integral of order j. It is known (Dingle, 1957) that Bj(r) = Lij+1

(
er
)
, where Lij+1

denotes the polylogarithm of order j + 1. The Bose-Einstein integral satisfies a recursive relationship

d

dr
Bj(r) = Bj−1(r),

with a closed-form initial value B1(r) = − log(1− er).

Define

p(y | r) = h(y) exp
(
yr −Bj(βr)β

−(j+1)
)
,

where h(y) is a nonnegative function and β > 0 is some fixed value. We would like to determine whether this choice of
log partition function is valid.

Since the composition of the exponential function with a positive definite function is positive definite, it suffices to show
that the Bose-Einstein integral Lij+1

(
eir
)

is positive definite. This is observed by a comparison to the characteristic
function of the Geometric distribution. We have that∫ ∞

0

yj

ey−ir − 1
dy =

∫ ∞

0

yje−yeir

1− e−yeir
dy

=

∫ 1

2

(p− 1)
(
− log(p− 1)

)j
eir

1− (p− 1)eir
−1

p− 1
dp, p = e−y + 1

=

∫ 2

1

( (−1)j log(p− 1)j

p

) peir

1− (p− 1)eir
dp.

Now observe that
(

(−1)j log(p−1)j

p

)
is positive in (1, 2), and 1

1−(1−p)eir admits a Fourier series (via the geometric series)∑∞
k=0(p − 1)keirk. Since the Fourier series coefficients are positive, 1

1−(p−1)eir is positive definite, as is the product of

positive definite functions peir

1−(p−1)eir . The integrand is therefore positive definite, and by Lévy’s continuity theorem the
integral is a positive definite function.

Since ϕ is 2π-periodic, it is the characteristic function of a discrete random variable taking integer values.

B.6 A non-example in the Fermi-Dirac integral

The Fermi-Dirac integral is closely related to the Bose-Einstein integral. Let

Bj(r) =
1

Γ(j + 1)

∫ ∞

0

yj

ey−r + 1
dy, j > −1, r < 0

denote the complete Fermi-Einstein integral of order j. It is known (Dingle, 1957) that Bj(r) = −Lij+1

(
− er

)
, where

Lij+1 denotes the polylogarithm of order j + 1. The Fermi-Dirac integral satisfies a recursive relationship

d

dr
Bj(r) = Bj−1(r) ⇐⇒ d

dr
− Lij+1

(
− er

)
= −Lij

(
− er

)
(17)

with a closed-form initial value B1(r) = log(1 + er).
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At first, this might appear to be an attractive way to construct softplus activations and their zero-temperature limits. If B2(r)
were an admissible log partition function, then choosing R to be the identity, σ(r) = A′(r) = log(1 + er). However, the
Fermi-Dirac integral is not necessarily positive definite. Following the same method as the Bose-Einstein integral, we have∫ ∞

0

yj

ey−ir + 1
dy =

∫ ∞

0

yje−yeir

1 + e−yeir
dy

=

∫ 1

2

(p− 1)
(
− log(p− 1)

)j
eir

1 + (p− 1)eir
−1

p− 1
dp, p = e−y + 1

=

∫ 2

1

( (−1)j log(p− 1)j

p

) peir

1 + (p− 1)eir
dp.

As before, observe that
(

(−1)j log(p−1)j

p

)
is positive in (1, 2). However, 1

1+(1−p)eir admits a Fourier series (via the geo-

metric series)
∑∞

k=0(1− p)keirk. Since the Fourier series coefficients are not always positive, the Fermi-Dirac integral is
indefinite. Hence we cannot conclude that its exponential is a positive definite function.

However, an alternative method of understanding softplus activations is given by (12). Choosing a Gaussian likelihood
A(v) = v2/2, a softplus activation σ implies that

R(η) =

√∫
2 log

(
1 + exp(η)

)
dη

=
√

−2Li2(−eη). by (17)

Roughly speaking, log
(
1 + exp(η)

)
looks like a smooth ReLU, so its integral −Li2(−eη) looks like a squared smooth

ReLU. The square root R(η) =
√

−2Li2(−eη) looks like a smooth ReLU. The corresponding soft dropout function looks
like a smooth step function, and is given by

ρ(η) =
d

dη

√
−2Li2(−eη)

= log(1 + eη)
1√

−2Li2(−eη)
.

B.7 Logistic sigmoid

It is well-known that the classical logistic sigmoid function σ(η) =
(
1 + exp(−η)

)−1
is the inverse-link function, or

derivative of the log-partition function, of a Bernoulli exponential family with A(r) = log(1 + exp r). Under such a
model, the logistic sigmoid should be used to model binary-valued data, but it is commonly used in practice for real-
valued data. We now provide an alternative method for constructing the logistic sigmoid via a non-linearly parameterised
Gaussian, providing a principled derivation for its use in modelling real-valued data. Following the recipe (12), we have

R(η) =

√∫
2
(
1 + exp(−η)

)−1
dη

=
√
2 log(1 + exp(η)

)
by (17).

Roughly speaking, this looks like the square root of a smooth ReLU. The corresponding dropout function is small for
negative inputs or large inputs,

ρ(η) =
d

dη

√
2 log(1 + exp(η)

)−1

= σ(η)
1√

2 log(1 + eη)
.

B.8 Bregman divergences

In order to describe the effect that the nonlinearity R has on the Bregman divergence, we need to recall some machinery
from Banerjee et al. (2005). In this subsection, without loss of generality, suppose T is the identity. We work with the
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exponential family form

p(y | r) = h(y) exp
(
yr −A(r)

)
,

which is a probability density function for a scalar-valued random variable. Connections extend to the vector-valued case,
but since the setting in our text is restricted to factorised (conditionally independent) scalar-valued densities, we write the
connection in terms of scalar-valued objects.

Let ϕ be a strictly convex and differentiable function mapping from a convex subset of R to R. The Bregman divergence
Dϕ is defined as

Dϕ(υ1, υ2) = ϕ(υ1)− ϕ(υ2)− (υ1 − υ2)
∂

∂υ2
ϕ(υ2).

Every Bregman divergence corresponds with exactly one exponential family through a convex conjugate. Concretely, the
function ϕ that generates the Bregman divergence may be thought of as the convex conjugate of a log partition function A,

ϕ(µ) = sup
r∈F

{µr −A(r)}.

We have that (Banerjee et al., 2005, Theorem 4)

p(y | r) = exp
(
−Dϕ(y, µ)

)
bϕ(y),

where bϕ is a uniquely determined function that does not depend on the expectation parameter µ (or the canonical parameter
r).

The expectation parameter is related to the canonical parameter through µ = A′(r) and r = ϕ′(µ). In our setting, since the
canonical parameter is the result of a canonical map applied to a parameter η, we have µ = A′ ◦R (η) and R(η) = ϕ′(µ).
If R is invertible, then η =

(
R−1 ◦ ϕ′)(µ), otherwise there is more than one value of η such that R(η) = ϕ′(µ). Finally,

note that by definition, σ(η) = (A ◦ R)′(η) = A′ ◦ R(η) × ρ(η), so that σ(η)/ρ(η) = A′ ◦ R(η) = µ, whenever the
operation σ(η)/ρ(η) is defined.

As an example, we may obtain the setting of nonlinear least squares by choosing ϕ(υ) = υ2. In this case, A′ is the identity,
so that minimising the negative log likelihood is equivalent to minimising

Dϕ

(
y,A′ ◦R(η)

)
=
(
y −R(η)

)2
.

More generally, our nonlinearly parameterised exponential family corresponds with a nonlinearly parameterised Bregman
divergence Dϕ

(
y,A′ ◦R(η)

)
.
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C The smooth ReLU

Generalised functions. Our calculus will involve limits of integrals against measures that converge to the singular Dirac
delta measure. In particular, we make use of evaluation and certain derivative properties of the Dirac delta measure using
the abuse of notation

lim
τ→0

∫ ∞

−∞
g(x)ϕτ (x+ a) dx =

∫ ∞

−∞
g(x)δ(x+ a) dx =

∂

∂a

∫ ∞

−∞
g(x)Θ(x+ a) dx = g(−a)

for any continuous and compactly supported g, where ϕτ is any nascent delta function and Θ is the Heaviside step function.

This property will turn out to be useful because we may convert functions that are non-differentiable at a point into
differentiable functions by introducing a well-motivated integral and limit. This enables to analyse activation functions
such as the rectified linear unit which may be expressed as ReLU(η) = Θ(η)η.

The ReLUτ . Let ReLU(η) = Θ(η)η denote the ReLU, and ReLUτ (η) =
∫
R ReLU(η + ϵ)pτ (ϵ) dϵ denote the τ -

smoothed ReLU. Here pτ is the PDF of a zero-mean Gaussian random variable with standard deviation |τ |. We have an
alternate representation using the expected value of the absolute value of a Gaussian random variable,

ReLUτ (η) =

∫
ReLU(η + ϵ)pτ (ϵ) dϵ

=
1

2

(
η + E

[
|η + ϵ|

])
= ηΦ

( η

|τ |

)
+

|τ |
2

√
2

π
exp(−η2/2τ2),

where Φ is the CDF of the standard normal distribution. The first term is also known as the GELU activation function,
GELU(η) = ηΦ

(
η
|τ |
)
. The GELU approaches the ReLU as τ → 0. The second term is a correction term that approaches

0 as τ → 0. Convergence is uniform, since by 1-Lipschitz of the ReLU,∣∣ReLUτ (η)− ReLU(η)
∣∣ = ∣∣∣ ∫ (ReLU(η)− ReLU(η + ϵ)

)
pτ (ϵ) dϵ

∣∣∣
≤
∫

|ϵ|pτ (ϵ) dϵ

= |τ |
√

2

π
, (18)

which decreases monotonically as τ → 0 for all η. As a convolution with a Gaussian, the ReLUτ is infinitely differentiable.
The first derivative is

∂

∂η
ReLUτ (η) =

∂

∂η

∫
(η + ϵ)Θ(η + ϵ)pτ (ϵ) dϵ

=

∫ (
Θ(η + ϵ) + (η + ϵ)δ(η + ϵ)

)
pτ (ϵ) dϵ

=

∫
Θ(η + ϵ)pτ (ϵ) dϵ

=

∫ ∞

−η

pτ (ϵ) dϵ =: Φτ (η)

which is the CDF of a zero-mean Gaussian random variable with standard deviation τ evaluated at η, i.e. Φτ (η) = P(ε ≤
η), where ε ∼ N (0, τ2). The second derivative is then the PDF of ε evaluated at η,

∂2

∂η2
ReLUτ (η) =

1√
2πτ2

exp
(
− η2

2τ2
)
.

Leaky ReLUτ . Let m ∈ [0, 1] be some gradient parameter. We may define a Leaky ReLUτ by

LReLUτ (η) = (1−m)ReLUτ (η) +mη.

When m = 0, LReLUτ is ReLUτ and when m = 1, LReLUτ is linear.
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C.1 Rectified positive mean Gaussian

Let A(r) = r2/2 and R(η) = ReLU(η). This corresponds with an exponential family likelihood that always has a mean
greater than or equal to zero. In order to visualise what this means, consider the case d = l = 1. With a N (0,

√
2) prior

over W ∈ R and z ∈ R, the model evidence

p(y) = EW,z∼N (0,1)

[
p
(
y | ReLU(Wz)

)]
is visualised by sampling 10000W, z and y and plotting a KDE for y. This is shown in Figure 8, where the variance of the
conditional distribution of y given Wz is λ−1.

Figure 8: (Left) KDE of hard-rectified positive mean Gaussian marginal likelihood in 1 dimension with τ = 0.5. (Middle)
Activation function Φτ (η)ReLUτ (η) for different values of τ . (Right) Soft dropout function Φτ (η) for different values of
τ .

C.2 Rectified positive logit Bernoulli and binomial

Let A(r) = t log
(
1 + exp(r)

)
and R(η) = LReLUτ (η). The parameter t is the number of trials for a binomial random

variable, and t = 1 is the special case of a Bernoulli random variable. We may produce similar plots to Figure 8 by plotting
histograms of the integrated binomial distribution. The case t = 1 is not interesting, since this is just a {0, 1}-valued
random variable and hence another Bernoulli. The case t = 10 is shown in Figure 9.

Figure 9: (Left) Histogram of samples from hard-rectified positive logit Binomial marginal likelihood in 1 dimension with
t = 10 trials and τ = 0.5. The leaky soft-rectified Bernoulli leads to interesting activation functions and dropout functions.
Shown are the activation function (middle) and dropout function (right) when m = 0.3 for various values of τ . Recall that
the activation function is (A ◦R)′, which is different to the expectation parameter A′ ◦R.

In this case, the activation function is σ(η) = t exp(LReLUτ (η))

1+exp
(
LReLUτ (η)

)(Φτ (η)(1 − m) + m
)
. The soft dropout function is

ρ(η) = Φτ (η)(1−m) +m
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D Proofs

Theorem 1. Suppose Assumption 1 holds. Let

f(Z;Ys,W, B)

=
1

λ
W⊤(T (Ys)⊙ ρ(WZ +B)− σ(WZ +B)

)
. (6)

Any MAP estimate of (4) satisfies

Z∗
s = f(Z∗

s ;Ys,W, B), ∀1 ≤ s ≤ N, (7)

solutions of which are guaranteed to exist and be unique. Any joint MAP estimate of (5) satisfies

W∗, B∗ ∈ argmin
W,B∈W

− log p(W, B)− log p(Z∗)+ (8)

N∑
s=1

1⊤d×1A ◦R (WZ∗
s +B)− T (Ys)

⊤R(WZ∗
s +B)

subject to Z∗
s = f(Z∗

s ;Ys,W, B), ∀1 ≤ s ≤ N.

Proof. The log posterior over Z and W, B is

log p(Z,W, B | Y) = log p(Y | W,Z, B) + log p(Z) + log p(W, B)− log p(Y).

The joint MAP estimate (Z∗,W∗, B∗) solves the constrained optimisation problem

W∗, B∗ = argmin
W,B∈W

− log p
(
Y | R(WZ∗ +B)

)
− log p(W, B)− log p(Z∗)

subject to Z∗
s = argmin

Zs

λ

2
∥Zs∥22 −R(Z⊤

s W⊤ +B⊤)T (Ys) + 1⊤d×1A ◦R
(
WZs +B

)
.

The outer problem is converted into a sum by replacing log p
(
Y | R(WZ∗ +B)

)
with the sum of likelihoods (1) evaluated

at the datapoints Ys = (ysi)
d
i=1 and canonical parameters R(Hs) = R(WZ∗

s +B).

We convert the inner DDN layer into a DEQ layer. We consider the inner problem for fixed s, which finds coefficients
given W and b. The stationary points of the inner constraint satisfy

Z∗ = argmin
z∈Rl

λ

2
∥z∥22 −R(Z⊤W⊤ +B⊤)T (Y ) + 1⊤d×1A ◦R (Wz +B)

0 = λZ∗ −W⊤(T (Y )⊙ ρ(Wz +B)
)
+W⊤σ(WZ∗ +B) (19)

Z∗ =
1

λ
W⊤(T (Y )⊙ ρ(WZ∗ +B)− σ(WZ∗ +B)

)
. (20)

The Hessian H of the constraint is

H = λI −W⊤
(

diag
(
T (Y )⊙ ρ′(WZ∗ +B)− σ′(WZ∗ +B)

))
W

This is positive definite if the largest eigenvalue of W⊤
(

diag
(
T (Y )⊙ ρ′(WZ∗ +B)− σ′(WZ∗ +B)

))
W is less than λ.

Let m denote the largest entry of diag
(
T (Y )⊙ ρ′(WZ∗ +B)− σ′(WZ∗ +B)

)
.

Suppose m is nonnegative. The largest eigenvalue is less than λ if m
λ ∥W

⊤W∥2 < 1. Since the objective is strongly convex
and continuously differentiable, the solution to the fixed point equation is the unique global minimiser (Wright and Recht,
2022, Theorem 2.8). If m is negative, then the matrix clearly has only positive eigenvalues.

Theorem 2. Suppose R(η) = ReLU(η) and fix some parameters
(
W, B

)
and data index s. Any stationary point Z∗

s of
objective (4) is a solution to

Z∗
s =

1

λ
W⊤(T (Ys)⊙Θ(WZ∗

s +B)− ReLU(WZ∗
s +B)

)
.

Under Assumption 2, there exists at least 1 and at most 2d stationary points, all of which are local minima.



Deep Equilibrium Models as Estimators for Continuous Latent Variables

Proof. Any stationary point satisfies

0 =
∂

∂Z∗
s

(λ
2
∥Z∗

s ∥22 − ReLU(Z∗
s
⊤W⊤ +B⊤)T (Ys) + 1⊤d×1A ◦ ReLU

(
WZ∗

s +B
))

0 = λZ∗
s −W⊤T (Ys)⊙Θ(WZ∗

s +B) +W⊤Θ(WZ∗
s +B)A′ ◦ ReLU(WZ∗

s +B)

Z∗
s =

1

λ
W⊤(T (Ys)⊙Θ(WZ∗

s +B)− σ(WZ∗
s +B)

)
,

and also WZ∗
s + B contains no elements that are 0. Since Θ(WZ∗

s + B) ∈ {0, 1}d, there are 2d possible values of
Θ(WZ∗

s + B). Noting that σ(η) = Θ(η)A′ ◦ ReLU (η), this implies that any Z∗
s must be a fixed point solution to one of

the 2d equations

Z∗
s =

1

λ
W⊤

(
P ⊙

(
T (Ys)−A′ ◦R (WZ∗

s +B)
))

(21)

for some P ∈ {0, 1}d. The right hand side is a contraction whenever a
λ∥W

⊤W∥ < 1, since the composition of the two
Lispchitz functions A′ and R is also Lipschitz. This implies that there exists a unique solution Z∗

s to each of the 2d possible
fixed point equations. Some of these fixed point equations may not admit solutions such that P = Θ(WZ∗

s +B), so there
are at most 2d fixed points.

To see that there exists at least one fixed point, construct an iterated function system consisting of 2d functions for each
value of P . The attractor of such a system is nonempty. In particular for any starting point Zs, we may apply a sequence of
maps (21) with corresponding values of P = Θ(WZs + B), which converges to an element of the attractor (Hutchinson,
1981, Theorem §3.1).

Now observe that all stationary points are local minima. At the stationary point, where WZ∗
s + B does not contain any

zero elements, the Hessian is given by

λI −W⊤diag
(
Θ
(
WZ∗

s +B
)
A′′ ◦R

(
WZ∗

s +B
))

W.

This matrix is positive definite since a
λ∥W

⊤W∥2 < 1. Therefore, the stationary points are local minima (Wright and Recht,
2022, Theorem 2.5).
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E Deep PED

The joint maximum (Z(1)∗, . . . Z(L)∗, θ∗) satisfies for each l

Z(l)∗,W(l)∗, B(l) ∈ argmax
Z(l)∈Rdl ,W(l),B(l)∈W(l)

p
(
Z(l−1)∗ | Z(l),W(l)B(l)

)
p
(
Z(l) | Z(l+1)∗,W(l+1)∗, B(l+1)∗)

where we understand the second factor to mean p(Z(L)) in the case l = L.

Stationary points. Here the conditional distribution of Z(l) given Z(l+1) takes the role of the prior from the shallow
network case. It behaves like the unconditional Gaussian prior in the sense that its logarithm is quadratic, plus an extra
term depending on Z(l+1)∗. At a stationary point, each Z(l)∗ must satisfy

0 = −W(l)⊤
(
ρ(l)(W(l)Z(l) +B(l))⊙

√
λ(l−1)Z(l−1)∗ − σ(l)

(
W(l)Z(l) +B(l)

))
+

λ(l)Z(l) −
√
λ(l)R(l+1)

(
W(l+1)Z(l+1)∗ +B(l+1)

)
Z(l)∗ =

1

λ(l)
W(l)⊤

(
ρ(l)(W(l)Z(l)∗ +B(l))⊙

√
λ(l−1)Z(l−1)∗ − σ(l)

(
W(l)Z(l)∗ +B(l)

))
+

1√
λ(l)

R(l+1)
(
W(l+1)Z(l+1)∗ +B(l+1)

)
, (22)

and additionally W(l)Z(l)∗ +B(l) must not contain any zero coordinates for any l.

Augmenting the state space. The fixed point solution for layer l depends on the solutions in layer l − 1 and l + 1,
ignoring boundary cases. We may jointly compute the fixed points in a single DEQ layer by augmenting the Z(l) variables
into a single state of size D =

∑L
l=1 d

(l).

Let ζ = (Z(1); . . . ;Z(L)) ∈ RD and write

G(l)
(
Z(l);Z(l−1),Z(l+1)

)
=

1√
λ(l)

R(l+1)
(
W(l+1)Z(l+1) +B(l+1)

)
+

1

λ(l)
W(l)⊤

(
ρ(l)(W(l)Z(l) +B(l))⊙

√
λ(l−1)Z(l−1) − σ(l)

(
W(l)Z(l) +B(l)

))
,

and

G[1:L](ζ) =
(
G(1)

(
Z(1);Z(0), Z(2)

)
; . . . ;G(L)

(
Z(L);Z(L−1), 0

))
.

Counting the stationary points. If R is ReLU, following the same argument as the proof of Theorem 2, each ρ(l) maps
to a finite set of size 2d

(l)

. We may construct an iterated function system with
∏L

l=1 2
d(l)

elements, with components of the
form

G
(l)

P (l)

(
Z(l);Z(l−1),Z(l+1)

)
=

1√
λ(l)

R(l+1)
(
W(l+1)Z(l+1) +B(l+1)

)
+

1

λ(l)
W(l)⊤

(
P (l) ⊙

√
λ(l−1)Z(l−1) − σ(l)

(
W(l)Z(l) +B(l)

))
, (23)

with a corresponding G
[1:L]

P [1:L](ζ). By the proof of Theorem 2, at least one 1 and at most
∏L

l=1 2
d(l)

stationary points of

G[1:L](ζ) exist if all of the functions in the IFS are contractions. The Jacobian of G[1:L]

P [1:L](ζ) is a tridiagonal block matrix.
The diagonal block is

− 1

λ(l)
W(l)⊤diag

(
σ(l)′(W(l)Z(l) +B(l)

)))
W(l)
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and is always defined, since W(l)Z(l)∗ + B(l) must not contain any zero coordinates for any l. For l < L, the right
off-diagonal block is

1√
λ(l)

diag
(
ρ(l+1)

(
W(l+1)Z(l+1) +B(l+1)

))
W(l+1),

and is similarly always defined. For l > 1, the left off-diagonal block is
√
λ(l−1)

λ(l)
W(l)⊤diag

(
P (l)

)
,

and is similarly always defined. To show that this tridagonal matrix is a contraction, split the matrix into a sum of a diagonal
block matrix, a superdiagonal block matrix, and a subdiagonal matrix then use the subadditive property of matrix norms.
The matrix norm of the diagonal matrix is bounded by maxl

1
λ(l) ∥W(l)⊤W(l)∥. The matrix norm of the second and third

matrices are respectively bounded by maxl
1√
λ(l)

∥W(l)∥ and maxl
√
λ(l−1)

λ(l) ∥W(l)⊤∥.

If R is not ReLU, we may obtain a similar bound involving a factor analagous to Assumption 1.

Definiteness of Hessian. To reason about the nature of the stationary points, we must compute the eigenvalues of the
Hessian. This Hessian is a block tridiagonal matrix. From the derivative of (23) with respect to Z(l), the diagonal block of
the Hessian is

λ(l)I−W(l)⊤diag
(
σ(l)′(W(l)Z(l) +B(l)

)))
W (l)

and is always defined, since W(l)Z(l)∗ + B(l) must not contain any zero coordinates for any l when R is the ReLU. For
l < L, the right off-diagonal block is√

λ(l)diag
(
ρ(l+1)

(
W(l+1)Z(l+1) +B(l+1)

))
W(l+1),

and is similarly always defined. For l > 1, the left off-diagonal block is√
λ(l−1)W(l)⊤diag

(
ρ(l)(W(l)Z(l) +B(l))

)
,

and is similarly always defined.

Bounding the eigenvalues of this block tridiagonal matrix in a useful way remains an open challenge that we leave for
future work.
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F Convolutional layers

It is well-known that convolutional layers may be represented as sparse matrices with repeated entries. Our results apply
when W is a space of convolutional layers. Forming the equivalent sparse matrix for a convolutional layer is undesirable
since it introduces an additional step and requires constraints. Therefore, it is of interest to discuss how to implement PED
convolutional layers without forming the equivalent sparse fully connected layer.

The transpose operator can be computed using transposed convolution (Zeiler et al., 2010). In Pytorch, this operator may
be implemented using torch.nn.ConvTranspose2d().

The constraints in Assumption 1 and 2 may be computed efficiently when the norm is the spectral norm (Sedghi et al.,
2019).

We leave practical investigation of convolutional layers for future work.
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G Details of the illustrative example

PCA. We use the scikit learn implementation of PCA with default hyperparameters. We scale the input data into PCA
with scikit learn’s StandardScaler.

UMAP. We use the publically available UMAP implementation (McInnes et al., 2018, BSD 3-Clause License) with
default hyperparameters.

Data-generating process, shallow networks. We generate a 2D grid of size 105 × 105 with corners (±5,±5). We then
remove all points that are not inside the circle of radius 3 centered at (2, 2), the circle of radius 2 centered at (−3,−3) or the
diamond of side length 1 centered at (4,−4). These are the ground truth Z, consisting of 42453 points in the 2D plane. We
choose an A and R, then repeat the following steps 100 times to obtain 100 random datasets. We generate W(1) ∈ R50×2

by drawing elements iid from a Gaussian with zero mean and variance 1
2 . We then sample Y from an exponential family

with canonical parameter R(WZ), log partition function A and sufficient statistic T .

Data-generating process, deep networks. The same as for shallow networks, but we generate W(l) ∈ Rd(l−1)×d(l)

from N (0, I/d(l))for each l, with the widths d(l) as described in Figure 7 and d(0) = 50 . Each of the Z(l) are from an
exponential family with canonical parameter R(W (l+1)Z(l+1)).

PED. We use PED with the same choice of A, T and R that matches the data generating process. This automatically
defines the dropout functions (if any) and activation functions in the network. We use a value of λ = 0.1 whenever R is
the identity and λ = 1 whenever R is ReLU. The reason for these different choices of λ is that PED layers admit a unique
fixed point no matter the value of λ when R is the identity (see Theorem 1), so λ may be small so that the prior is weak.
When R is ReLU, larger λ help to encourage PED layers to find local minima. We found it important to initialise weights
with a small variance, especially for Poisson distributions, where the exponential inverse link function can either overflow
or become very large. We use a zero mean iid Gaussian prior over W, B, which is implemented by applying weight decay
to the neural network optimiser. We use Adam (Kingma and Ba, 2015) to optimise parameters W and B using default
hyperparameters using a batch size of 500 and weight decay varying with layer (note this is not the same as using weight
decay with AdamW, which would not be equivalent to L2 regularisation or Gaussian prior regularisation (Loshchilov and
Hutter, 2019)). Weight decay is set to 10L × d(l−1) in layer l. For shallow models, we train the network for 30 epochs,
whereas for deep models, we train the network for 10 epochs, freezing the parameters in layer l for the first 5l epochs.
We use a publically available DEQ repository (Bai et al., 2019, MIT License) to implement our DEQs, with a Anderson
acceleration method used as the solver with default hyperparameters.

Downstream task. We use a small head network Linear(100) -¿ ReLU -¿ Linear(1) using default initialisation in Pytorch.
The headnet is appended to our pretrained backbone of each of PCA, PED and UMAP and fine-tuned using Adam with
default hyperparameters. For PCA and UMAP, which do not contain learnable parameters, the backbone network is fixed.
The full network is trained to minimise the sum of squared errors between the output of the network and the function
g(z) = Z1 + Z2, where Z1 and Z2 are respectively the first and second coordinate of z. We use a batch size of 500
and train the network for 200 epochs. In order to evaluate our model on the downstream task, we turn dropout off. We
randomly partition each of the datasets into 80%− 20% training-testing split and evaluate our network on the test set. We
report the number of times the network performed the best out of the 100 random runs for each of PCA, UMAP and PED.
In the case of Deep PED, to allow a fair comparison to other techniques, we only use the bottleneck neurons as input to the
head network.

Hardware, software and computational cost. We parallelised runs over multiple nodes, each consisting of a single
Tesla P100-SXM2-16GB GPU. We used CUDA 11.4 and Pytorch 1.11.0. Only PED is GPU-accelerated. We found that
typical run times for the dimensionality reduction task were task dependent. Table 2 shows typical run times for each task.

Interpretable neurons. One interesting feature of deep PED in the case L > 1 is that certain collections of neurons have
interpretations of latent variables at different layers. For example, if L = 2 and d(1) = 30, d(2) = 2, D = d(1)+d(2) = 32,
we obtain deep PED which may be implemented as a single layer of the form (10). Even though this DEQ layer has 32
neurons, we may pick out the 2 neurons which represent the latent variables in last layer. For this reason, deep PED might
be considered interpretable. We are not aware of any other DEQ layers that possess a similar quality.
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PCA tSNE UMAP PED
Gaussian 0.09 901.94 180.46 294.09
Bernoulli 0.11 923.85 174.71 267.81
Poisson 0.10 698.34 176.33 189.87
ReLU L = 1 0.10 622.25 168.11 1101.38
ReLU L = 2 0.10 813.25 159.71 356.40

Table 2: Measured run times (seconds) for each dataset and model.
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H Approximation to the posterior

In shallow PED, the Hessian of the Laplace approximation is found by taking the derivative of the right hand side of (19)
with respect to Z∗. We find

H(Z∗) := − log p(Z∗ | Y,W, B) = λI−W⊤diag
(
T (Y )⊙ ρ′(WZ∗ +B)− σ′(WZ∗ +B)

)
W.

This leads to the Laplace approximation to the posterior,

q(z | Y,W, B) = N

(
z | Z∗, H(Z∗)−1

)
.

Note that the Hessian is positive definite at the local minima that we found, so that inversion of the Hessian is well-defined.

In deep PED, one may work with the expressions found in Appendix E, which lead to a Hessian with sparse block structure.
In many applications, only the square block at the final layer is of interest, which leads to

H(Z(L)∗) : = λI−W(L)⊤diag
(
T (Y )⊙ ρ′(W(L)Z(L)∗ +B)− σ′(W(L)Z(L)∗)

)
W(L)

q(Z(L) | Y, θ) = N

(
z | Z∗, H(Z∗)−1

)
.

If the likelihood were linearly parameterised Gaussian, σ′ would be 1, ρ′ would be zero and we would recover the well-
known Gaussian case,

H(Z(L)∗) = λI +W(L)⊤W(L),

which is independent of the MAP Z(L)∗.

If the likelihood were nonlinearly parameterised Gaussian with R = ReLU, we observe an interesting dropout effect.
Since at the stationary point, ρ′ and σ′ are well-defined (by definition) and are 0 and Θ respectively, we find

H(Z(L)∗) = λI +W(L)⊤diag
(
Θ(W(L)Z(L)∗ +B)

)
W(L).

Interestingly, this Hessian only depends on Z(L)∗ through Θ(W(L)Z(L)∗ +B)
)
.
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