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Abstract

We consider the combinatorial semi-bandit prob-
lem and present a new algorithm with a best-
of-both-worlds regret guarantee, in which the re-
grets are near-optimally bounded in the stochas-
tic and adversarial regimes. In the stochastic
regime, we prove a variance-dependent regret
bound depending on the tight suboptimality gap
introduced by Kveton et al. (2015) with a good
leading constant. In the adversarial regime, we
show that the same algorithm simultaneously ob-
tains various data-dependent regret bounds. Our
algorithm is based on the follow-the-regularized-
leader framework with a refined regularizer and
adaptive learning rate. Finally, we numerically
test the proposed algorithm and confirm its su-
perior or competitive performance over existing
algorithms, including Thompson sampling under
most settings.

1 INTRODUCTION

The combinatorial semi-bandit problem is an online
decision-making problem, and it includes many practical
problems such as multi-task bandits (Cesa-Bianchi and Lu-
gosi, 2012), crowdsourcing (ul Hassan and Curry, 2016),
learning spectrum allocations (Gai et al., 2012), shortest
path problem (Gai et al., 2012), and recommender sys-
tems (Qin et al., 2014). In combinatorial semi-bandits, the
learner and environment play the game sequentially. The
learner is given an action set A ⊂ {0, 1}d, where d ∈ N is
the dimension of the action set. For every round t ∈ [T ] :=
{1, . . . , T}, the environment chooses a loss ℓ(t) ∈ [0, 1]d,
and the learner then chooses an action a(t) ∈ A (also called
a super-arm), incurs a loss 〈ℓ(t), a(t)〉, and observes ℓi(t)
for all i ∈ [d] such that ai(t) = 1. We refer to each index
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i ∈ [d] as base-arm i. The goal of the learner is to minimize
their cumulative loss over all rounds. The performance of
the learner is evaluated based on regret RT defined as the
difference between the cumulative losses of the learner and
the single optimal action a∗ fixed in terms of the expected
cumulative loss, i.e., a∗ = argmina∈A E[

!T
t=1 〈ℓ(t), a〉]

and

RT = E

"
T#

t=1

〈ℓ(t), a(t)− a∗〉
$
,

where the expectation is taken w.r.t. the randomness of ℓ(t)
and the internal randomness of the algorithm.

The combinatorial semi-bandit problem, or more broadly,
a variety of online-decision making problems, have been
investigated within mainly two regimes: stochastic and ad-
versarial regimes. In the stochastic regime, the sequence of
losses (ℓ(t))Tt=1 is sampled from a fixed distribution D in
an i.i.d. manner with mean µ = Eℓ∼D[ℓ]. In the adversarial
regime, the losses are arbitrarily decided from [0, 1]d (Kve-
ton et al., 2015; Neu, 2015; Wang and Chen, 2018) or more
generally from Sd for some bounded S ⊂ R (Wei and Luo,
2018; Zimmert et al., 2019) possibly depending on the past
history of learner’s actions.

There have been a considerable number of studies on com-
binatorial semi-bandits for both adversarial and stochas-
tic regimes. In the adversarial regime, the regret bound
of O(

√
mdT ) was proved for m = maxa∈A‖a‖1 (Au-

dibert et al., 2014), which matches the lower bound of
Ω(

√
mdT ) (Audibert et al., 2014). In the stochastic

regime, many algorithms have been shown to achieve log-
arithmic regrets depending on the minimum suboptimal-
ity gap, which is defined by ∆ = min{µ⊤(a − a∗) :
a ∈ A \ {a∗}}. Kveton et al. (2015) and Wang
and Chen (2018) derived gap-dependent regret bounds
given by O(dm log(T )/∆) for general action sets and
O((d−m) log(T )/∆) for matroid semi-bandits. Further-
more, Kveton et al. (2015) derived a refined bound given
by O(

!
i:a∗

i =1(m/∆i,min) log T ) depending on ∆i,min =

min{〈µ, a− a∗〉 : a ∈ A \ {a∗}, ai = 1} ≥ ∆ of each
base-arm i rather than on ∆.

It is unclear which regime’s algorithms are better suited
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to practical applications. Algorithms specialized for
the stochastic regime occasionally suffer a linear regret,
whereas algorithms for the adversarial regime work poorly
in the stochastic regime. Because it is difficult to know it
in practice, it is desirable to obtain a near-optimal perfor-
mance both for the stochastic and adversarial regimes with-
out knowing the underlying environment.

To this end, particullary in the classical multi-armed ban-
dits, the Best-of-Both-Worlds (BOBW) algorithm has been
developed, which performs near-optimally both in the
stochastic and adversarial regimes. In a seminal study,
Bubeck and Slivkins (2012) developed the first BOBW al-
gorithm, and the celebrated Tsallis-INF algorithm was re-
cently proposed by Zimmert and Seldin (2021). For combi-
natorial semi-bandits, we are aware of the works by Wei and
Luo (2018), Zimmert et al. (2019), and Ito (2021a). Some
BOBW algorithms achieve favorable regret guarantees also
in the stochastic regime with adversarial corruptions (Lyk-
ouris et al., 2018), which is an intermediate regime between
the stochastic and adversarial regimes. This intermediate
regime is advantageous in practice since the stochastic as-
sumption on losses often fails to hold, whereas the adver-
sarial assumption is excessively pessimistic.

Adaptive algorithms that exploit the characteristics of a
sequence of losses have been actively developed for both
the adversarial and stochastic regimes. In the adversar-
ial regime, data-dependent regret bounds have been re-
cently investigated to enhance the adaptivity of the algo-
rithm to a given structure of the loss data. Well-known
examples are the first-order bounds depending on the cu-
mulative loss L∗ = mina∈A E[

!T
t=1 〈ℓ(t), a〉], second-

order bounds depending on the empirical variations of
losses Q2 = E[

!T
t=1‖ℓ(t) − ℓ̄‖2] defined with ℓ̄ =

T−1E[
!T

t=1 ℓ(t)], and path-length bounds depending on
the variation of losses V1 = E[

!T−1
t=1 ‖ℓ(t) − ℓ(t + 1)‖1].

For the semi-bandit problem, Wei and Luo (2018) presented
the first-order regret bound of O(

√
dL∗ log T ), second-

order bound of O(
√
dQ2 log T ), and the path-length bound

of O(
√
dV1 log T ). Note that the data-dependent bounds

developed by Wei and Luo (2018) cannot be achieved using
the same algorithm. Table 1 summarizes notation used in
this paper.

In the stochastic regime, one of the most promising ap-
proaches to making an algorithm more adaptive is to es-
timate and use distributional information. In the multi-
armed bandit problem, algorithms that exploit the variance
of losses have been developed (Audibert et al., 2007; Ito
et al., 2022a), and (co)variance-aware algorithms for semi-
bandits have also been investigated (Komiyama et al., 2015;
Degenne and Perchet, 2016; Merlis and Mannor, 2019; Per-
rault et al., 2020; Vial et al., 2022; Liu et al., 2022). The
variance-aware algorithm is highly advantageous in real-
world applications since the variances of losses for each
base-arm i, σ2

i = Eℓ∼D[(ℓi − µi)
2] ∈ [0, 1/4], are ex-

Table 1: Notation

Symbol Meaning

A ∈ {0, 1}d Action set
d ∈ N Dimensionality of action set
m ≤ d m = maxa∈A‖a‖1
a∗ ∈ A Optimal action
I∗ ⊂ [d] {i ∈ [d] : a∗

i = 1}, set of optimal base-arms
J∗ ⊂ [d] [d] \ I∗, set of sub-optimal base-arms
µi ∈ [0, 1] E[ℓi], mean of base-arm i
σ2
i ∈ [0, 1/4] E[(ℓi − µi)

2], variance of base-arm i
∆ ∈ (0,m] min{〈µ, a− a∗〉 : a ∈ A \ {a∗}}
∆i,min ≥ ∆ min{〈µ, a− a∗〉 : a ∈ A \ {a∗}, ai = 1}
∆′

i,min ≥ ∆ min{〈µ, a− a∗〉 : a ∈ A \ {a∗}, ai = 0}
w(A) ≤ m Action-set-dependent constant (Section 5)

L∗ mina∈A E[
!T

t=1 〈ℓ(t), a〉]
Q2 E[

!T
t=1‖ℓ(t)− ℓ̄‖2] (ℓ̄ = T−1E[

!T
t=1 ℓ(t)])

V1 E[
!T−1

t=1 ‖ℓ(t)− ℓ(t+ 1)‖1]

C ∈ [0, T ] E[
!T

t=1‖ℓ(t)− ℓ′(t)‖∞], corruption level

tremely small in many real-world applications, whereas the
variance can be 1/4 in the worst case scenario. For example,
for a search engine, the click-through rate is usually below
0.05 (Komiyama et al., 2017), implying that the variance
of the base-arm is much smaller than 1/4. Additionally, in
the shortest path problem (György et al., 2007), the con-
gestion level of the road does not change substantially in
many cases, and hence the variance is expected to be much
smaller than in the worst-case scenario also of this problem.
Indeed, variance-aware algorithms are known to be highly
effective in the problem of online eco-routing for electric
vehicles (Chen et al., 2022). Accordingly, we aim to achieve
a variance-dependent regret bounds in the stochastic regime
with multiple data-dependent regret bounds simultaneously
in the adversarial regime by the same algorithm.

Contribution of This Study In this study, we establish
a new BOBW algorithm for the combinatorial semi-bandit
problem. The proposed algorithm is based on the Op-
timistic Follow-the-Regularized-Leader (OFTRL) frame-
work (McMahan, 2011; Rakhlin and Sridharan, 2013b,a)
with a refined regularizer and adaptive learning rate in-
spired by Ito et al. (2022a). Let I∗ = {i ∈ [d] : a∗i = 1} and
J∗ = [d]\I∗. OFTRL has a component called an optimistic
prediction and the proposed algorithm considers two meth-
ods for its estimation: the Least Square (LS) and Gradient
Descent (GD) based on past observations. Let w(A) ≤ m
be an action-set-dependent constant defined in Section 5.
We drop A when it is clear from context. The regret of the
proposed algorithm with the LS and GD is then bounded as
follows.

Theorem 1 (Informal). For the stochastic regime, the pro-
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Table 2: Regret upper bounds for combinatorial semi-bandits. w = w(A) ≤ m is an action-set-dependent constant.

Reference Regime Regret bound

Audibert et al. (2014) Adv. O(
√
dmT )

Kveton et al. (2015) Stoc. 534
"

i∈J∗

m

∆i,min
log T +O(dm)

Zimmert et al. (2019) Adv. O(
√
dmT )

Stoc. O

#
dm

∆
log T

$
=: RZLS

Stoc. w/ adv. R
ZLS +O(

√
CmRZLS)

Ito (2021a) Adv. O(
%

dmin{L∗, Q2, V1} log T )

Stoc. O

#
dm

∆
log T

$
=: RI

Stoc. w/ adv. R
I +

√
CmRI

Proposed (LS) Adv.
%

4dmin{L∗,mT − L∗, Q2} log T

Stoc.
#"

i∈J∗

max

&
4wσ2

i

∆i,min
+c log

'
1 +

wσ2
i

∆i,min

(
, 2(1+ε)

)
+O(|I∗|)

$
log T =: RLS

Stoc. w/ adv. R
LS +O(

√
CmRLS)

Proposed (GD) Adv.

*
4d

1− 2η

#
min

+
L∗,mT − L∗, Q2,

2V1

η

,
+

d

η

$
log T

Stoc. 1

1−2η

#"

i∈J∗

max

&
4wσ2

i

∆i,min
+c log

'
1 +

wσ2
i

∆i,min

(
, 2(1+ε)

)
+O(|I∗|)

$
log T =:RGD

Stoc. w/ adv. R
GD +O(

√
CmRGD)

posed algorithm with LS achieves

RT ≤
%
#

i∈J∗

max
&
4

wσ2
i

∆i,min
+ c log

'
1 +

wσ2
i

∆i,min

(
,

2(1 + ε)
)
+ 2(1 + ε)|I∗|

*
log T + o(log T ) =: RLS ,

where ε ∈ (0, 1/2] is an input parameter for the algorithm
and c = O((log ε−1)2). Further, for the adversarial regime,
the algorithm achieves

RT ≤
+
4dmin {L∗,mT − L∗, Q2} log T

+O(d log T ) + d2 + d(1 + 2δ) .

Additionally, for the stochastic regime with adversarial cor-
ruptions, we have RT ≤ RLS +O(

√
CmRLS).

Theorem 2 (Informal). For the stochastic regime, the pro-
posed algorithm with GD estimations with a step size η ∈
(0, 1/2) achieves

RT ≤ 1

1− 2η

%
#

i∈J∗

max
&
4

wσ2
i

∆i,min
+ c log

'
1 +

wσ2
i

∆i,min

(
,

2(1 + ε)
)
+ 2(1 + ε)|I∗|

*
log T + o(log T ) =: RGD .

For the adversarial regime, the algorithm achieves

RT ≤

,
4d

1− 2η

-
min

.
L∗,mT−L∗, Q2,

2V1

η

/
+
d

η

0
log T

+O(d log T ) + d2 + d(1 + 2δ) .

Additionally, for the stochastic regime with adversarial cor-
ruptions, we have RT ≤ RGD +O(

√
CmRGD).

A comparison with existing bounds is given in Section 5.

The proposed algorithm is inspired by the algorithm pro-
posed by Ito (2021a); however, their bound depends on ∆
and not either on σ2

i or on ∆i,min. The proposed algorithm
takes care of the characteristics of the instances, and specif-
ically, we modify the regularizer and optimistic prediction
in OFTRL and refine the analysis. As a result, the bounds
of the proposed algorithm depend on σ2

i and ∆i,min, and a
leading constant of our bounds are at least 81 times better
than their bound. The resulting regret upper bound in Theo-
rem 1 is at most approximately twice as large as the achiev-
able lower bounds (Section 5). Note that one can prove the
same order of upper bounds as in Theorem 2 for the algo-
rithm in Ito (2021a) by using the analysis given in Section 5.
Table 2 lists the regret bounds provided in this study and
summarizes comparisons with existing work.

Our regret bounds are favorable compared to those reported
in existing studies in that enjoying following properties:
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1. Our algorithm enjoys BOBW guarantees and works
well even in the stochastic regime with adversarial cor-
ruptions.

2. The leading constant of the regret bound in Theorem 1
(resp. Theorem 2) for the stochastic regime is only
twice (resp. 2/(1− η)) as large as an achievable lower
bound.

3. The regret bounds in the stochastic regime depend on
the tighter suboptimality gap ∆i,min rather than the
minimal suboptimality gap ∆.

4. The regret bounds in the stochastic regime depend
on the variances of base-arms, which can be tremen-
dously small value under certain practical scenarios.

5. The regret in the adversarial regime enjoys data-
dependent regret bounds.

Note that the first and fifth properties are already realized
in existing studies, (e.g., Zimmert et al. 2019; Ito 2021a.)
We consider using a self-bounding technique (Zimmert and
Seldin, 2021) to obtain BOBW guarantees. In the self-
bounding technique, we first derive upper and lower bounds
of the regret using a variable depending on the (base-)arm
selection probability, and we then derive a regret bound
by combining the upper and lower bounds. For bounding
the regret with the tight suboptimality gap ∆i,min in the
stochastic regime, we derive a new regret lower bound.

To prove the variance-dependent regret upper bound, we
consider an algorithm inspired by the learning rate and reg-
ularizer developed by Ito et al. (2022a), which focuses on
the classical multi-armed bandit problem. However, their
theoretical analysis is based on the fact that the sum of the
arm selection probabilities equals 1, which does not hold in
the semi-bandit problem. Our analysis uses a new approach
to handle this problem by deriving a regret upper bound that
collaborates well with the new regret lower bound.

Further, we empirically investigate the performance of the
proposed algorithm, whereas experiments are often missing
in studies on the BOBW algorithm such as Wei and Luo
(2018), Lee et al. (2021), and Ito (2021a). The results of this
study show that the proposed algorithm empirically works
the best in the adversarial regime and as well as Thompson
sampling in the practical stochastic regime.

2 RELATED WORK

György et al. (2007) and Uchiya et al. (2010) initiated re-
search on the combinatorial semi-bandit problem for the
adversarial regime, and since then, many algorithms with
O(

√
T )-regret bounds have been developed (e.g., Neu and

Bartók 2013; Audibert et al. 2014; Neu 2015; Wei and Luo
2018).

Combinatorial semi-bandits have been also investigated in

the stochastic regime, and algorithms in the literature are
significantly different from those in the adversarial regime.
Most are based on index-based approaches, where the al-
gorithm estimates the loss means for each base-arm and
pessimistically predicts the true value of the losses. Kve-
ton et al. (2015) and Wang and Chen (2018) prove gap-
dependent regret bounds depending on ∆i,min rather than
∆, and they also consider special action sets such as the
size-invariant and matroid semi-bandits.

Since the seminal study conducted by Bubeck and Slivkins
(2012), BOBW algorithms have been developed for many
online-decision making problems beyond the multi-armed
bandits (Zimmert and Seldin, 2021; Seldin and Lugosi,
2017; Rouyer and Seldin, 2020; Huang et al., 2022): the
problem of prediction with expert advice (Gaillard et al.,
2014; Luo and Schapire, 2015), dueling bandits (Saha and
Gaillard, 2022), online learning with feedback graphs (Erez
and Koren, 2021; Ito et al., 2022b), linear bandits (Lee
et al., 2021), and episodic Markov decision processes (Jin
and Luo, 2020; Jin et al., 2021). For combinatorial semi-
bandits, we are aware of the works by Wei and Luo (2018),
Zimmert et al. (2019), and Ito (2021a).

3 PRELIMINARES

This section introduces the preliminaries for this study. Let
‖x‖, ‖x‖1, and ‖x‖∞ be the Euclidian, ℓ1, and ℓ∞-norms
for vector x, respectively, and 1 be the all-one vector.

3.1 Combinatorial Semi-Bandits

We consider the combinatorial semi-bandit problem with
action set A ⊂ {0, 1}d, where each element a ∈ A is called
an action. We assume that for all i ∈ [d], there exists a ∈ A

such that ai = 1. Define m = maxa∈A‖a‖1.

In the combinatorial semi-bandit problem, the learner ob-
serves entry-wise bandit feedback. At each step t ∈ [T ],
when the learner takes action a(t) ∈ A, they observe the
elements in It = {i ∈ [d] : ai(t) = 1}, whereas the ele-
ments in Jt = [d] \ It are not observed. We assume that
T ≥ max{d, 55}.

This study also considers the special cases of action sets:
size-invariant semi-bandits and matroid semi-bandits. For
size-invariant semi-bandits, the size of action ‖a‖1 is fixed
to m, i.e., A ⊂ {a ∈ {0, 1}d : ‖a‖1 = m}. For
the matroid semi-bandits, a special case of size-invariant
semi-bandits, an action set A corresponds to the bases of
a matroid. The well-known m-set semi-bandits, in which
A = {a ∈ {0, 1}d : ‖a‖1 = m}, is an example of the
matroid semi-bandit problem.

In this study, we assume that there exists a unique optimal
action a∗ ∈ A. This assumption has been employed by
many studies aiming at the development of BOBW algo-
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rithms (Gaillard et al., 2014; Luo and Schapire, 2015; Wei
and Luo, 2018; Zimmert and Seldin, 2021).

3.2 Considered Regimes

We consider three regimes as the assumptions for the losses.
In the stochastic regime, the loss vectors (ℓ(t)) follow an
unknown distribution D in an i.i.d. manner for all t ∈ [T ].
We define the expectation of the losses by µ = Eℓ∼D[ℓ].

By contrast, the adversarial regime does not assume any
stochastic structure for the losses and the losses can be cho-
sen in an arbitrarily manner. In this regime, the environ-
ment can choose ℓ(t) depending on the past history until
the (t− 1)-th round, i.e., {(ℓ(s), a(s))}t−1

s=1.

We also consider an intermediate regime between the
stochastic and adversarial regimes. One of the most repre-
sentative intermediate regimes is the stochastic regime with
adversarial corruptions. In this regime, a temporary loss
ℓ′(t) ∈ [0, 1]d is sampled from an unknown distribution D,
and then the adversary corrupts ℓ′(t) to ℓ(t). We define the
corruption level by C = E

1!T
t=1‖ℓ(t)− ℓ′(t)‖∞

2
≥ 0. If

C = 0, this regime coincides with the stochastic regime,
and if C = T , this regime corresponds to the adversar-
ial regime. We will see that the proposed algorithm works
without the knowledge of the corruption level C.

3.3 Optimistic Follow-the-Regularized-Leader

We establish the algorithm based on the Optimistic follow-
the-regularized-leader (OFTRL) framework, which has oc-
casionally been used in the development of BOBW algo-
rithms (Wei and Luo, 2018; Ito, 2021b). Let X = conv(A)
be the convex hull of the action set A. OFTRL main-
tains x(t) ∈ X, and it then chooses a(t) ∈ A so that
E[a(t)|x(t)] = x(t). The OFTRL update rule is expressed
as

x(t) ∈ argmin
x∈X

34
m(t) +

t−1#

s=1

5ℓ(s), x
6

+ ψt(x)

7
, (1)

where m(t) ∈ [0, 1]d corresponds to an optimistic predic-
tion (also known as a hint vector) of the true loss vector ℓ(t),
the vector 5ℓ(t) ∈ Rd is an unbiased estimator of ℓ(t), and
ψt is a convex regularizer function over X.

4 PROPOSED ALGORITHM

This section describes details of the proposed algorithm
(Logarithmic Barrier Implicit Normalized Forecaster con-
sidering Variances for semi-bandits; LBINFV) by specify-
ing the optimistic prediction m(t), estimator 5ℓ(t), and con-
vex regularization ψt in (1).

We consider two different methods for estimating optimistic
predictions; these methods result in regret upper bounds

that differ by a constant factor in the stochastic regime and
have different data-dependent bounds. One method is a
least square (LS) estimation based on the losses thus far,
i.e., we define m(t) = (m1(t), . . . ,md(t))

⊤ ∈ [0, 1]d by

mi(t) =
1

1 +Ni(t− 1)

%
1

2
+

t−1#

s=1

ai(s) ℓi(s)

*
, (2)

whereNi(t) is the number of times the base-arm i is chosen
until the t-th round, i.e., Ni(t) = |{s ∈ [t] : ai(t) = 1}|.
The other method is based on the gradient descent (GD),
where we define m(t) by mi(1) = 1/2 and

mi(t+ 1) =

3
(1− η)mi(t) + ηℓi(t) if i ∈ I(t)

mi(t) otherwise
(3)

for i ∈ [d] with a step size η ∈ (0, 1/2).

Let a(t) ∈ A be an action selected at round t and I(t) =
{i ∈ [d] : ai(t) = 1} be the set of base-arms selected at
round t. Note that {ai(t) = 1} is equivalent to {i ∈ I(t)}
and Pr[i ∈ I(t)|xi(t)] = Pr[ai(t) = 1|xi(t)] = xi(t).

The design of LS is to reduce the leading constant in the
regret, and GD is to derive a path-length bound. LS was
developed by Ito et al. (2022a). The original idea of GD
comes from online learning literature (Herbster and War-
muth, 2001), and Ito (2021a) developed the idea in semi-
bandits.

We use an unbiased estimator 5ℓ(t) = (5ℓ1(t), . . . , 5ℓd(t))⊤ ∈
Rd of ℓ(t) given by

5ℓi(t) = mi(t) +
ai(t)

xi(t)
(ℓi(t)−mi(t)) (4)

for i ∈ [d]. This is indeed an unbiased estimator of ℓ(t)
since E[5ℓi(t)|x(t)] = mi(t)+

xi(t)
xi(t)

(ℓi(t)−mi(t)) = ℓi(t).
The optimistic prediction m(t) in (4) plays a role in reduc-
ing the variance of 5ℓ(t); the better m(t) predicts ℓ(t), the
smaller the variance in 5ℓ(t) becomes.

The regularizer function ψt : Rd → R is given by

ψt(x) =

d#

i=1

βi(t)ϕ(xi) , (5)

where ϕ : R → R is defined as

ϕ(z) = z − 1− log z + γ (z + (1− z) log(1− z)) (6)

with γ = log T and regularization parameters βi(t) ≥
0. Our regularizer in (5) comprises the logarithmic bar-
rier − log xi and the (negative) Shannon entropy (1 −
xi) log(1 − xi) for the complement of xi ∈ [0, 1]. Such
a regularizer is called a hybrid regularizer, and this type of
regularizer was employed in existing studies for bounding
a component of the regret (Zimmert et al., 2019; Ito et al.,
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Algorithm 1: LBINFV for semi-bandits
1 input: action set A, time horizon T
2 for t = 1, 2, . . . , T do
3 Compute x(t) ∈ X by (1) with 5ℓ(t) in (4) and ψt

in (5).
4 Sample a(t) such that E[a(t)|x(t)] = x(t).
5 Take action a(t) and observe feedback ℓi(t) for i

such that ai(t) = 1.
6 Update the regularization parameters βi(t) in (7)

and optimistic prediction mi(t) using (2) or (3).

2022a,b). The affine part of the regularizer in (6), z−1+γz,
is introduced to simplify the analysis and yields smaller
constant factors, which is also used by Ito et al. (2022a).

Regularization parameters βi(t) are defined as

βi(t) =

899:(1 + ε)2 +
1

γ

t−1#

s=1

αi(s) , (7)

where ε ∈ (0, 1/2] is an input parameter and

αi(t)=ai(t)(ℓi(t)−mi(t))
2min

.
1,

2(1− xi(t))

xi(t)2γ

/
. (8)

We design αi(t) in (8) so that it corresponds to an upper
bound of the component of regret, which appears when we
use a standard analysis of (O)FTRL with regularizer (5).
We can introduce a 2(1 − xi(t))/(xi(t)

2γ) part in αi(t)
thanks to the Shannon entropy part in regularizer (5). This
part allows us to bound the regret corresponding to opti-
mal base-arms. The (ℓi(t) − mi(t))

2 part of αi(t) comes
from the use of optimistic predictions and can be related to
the base-arm variances by using the LS and GD methods
to estimate m(t). Algorithm 1 summarizes the proposed
algorithms.

From the intuitive viewpoint, αi(t) determines the strength
of the regularization, and as αi(t) increases, the algorithm
further explores base-arm i. Since (ℓi(t) − mi(t))

2 in (8)
represents the squared error of the optimistic prediction, the
algorithm becomes more explorative when the loss is un-
predictable or has a high variance. Also note that µi ≃ 1
corresponds to the base-arm with the almost worst expected
loss with the least variance. The factor (1 − xi(t)) in (8)
contributes to a fast elimination of such a base-arm since
the regularization does not become strong when xi(t) = 1
is observed.

5 REGRET ANALYSIS

This section derives the regret upper bounds of the proposed
algorithm. We define the minimum suboptimality gaps that

contain and do not contain base-arm i by

∆i,min = min{〈µ, a− a∗〉 : a ∈ A \ {a∗}, ai = 1} ;
∆′

i,min = min{〈µ, a− a∗〉 : a ∈ A \ {a∗}, ai = 0} .

We define constants v(A) and w(A) depending on the ac-
tion set A by

v(A) =

3
2 A is a matroid
2min{|I∗|, d−m} otherwise

(9)

and

w(A) =

;
<=

<>

2 A is a matroid
2min{m, d−m} A is size-invariant
2min{m, |J∗|} otherwise .

(10)

5.1 Regret Upper Bounds

This section introduces regret upper bounds of the proposed
algorithm for each optimistic prediction method.
Theorem 3 (Formal version of Theorem 1). Consider Al-
gorithm 1 using the least square method in (2) for optimistic
predictions. Then, for the stochastic regime,

RT ≤
%
#

i∈J∗

max
&
4
w(A)σ2

i

∆i,min
+ c log

'
1 +

w(A)σ2
i

∆i,min

(
,

2(1 + ε)
)
+ 2(1 + ε)|I∗|

*
log T

+O

%
#

i∈I∗

v(A)

∆′
i,min

+
log T

*
+ o(

+
log T ) , (11)

where ε ∈ (0, 1/2] is an input parameter for the algorithm
and c = O((log ε−1)2). Further, for the adversarial regime,

RT ≤
+
4dmin {L∗,mT − L∗, Q∞} log T

+O(d log T ) + d2 + d(1 + 2δ) . (12)

Additionally, in the stochastic regime with adversarial cor-
ruptions, we have RT ≤ RLS +O(

√
CmRLS), where RLS

is the RHS of (11).
Theorem 4 (Formal version of Theorem 2). Consider Al-
gorithm 1 using the gradient descent method with a step size
η ∈ (0, 1/2) in (3) for optimistic predictions. Then, for the
stochastic regime,

RT ≤ 1

1−2η

%
#

i∈J∗

max
&
4
w(A)σ2

i

∆i,min
+c log

'
1+

w(A)σ2
i

∆i,min

(
,

2(1 + ε)
)
+2(1+ε)|I∗|

*
log T +O

%%
#

i∈I∗

v(A)

∆′
i,min

+
d+

η(1− 2η)

*
+
log T

*
+ o(

+
log T ) . (13)



Taira Tsuchiya, Shinji Ito, Junya Honda

Further, for the adversarial regime,

RT ≤

,
4d

1− 2η

-
min

.
L∗,mT−L∗, Q2,

2V1

η

/
+
d

η

0
log T

+O(d log T ) + d2 + d(1 + 2δ) . (14)

Additionally, in the stochastic regime with adversarial cor-
ruptions, we have RT ≤ RGD + O(

√
CmRGD), where

RGD is the RHS of (13).

Note that the proposed algorithm does not require any prior
knowledge on σ2

i ,∆i, L
∗, Q∞, andC. Theorem 4 indicates

that the leading constant worsens by a factor of 1/(1−2η) in
the stochastic regime compared to the bound in Theorem 3.
This is at the expense of the path-length bound depending
on V1 in the adversarial regime.

5.2 Comparison with Existing Regret Bounds

The regret upper bounds for the stochastic regime in Theo-
rems 3 and 4 improve on the existing regret upper bounds in
three aspects: (i) dependence on the tight suboptimality gap
∆i,min, (ii) the dependence on the variance of base-arms σ2

i ,
and (iii) the leading constants particularly in the stochas-
tic regime. For the suboptimality gap, our upper bounds
are of the same order as the regret upper bound by Kve-
ton et al. (2015), which is an algorithm specialized for the
stochastic regime, and our bounds are up to d times better
than the regret upper bounds by Zimmert et al. (2019) and
Ito (2021a). For the variance dependency, in the stochas-
tic regime, bounds in Theorems 3 and 4 improve the results
in Ito (2021a) by replacing a constant in their bound with
variance σ2

i , which can be considerably small under cer-
tain practical scenarios such as ad allocations. Finally, it is
worth noting that the leading constants are also significantly
improved. The leading constant of our bounds are at least
81 times better than the bound by Ito (2021a). Moreover,
the resulting regret upper bound in Theorem 3 and (resp. 4)
are approximately at most twice (resp. 2/(1− 2η)) as large
as the achievable lower bounds, which can be confirmed
by comparing the bounds with Proposition 1 of Ito et al.
(2022a).

5.3 Key Technique and Analysis

To obtain the regret bound depending on ∆i,min in the
stochastic regime and the stochastic regime with adversarial
corruptions, we prove the following regret lower bound.

Lemma 1. In the stochastic regime with adversarial cor-
ruptions, for any algorithm and any action set A, the regret

is bounded from below as

RT ≥ E

"
T#

t=1

%
1

v(A)

#

i∈I∗

∆′
i,min(1− ai(t))

+
1

w(A)

#

i∈J∗

∆i,minai(t)

*$
− 2Cm .

Note that if a∗ ∈ A is unique, i ∈ I∗ implies that ∆′
i,min >

0, and i ∈ J∗ implies that ∆i,min > 0. This regret lower
bound improves Lemma 4 of Ito (2021a) for general action
sets.

To prove the variance-dependent regret bounds, we make
use of the learning rate inspired by Ito et al. (2022a), in
which the classical multi-armed bandit problem is consid-
ered. However, their theoretical analysis is based on the
fact that the sum of the arm selection probabilities equals
1, which does not hold in the semi-bandits. To handle this
problem, we introduce a technique developed in Ito (2021a)
and sophisticate the analysis to derive a regret upper bound
that collaborates well with the regret lower bound.

In the following, we provide a sketch of analysis commonly
used to prove Theorems 3 and 4, and see that that the regret
lower bound in Lemma 1 indeed helps us obtain the desired
regret bound. In the subsequent analysis, we will mainly
focus on terms that are dominant for sufficiently large T ,
and will not include the other terms. Let γ = log T . Us-
ing the similar analysis given by Ito et al. (2022a), we first
show in Lemma 3 that the regret of the proposed algorithm
is roughly bounded as

RT = O

%
γ

d#

i=1

E [βi(T + 1)]

*

= O

?

@
d#

i=1

899:E

"
γ

T#

t=1

αi(t)

$A

B .

Define (Pi) and (Qi) by

Pi = E

"
T#

t=1

xi(t)

$
, Qi = E

"
T#

t=1

(1− xi(t))

$
,

which will be used in the self-bounding argument in the fol-
lowing. Using this and combining the analysis given by Ito
et al. (2022a) and Ito (2021a), we can show that the regret
is further bounded as

RT

γ
= O

?

@
#

i∈J∗

,

β2
0 +

σ2
i Pi

γ
+

#

i∗∈I∗

,
Qi

γ3/2

A

B . (15)

For the stochastic regime, using the upper bound (15) and
lower bound (Lemma 1 with C = 0), the regret can be fur-
ther roughly bounded as
RT

γ
= 2

RT

γ
− RT

γ
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≤ O

?

@
#

i∈J∗

,

β2
0 +

σ2
i Pi

γ
+

#

i∈I∗

,
Qi

γ3/2

A

B

− 1

γ

%
1

v(A)

#

i∈I∗

∆′
i,minQi +

1

w(A)

#

i∈J∗

∆i,minPi

*

= O

%
#

i∈J∗

%,

β2
0 +

σ2
i Pi

γ
− ∆i,min

w(A)

Pi

γ

*

+
#

i∈I∗

%,
Qi

γ3/2
−

∆′
i,min

v(A)

Qi

γ

**

≤ O

%
#

i∈J∗

w(A)σ2
i

∆i,min
+ |I∗| 1

√
γ

v(A)

∆′
i,min

*
,

where the first inequality follows by (15) and Lemma 1 with
C = 0, and in the last inequality we considered the worst
case in terms of (Pi)i∈J∗ and (Qi)i∈I∗ . This result corre-
sponds to the desired bounds in Theorems 3 and 4. A more
complete and detailed analysis is given in the appendix.

6 EXPERIMENTS

This section presents the results of the numerical investiga-
tion of the empirical performance of the proposed LBINFV
algorithm with ε = 0.2. The proposed algorithm with LS
and GD (with η = 1/4) estimations for the optimistic pre-
dictions are denoted by LBINFV-LS and LBINFV-GD, re-
spectively. We use the following baselines. The algorithms
for the stochastic regime are CombUCB1 (Kveton et al.,
2015) and Thompson sampling (TS) (Komiyama
et al., 2015; Wang and Chen, 2018). The algorithms with
BOBW guarantees are HYBRID (Zimmert et al., 2019) and
LBINF (Ito, 2021a).

To compare the performance, we consider the m-set semi-
bandits with T = 104. In the m-set semi-bandit setting, it
is known that we can sample a(t) satisfying E[a(t)|x(t)] =
x(t) at an O(d log d) computational cost (Zimmert et al.,
2019, Appendix B.2), and we employ this sampling tech-
nique. We repeat the simulations 20 times. The source code
to reproduce all figures in this paper is available at https:
//github.com/tsuchhiii/bobw-variance.

6.1 Setup

Synthetic data In the synthetic data experiments, we set
d = 5 and m = 2 and consider the stochastic regime
and stochastic regime with adversarial corruptions. In the
stochastic regime, we consider two instances, where each
base-arm is associated with a Bernoulli distribution. We set
expectations µ for each instance to (0.5, 0.5, 0.9, 0.9, 0.9)
and (0.5, 0.5, 0.6, 0.6, 0.6), respectively. In the stochas-
tic regime with adversarial corruptions, we consider an in-
stance considered by Zimmert et al. (2019). The environ-
ment alternates between two stochastic settings, (i) and (ii),

where the losses are sampled from Bernoulli distributions
with the following time-varying loss means. In setting (i),
the expected losses are 0 for the optimal base-arms i ∈ I∗,
and ∆′ for the suboptimal base-arms i ∈ J∗. In setting (ii),
the expected losses are 1 − ∆′ for the optimal base-arms,
and 1 for the suboptimal arms. We set ∆′ = 0.1. The num-
ber of rounds between alternations increases exponentially
with a factor of 1.6 after each alternation. Note that this
instance also belongs to the stochastically constrained ad-
versarial regime (Wei and Luo, 2018; Zimmert and Seldin,
2021).

Semi-synthetic data In semi-synthetic data experiments,
we consider the stochastic regime. We used the KDD Cup
2012 track 2 dataset (Tencent Inc., 2012), which was used
in the studies on multiple-play bandit problem (Komiyama
et al., 2015; Lagrée et al., 2016; Komiyama et al., 2017),
which is equivalent to the m-set semi-bandit problem.
The dataset includes session logs of the Tencent search
engine, soso.com. We use the estimated reward means
of Komiyama et al. (2017) although the rewards therein are
estimated under a different context, where the reward mean
for base-arm i is defined by 1 − µi corresponding to the
click-through rate for example. The details of the parame-
ters are summarized in Table 3 in Appendix D. One char-
acteristic of this type of dataset is that the reward mean for
each base-arm is extremely small (smaller than 0.05 in most
cases). Hence, each σ2

i is supposed to be extremely small,
and algorithms with adaptivity to variances are desirable.

6.2 Numerical Results

Figure 1 shows an empirical comparison of the proposed
algorithm against the baselines. The experimental results
from the synthetic data in (a) and (b) indicate that the pro-
posed LBINFV-LS and LBINFV-GD algorithms achieve
the best performance in the stochastic regime, except for
Thompson sampling. Further, under the setting in
(a), where the variances of the base-arms are small, the
proposed algorithm shows a significant improvement com-
pared to HYBRID. Additionally, these figures also confirm
that LBINFV-LS performs better in the stochastic regime
than LBINF. This indicates that the modification of the reg-
ularizer and the optimistic prediction contribute not only to
the better leading constant of the regret upper bound but
also to the empirical performance.

The proposed algorithm achieves the best performance
in the adversarial regime, whereas CombUCB1 and
Thompson sampling highly degrade their perfor-
mance. We can also see from (a) and (b) that the perfor-
mance of LBINFV-GD becomes slightly worse than that
of LBINF-LS in most cases, as suggested by the theoreti-
cal results, whereas in (c) the performance of LBINFV-GD
is better than that of LBINFV-LS, which seemingly oc-
curs because the adversarial instance in this experiment is

https://github.com/tsuchhiii/bobw-variance
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(a) Stochastic regime, d = 5, m = 2 (b) Stochastic regime, d = 5, m = 2 (c) Stoc. regime with adv. corruptions

(d) Stochastic regime, d = 6, m = 3 (e) Stochastic regime, d = 8, m = 3 (f) Stochastic regime, d = 10, m = 3

Figure 1: Regret-round plots of algorithms used for synthetic and semi-synthetic data. The solid lines indicate the average
over 20 independent trials. The thin fillings represent the standard error.

a regime with a small path-length and the former algorithm
has the path-length bound.

The experimental results using the semi-synthetic data in
(d)–(f) indicate that LBINFV-LS and LBINFV-GD per-
form comparably well to Thompson sampling. These
results can be attributed to the fact that the variance is small
for semi-synthetic data. Furthermore, (d)–(f), where the
variances of the base-arms are extremely small, indicates
that CombUCB1 performs significantly worse than the other
variance-aware algorithms. This observation indicates the
importance of variance-aware algorithms in practical appli-
cations.

7 CONCLUSION AND FUTURE WORK

This study considered the combinatorial semi-bandit prob-
lem and presented the new BOBW algorithm with various
adaptive guarantees. The new algorithm enjoys a variance-
dependent regret bound depending on the tight suboptimal-
ity gap with a good leading constant in the stochastic regime
and multiple data-dependent regret bounds. We numeri-
cally investigated the performance of the proposed algo-
rithm and confirmed that the proposed algorithm performs
competitively to Thompson sampling and achieve the best
results in the adversarial regime.

One limitation of the proposed algorithm lies in its compu-
tational complexity: (i) sampling action a(t) based on x(t)
and (ii) efficiently computing x(t) in (1). Limitation (i) has
long been a problem in semi-bandits using the (O)FTRL
framework. Although polynomial-time algorithms exist
(e.g., Schrijver 1998, Corollary 14.1g), they are not very
practical. For limitation (ii), it is not easy to efficiently com-
pute x(t) in existing studies, where Shannon entropy regu-
larization for 1−xi is combined with the typical regulariz-
ers. If we can safely remove the Shannon entropy regular-
ization for 1 − xi(t), x(t) then has a closed form, and an
analysis for such a variant is important future work.
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Semi-Bandits : Supplementary Materials

A COMMON ANALYSIS

A.1 General Regret Upper Bound

Define β0 = 1 + ε. Let Dt be the Bregman divergence induced by ψt, i.e.,

Dt(y, x) = ψt(y)− ψt(x)− 〈∇ψt(x), y − x〉 .

Then, the regret for OFTRL is bounded as follows.
Lemma 2 (Lemma 2 of Ito et al. 2022a). If x(t) is given by the OFTRL update (1), for any x∗ ∈ X ∩ Rd

+ we have

T#

t=1

C
5ℓ(t), x(t)− x∗

D
≤ ψT+1(x

∗)− ψ1(y(1)) +

T#

t=1

(ψt(x(t+ 1))− ψt+1(x(t+ 1)))

E FG H
penalty term

+

T#

t=1

'C
5ℓ(t)−m(t), x(t)− y(t+ 1)

D
−Dt(y(t+ 1), x(t))

(

E FG H
stability term

, (16)

where we define y(t) ∈ argminx∈X

&C!t−1
s=1

5ℓ(s), x
D
+ ψt(x)

)
.

In the RHS of the above inequality (16), we refer to the sum of the first three terms as the penalty term and the remaining
term as the stability term.

First, we prove the following lemma.
Lemma 3. The regret of the proposed algorithm is bounded as

RT ≤ γ

d#

i=1

E
I
2βi(T + 1)− βi(1) + 2δ log

βi(T + 1)

βi(1)

J
+ d2 + d(1 + 2δ) , (17)

where δ > 0 is defined by

δ = (1 + ε)3 log
1 + ε

ε
− (1 + ε)2 − 1 + ε

2
≤ 27

8
log

3

2ε
− 3

2
= O

-
log

1

ε

0
.

Proof. Using x0 ∈ X such that (x0)i ≥ 1/d for all i ∈ [d], let

x∗ =

-
1− d

T

0
a∗ +

d

T
x0 .

Using this and the equality E[5ℓ|xt] = ℓ, we have

RT = E

"
T#

t=1

〈ℓ(t), x(t)− a∗〉
$
= E

"
T#

t=1

〈ℓ(t), x(t)− x∗〉+
T#

t=1

〈ℓ(t), x∗ − a∗〉
$

= E

"
T#

t=1

C
5ℓ(t), x(t)− x∗

D
+

d

T

T#

t=1

〈ℓ(t), x0 − a∗〉
$
≤ E

"
T#

t=1

C
5ℓ(t), x(t)− x∗

D$
+ d2 , (18)
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where in the last inequality we used
!T

t=1 〈ℓ(t), x0 − a∗〉 ≤ T‖x0 − a∗‖1 ≤ Td.

The first term in (18) is bounded by (16) in Lemma 2, the components of which we will bound in the following. We first
consider the penalty term. The remaining part of the proof follows a similar argument as that in Ito et al. (2022a), and we
include the argument for completeness.

Bounding the penalty term in (16) Using the definition of the regularizer ψt(x) =
!d

i=1 βi(t)ϕ(pi) defined in (5), we
have

ψt(x
∗) =

d#

i=1

βi(t)ϕ(x
∗
i ) ≤

d#

i=1

βi(t) max
x∈[1/T,1]

ϕ(x) ≤
d#

i=1

βi(t)max{ϕ(1/T ),ϕ(1)} , (19)

where the first inequality follows since the definition of x∗ implies x∗
i ≥ d

T (x0)i ≥ 1/T for i ∈ [d] and the second inequality
holds since ϕ is a convex function. Further, from the definition of ϕ in (6), we have

max{ϕ(1/T ),ϕ(1)} = max

.
1

T
− 1 + log T + γ

-
1

T
+

-
1− 1

T

0
log

-
1− 1

T

00
, γ

/

≤ max

.
1 + γ

T
− 1 + log T, γ

/
= γ ,

where the last inequality follows from γ = log T . From this and (19), we have

ψT+1(x
∗) ≤ γ

d#

i=1

βi(T + 1) . (20)

Further, as we have βi(t) ≤ βi(t+ 1) from (7) and ϕ(x) ≥ 0 for any x ∈ (0, 1], we have

− ψ1(y(1)) +

T#

t=1

(ψt(y(t+ 1))− ψt+1(y(t+ 1)))

= −
d#

i=1

%
βi(1)ϕ(yi(1)) +

T#

t=1

(βi(t+ 1)− βi(t))ϕ(yi(t+ 1))

*
≤ 0 . (21)

Combining (20) and (21), we can bound the penalty term in (16) as

ψT+1(x
∗)− ψ1(y(1)) +

T#

t=1

(ψt(y(t+ 1))− ψt+1(y(t+ 1))) ≤ γ

d#

i=1

βi(T + 1) . (22)

Bounding the stability term in (16) The Bregman divergence Dt(x, y) is expressed as

Dt(x, y) =

d#

i=1

'
βi(t)D

(1)(xi, yi) + βi(t)γD
(2)(xi, yi)

(

≥
d#

i=1

max
&
βi(t)D

(1)(xi, yi),βi(t)γD
(2)(xi, yi)

)
,

whereD(1) andD(2) are Bregman divergences induced byϕ(1)(x) = − log x andϕ(2)(x) = (1−x) log(1−x), respectively.
We hence have

C
5ℓ(t)−m(t), x(t)− y(t+ 1)

D
−Dt(y(t+ 1), x(t))

≤
d#

i=1

'
(5ℓi(t)−mi(t))(xi(t)− yi(t+ 1))− βi(t)max

&
D(1)(yi(t+ 1), xi(t)), γD

(2)(yi(t+ 1), xi(t))
)(

≤
d#

i=1

%
min

3
βi(t)g

%
pi(t)(5ℓi(t)−mi(t))

βi(t)

*
,βi(t)γ(1− xi(t))h

%
5ℓi(t)−mi(t)

γβi(t)

*7*
, (23)
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where the last inequality follows from Lemma 5 of Ito et al. (2022a), and g and h are defined as

g(x) = x− log(x+ 1) ≤ 1

2
x2 + δ|x|3

-
x ≥ − 1

β0

0
, (24)

h(x) = exp(x)− x− 1 ≤ x2 (x ≤ 1) . (25)

Note that g(0) = h(0) = 0 and it holds from (4) that

5ℓj(t)−mj(t) =

.
(ℓj(t)−mj(t))/xj(t) if j ∈ I(t)
0 otherwise . (26)

Therefore, the LHS of (23) is further bounded as
C
5ℓ(t)−m(t), x(t)− y(t+ 1)

D
−Dt(y(t+ 1), x(t))

≤
#

j∈I(t)

min

.
βj(t) g

-
ℓj(t)−mj(t)

βj(t)

0
,βj(t)γ(1− xj(t))h

-
ℓj(t)−mj(t)

γβj(t)xj(t)

0/

≤

;
=

>

!
j∈I(t)

'
(ℓj(t)−mj(t))

2

2βj(t)
+

δ|ℓj(t)−mj(t)|3
βj(t)2

(
if γxj(t) ≤ 1

!
j∈I(t) min

&
(ℓj(t)−mj(t))

2

2βj(t)
+

δ|ℓj(t)−mj(t)|3
βj(t)2

,
(1−xj(t))(ℓj(t)−mj(t))

2

γxj(t)2βj(t)

)
otherwise

≤
#

j∈I(t)

min

.
(ℓj(t)−mj(t))

2

2βj(t)
+

δ|ℓj(t)−mj(t)|3
βj(t)2

,
(1− xj(t))(ℓj(t)−mj(t))

2

γxj(t)2βj(t)

/

≤
#

j∈I(t)

-
1

2βj(t)
+

δ

βj(t)2

0
(ℓj(t)−mj(t))

2 min

.
1,

2(1− xj(t))

γxj(t)2

/
=

d#

i=1

-
1

2βi(t)
+

δ

βi(t)2

0
αi(t) , (27)

where the first inequality follows from (23) and (26), the second inequality follows from (24), (25), and the fact that
| ℓj(t)−mj(t)

βj(t)
| ≤ 1

β0
≤ 1, and the third inequality holds since γxj(t) ≤ 1 means 1−xj(t)

γxj(t)2
≥ 1−1/γ

γ(1/γ)2 = γ− 1 ≥ 1
2 + δ, which

implies

(ℓj(t)−mj(t))
2

2βj(t)
+

δ|ℓj(t)−mj(t)|3
βj(t)2

≤ (1− xj(t))(ℓj(t)−mj(t))
2

γxj(t)2βj(t)
.

We hence have
T#

t=1

'C
5ℓ(t)−m(t), x(t)− y(t+ 1)

D
−Dt(y(t+ 1), x(t))

(
≤

d#

i=1

T#

t=1

-
1

2βi(t)
+

δ

βi(t)2

0
αi(t) . (28)

We can show that a part of (28) is bounded as

T#

t=1

αi(t)

2βi(t)
≤ γ

?

@

899:β2
0 − 1

γ
+

1

γ

T#

t=1

αi(t)−
K
β2
0 − 1

γ

A

B ≤ γ (βi(T + 1)− β0) . (29)

The first inequality in (29) holds since
899:β2

0 − 1

γ
+

1

γ

t#

s=1

αi(s)−

899:β2
0 − 1

γ
+

1

γ

t−1#

s=1

αi(s)

=
αi(t)

γ
'L

β2
0 − 1

γ + 1
γ

!t
s=1 αi(s) +

L
β2
0 − 1

γ + 1
γ

!t−1
s=1 αi(s)

( ≥ αi(t)

2γ
L
β2
0 + 1

γ

!t−1
s=1 αi(s)

=
αi(t)

2γβi(t)
,

where the inequality follows by αi(t) ≤ 1. The second inequality in (29) follows from
899:β2

0 − 1

γ
+

1

γ

T#

t=1

αi(t)−
K
β2
0 − 1

γ
≤

899:β2
0 − 1

γ
+

1

γ

T#

t=1

αi(t)− β0 +
1

γ
≤ βi(T + 1)− β0 +

1

γ
,
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where the first inequality follows from
√
x−

√
x− y ≤ y/

√
x for x ≥ y ≥ 0 and β0 ≥ 1. Similarly, we can show

T#

t=1

αi(t)

βi(t)2
=

T#

t=1

αi(t)

β2
0 + 1

γ

!t−1
s=1 αi(s)

= γ

T#

t=1

αi(t)

γβ2
0 +

!t−1
s=1 αi(s)

≤ γ log

%
1 +

1

γβ2
0 − 1

T#

t=1

αi(t)

*
≤ 2γ log

βi(T + 1)

βi(1)
+ 2 . (30)

The first inequality in (30) follows since

log

%
1 +

1

γβ2
0 − 1

t#

s=1

αi(s)

*
− log

%
1 +

1

γβ2
0 − 1

t−1#

s=1

αi(s)

*

= − log

%
1− αi(t)

γβ2
0 − 1 +

!t
s=1 αi(s)

*
≥ − log

%
1− αi(t)

γβ2
0 +

!t−1
s=1 αi(s)

*
≥ αi(t)

γβ2
0 +

!t−1
s=1 αi(s)

,

where the first inequality follows from αi(t) ≤ 1 and the last inequality follows from − log(1 − x) ≥ x for x < 1. The
second inequality in (30) follows from

log

%
1 +

1

γβ0
2 − 1

T#

t=1

αi(t)

*
< log

%
1 +

1

γβ0
2

T#

t=1

αi(t)

*
+ log

γβ0
2

γβ2
0 − 1

= log

-
βi(T + 1)2

β2
0

0
+ log

-
1 +

1

γβ2
0 − 1

0
≤ 2 log

βi(T + 1)

β0
+

2

γ
,

where the last inequality follows from log(1+1/(x−1)) ≥ 2/x for x ≥ 3/2. Bounding the RHS of (27) with (29) and (30)
yields

T#

t=1

'C
5ℓ(t)−m(t), x(t)− y(t+ 1)

D
−Dt(y(t+ 1), x(t))

(

≤ γ

d#

i=1

-
βi(T + 1)− βi(1) + 2δ log

βi(T + 1)

βi(1)

0
+ d(1 + 2δ) . (31)

Finally, by bounding the RHS of (16) by sequentially using (18), (22) and (31), we have

RT ≤ γ

d#

i=1

E
I
2βi(T + 1)− βi(1) + 2δ log

βi(T + 1)

βi(1)

J
+ d2 + d(1 + 2δ) ,

which completes the proof.

A.2 Proof of Lemma 1

Proof. We can bound the regret from below as

RT = E

"
T#

t=1

〈ℓ(t), a(t)− a∗〉
$
= E

"
T#

t=1

〈ℓ′t, a(t)− a∗〉+
T#

t=1

〈ℓ(t)− ℓ′t, a(t)− a∗〉
$

≥ E

"
T#

t=1

〈µ, a(t)− a∗〉 −
T#

t=1

‖ℓ(t)− ℓ′t‖∞‖a(t)− a∗‖1

$

≥ E

"
T#

t=1

〈µ, a(t)− a∗〉 − 2m

T#

t=1

‖ℓ(t)− ℓ′t‖∞

$

≥ E

"
T#

t=1

〈µ, a(t)− a∗〉
$
− 2mC , (32)
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where the first inequality follows from the Hölder’s inequality and E[ℓ′t] = µ, the second inequality follows since
‖a(t) − a∗‖1 ≤ 2m, and the last inequality follows from the definition of C =

!T
t=1‖ℓ(t) − ℓ′t‖∞. We then bound

E
M!T

t=1 〈µ, a(t)− a∗〉
N
.

We consider the case of general action sets and recall that I∗ = {i ∈ [d] : a∗i = 1} and J∗ = [d] \ I∗. Since
!

i∈I∗(1 −
ai(t)) ≤ min{|I∗|, d−m} and

!
i∈J∗ ai(t) ≤ min{|J∗|,m}, we have

〈µ, a(t)− a∗〉 = 1

2
〈µ, a(t)− a∗〉+ 1

2
〈µ, a(t)− a∗〉

≥ 1

2min{|I∗|, d−m}
#

i∈I∗

(1− ai(t)) 〈µ, a(t)− a∗〉+ 1

2min{|J∗|,m}
#

i∈J∗

ai(t) 〈µ, a(t)− a∗〉

≥ 1

2min{|I∗|, d−m}
#

i∈I∗

∆′
i,min(1− ai(t)) +

1

2min{m, |J∗|}
#

i∈J∗

∆i,minai(t) ,

where the last inequality follows since for any i ∈ I∗ we have 〈µ, a(t)− a∗〉 ≥ ∆′
i,min, and for any i ∈ J∗ we have

〈µ, a(t)− a∗〉 ≥ ∆i,min. Combining this inequality with (32) completes the proof.

Note that in the stochastic regime with adversarial corruptions, from Lemma 1 it holds that

RT ≥ E

"
T#

t=1

%
1

v(A)

#

i∈I∗

∆′
i,min(1− ai(t)) +

1

w(A)

#

i∈J∗

∆i,minai(t)

*$
− 2Cm

=
1

v(A)

#

i∈I∗

∆′
i,minQi +

1

w(A)

#

i∈J∗

∆i,minPi − 2Cm , (33)

where the equality follows from the law of iterated expectations.

B PROOF OF THEOREM 3

B.1 Preliminaries

Before proving the regret upper bounds in Theorem 3, we prepare some lemmas. We bound the sum over i ∈ [d] in (17)
by considering different upper bounds for the optimal and sub-optimal base-arms. Recall that αi(t) and mi(t) are given by
(7) and (2), respectively. We use a following lemma to bound

!T
t=1 αi(t) for sub-optimal base-arms i ∈ J∗.

Lemma 4. It holds for any i ∈ [d] and m∗
i ∈ [0, 1] that

T#

t=1

αi(t) ≤
T#

t=1

ai(t)(ℓi(t)−mi(t))
2 ≤

T#

t=1

ai(t)(ℓi(t)−m∗
i )

2 + log(1 +Ni(T )) +
5

4
.

To prove this lemma, we use the following lemma.
Lemma 5 (Lemma 8 of Ito et al. 2022a). Suppose ℓ(s) ∈ [0, 1] for any s ∈ [t] and define m(t) ∈ [0, 1] by

m(t) =
1

t

%
1

2
+

t−1#

s=1

ℓ(s)

*
.

Then, for any m∗ ∈ [0, 1] we have

T#

t=1

((ℓ(t)−m(t))2 − (ℓ(t)−m∗)2) ≤ 5

4
+ log T .

Proof of Lemma 4. From the definition of αi(t), we have

T#

t=1

αi(t) ≤
T#

t=1

ai(t)(ℓi(t)−mi(t))
2
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≤
T#

t=1

ai(t)(ℓi(t)−m∗
i )

2 +
5

4
+ log

%
1 +

T#

t=1

ai(t)

*

=

T#

t=1

ai(t)(ℓi(t)−m∗
i )

2 +
5

4
+ log (1 +Ni(T )) ,

where the second inequality follows from Lemma 5 and the definition of mi(t) given in (2).

From Lemma 4, in the stochastic regime it holds that

E

"
T#

t=1

αi(t)

$
≤ E

"
T#

t=1

xi(t)σ
2
i + log(1 +Ni(T ))

$
+

5

4
≤ σ2

i Pi + log(1 + Pi) +
5

4
, (34)

where the first inequality follows from Lemma 4 with m∗
i = µi and in the last inequality we define the expected number of

times that the base-arm i is chosen by

Pi = E [Ni(T )] = E

"
T#

t=1

[i ∈ I(t)]

$
= E

"
T#

t=1

ai(t)

$
= E

"
T#

t=1

xi(t)

$
. (35)

On the other hand, for the analysis of the optimal base-arms i∗ ∈ I∗, we give a bound on
!T

t=1 αi(t) using the following
lemma.
Lemma 6. It holds for any i∗ ∈ [d] that

E[αi∗(t)] ≤ 2E
I
min

.
xi∗(t),

1− xi∗(t)√
γ

/J
≤ 2E

I
1− xi∗(t)√

γ

J
.

Proof. From the definition of αi(t) in (7), we have

E[αi(t)|xi(t)] = E
I
ai(t)(ℓi(t)−mi(t))

2 min

.
1,

2(1− xi(t))

γxi(t)2

/ OOOO xi(t)

J

≤ E
I
ai(t)min

.
1,

2(1− xi(t))

γxi(t)2

/ OOOO xi(t)

J

= min

.
xi(t),

2(1− xi(t))

γxi(t)

/

≤
3

xi(t) (xi(t) <
1√
γ )

2(1−xi(t))√
γ (xi(t) ≥ 1√

γ )
≤ 2

√
γ
(1− xi(t)) ,

where the first inequality follows from the condition of ℓi(t),mi(t) ∈ [0, 1] and the last inequality is due to √
γ ≥ 2 that

follows from the assumption of T ≥ 55.

B.2 Proof for the Stochastic Regime

Proof of (11) in Theorem 3. We bound the RHS of (17) separately considering sub-optimal and optimal base-arms.

Sub-optimal base-arms side First, we let i ∈ J∗ be a sub-optimal base-arm. From (34), the component of the RHS
of (17) is bounded as

E
I
2βi(T + 1)− βi(1) + 2δ log

βi(T + 1)

βi(1)

J

= E

P

Q2

899:β2
0 +

1

γ

T#

t=1

αi(t)− β0 + δ log

%
1 +

1

γβ2
0

T#

t=1

αi(t)

*R

S

≤ 2

,

β2
0 +

1

γ

-
σ2
i Pi + log(1 + Pi) +

5

4

0
− β0 + δ log

-
1 +

1

γβ2
0

-
σ2
i Pi + log(1 + Pi) +

5

4

00
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≤ 2

,

β2
0 +

σ2
i Pi

γ
+

1

γβ0

-
log(1 + Pi) +

5

4

0
− β0 + δ log

-
1 +

σ2
i Pi

γβ2
0

0
+

δ

γβ2
0

-
log(1 + Pi) +

5

4

0

= 2

,

β2
0 +

σ2
i Pi

γ
− β0 + δ log

-
1 +

σ2
i Pi

γβ2
0

0
+

ξ

γ

-
log(1 + Pi) +

5

4

0
, (36)

where the first inequality follows from (34), the second inequality follows from
√
x+ y ≤

√
x + y

2
√
x

that holds for any
x > 0 and y ≥ 0, log(1 + x + y) ≤ log(1 + x) + y that holds for any x, y ≥ 0, and in the last equality we define
ξ = 1

β0
+ δ

β2
0
= 1

1+ε +
δ

(1+ε)2 .

Optimal base-arm side Next, we let i ∈ I∗ be an optimal base-arm. We define the complement version of Pi by

Qi = E

"
T#

t=1

(1− xi(t))

$
(37)

for i ∈ [d]. Then from Lemma 6 we have

E
I
2βi(T + 1)− βi(1) + 2δ log

βi(T + 1)

βi(1)

J

= E

P

Q2

899:β2
0 +

1

γ

T#

t=1

αi(t)− β0 + δ log

%
1 +

1

γβ2
0

T#

t=1

αi(t)

*R

S

≤ E

P

Q2

899:β2
0 +

1

γ

T#

t=1

αi(t)− β0 + 2δ

?

@

899:1 +
1

γβ2
0

T#

t=1

αi(t)− 1

A

B

R

S

= 2 (β0 + δ)E

P

Q

899:1 +
1

γβ2
0

T#

t=1

αi(t)− 1

R

S+ β0

≤ 2(β0 + δ)

?

@

899:1 +
2

γ3/2β2
0

E

"
T#

t=1

(1− xi(t))

$
− 1

A

B+ β0 .

≤ 2(β0 + δ)

899: 2

γ3/2β2
0

E

"
T#

t=1

(1− xi(t))

$
+ β0 .

≤ 2(1 + δ)

,
2

γ3/2
Qi + β0 , (38)

where the first inequality follows from the inequality of log(1 + x) ≤ 2(
√
1 + x − 1) for x > 0, the second inequality

follows from Lemma 6, the third inequality follows from
√
1 + x− 1 ≤

√
x for x ≥ 0, and the last inequality follows from

β0 ≥ 1.

Putting together the upper and lower bounds and applying a self-bounding technique Bounding the RHS of (17)
using (36) and (38) yields the regret upper bound depending on (Pi)i∈J∗ and (Qi)i∈I∗ as

RT

γ
≤

#

i∈J∗

?

@2

,

β2
0 +

σ2
i Pi

γ
− β0 + δ log

-
1 +

σ2
i Pi

γβ2
0

0
+

ξ

γ

-
log(1 + Pi) +

5

4

0A

B

+ 2 (1 + δ)
#

i∈I∗

,
2

γ3/2
Qi + β0|I∗|+

d2 + d(1 + 2δ)

γ

=
#

i∈J∗

f̄i

-
Pi

γ

0
+ 2 (1 + δ)

#

i∈I∗

,
2

γ3/2
Qi + β0|I∗|+

1

γ

-
d2 + d(1 + 2δ) +

5

4
ξ|J∗|

0
, (39)
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where we define convex function f̄i : R+ → R by

f̄i(x) = 2
L
β2
0 + σ2

i x+ δ log

-
1 +

σ2
i x

β2
0

0
+

ξ

γ
log(1 + γx)− β0 . (40)

In the stochastic regime, setting C = 0 in (33) yields the regret lower bound depending on (Pi)i∈J∗ and (Qi)i∈I∗ as

RT ≥ 1

v(A)

#

i∈I∗

∆′
i,minQi +

1

w(A)

#

i∈J∗

∆i,minPi . (41)

Combining (39) and (41), we have

RT

log T
=

RT

γ
= 2

RT

γ
− RT

γ

≤ 2
RT

γ
− 1

γ

%
1

v(A)

#

i∈I∗

∆′
i,minQi +

1

w(A)

#

i∈J∗

∆i,minPi

*

≤
#

i∈J∗

-
2f̄i

-
Pi

γ

0
− ∆i,min

w(A)

Pi

γ

0
+

#

i∈I∗

%
4(1 + δ)

,
2

γ1/2

Qi

γ
−

∆′
i,min

v(A)

Qi

γ

*

+ 2β0|I∗|+
2

γ

-
d2 + d(1 + 2δ) +

5

4
ξ|J∗|

0

≤
#

i∈J∗

max
x≥0

.
2f̄i(x)−

∆i,min

w(A)
x

/
+

#

i∈I∗

max
x≥0

3
4(1 + δ)

,
2

γ1/2
x−

∆′
i,min

v(A)
x

7

+ 2β0|I∗|+
2

γ

-
d2 + d(1 + 2δ) +

5

4
ξ|J∗|

0

≤
#

i∈J∗

max
x≥0

.
2f̄i(x)−

∆i,min

w(A)
x

/
+

#

i∈I∗

16(1 + δ)2v(A)
√
γ∆′

i,min

+ 2β0|I∗|+
2

γ

-
d2 + d(1 + 2δ) +

5

4
ξ|J∗|

0
, (42)

where the second inequality follows from (39) and the last inequality follows from a
√
x− bx ≤ a2/(2b) for a, b, x ≥ 0.

In the following, we evaluate the first term of (42).

Bounding the first term of (42) We will prove the following statement:

max
x≥0

.
2f̄i(x)−

∆i,min

w(A)
x

/
≤ h

-
w(A)

σ2
i

∆i,min

0
+O

-
log(1 + γ)

γ

0
, (43)

where h : R+ → R is defined as

h(z) =

;
<<<=

<<<>

2β0 if 0 ≤ z ≤ β0

2(1+δ/β0)
,

2z

-
1 +

L
1 + 2 δ

z

0
− 2δ + 4δ

-
log z

β0
+ log

-
1 +

L
1 + 2 δ

z

00
+

β2
0

z − 2β0 if z > β0

2(1+δ/β0)
.

(44)

Let ∆̄i = ∆i,min/w(A) for the notational simplicity. As fi is concave, the maximum of 2fi(x)−∆̄ix is attained by x∗
i ∈ R

satisfying 2f ′(x∗
i ) = ∆̄i. Define x̃i ≥ 0 by

x̃i := max

3-
4σi

∆̄i

02

,
8δ

∆̄i
,
16ξ

γ∆̄i

7
.

We then have

2f ′
i(x̃i) ≤

2σiK'
4σi

∆̄i

(2
+

2δσ2
i

β0
2 + σ2

i
8δ
∆̄i

+
2ξ

1 + γ 16ξ
γ∆̄i

≤ ∆̄i

2
+

∆̄i

4
+

∆̄i

8
< ∆̄i ,
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which implies x̃i ≥ x∗
i . Hence, we have

max
x≥0

T
2fi(x)− ∆̄ix

U
= 2fi(x

∗
i )− ∆̄ix

∗
i

= 4
L
β2
0 + σ2

i x
∗
i + 2δ log

-
1 +

σ2
i x

∗
i

β2
0

0
+ 2

ξ

γ
log(1 + γx∗

i )− ∆̄ix
∗
i − 2β0

≤ 4
L
β2
0 + σ2

i x
∗
i + 2δ log

-
1 +

σ2
i x

∗
i

β2
0

0
+ 2

ξ

γ
log(1 + γx̃i)− ∆̄ix

∗
i − 2β0

≤ max
x≥0

.
4
L
β2
0 + σ2

i x+ 2δ log

-
1 +

σ2
i x

β2
0

0
− ∆̄ix

/
+ 2

ξ

γ
log(1 + γx̃i)− 2β0

= max
x≥0

T
gi(x)− ∆̄ix

U
− 2β0 +O

-
log(1 + γ)

γ

0
, (45)

where we define

gi(x) = 4
L
β2
0 + σ2

i x+ 2δ log

-
1 +

σ2
i x

β2
0

0
.

From (45) and (42), we have

lim sup
T→∞

RT

log T
≤

#

i∈J∗

-
max
x≥0

T
gi(x)− ∆̄ix

U
− 2β0

0
+ 2β0|I∗| . (46)

In the following, we write zi = σ2
i

∆̄i
. As we have

g′i(x) =
2σ2

i+
β2
0 + σ2

i x
+

2δσ2
i

β2
0 + σ2

i x
≤ 2σ2

i

-
1

β0
+

δ

β2
0

0
,

If zi = σ2
i

∆̄i
≤ 1

2(1/β0+δ/β2
0)

= β0

2(1+δ/β0)
, the maximum of gi(x)− ∆̄ix is attained by x = 0, implying

max
x≥0

T
gi(x)− ∆̄ix

U
= gi(0) = 4β0 if zi :=

σ2
i

∆̄i
≤ β0

2(1 + δ/β0)
. (47)

Otherwise, we have

gi(x)− ∆̄ix = 4β0

,

1 +
σ2
i x

β2
0

+ 2δ log

-
1 +

σ2
i x

β2
0

0
− β2

0∆̄i

σ2
i

-
1 +

σ2
i x

β2
0

0
+

β2
0

zi

= 4β0

,

1 +
σ2
i x

β2
0

+ 4δ log

%,

1 +
σ2
i x

β2
0

*
− β2

0

zi

%,

1 +
σ2
i x

β2
0

*2

+
β2
0

zi
.

From this, by setting y =
L
1 +

σ2
i x

β2
0

, we obtain

max
x≥0

T
gi(x)− ∆̄ix

U
≤ max

y≥0

.
4β0y + 4δ log y − β2

0

zi
y2
/
+

β2
0

zi
. (48)

We here use the following:

max
y≥0

T
ay + b log y − cy2

U
=

1

2

' a

4c

'
a+

+
a2 + 8bc

(
− b

(
+ b log

a+
√
a2 + 8bc

4c
,

which holds for any a, b, c > 0. We hence have

max
y≥0

.
4β0y + 4δ log y − β2

0

zi
y2
/
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=
1

2

?

@4β0zi
4β2

0

?

@4β0 +

,

(4β0)2 + 32
δβ2

0

zi

A

B− 4δ

A

B+ 4δ log
4β0 +

+
(4β0)2 + 32δβ2

0/zi
4β2

0/zi

= 2

%
zi

%
1 +

K
1 + 2

δ

zi

*
− δ

*
+ 4δ

%
log

zi
β0

+ log

%
1 +

K
1 + 2

δ

zi

**
. (49)

Combining (45) with (47), (48), and (49), we obtain

max
x≥0

T
2fi(x)− ∆̄ix

U
≤ h

-
σ2
i

∆̄i

0
+O

-
log(1 + γ)

γ

0
= h

-
w(A)

σ2
i

∆i,min

0
+O

-
log(1 + γ)

γ

0
, (50)

where h : R+ → R is defined by (44). From (42) and (50), we complete the proof of (43).

Bounding h For z > β0

2(1+δ/β0)
, h(z) in (44) is bounded as

h(z) ≤ 2z

-
1 + 1 +

δ

z

0
− 2δ + 4δ

%
log z + log

%
1 +

K
1 + 2

δ

z

**
+

β2
0

β0
· 2

-
1 +

δ

β0

0
− 2β0

= 4z + 4δ

%
log z + log

%
1 +

K
1 + 2

δ

z

*
+

1

2

*

≤ 4z + c log(1 + z)
'
c = O

V
δ2
W
= O

'V
log ε−1

W2((
,

where the last inequality follows from log(1 + z) = Ω(1/δ) that holds for z > β0

2(1+δ/β0)
. Hence, for any z ≥ 0, h(z) is

bounded as

h(z) ≤ max {4z + c log(1 + z), 2β0} . (51)

From this and (50), recalling that β0 = 1 + ε, we obtain

RT ≤
%
#

i∈J∗

max

.
4
w(A)σ2

i

∆i,min
+ c log

-
1 +

w(A)σ2
i

∆i,min

0
, 2(1 + ε)

/
+ 2(1 + ε)|I∗|

*
log T

+
#

i∈I∗

16(1 + δ)2v(A)

∆′
i,min

+
log T + o(

+
log T ) ,

which completes the proof of (11) in Theorem 3.

B.3 Proof for the Stochastic Regime with Adversarial Corruptions

We here show a regret bound for the stochastic regime with adversarial corruptions given in Theorem 3, which is the
following regret bound:

RT ≤ RLS +O
'√

CmRLS
(
,

where RLS is the RHS of (11) and C is the corruption level defined in Section 3.

Proof. In stochastic regimes with adversarial corruptions, using Lemma 4 with m∗
i = µi we have

E

"
T#

t=1

αi(t)

$
≤ E

"
T#

t=1

ai(t)(ℓi(t)− µi)
2 + log(1 +Ni(T ))

$
+

5

4

= E

"
T#

t=1

xi(t)(ℓi(t)− ℓ′i(t) + ℓ′i(t)− µi)
2 + log(1 +Ni(T ))

$
+

5

4

= E

"
T#

t=1

xi(t)
V
(ℓi(t)− ℓ′i(t))

2 + σ2
i

W
+ log(1 +Ni(T ))

$
+

5

4
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≤ σ2
i Pi + log(1 + Pi) +

5

4
+ P ′

i , (52)

where we define

P ′
i = E

"
T#

t=1

xi(t)(ℓi(t)− ℓ′i(t))
2

$
. (53)

Hence, in a similar argument to that of showing (36), by using (52) instead of (34), we obtain

E
I
2βi(T + 1)− βi(1) + 2δ log

βi(T + 1)

βi(1)

J

= E

P

Q2

899:β2
0 +

1

γ

T#

t=1

αi(t)− β0 + δ log

%
1 +

1

γβ2
0

T#

t=1

αi(t)

*R

S

≤ 2

,

β2
0 +

σ2
i Pi

γ
− β0 + δ log

-
1 +

σ2
i Pi

γβ2
0

0
+

ξ

γ

-
log(1 + Pi) +

5

4

0
+ 2

,
P ′
i

γ
+ δ log

-
1 +

P ′
i

γβ2
0

0

≤ 2

,

β2
0 +

σ2
i Pi

γ
− β0 + δ log

-
1 +

σ2
i Pi

γβ2
0

0
+

ξ

γ

-
log(1 + Pi) +

5

4

0
+

-
2 +

δ

β0

0,
P ′
i

γ
, (54)

where the last inequality follows from log(1 + x) ≤
√
x for x ≥ 0. Combining this with (17) and (38), via a similar

argument to that of showing (42), we have

RT

γ
≤

#

i∈J∗

f̄i

-
Pi

γ

0
+ β0|I∗|+

1

γ

-
d2 + d(1 + 2δ) +

5

4
ξ|J∗|

0
+

-
2 +

δ

β0

0 #

i∈J∗

,
P ′
i

γ
, (55)

where we recall that f̄i is defined in (40) by

f̄i(x) = 2
L
β2
0 + σ2

i x+ δ log

-
1 +

σ2
i x

β2
0

0
+

ξ

γ
log(1 + γx)− β0 .

We further have

#

i∈J∗

,
P ′
i

γ
≤

,
|J∗|
γ

#

i∈J∗

P ′
i =

899: |J∗|
γ

E

"
T#

t=1

#

i∈J∗

xi(t)(ℓi(t)− ℓ′i(t))
2

$

≤

899:m|J∗|
γ

E

"
T#

t=1

‖ℓ(t)− ℓ′(t)‖2∞

$
≤

899:m|J∗|
γ

E

"
T#

t=1

‖ℓ(t)− ℓ′(t)‖∞

$
=

,
m|J∗|
γ

C , (56)

where the first inequality follows from the Cauchy-Schwarz inequality, the first equality follows from the definition of P ′
i in

(53), and the second inequality follows from the fact that
!

i∈J∗ xi(t) ≤ m. Combining (55) and (56), we obtain

RT

γ
≤

#

i∈J∗

f̄i

-
Pi

γ

0
+ β0|I∗|+

1

γ

-
d2 + d(1 + 2δ) +

5

4
ξ|J∗|

0
+

-
2 +

δ

β0

0,
m|J∗|
γ

C . (57)

From (57) and Lemma 1, for any λ ∈ (0, 1], letting ∆̄i = ∆i,min/w(A) we have

RT

log T
= (1 + λ)

RT

γ
− λ

RT

γ

≤
#

i∈J∗

max
x≥0

T
(1 + λ)f̄i(x)− λ∆̄ix

U
+

#

i∈I∗

(1 + λ)2

λ

4(1 + δ)2v(A)
√
γ∆′

i,min

+ 2

-
2 +

δ

β0

0,
m|J∗|
γ

C +
2λCm

γ

+ (1 + λ)

-
β0|I∗|+

1

γ

-
d2 + d(1 + 2δ) +

5

4
ξ|J∗|

00
, (58)
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which can be shown in a way similar to the argument of (42). Further, we have

max
x≥0

T
(1 + λ)f̄i(x)− λ∆̄ix

U
=

1 + λ

2
max
x≥0

.
2f̄i(x)−

2λ∆̄i

1 + λ
x

/

≤ 1 + λ

2
h

-
(1 + λ)σ2

i

2λ∆̄i

0
+O

-
log(1 + γ)

γ

0

≤ max

.
(1 + λ)2

λ

σ2
i

∆̄i
+ c log

-
1 +

σ2
i

λ∆̄i

0
, (1 + λ)β0

/
+O

-
log(1 + γ)

γ

0

≤ max

.
4
σ2
i

∆̄i
+ c log

-
1 +

σ2
i

∆̄i

0
, 2β0

/
+ (1 + c)

-
1

λ
− 1

0
σ2
i

∆̄i
+O

-
log(1 + γ)

γ

0
, (59)

where h(z) is defined as (44), the first inequality follows from (50), the second inequality comes from (51) and λ ∈ (0, 1],
and the last inequality follows from

(1 + λ)2

λ
= λ+ 2 +

1

λ
≤ 3 +

1

λ
= 4 +

-
1

λ
− 1

0
,

log

-
1 +

σ2
i

λ∆̄i

0
≤ 1

λ
log

-
1 +

σ2
i

∆̄i

0
≤ log

-
1 +

σ2
i

∆̄i

0
+

-
1

λ
− 1

0
σ2
i

∆̄i
.

Using (58), (59), and λ ≤ 1, we obtain

RT

log T
≤

#

i∈J∗

max

.
4
σ2
i

∆̄i
+ c log

-
1 +

σ2
i

∆̄i

0
, 2β0

/
+ 2β0|I∗|

+ 2

-
2 +

δ

β0

0,
m|J∗|
γ

C + 2λ
Cm

γ
+ (1 + c)

-
1

λ
− 1

0 #

i∈J∗

σ2
i

∆̄i

+
#

i∈I∗

(1 + λ)2

λ

4(1 + δ)2v(A)
√
γ∆′

i,min

+O

-
log(1 + γ)

γ

0
. (60)

By choosing λ =

899: γ
!

i∈J∗

"
σ2
i

∆̄i
+1

#

γ
!

i∈J∗

"
σ2
i

∆̄i
+1

#
+2Cm

, we have

λ ≤

899:γ
!

i∈J∗

'
σ2
i

∆̄i
+ 1

(

2Cm
and

1

λ
− 1 =

899:1 +
2Cm

γ
!

i∈J∗

'
σ2
i

∆̄i
+ 1

( − 1 ≤
899:

2Cm

γ
!

i∈J∗

'
σ2
i

∆̄i
+ 1

( ,

which imply that

2

-
2 +

δ

β0

0,
m|J∗|
γ

C +
2λCm

γ
+ (1 + c)

-
1

λ
− 1

0 #

i∈J∗

σ2
i

∆̄i
= O

?

@
899:Cm

γ

#

i∈J∗

-
σ2
i

∆̄i
+ 1

0A

B .

From this and (60), recalling that γ = log T , β0 = 1 + ε and ∆̄i = ∆i,min/w(A), we obtain

RT ≤
%
#

i∈J∗

max

.
4w(A)

σ2
i

∆i,min
+ c log

-
1 + w(A)

σ2
i

∆i,min

0
, 2(1 + ε)

/
+ 2(1 + ε)|I∗|

*
log T

+O

?

@
899:Cm

#

i∈J∗

-
w(A)

σ2
i

∆i,min
+ 1

0
log T

A

B+
#

i∈I∗

(1 + λ)2

λ

16(1 + δ)2v(A)

∆′
i,min

+
log T + o(

+
log T ) ,

which completes the proof for the stochastic regime with adversarial corruptions.
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B.4 Proof for the Adversarial Regime

Proof of (12) in Theorem 3. First, we prove RT ≤
√
4dQ2 log T +O(d log T ) + d2 + d(1 + 2δ). For any m∗ ∈ [0, 1]d,

bounding the RHS of Lemma 3 we have

RT ≤ γ

d#

i=1

E
I
2βi(T + 1)− βi(1) + 2δ log

βi(T + 1)

βi(1)

J
+ d2 + d(1 + 2δ)

≤ 2γ

d#

i=1

E [βi(T + 1)] +O(dγ + d2)

= 2γ

d#

i=1

E

P

Q

899:β2
0 +

1

γ

T#

t=1

αi(t)

R

S+O(dγ + d2)

≤ 2γ

d#

i=1

E

P

Q

899:β2
0 +

1

γ

%
T#

t=1

ai(t)(ℓi(t)−m∗
i )

2 + log(1 +Ni(T )) +
5

4

*R

S+O(dγ + d2)

≤ 2γ

d#

i=1

E

P

Q

899: 1

γ

T#

t=1

ai(t)(ℓi(t)−m∗
i )

2

R

S+O(dγ + d2)

≤ 2E

P

Q

899:dγ

d#

i=1

T#

t=1

ai(t)(ℓi(t)−m∗
i )

2

R

S+O(dγ + d2) (61)

≤ 2E

P

Q

899:dγ

T#

t=1

‖ℓ(t)−m∗‖22

R

S+O(dγ + d2) ,

where the second inequality follows from βi(T + 1) = O(T ), the third inequality follows from Lemma 4, and the fifth
inequality follows from the Cauchy-Schwarz inequality. Since m∗ is arbitrary, we obtain the desired results by m∗ = ℓ̄.

Next, we prove RT ≤
√
4dL∗ log T +O(d log T ) + d2 + d(1 + 2δ). By setting m∗ = 0 in (61), we have

RT ≤ 2E

P

Q

899:dγ

T#

t=1

#

i∈I(t)

ℓi(t)2

R

S+O(dγ + d2)

≤ 2E

P

Q

899:dγ

T#

t=1

#

i∈I(t)

ℓi(t)

R

S+O(dγ + d2)

= 2E

P

Q

899:dγ

T#

t=1

ℓ(t)⊤a(t)

R

S+O(dγ + d2)

= 2E

P

Q

899:dγ

%
T#

t=1

(ℓ(t)⊤a(t)− ℓ(t)⊤a∗) +

T#

t=1

ℓ(t)⊤a∗

*R

S+O(dγ + d2)

≤ 2

899:dγ

%
E

"
T#

t=1

(ℓ(t)⊤a(t)− ℓ(t)⊤a∗)

$
+ E

"
T#

t=1

ℓ(t)⊤a∗

$*
+O(dγ + d2)

= 2
+
dγ (RT + L∗) +O(dγ + d2) ,

where the third inequality follows from Jensen’s inequality. By solving this inequation in RT , we obtain

RT ≤ 2
+
dγL∗ +O(dγ + d2) ,

which is the desired bound.
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Finally, we prove RT ≤
+
4d(mT − L∗) log T +O(d log T ) + d2 + d(1 + 2δ). By setting m∗ = 1 in (61) and repeating

a similar argument as for proving RT ≤
√
4dL∗ log T +O(d log T ) + d2 + d(1 + 2δ) we have

RT ≤ 2E

P

Q

899:dγ

T#

t=1

#

i∈I(t)

(ℓi(t)− 1)2

R

S+O(dγ + d2)

≤ 2E

P

Q

899:dγ

T#

t=1

#

i∈I(t)

(1− ℓi(t))

R

S+O(dγ + d2)

≤ 2E

P

Q

899:dγ

%
mT −

T#

t=1

ℓ(t)⊤a∗ −
T#

t=1

〈ℓ(t), a(t)− a∗〉
*R

S+O(dγ + d2)

≤ 2
+
dγ (mT − L∗ −RT ) +O(dγ + d2) ,

where the third inequality follows since ‖ai(t)‖1 ≤ m and the forth inequality follows from Jensen’s inequality. By solving
this inequation in RT , we obtain

RT ≤ 2
+
dγ(mT − L∗) +O(dγ + d2) ,

which completes the proof.

C PROOF OF THEOREM 4

We can prove Theorem 4 by using a similar argument as for Theorem 3. We first discuss the key lemma for this argument,
the very similar argument of which is given in Ito (2021b).

C.1 Preliminary

Here, we present the key lemma for proving Theorem 4.
Lemma 7. Assume that mi(t) is given by (3). Then for any i ∈ [d] and ui(1), . . . , ui(T ) ∈ [0, 1] we have

T#

t=1

αi(t) ≤
T#

t=1

ai(t)(ℓi(t)−mi(t))
2

≤ 1

1− 2η

T#

t=1

ai(t)(ℓi(t)− ui(t))
2 +

1

η(1− 2η)

%
1

4
+ 2

T−1#

t=1

|ui(t+ 1)− ui(t)|
*

.

Proof. Take i ∈ [d] satisfying ai(t) = 1. Then it holds that

(ℓi(t)−mi(t))
2 − (ℓi(t)− ui(t))

2

≤ 2(ℓi(t)−mi(t))(ui(t)−mi(t))

= 2(ℓi(t)−mi(t))(mi(t+ 1)−mi(t)) + 2(ℓi(t)−mi(t))(ui(t)−mi(t+ 1))

= 2η(ℓi(t)−mi(t))
2 +

2

η
(mi(t+ 1)−mi(t))(ui(t)−mi(t+ 1))

≤ 2η(ℓi(t)−mi(t))
2 +

1

η

V
(ui(t)−mi(t))

2 − (ui(t)−mi(t+ 1))2
W
,

where the inequalities follow from y2 − x2 = 2y(y− x)− (x− y)2 ≤ 2y(y− x) for x, y ∈ R and the last equality follows
from the definition of m(t) in (3). Hence, we have

(ℓi(t)−mi(t))
2 ≤ 1

1− 2η

-
(ℓi(t)− ui(t))

2 +
1

η

V
(ui(t)−mi(t))

2 − (ui(t)−mi(t+ 1))2
W0

. (62)
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From the definition of αi(t) in (8) and (62), we have

T#

t=1

αi(t) ≤
T#

t=1

ai(t)(ℓi(t)−mi(t))
2

≤ 1

1− 2η

T#

t=1

(ℓi(t)− ui(t))
2 +

1

η(1− 2η)

T#

t=1

T
(ui(t)−mi(t))

2 − (ui(t)−mi(t+ 1))2
U

=
1

1− 2η

T#

t=1

(ℓi(t)− ui(t))
2

+
1

η(1− 2η)

%
T#

t=1

T
(ui(t+ 1)−mi(t+ 1))2 − (ui(t)−mi(t+ 1))2

U
+ (ui(1)−mi(1))

2

*

≤ 1

1− 2η

T#

t=1

(ℓi(t)− ui(t))
2

+
1

η(1− 2η)

%
T#

t=1

(ui(t+ 1) + ui(t)− 2mi(t+ 1))(ui(t+ 1)− ui(t)) +
1

4

*

≤ 1

1− 2η

T#

t=1

ai(t)(ℓi(t)− ui(t))
2 +

1

η(1− 2η)

%
1

4
+ 2

T−1#

t=1

|ui(t+ 1)− ui(t)|
*

,

which completes the proof.

C.2 Proof for the Stochastic Regime

Proof of (13) in Theorem 4. From Lemma 7, setting ui(t) = µi for all i ∈ [d] and t ∈ [T ] in Lemma 7 and taking the
expectation yield that

E

"
T#

t=1

αi(t)

$
≤ 1

1− 2η
E

"
T#

t=1

ai(t)(ℓi(t)− µi)
2

$
+

1

4η(1− 2η)
=

1

1− 2η
σ2
i Pi +

1

4η(1− 2η)
,

wherePi is defined in (35). By using this inequality instead of (34) and repeating the same argument as that in Appendix B.2,
we obtain

RT ≤ 1

1− 2η

%
#

i∈J∗

max

.
4
w(A)σ2

i

∆i,min
+ c log

-
1 +

w(A)σ2
i

∆i,min

0
, 2(1 + ε)

/
+ 2(1 + ε)|I∗|

*
log T

+O

%
d

,
log T

η(1− 2η)

*
+

#

i∈I∗

16(1 + δ)2v(A)

∆′
i,min

+
log T + o(

+
log T ) ,

which is the desired bound.

C.3 Proof for the Stochastic Regime with Adversarial Corruptions

Here we show a regret bound for the stochastic regime with adversarial corruptions given in Theorem 4:

RT ≤ RGD +O
'√

CmRGD
(
.

Proof. Letting ui(t) = µi for all i ∈ [d] and t ∈ [T ] in Lemma 7 and taking the expectation yield that

E

"
T#

t=1

αi(t)

$
≤ 1

1− 2η
E

"
T#

t=1

ai(t)(ℓi(t)− µi)
2

$
+

1

4η(1− 2η)

≤ 1

1− 2η
σ2
i Pi + P ′

i +
1

4η(1− 2η)
,



Taira Tsuchiya, Shinji Ito, Junya Honda

where Pi is defined in (35) and the last inequality is obtained by a similar argument as for (52). By using this inequality
instead of (34) and repeating a similar argument as that in Appendix B.3, we obtain

RT ≤ 1

1− 2η

%
#

i∈J∗

max

.
4
w(A)σ2

i

∆i,min
+ c log

-
1 +

w(A)σ2
i

∆i,min

0
, 2(1 + ε)

/
+ 2(1 + ε)|I∗|

*
log T

+O

%
d

,
log T

η(1−2η)

*
+O

?

@
899:Cm

#

i∈J∗

-
w(A)σ2

i

∆i,min
+1

0
log T

A

B+
#

i∈I∗

16(1 + δ)2v(A)

∆′
i,min

+
log T + o(

+
log T ) ,

which completes the proof.

C.4 Proof for the Adversarial Regime

Proof of (14) in Theorem 4. From Lemma 7, we immediately obtain

T#

t=1

d#

i=1

αi(t) ≤
1

1− 2η

T#

t=1

d#

i=1

ai(t)(ℓi(t)− ui(t))
2 +

1

η(1− 2η)

%
d

4
+ 2

T−1#

t=1

‖u(t+ 1)− u(t)‖1

*
(63)

for any u(t) = (u1(t), . . . , ud(t))
⊤ ∈ [0, 1]d.

First, we prove RT ≤
L

γ
η(1−2η) (d+ 8V1) +O(dγ + d2). Letting u(t) = ℓ(t) in (63) we can bound the regret as

RT ≤ 2γ

d#

i=1

E

P

Q

899:β2
0 +

1

γ

T#

t=1

αi(t)

R

S+O(dγ + d2)

≤ 2E

P

Q

899:γ

T#

t=1

d#

i=1

αi(t)

R

S+O(dγ + d2)

≤ 2+
η(1− 2η)

E

P

Q

899:γ

%
d

4
+ 2

T−1#

t=1

‖ℓ(t+ 1)− ℓ(t)‖1

*R

S+O(dγ + d2)

≤
K

γ

η(1− 2η)
(d+ 8V1) +O(dγ + d2) , (64)

where the second inequality follows from the Cauchy-Schwarz inequality, the third inequality follows by setting ui(t) =
ℓi(t) for all i ∈ [d] and t ∈ [T ] in (63), and the last inequality follows from Jensen’s inequality. This becomes the desired
path-length bound.

Next, we prove we prove RT ≤
L

γ
1−2η min{L∗,mT − L∗, Q2}+O(dγ + d2). For any m∗ ∈ [0, 1]d, letting u(t) = m∗

for all t ∈ [T ] in (63), we have

T#

t=1

d#

i=1

αi(t) ≤
1

1− 2η

T#

t=1

d#

i=1

ai(t)(ℓi(t)−m∗
i )

2 +
d

4η(1− 2η)
.

Using this inequality, we have

E

"
T#

t=1

d#

i=1

αi(t)

$
≤ 1

1− 2η
min

m∗∈[0,1]d

3
E

"
T#

t=1

d#

i=1

ai(t)(ℓi(t)−m∗
i )

2

$7
+

d

4η(1− 2η)

≤ 1

1− 2η
min{RT + L∗,mT − L∗ −RT , Q2}+

d

4η(1− 2η)
,

where in the last inequality we set m∗ = 0 and (resp. m∗ = 1) and use the same argument as that in Appendix B.4 for
deriving the term with RT + L∗ (resp. mT − L∗ −RT ), and m∗ = ℓ̄ for deriving the term with Q2, and this complete the
proof.
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Table 3: Reward means for the semi-synthetic data.

Instance d m Reward means 1− µ

(d) 6 3 (0.0315, 0.0208, 0.0193, 0.0182, 0.0179, 0.0177)
(e) 8 3 (0.0370, 0.0275, 0.0266, 0.0266, 0.0231, 0.0192, 0.0143, 0.0107)
(f) 10 3 (0.0774, 0.0709, 0.0669, 0.0631, 0.0430, 0.0393, 0.0296, 0.0217, 0.00797, 0.00219)

D EXPERIMENTAL DETAILS

Table 3 lists the reward means used in the experiments.


