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Abstract

Online learning in large-scale structured bandits
is known to be challenging due to the curse of
dimensionality. In this paper, we propose a uni-
fied meta-learning framework for a wide class of
structured bandit problems where the parameter
space can be factorized to item-level, which cov-
ers many popular tasks. Compared with existing
approaches, the proposed solution is both scal-
able to large systems and robust by utilizing a
more flexible model. At the core of this frame-
work is a Bayesian hierarchical model that allows
information sharing among items via their fea-
tures, upon which we design a meta Thompson
sampling algorithm. Three representative exam-
ples are discussed thoroughly. Theoretical anal-
ysis and extensive numerical results both support
the usefulness of the proposed method.

1 INTRODUCTION

The bandit problem has received increasing attention and
has been widely applied [Lattimore and Szepesvári, 2020].
However, many real-world applications typically have a
large number of unknown parameters, a huge action space,
and a complex reward distribution specified by domain
models. For instance, in online learning to rank, the agent
typically needs to choose a slate from more than thousands
of related items [Li et al., 2016, Zong et al., 2016], and
online advertising on major websites is usually viewed as
a bipartite matching problem with millions of users and
items [Wen et al., 2015]. How to efficiently and reliably
explore and learn in a large-scale structured bandit prob-
lem is known to be challenging [Wen et al., 2015, Zong
et al., 2016, Oh and Iyengar, 2019], which impedes the de-
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ployment of bandits in many real systems.

In this paper, we focus on a class of structured bandit prob-
lems where the parameter space can be factorized, with
each parameter related to one item. Here, an item can
be a product, a web page, a movie, etc., depending on
the application. Every item typically also has an informa-
tive feature vector. Such a class is very general and in-
cludes many popular bandit problems as special cases, such
as dynamic assortment optimization [Agrawal et al., 2017,
2019], online learning to rank [Kveton et al., 2015], on-
line combinatorial optimization [Chen et al., 2013], multi-
product dynamic pricing [Bastani et al., 2019], rank-1 ban-
dits [Katariya et al., 2017], online revenue management
[Ferreira et al., 2018], etc.

There are two major approaches dominating this area in the
past decade [Chen et al., 2013, Kveton et al., 2015, Wen
et al., 2015, Sankararaman, 2016, Li et al., 2016, Zong
et al., 2016, Agrawal et al., 2017, Ferreira et al., 2018,
Wang and Chen, 2018, Ou et al., 2018, Agrawal et al.,
2019, Cheung et al., 2019, Bastani et al., 2019, Dong et al.,
2020, Agrawal et al., 2020, Chen et al., 2021, Kveton et al.,
2022], while both of them have limitations (see Section
3 for more details): the feature-agnostic approach learns
every item from scratch and is therefore statistically non-
scalable; while the feature-determined approach assumes
we can use features to predict item-specific parameters per-
fectly with no error, and hence it relies on a fairly restricted
(non-robust) model assumption to share information.

Intuitively, appropriate information sharing between items
can largely speed up our learning, while a restricted gen-
eralization function may cause a linear regret due to the
bias. To address these limitations, we propose a meta-
learning framework: we first build a Bayesian hierarchi-
cal model to allow information sharing among items via
their features, upon which we then design a Thompson
sampling (TS, Russo et al. [2017])-type algorithm. The
hierarchical model provides a principled way to construct
a feature-based informative prior for each item, which
guides the exploration of TS. As such, our method can
be viewed as learning how to learn efficiently (i.e., meta-
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learning) for each item and hence for the whole problem,
which improves the scalability. Compared with the feature-
determined approach, ours allows the item-specific param-
eter to be only partially explained by its features, and hence
is expected to be more robust with a more flexible model.

Contribution. Our contributions are multi-fold. First, to
address the long-standing challenges in large-scale struc-
tured bandits, we propose a unified meta-learning frame-
work with a TS-type algorithm, named Meta Thompson
Sampling for Structured bandits (MTSS). To our knowl-
edge, this is the first meta-learning approach to solve the
wide class of structured bandit problems where the pa-
rameter space is factorizable, and it overcomes the limi-
tations of the two major existing approaches by improving
both the scalability and robustness. Besides, when com-
bined with the offline-training-online-deployment sched-
ule, MTSS yields low system latency and is suitable for
large-scale systems. The framework is attractive for cold-
start problems as well.

Second, we discuss three concrete examples thoroughly,
including ranking, combinatorial optimization, and assort-
ment optimization. These problems have attracted great in-
terest in the literature due to the importance. We provide a
novel and practical solution to these application domains.

Third, we provide a general information-theoretic regret
bound (Theorem 1) for MTSS, which is easy to adapt to
different problems that users care about. The bound de-
composes into two parts: the price of learning the gen-
eralization function and the regret even with the general-
ization function known in advance. As an example, we
derive the regret bound under semi-bandits (Theorem 2)
and show that the regret of MTSS due to not knowing
the generalization function is asymptotically negligible and
does not grow with the number of items N , unlike the
feature-agnostic approach. Furthermore, the regret of the
feature-determined approach scales linearly with the num-
ber of time points T , due to its restricted model assumption.
These results highlight the benefits of meta-learning.

Finally, in three applications, we compare our approach
with existing ones using extensive experiments on both
synthetic and real datasets. The results show that the pro-
posed framework can learn efficiently in large problems
(Section 7), is computationally attractive (Section 7.1),
yields robustness to model misspecification (Appendix
F.1), and is useful for cold-start problems (Appendix F.3).

2 SETUP

We consider the following popular and general class of
bandit problems [Russo et al., 2017]:

Yt ∼ f(Yt|At,θ),

Rt = fr(Yt;η).
(1)

Here, for t = 1, . . . , T , the agent will sequentially choose
action At from the action space A and then receive cor-
responding stochastic observations Yt, which determines
the reward Rt through a deterministic function fr with
some known parameters η. The observation Yt is gen-
erated following a domain model f with some unknown
parameters θ. In many real problems, f is typically a
complex distribution involving nonlinear functions, θ is
high-dimensional, and the action space A is huge. Denote
r(a,θ) = E(Rt|At = a,θ) as the expected reward of tak-
ing action a in a problem instance with parameter θ. One
common metric is the cumulative regret

R(T,θ) =
∑T

t=1

[
max
a∈A

r(a,θ)− r(At,θ)
]
.

In many applications, the structured bandit problem con-
sists of N items, and the unknown parameter θ, admittedly
being high-dimensional, can be factorized over these items
as θ = (θ1, . . . , θN )T , where θi is the parameter related to
the ith item. This problem setting subsumes many popu-
lar bandit problems, such as dynamic assortment optimiza-
tion where the agent needs to recommend a subset of items,
online learning to rank where the agent needs to gener-
ate a ranked slate, combinatorial semi-bandits which have
numerous applications including online advertisement and
optimal network routing, and many others. In this paper,
we will focus on this class of structured bandit problems,
and will discuss three representative examples in Section 5.

3 LIMITATION OF EXISTING
APPROACHES

The existing works typically study one specific task in this
class, and as discussed in Section 1, two major approaches
dominate this area in the past decade: the feature-agnostic
approach and the feature-determined approach. Feature-
agnostic methods [Chen et al., 2013, Wang and Chen, 2018,
Kveton et al., 2015, Cheung et al., 2019, Agrawal et al.,
2017, 2019] do not utilize side information such as fea-
tures and learn each θi independently. Most of them adapt
either the upper-confidence bound (UCB) or TS frame-
work. In these works, the regret bounds will scale quickly
with the number of items N , which could be prohibitive
in many modern applications. Therefore, feature-agnostic
approaches are known to be (statistically) non-scalable,
and in some experiments, even show a (nearly) linear re-
gret [Wen et al., 2015, Zong et al., 2016, Ou et al., 2018,
Agrawal et al., 2020].

To address the scalability issue, feature-determined ap-
proaches [Wen et al., 2015, Zong et al., 2016, Ou et al.,
2018, Agrawal et al., 2020] utilize the feature vector xi of
each item i, by assuming a deterministic function g param-
eterized by γ such that θi = g(xi;γ) with no error. Un-
der this generalization model assumption, the regret bound
for feature-determined approaches can be independent of
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Table 1: Comparison of key model assumptions.

Feature-agnostic Feature-determined Feature-guided (ours)

θi ∼ P(θ) θi = g(xi;γ) θi ∼ g(θi|xi,γ)

N but depend on the number of features d instead, which
is a theoretically attractive argument when d = o(N).

However, feature-determined approaches have two ma-
jor limitations. First, feature-determined approaches are
typically computationally demanding for online updating,
which may cause system latency issues in online deploy-
ment. This is due to that we add an additional layer to
the already complex structured bandit model and also have
to update the full model as a whole. Second and more
seriously, as usual, algorithms designed with a restrictive
model assumption are brittle. No matter how informative
xi is and how complex g is, it is typically challenging to
ensure θi ≡ g(xi) without any error. To further illustrate,
consider a supervised learning task to predict θi using xi.
It is hard to believe that there exists a perfect model with-
out any prediction errors. This issue is exacerbated when
almost all existing works assume g as linear, given the com-
putational challenge. When this model assumption is vio-
lated, the regret is easy to scale linearly with T due to the
bias, which is also observed in our experiments. As such,
we regard the feature-determined approach as non-robust
and aim to relax the restricted model assumption.

4 GENERAL FRAMEWORK

To combine the merits of both approaches and hence enable
scalable and robust bandit learning, we propose a meta-
learning framework, with the model and the algorithm in-
troduced in Section 4.1 and Section 4.2, respectively. In
this section, we will focus on the general framework, with
examples given in Section 5. For any positive integer M ,
we denote the set {1, . . . ,M} by [M ].

4.1 Feature-Based Hierarchical Model For
Information Sharing

With a large number of items, we adopt the meta-learning
viewpoint [Vilalta and Drissi, 2002], by regarding the items
{(xi, θi)} as sampled from a joint distribution. To al-
low information sharing while mitigating the issue from
a deterministic generalization model, we model the item-
specific parameter θi as sampled from a certain distribu-
tion g(θi|xi,γ) instead of being entirely determined by xi.
Here, g is a model parameterized by an unknown vector γ,
which we will instantiate shortly with examples. There-
fore, combining with the base model (1), we consider the

following hierarchical model:

(Prior) γ ∼ Q(γ),

(Generalization function) θi|xi,γ ∼ g(θi|xi,γ),∀i ∈ [N ],

(Observations) Yt ∼ f(Yt|At,θ),

(Reward) Rt = fr(Yt;η),
(2)

where Q(γ) is the prior distribution for γ. Intuitively, as
such, we can share information across items via g to infer
any θi and speed up learning, while we can also utilize the
observations {Yt} to estimate θi in an unbiased way via
f . Compared with the two existing approaches, the main
difference can be concisely summarized in Table 1.

From the meta-learning perspective, it is more common to
consider the Bayes regret [Kveton et al., 2021]:

BR(T ) = Eγ∼Q(γ),θi∼g(θi|xi,γ)R(T,θ),

where the expectation is additionally taken over the item
distribution and the prior Q(γ).

4.2 Meta TS With Feature-Guided Exploration

On the foundation of the hierarchical model (2), we pro-
pose Algorithm 1, which is a natural and general TS-
type algorithm. TS is one of the most popular bandit al-
gorithm frameworks [Russo et al., 2017, Lattimore and
Szepesvári, 2020], with superior numerical and theoreti-
cal performance. As a Bayesian algorithm, TS samples
the action at each round from the posterior distribution of
the optimal action. For a given structured bandit problem,
once the generalization model g and the prior are specified,
the remaining steps to adapt Algorithm 1 are updating the
posterior (steps 1-4) and solving the optimization problem
(step 5). This optimization step is problem-dependent, and
can typically be solved efficiently via existing methods in
the corresponding structured bandit literature.

We will discuss the posterior updating step in depth in Sec-
tion 4.3. Before we proceed, we remark that step 1-4 of
Algorithm 1 can actually be written concisely as sampling
θ̃ from its posterior based on the hierarchical model (2),
which can be seen from the relationship

P(θ | H) =

∫
γ

P(θ | γ,H)P(γ | H)dγ.

Therefore, Algorithm 1 can be regarded as a TS-type algo-
rithm. We split the posterior updating process into steps 1-4
for two major reasons. First, in many cases, it is computa-
tionally more efficient to update the posteriors of γ and θ
separately, as will be discussed in the next section. Sec-
ond, this decomposition provides a nice insight that our
framework actually constructs a feature-based informative
prior g(θi|xi, γ̃) for each θi to guide the feature-agnostic
TS algorithm, and the prior is obtained by pooling infor-
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Algorithm 1: MTSS: Meta Thompson Sampling for
Structured bandits
Input : Prior Q(γ) and known parameters of the

model
SetH1 = {}
while t < T do

1. Update the posterior of γ as P(γ|Ht), according
to the hierarchical model (2)

2. Sample γ̃ ∼ P(γ|Ht)
3. Update the posterior of θ as P(θ|Ht, γ̃),

according to model (1) with g(θi | xi, γ̃) as the
prior for each θi

4. Sample θ̃ ∼ P(θ|Ht, γ̃)
5. Take the greedy action At w.r.t. θ̃ as
At = arg maxa∈A E(Rt | a, θ̃)

6. Receive reward Rt and update the dataset as
Ht+1 ← Ht ∪ {(At, Rt)}

end

mation across items via their features using the hierarchi-
cal model. As such, our approach is an instance of meta-
learning [Vilalta and Drissi, 2002], and hence we refer to
Algorithm 1 as Meta Thompson Sampling for Structured
bandits (MTSS).

Remark 1. The proposed framework is particularly useful
for cold-start problems, where new items will be frequently
added. Without any historical interaction data, it is impor-
tant to construct an informative prior for a new item based
on its features to guide the exploration.

4.3 Posterior Updating And
Offline-Training-Online-Deployment

In Algorithm 1, the posterior updating can be computed
either explicitly when the problem structure permits (see
e.g., Section 5.2), or via approximate posterior inference
algorithms, such as Gibbs sampler [Johnson et al., 2010]
or variational inference [Blei et al., 2017]. We note that
the base model (1) typically yields a nice conjugate struc-
ture for θ (e.g., in all three examples in Section 5), and
approximate posterior inference can be applied to γ alone
in these cases. Approximate posterior inference is widely
applied to TS [Yu et al., 2020, Wan et al., 2021], and is
particularly appropriate in this case due to two reasons:
(i) the posterior of γ is only used to construct a prior for
the base model (1), and hence its error will not be destruc-
tive, as related feature-agnostic TS algorithms typically en-
joy prior-independent or instance-independent sublinear re-
grets [Wang and Chen, 2018, Perrault et al., 2020, Zhong
et al., 2021] (see Appendix F.1 for details); (ii) when com-
puting the posterior of γ, many approximate inference al-
gorithms can benefit from the hierarchical structure and
hence be efficient. For example, with Gibbs sampler, the
algorithm will alternate between the posterior of θ, which

typically yields a conjugate form, and that of γ, which in-
volves a Bayesian regression. Both parts can be solved ef-
ficiently.

To facilitate computationally efficient deployment, we fur-
ther propose an offline-training-online-deployment variant,
where we only sample a new γ̃ at a certain time point
t ∈ T instead of at every time point. For example, T
can be {2l : l = 1, 2, . . . } or some trigger time every
week. In other words, we will re-train the generalization
model g(θ; x,γ) offline in a batch mode, and utilize the
priors {g(θi|xi, γ̃)} during online deployment. As such,
during the online phase, our algorithm requires zero addi-
tional computational cost compared to feature-agnostic TS.
Therefore, MTSS in general yields low latency and hence is
suitable for large-scale systems. Besides, a powerful gener-
alization function such as a Gaussian process or a Bayesian
neural network also becomes feasible. This is a highly
practical algorithm, and our numerical results further sup-
port its good performance. Finally, it can also be viewed as
an empirical Bayes approach [Maritz and Lwin, 2018].

5 EXAMPLES

In this section, we illustrate our framework with three rep-
resentative examples. For every example, we will first write
its feature-agnostic form as model (1), then discuss its ap-
plications and the optimization problem, next instantiate
model (2) with an example choice of g, and finally dis-
cuss the corresponding posterior computation to instantiate
MTSS. Denote the cardinality of set A by |A|.

5.1 Cascading Bandits For Online Learning To Rank

The cascading model is popular in learning to rank [Chuk-
lin et al., 2015] to characterize how a user interacts with
an ordered list of K items. Its bandit version has attracted
much attention recently, and both feature-agnostic [Kveton
et al., 2015, Cheung et al., 2019] and feature-determined
approaches [Zong et al., 2016] have been discussed. In
this model, A contains all the subsets of length K, At =
(a1
t , . . . , a

K
t ) ∈ A is a sorted list of items being displayed,

Yt is an indicator vector with the ath entry equal to 1 when
the ath displayed item is clicked, and Rt is the reward with
fr(Yt) ≡

∑
k∈[K] Yk,t ∈ {0, 1}, where Yk,t is the kth en-

try of Yt. The model is intuitive and widely applied: the
user will exam the K displayed items from top to bottom,
and stop to click one item once she is attracted (or leave if
none of them is attractive). Let It be the index of the cho-
sen item if exists, and otherwise let It = K. To formally
define the model f , it is useful to introduce a latent binary
variable Ek,t to indicate if the kth displayed item is exam-
ined by the tth user, and a latent variable Wk,t to indicate
if the kth displayed item is attractive to the tth user. There-
fore, the value of Wk,t is only visible when k ≤ It. Let
θi be the attractiveness of the item i. The key probabilis-
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tic assumption is that Wk,t ∼ Bernoulli(θakt ),∀k ∈ [K].
When θ is known, the optimal action is any permutation of
the top K items with the highest attractiveness factors.

To characterize the relationship between items using their
features, one example choice of g is the popular Beta-
Bernoulli logistic model [Forcina and Franconi, 1988, Wan
et al., 2021], where θi∼Beta(logistic(xTi γ), φ) for some
known parameter φ. Hereinafter, we adopt the mean-
precision parameterization of the Beta distribution, with
logistic(xTi γ) being the mean and φ being the precision
parameter. Therefore, our model is

θi ∼ Beta(logistic(xTi γ), φ),∀i ∈ [N ],

Yk,t = Wk,tEk,t,∀k ∈ [K],

Wk,t ∼ Bernoulli(θakt ),∀k ∈ [K],

Ek,t = (1− Yk−1)Ek−1,t,∀k ∈ [K],

Rt =
∑

k∈[K]
Yk,t,

with E1,t ≡ 1. With a given γ, the posterior of θ enjoys
the Beta-Bernoulli conjugate relationship and hence can be
updated explicitly and efficiently. The prior Q(γ) can be
chosen as many appropriate distributions such as Gaussian.
To update the posterior of γ, we can apply approximate
inference as discussed in Section 4.3. Many other learning
to rank models, such as the position-based model [Chuklin
et al., 2015], can be formulated and solved similarly.

5.2 Combinatorial Semi-Bandits For Online
Combinatorial Optimization

Online combinatorial optimization has numerous applica-
tions [Sankararaman, 2016], including maximum weighted
matching, ads allocation, webpage optimization, etc. It is
common that every chosen item will generate a separate ob-
servation, known as the semi-bandit problem [Chen et al.,
2013]. Both the feature-agnostic [Chen et al., 2013, Wang
and Chen, 2018] and the feature-determined [Wen et al.,
2015] approaches have been studied. Formally, in a com-
binatorial semi-bandit, the feasible set A ⊆ {A ⊆ [N ] :
|A| ≤ K} consists of subsets that satisfy the size constraint
and other application-specific constraints. The agent will
sequentially choose a subset At, and then receive a reward
Yi,t for each chosen item i ∈ At. The overall reward is
Rt =

∑
i∈At

Yi,t. With known mean rewards, the optimal
action can be obtained from a combinatorial optimization
problem, which can be efficiently solved in most real appli-
cations considered in the semi-bandit literature [Chen et al.,
2013]. As an example, we focus on the popular case where
Yi,t is Gaussian and consider using a linear mixed model
(LMM) as the generalization model. Specifically, the full

model is

θi ∼ N (xTi γ, σ
2
1),∀i ∈ [N ],

Yi,t ∼ N (θi, σ
2
2),∀i ∈ At,

Rt =
∑

i∈At

Yi,t,

(3)

where it is typically assumed that σ1 and σ2 are known.
We choose the prior γ ∼ N (µγ ,Σγ) with parameters as
known. For this instance, the posteriors can be derived ex-
plicitly (see Appendix B). Many other distributions (e.g.,
Bernoulli) and model assumptions (e.g., Gaussian process)
can be formulated similarly, depending on the applications.

5.3 MNL Bandits For Dynamic Assortment
Optimization

Assortment optimization [Pentico, 2008] is a long-standing
problem that aims to offer the most profitable subset of
items, especially when there exist substitution effects.
The Multinomial Logit (MNL) model [Luce, 2012] is ar-
guably the most popular one, and the corresponding bandit
problem has been studied, via either the feature-agnostic
[Agrawal et al., 2017, 2019] or the feature-determined ap-
proaches [Ou et al., 2018, Agrawal et al., 2020]. In assort-
ment optimization, the agent offers a subset (assortment)
At ∈ A = {A ⊆ [N ] : |A| ≤ K}, then the customer
will choose either one of them or the no-purchase option
(denoted as item 0). Let Yt = (Y0,t, · · · , YN,t)T be an in-
dicator vector, where Yi,t = 1 if the item i is chosen. Let
η = (η1, . . . , ηN )T , where ηk is the revenue of the item
k. The reward in round t is then Rt =

∑
i∈At

Yi,tηi. In
an MNL bandit, each item i has an utility factor vi, and the
choice behaviour follows

Yt ∼Multinomial(1,
viI(i ∈ {0} ∪At)

1 +
∑
j∈At

vj
),

with the convention that v0 = 1. When vi’s are known, the
optimal assortment can be solved via linear programming
[Agrawal et al., 2017].

Since direct inference under this model is intractable due
to the complex dependency of the reward distribution on
At, an epoch-type offering [Agrawal et al., 2017, 2019,
Dong et al., 2020] is more popular in the bandit litera-
ture, where we keep offering the same assortment Al in
the lth epoch until the no-purchase appears. Under this
setup, it is easier to work with the item-specific parame-
ter θi = (1 + vi)

−1 and consider the number of purchase
for the item i in each epoch, denoted as Y li . Then, based
on Lemma 1 in Agrawal et al. [2017], it can be proven that
Y li ∼ Geometric(θi),∀i ∈ Al. The nice property of such
a schedule is that the distributions do not depend on At
any longer. Besides, the geometric distribution has a nice
conjugate relationship with the Beta distribution. As a con-
crete example of our framework, we can consider modeling
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Algorithm 2: MTSS with Epoch-Type Schedule for
MNL Bandits
Input : Prior P(γ) and known parameters of the

hierarchical model
SetH1 = {}, t=1, and l=1 keeps track of the time

steps and total number of epochs, respectively.
while t < T do

Compute the posterior distribution P(θ|Hl)
For each item i = 1, · · · , N , sample θ̃ from
P(θ|Hl), and compute the utility ṽi = 1

θ̃i
− 1

Compute Al = arg maxa∈A E(Rt | a, θ̃);
while ct 6= 0 do

Offer Al, observe the purchasing decision ct of
the consumer

Update ξl = ξl ∪ t, time indices corresponding
to epoch l
t = t+ 1

end
For each item i ∈ Al, compute
Y li =

∑
t∈ξl I(ct = i), which is the number of

picks of item i in epoch l
Update the dataset asHl+1 ← Hl ∪ {(Al, {Y li })}
l = l + 1

end

the relationship between θi and xi with the following Beta-
Geometric logistic model:

θi ∼ Beta
( logistic(xTi γ) + 1

2
, φ
)
,∀i ∈ [N ],

Y li ∼ Geometric(θi),∀i ∈ Al,

Rl =
∑

i∈Al
Y li ηi.

Other generalization models are also possible. We choose
this specific form as it is widely observed [Agrawal et al.,
2017, 2019] that vi < 1, i.e., the no-purchase option is most
popular. This is equal to θi ∈ (1/2, 1). Finally, we remark
that Algorithm 1 needs to be slightly modified to be con-
sistent with the epoch-style offering, though the main idea
remains exactly the same. We present the modified MTSS
in Algorithm 2. The only difference is that our schedule of
sampling new parameters is adjusted to be consistent with
the epoch-style. The choices of priors and the posterior up-
dating rules are similar to Section 5.1.

6 THEORY

In this section, we provide theoretical guarantees for MTSS.
We start with a general result that provides intuitive in-
sight into the performance of MTSS and is easy to adapt
to different specific problems. Our result is information-
theoretic and the proof is inspired by Lu and Van Roy
[2019]. Let I(X;Y ) be the mutual information (MI, Kull-

back [1997]) between two random variables X and Y ,
I(X;Y |Z) be the conditional MI conditioned on Z, and
It(X;Y ) = I(X;Y |{(A′t,Y ′t )}t−1

t′=1). To save space, we
defer the detailed definitions to Appendix C. Intuitively, MI
measures the mutual dependence between two variables.

Let ∆t = maxa r(a,θ)− r(At,θ) be the per-round regret,
and Et(X) = E(X|{(A′t,Y ′t )}t−1

t′=1). For a given problem,
we assume we can first find some Γt and εt, such that

Et[∆t] ≤ Γt
√
It(θ;At,Yt) + εt,∀t ∈ [T ]. (4)

Here, Γt is related to the concentration property of the
model, and εt is a small error term. They can typically be
derived by following a few routines introduced in Lu and
Van Roy [2019]. We will give an example shortly.

To gain more insights of our bound below, we introduce
oracle-TS, the TS algorithm that has access to the true gen-
eralization model a priori and uses {g(θi|xi,γ)} as pri-
ors in feature-agnostic TS. For a general structured bandit
problem, the regret of MTSS can be bounded as follows.

Theorem 1. Suppose that (4) holds and Γt ≤ Γ almost
surely for some Γ. Then for MTSS, we have

BR(T ) ≤ Γ
∑T

t=1
E[
√
It(γ;At,Yt)]︸ ︷︷ ︸

Regret due to not knowing γ

(5)

+
∑T

t=1
ΓE[
√
It(θ;At,Yt|γ)] + E[εt]︸ ︷︷ ︸

Regret bound for Oracle-TS

. (6)

This decomposition is consistent with our construction, as
MTSS aims to learn the generalization model to perform
closer to oracle-TS while minimizing the regret. The spe-
cific regret bound is problem-dependent. It depends on
both the first part of (5) which measures the cost of learn-
ing the parameter γ (or equivalently, learning the true prior
for θ), and the second part which quantifies the unavoid-
able regret even knowing γ (i.e., the performance of oracle-
TS). Bounding the first term relies on the MI between the
history and γ, which mainly depends on the concentration
property of the hierarchical model. For problems with ex-
isting Bayes regret bounds for feature-agnostic TS, the sec-
ond part can be derived with minimal modifications. The
proof of this theorem is differed to Appendix D.1.

As a concrete example, we next analyze the combinato-
rial semi-bandits with the linear mixed model (see Section
5.2). The results demonstrate the benefits of meta-learning
clearly. Without loss of generality, we first state several
standard regularity conditions [Basu et al., 2021, Wen et al.,
2015, Agrawal et al., 2020, Zhou et al., 2017].

Assumption 1. ‖xi‖2 ≤ 1, for all i ∈ [N ].

Assumption 2. The maximum eigenvalue of Σγ , λ1(Σγ),
is bounded.
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Let Õ be the big-O notation that hides logarithmic terms,
and c0 be λ1(Σγ) + σ2

1 . We have the following regret
bound, the proof of which can be found in Appendix D.2.

Theorem 2. Under Assumptions 1-2, the Bayes regret of
the MTSS under model (3) is bounded by

BR(T ) ≤ c1K
√
Td

√
log
(

1 +
Nλ1(Σγ)

σ2
1 + σ2

2/T

)
︸ ︷︷ ︸

Regret due to not knowing γ

+ c1
√
NTK

√
log(1+

σ2
1

σ2
2

T )+K

√
2

N
(λ1(Σγ)+σ2

1)︸ ︷︷ ︸
Regret bound for Oracle-TS

= Õ
(
K
√
Td+

√
NTK

)
,

where c1 =
√

8log(4NT 2)c0/log(1 + c0
σ2
2
).

Therefore, with a large number of items (i.e.,Kd = o(N)),
the regret due to not knowing γ is asymptotically negligible
(i.e., dominated by the second part), and the performance
of MTSS is close to oracle-TS, as also observed in exper-
iments. Moreover, note that the second part of the bound
is dominated by c1

√
NTK

√
log(1+Tσ2

1/σ
2
2), which will

decay to zero as σ1 decreases, i.e., when the features be-
come more useful. Therefore, we claim MTSS as scalable,
since it allows utilizing feature information to learn shared
structure so as to behave close to oracle-TS, which yields
low regret when the features are informative and serves as
the skyline. In contrast, as derived in Basu et al. [2021], the
additional regret of feature-agnostic TS than that of oracle-
TS can only be bounded by

√
NTK. The dependency

on N is as expected, since feature-agnostic TS fails to
share information across items and has to learn each from
scratch. As such, MTSS will be more efficient when fea-
tures are informative and the number of items is sufficient
to learn a good generalization model (Kd = o(N)). On the
other hand, similar to the discussions in Foster et al. [2020]
and Krishnamurthy et al. [2021], feature-determined TS
might suffer from the bias as it assumes a restricted model.
To our knowledge, as long as σ1 > 0, one can only expect
a regret bound that is linear in T , which is consistent with
our observations in experiments.

7 EXPERIMENTS

7.1 Synthetic Datasets

Setting. We first conduct simulation experiments to sup-
port our theoretical results and investigate the empirical
performance of different approaches under various situa-
tions. We use the three models introduced in Section 5
to generate data, with (N,K) set as (1000, 3), (3000, 10),
(1000, 5) for cascading bandits, semi-bandits, and MNL

Figure 1: Simulation results. Shaded areas indicate the standard
errors of the averages.

bandits, respectively. We set d = 5 for all tasks, η = 1
for MNL bandits, and σ2 = 1 for semi-bandits. We choose
Q(γ) = N (0, d−1I) and sample xi from N (0, I) with an
intercept. For each problem, we vary the value of either
σ1 or φ, where a higher value of σ1 or φ implies a larger
heterogeneity between items, conditional on their features.

Baselines. For these three problems, we compare our ap-
proach with existing ones, which can be categorized as ei-
ther feature-agnostic or feature-determined, as we intro-
duced. For the feature-agnostic approaches, we directly
apply the TS algorithms proposed in the corresponding pa-
pers [Kveton et al., 2015, Wang and Chen, 2018, Agrawal
et al., 2017]. For the feature-determined approaches, we
compare with the TS algorithms proposed in the corre-
sponding papers [Wen et al., 2015, Zong et al., 2016, Ou
et al., 2018]. For fair comparison, we closely follow the
spirits of Zong et al. [2016] and Ou et al. [2018], and mod-
ify the linear models therein by logistic models to avoid
mis-specification in our simulation. We also present the
performance of oracle-TS as our skyline. Finally, to study
the performance of our algorithm with the offline-training-
online-deployment schedule as in Section 4.3, we sample a
new γ̃ every 500 time points in MNL bandits and cascading
bandits, and every 100 time points in semi-bandits.

Results. The experiment results over 50 random seeds are
presented in Figure 1. Overall, MTSS performs favorably
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and demonstrates its universality. Our findings can be sum-
marized as follows. First, MTSS enjoys a sublinear regret,
while the feature-determined approach suffers from a linear
regret due to the bias. This bias becomes more severe when
σ1 or φ increases, which implies that the amount of varia-
tion in θi that can not be explained by g(xi) grows. Sec-
ond, although in general the feature-agnostic methods have
a sublinear regret, the learning speed is slow, and hence the
cumulative regret is much larger. This is due to the lack
of generalization across items. With the offline-training-
online-deployment schedule, our algorithm still performs
well and is close to oracle-TS. Finally, MTSS is computa-
tionally efficient during online updating. For example, on
a machine with 96 cores and 192GB RAM, for MNL ban-
dits, the total online time costs for feature-agnostic TS and
MTSS are 2.3 and 2.5 seconds, respectively. Besides, for
all three tasks, even with one million items, the per-round
cost of MTSS is still less than 0.2 seconds and close to that
of feature-agnostic TS, while feature-determined TS is in-
feasible to finish the task in a reasonable time frame.

Additional Experiments. First, we repeat the experiments
with other values of L,K, d in Appendix F.4. The find-
ings are similar. Second, we empirically study the impact
of model misspecification in Appendix F.1, where MTSS
shows great robustness. Recall that, to facilitate scalabil-
ity, we assume that θi|xi,γ ∼ g(θi|xi,γ). Intuitively,
since g is used to construct priors for feature-agnostic TS,
our framework is still valuable as long as the learned pri-
ors provide reasonable information compared with manu-
ally specified ones. This robustness is also supported by
the prior-independent or instance-independent sublinear re-
gret bounds for feature-agnostic TS [Wang and Chen, 2018,
Perrault et al., 2020, Zhong et al., 2021].

Third, when only a few features are useful (i.e., γ is sparse),
we demonstrate in Appendix F.2 that the spike-and-slab
prior can be used to leverage our framework and enable
faster learning. Specifically, let z be a random vector, each
entry of which has a Bernoulli prior with probability pslab.
Given z, each entry of γ (i.e., γi) will be either 0 if zi = 0
or sampled from a distribution Q′ if zi = 1. They jointly
form our prior distribution Q(γ), as follows.

(Spike-and-Slab Prior) γ ∼ z ∗Q′(γ),

with z ∼ Bernoulli(pslab),
(Generalization function) θi|xi,γ ∼ g(θi|xi,γ),∀i ∈ [N ],

(Observations) Yt ∼ f(Yt|At,θ),

(Reward) Rt = fr(Yt;η).

Finally, in Appendix F.3, we conduct experiments for the
cold-start problem, where new items are frequently added
and old items are removed. As expected, all algorithms
suffer a linear regret in such a changing environment, with
MTSS consistently outperforming feature-agnostic TS and
feature-determined TS. Specifically, the performance of

feature-agnostic TS deteriorates significantly, as no infor-
mation can be carried over to the new items. On the
contrary, the difference between the regret of oracle-TS
and MTSS is fairly stable, which implies that MTSS has
learned the generalization function well and performs al-
most the same as oracle-TS eventually.

7.2 Real Data

In this section, we compare MTSS with existing methods
(discussed in Section 7.1) on three real datasets. For fair
comparisons, we closely follow the related papers to design
our experiments. To save space, we describe the main ideas
below and defer more details to Appendix F.5.

Datasets. For cascading bandits, we follow Zong et al.
[2016] and aim to display ranked restaurants and maximize
the probability of the user being attracted to at least one
restaurant recommended, using the dataset from Yelp [As-
ghar, 2016]. In the final dataset, at each round, we display
a set of 5 restaurants from a universe of size 3000, and uti-
lize 10 features. For combinatorial semi-bandits, we follow
Wen et al. [2015] and aim to send online advertisements to
the best subset of users who are most likely to accept the
advertisement, while keeping a balance between genders,
using the Adult dataset from Dua and Graff [2017]. In the
final dataset, we choose a set of 20 users (including ten
females and ten males) from a universe of size 3000, and
utilize 4 features. For MNL bandits, we follow Oh and
Iyengar [2019] and aim to recommend the optimal set of
movies, using the MovieLens dataset [Harper and Konstan,
2015]. In the final dataset, we recommend a set of 5 movies
from a universe of size 1000, and utilize 5 features.

Design. To simulate data and calculate regrets, we need to
first determine {θi} and {xi}, and then generate stochastic
rewards either by using the base model (1) with {θi} as pa-
rameters or by directly sampling from the dataset. Again,
we closely follow the existing papers. Specifically, for cas-
cading or MNL bandits, we first split the dataset into a
training set and a testing set, then estimate the features {xi}
from the training set (via collaborative filtering), and finally
estimate the item-specific parameters {θi} from the test-
ing set. For semi-bandits, we directly utilize the features
and responses in the raw dataset. We remark that, during
these procedures, zero assumption is imposed manually on
the joint distribution of (xi, θi) (and hence P(θi|xi)), and
therefore these setups can be used for fair comparisons be-
tween MTSS and the existing approaches.

Results. We present the results in Figure 2. MTSS accumu-
lates lower regrets in all three problems. We observe that
feature-agnostic TS suffers the curse of dimensionality and
learns slowly. In particular, for cascading or MNL bandits,
since the click/purchase rates are low in the two datasets
(i.e., useful feedback is sparse), feature-agnostic TS shows
a (nearly) linear regret, as also observed in Zong et al.
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Figure 2: Experiment results on real datasets, averaged over 50 random seeds. Shaded areas indicate the standard errors of the mean,
which are small and hence hard to distinguish with some curves.

[2016] and Harper and Konstan [2015]. Besides, while
feature-determined TS may slightly outperform in the ini-
tial periods, it eventually exhibits a linear trend. This is
likely due to the bias from its restrictive model assumption.
To provide further support for the proposed method, addi-
tional experiments that use larger real datasets and come to
similar conclusions have been included in Appendix F.5.4.

8 ADDITIONAL RELATED WORK

Structured Bandits. Standard multi-armed bandits are not
scalable to huge action space, and therefore researchers
leverage structural information to generalize across actions,
known as structured bandits [Van Parys and Golrezaei,
2020]. Besides several stylized models, such as the lin-
ear bandits [Chu et al., 2011] and logistic bandits [Kveton
et al., 2020], many practical problems depend on domain
models and can be summarized as model (1). Besides the
two major approaches (i.e., feature-agnostic and feature-
determined) and related papers reviewed in Section 3, Yu
et al. [2020] also proposes a framework that unifies a few
structured bandit problems. However, this paper mainly fo-
cuses on unifying problems without introducing new mod-
els and related algorithms for each specific problem as we
do. In addition, their approach is restricted to models with
only binary variables.

Meta Bandits. Utilizing the framework of hierarchical
models, our work is also related to the meta bandits lit-
erature [Kveton et al., 2021, Basu et al., 2021, Wan et al.,
2021, Hong et al., 2022]. Whereas the focus of meta ban-
dits is on transferring knowledge across a large number of
(similar and relatively simple) bandit tasks, such as multi-
armed bandits or linear bandits, we focus on information
sharing within a single large-scale complicated structured
bandit. Therefore, none of the existing methods can be
applied to our setup. Furthermore, such a distinction also
induces non-trivial differences in the regret analysis, as re-
grets can no longer be analyzed in separate tasks as meta
bandits did. In addition, all existing papers (with the ex-

ception of Wan et al. [2021], which is only applicable to
multi-armed bandits) only model the tasks as sampled from
a simple feature-agnostic distribution, and can not utilize
valuable side information such as features in meta-learning
as we do. Our novelty lies in proposing a practical and sig-
nificant meta-learning framework that overcomes the lim-
itations of the two major approaches in the large literature
on structured bandits.

9 DISCUSSION

Motivated by the long-standing challenges of learning in
large-scale structured bandits, in this paper, we propose a
unified meta-learning framework with a TS-type algorithm
named MTSS. We use three real examples and both numer-
ical and theoretical evidence to demonstrate that the frame-
work is general to subsume a wide class of practical prob-
lems, scalable to large systems, and robust to the general-
ization model assumption.

This approach can be extended in several aspects. First,
it is straightforward to allow multiple parameters per item,
by fitting one generalization model for each. Second, in
our examples, we consider the variance components (σ1 or
φ) as known. In practice, we can apply empirical Bayes
to update these hyperparameters adaptively (see Appendix
A). Third, we mainly focus on TS algorithms as our base-
lines, since they typically outperform the UCB counterparts
and yield fair comparisons with MTSS. Although adapt-
ing UCB to our setup is not straightforward, Bayesian
UCB [Kaufmann et al., 2012] can be similarly developed.
Last, it is meaningful to extend our theory to the case with
model misspecification or with the offline-training-online-
deployment schedule, two variants we empirically studied.
This requires a delicate analysis of TS with misspecified
priors, which is known as a challenging open problem in
the literature [Wan et al., 2021]. We leave these extensions
for future research.
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A Extension: Empirical Bayes for updating variance components adaptively

In our examples, we consider the variance components (σ1 or φ) as known. In practice, we can apply empirical Bayes
Maritz and Lwin [2018] to update these hyperparameters adaptively, as in Tomkins et al. [2019] and Wan et al. [2021].
Specifically, suppose the generalization model is θi|xi,γ ∼ g(θi|xi,γ;β), where β is a parameter that we assume as
known in MTSS. At time point t, given the historyHt, one can focus on the following frequentist model:

(Generalization function) θi|xi,γ ∼ g(θi|xi,γ;β),∀i ∈ [N ],

(Observations) Yt ∼ f(Yt|At,θ),

(Reward) Rt = fr(Yt; r).

(7)

We write the corresponding likelihood function as L(θ,γ, β|Ht), and let (θ̂, γ̂, β̂) be the maximum likelihood estimation.
Following the empirical Bayes approach, we use θi|xi,γ ∼ g(θi|xi,γ; β̂) in MTSS. The updating of β̂ can also be
periodical.

Intuitively, when the conditional variance decays to 0, our method reduces to feature-determined TS; while when it grows,
it indicates the features are less useful, and we are essentially assigning a non-informative prior as commonly adopted in
feature-agnostic TS. As such, our framework yields the desired flexibility and is adaptive via empirical Bayes.

B Explicit form of the posterior in semi-bandits with LMM

In this section, we derive the posterior distributions involved in the algorithm for semi-bandits and the proof of Theorem
2. The derivations are standard, and we only include them for completeness.

Recall that xi is the features of item i. Let Φ = (x1, · · · ,xN )T contains all N items’ features. Let φt = (xk)Tk∈At
be a

|At| × d matrix contains features of all items offered at round t, and Φ1:t = (φT1 , · · · ,φTt )T is a Ct × d matrix including
features of all the item offered from round 1 to round t, where Ct =

∑t
l=1 |Al|. Likewise, Y1:t = (Y T

1 , · · · ,Y T
t )T

includes observed rewards of all items offered till round t. Then, we define a N × Ct matrix Z1:t, such that the (j, a)-th
entry of Z1:t is I(i(a) = j), j ∈ [N ]. Here, i(a) is the item index of the ath observed reward in Y1:t. The row i of Z1:t is
defined as Z1:t,i. Finally, we define that nt(i) is the total number of pulls of arm i from round 1 till round t, include round
t.

Recall that our model for semi-bandits is defined as following:

γ ∼ N (µγ ,Σγ),

θi ∼ N (xTi γ, σ
2
1),∀i ∈ [N ],

Yi,t ∼ N (θi, σ
2
2),∀i ∈ At.

Posterior Distribution of θ GivenHt+1:

First, we compute the distribution of Y1:t given Φ1:t(Z1:t) and θ, the distribution of Y1:t given only Φ1:t, and the distri-
bution of θ. Note that, Φ1:t = ZT1:tΦ. Given θ, we can write

Y1:t = ZT1:tθ + ε, where ε ∼ N (0, σ2
2ICt

).

Similarly, given Φ and γ, we have

θ = Φγ + v, where v ∼ N (0, σ2
1IN ).

Further, given µγ , we have

γ = µγ + b, where b ∼ N (0,Σγ).

Combining above three equations, we have

Y1:t|Φ1:t,θ = ZT1:tθ + ε,

θ = Φµγ + Φb+ v,

Y1:t|Φ1:t = Φ1:tµγ + Φ1:tb+ZT1:tv + ε.
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Therefore, we have

Y1:t|Φ1:t,θ ∼ N (ZT1:tθ, σ
2
2ICt),

θ ∼ N (Φµγ ,ΦΣγΦT + σ2
1IN ),

Y1:t|Φ1:t ∼ N (Φ1:tµγ ,Φ1:tΣγΦT
1:t + σ2

1Z
T
1:tZ1:t + σ2

2ICt
).

LetB ∼ N (0,ΦΣγΦT + σ2
1IN ), we have

θ = Φµγ +B,

Y1:t|Φ1:t,B ∼ N (Φ1:tµγ +ZT1:tB, σ
2
2ICt

).

Then, we compute the posterior distribution ofB instead of θ.

P(B|Y1:t) ∝ P(Y1:t|B)P(B)

∝ exp
(
− 1

2
(Y1:t −Φ1:tµγ −ZT1:tB)T

1

σ2
2

(Y1:t −Φ1:tµγ −ZT1:tB)
)

× exp
(
− 1

2
BT (ΦΣγΦT + σ2

1IN )−1B
)

∝ exp
(
BTZ1:t

1

σ2
2

(Y1:t −Φ1:tµγ)

− 1

2
BT {(ΦΣγΦT + σ2

1IN )−1 +
1

σ2
2

Z1:tZ
T
1:t}︸ ︷︷ ︸

Σ̃−1

B
)

∼ N (Σ̃Z1:t
1

σ2
2

(Y1:t −Φ1:tµγ)︸ ︷︷ ︸
µ(B)

, Σ̃).

Using the Woodbury matrix identity [Rasmussen, 2003], we have

Σ̃ = ΦΣγΦT + σ2
1IN

− (ΦΣγΦT
1:t + σ2

1Z1:t)
(
σ2

2ICt + Φ1:tΣγΦT
1:t + σ2

1Z
T
1:tZ1:t

)−1

(ΦΣγΦT
1:t + σ2

1Z1:t)
T ,

and

µ(B) = Σ̃Z1:t
1

σ2
2

(Y1:t −Φ1:tµγ)

= (ΦΣγΦT
1:t + σ2

1Z1:t)
[
ICt
−
(
σ2

2ICt
+ Φ1:tΣγΦT

1:t + σ2
1Z

T
1:tZ1:t

)−1

(ΦΣγΦT
1:t + σ2

1Z1:t)
TZ1:t

] 1

σ2
2

(Y1:t −Φ1:tµγ)

= (ΦΣγΦT
1:t + σ2

1Z1:t)
(
σ2

2ICt
+ Φ1:tΣγΦT

1:t + σ2
1Z

T
1:tZ1:t

)−1

σ2
2ICt

1

σ2
2

(Y1:t −Φ1:tµγ)

= (ΦΣγΦT
1:t + σ2

1Z1:t)
(
σ2

2ICt
+ Φ1:tΣγΦT

1:t + σ2
1Z

T
1:tZ1:t

)−1

(Y1:t −Φ1:tµγ).

Since θ = Φµγ +B, we get the posterior distribution of θ.

θ|Ht+1 ∼ N (Φµγ + µ(B), Σ̃).

In particular, for each item i ∈ [N ], the posterior distribution of the item-specific parameter θi is as follows.

θi|Ht+1 ∼ N (µ̂t+1(i), σ̂2
t+1(i)),

µ̂t+1(i) = xTi µγ + (xiΣγΦT
1:t + σ2

1Z1:t,i)

× (σ2
2ICt + Φ1:tΣγΦT

1:t + σ2
1Z

T
1:tZ1:t)

−1(Y1:t −Φ1:tµγ),

σ̂2
t+1(i) = xTi Σγxi + σ2

1 − (xTi ΣγΦT
1:t + σ2

1Z1:t,i)

× (σ2
2ICt

+ Φ1:tΣγΦT
1:t + σ2

1Z
T
1:tZ1:t)

−1(xTi ΣγΦT
1:t + σ2

1Z1:t,i)
T .

(8)
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Alternatively, since

Σ̃−1 = (ΦΣγΦT + σ2
1IN )−1 +

1

σ2
2

Z1:tZ
T
1:t

= (ΦΣγΦT + σ2
1IN )−1 +

1

σ2
2

diag(nt(i))
N
i=1,

then,

σ̂−2
t+1(i) = σ̂−2

t (i) +
1

σ2
2

(nt(i)− nt−1(i)).

Posterior Distribution of γ GivenHt+1:

Similarly, we can write

Y1:t|Φ1:t, b ∼ N (Φ1:tµγ + Φ1:tb, σ
2
1Z

T
1:tZ1:t + σ2

2ICt
).

Then we compute the posterior distribution of b instead of γ.

P(b|Y1:t) ∝ P(Y1:t|b)P(b)

∝ exp
[
− 1

2
(Y1:t −Φ1:tµγ −Φ1:tb)

T (σ2
1Z

T
1:tZ1:t + σ2

2ICt
)−1

× (Y1:t −Φ1:tµγ −Φ1:tb)
]
exp
[1

2
bTΣ−1

γ b
]

∝ exp
[
− 1

2
bT (ΦT

1:t(σ
2
1Z

T
1:tZ1:t + σ2

2ICt
)−1Φ1:t + Σ−1

γ )︸ ︷︷ ︸
Σ−1
∗

b

+ bTΦT
1:t(σ

2
1Z

T
1:tZ1:t + σ2

2ICt
)−1(Y1:t −Φ1:tµγ)

]
∼ N (Σ∗Φ

T
1:t(σ

2
1Z

T
1:tZ1:t + σ2

2ICt
)−1(Y1:t −Φ1:tµγ)︸ ︷︷ ︸

µ∗

,Σ∗).

Using the Woodbury matrix identity [Rasmussen, 2003], we have

Σ∗ = Σγ −ΣγΦT
1:t(σ

2
1Z

T
1:tZ1:t + σ2

2ICt + Φ1:tΣγΦT
1:t)
−1Φ1:tΣγ ,

and

µ∗ = Σ∗Φ
T
1:t(σ

2
1Z

T
1:tZ1:t + σ2

2ICt)
−1(Y1:t −Φ1:tµγ)

=
(
Σγ −ΣγΦT

1:t(σ
2
1Z

T
1:tZ1:t + σ2

2ICt
+ Φ1:tΣγΦT

1:t)
−1Φ1:tΣγ

)
ΦT

1:t

× (σ2
1Z

T
1:tZ1:t + σ2

2ICt
)−1(Y1:t −Φ1:tµγ)

= ΣγΦT
1:t

[
I − (σ2

1Z
T
1:tZ1:t + σ2

2ICt
+ Φ1:tΣγΦT

1:t)
−1Φ1:tΣγΦT

1:t

]
× (σ2

1Z
T
1:tZ1:t + σ2

2ICt
)−1(Y1:t −Φ1:tµγ)

= ΣγΦT
1:t(σ

2
1Z

T
1:tZ1:t + σ2

2ICt + Φ1:tΣγΦT
1:t)
−1(σ2

1Z
T
1:tZ1:t + σ2

2ICt)

× (σ2
1Z

T
1:tZ1:t + σ2

2ICt
)−1(Y1:t −Φ1:tµγ)

= ΣγΦT
1:t(σ

2
1Z

T
1:tZ1:t + σ2

2ICt
+ Φ1:tΣγΦT

1:t)
−1(Y1:t −Φ1:tµγ).

To derive an explicit form of Σ∗, we focus on ΦT
1:t(σ

2
1Z

T
1:tZ1:t + σ2

2ICt
)−1Φ1:t + Σ−1

γ . Again, using the Woodbury
matrix identity, we have

(σ2
1Z

T
1:tZ1:t + σ2

2ICt
)−1 = σ−2

2 ICt
− σ−4

2 ZT1:t(σ
−2
1 IN + σ−2

2 Z1:tZ
T
1:t)
−1Z1:t

= σ−2
2 ICt − σ−4

2 ZT1:tdiag
( 1

σ−2
1 + σ−2

2 nt(i)

)N
i=1
Z1:t.
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and

Σ−1
∗ = Σ−1

γ + ΦT
1:t(σ

2
1Z

T
1:tZ1:t + σ2

2ICt
)−1Φ1:t

= Σ−1
γ + ΦT

1:t

(
σ−2

2 ICt
− σ−4

2 ZT1:tDZ1:t

)
Φ1:t

= Σ−1
γ + σ−2

2 ΦT
1:tΦ1:t − σ−4

2 ΦT
1:tZ

T
1:tDZ1:tΦ1:t

= Σ−1
γ +

N∑
i=1

nt(i)

σ2
2 + σ2

1nt(i)
xix

T
i ,

where D = diag
(

1
σ−2
1 +σ−2

2 nt(1)
, · · · , 1

σ−2
1 +σ−2

2 nt(N)

)
.

Therefore,

γ|Ht+1 ∼ N (µ̃t+1, Σ̃t+1),

µ̃t+1 = µγ + ΣγΦT
1:t(σ

2
1Z

T
1:tZ1:t + σ2

2ICt
+ Φ1:tΣγΦT

1:t)
−1(Y1:t −Φ1:tµγ),

Σ̃−1
t+1 = Σ−1

γ +

N∑
i=1

nt(i)

σ2
2 + σ2

1nt(i)
xix

T
i .

(9)

Posterior Distribution of θ GivenHt+1 and γ:

Similarly, to derive the posterior distribution θ givenHt+1 and γ, we first derive the posterior distribution of v givenHt+1

and γ. Here, we can write

Y1:t|Φ1:t,γ, v ∼ N (Φ1:tγ +ZT1:tv, σ
2
2ICt

).

Then, the posterior distribution of v givenHt+1 and γ is

P(v|Y1:t,γ)

∝ P(Y1:t|v,γ)P(v|γ)

∝ exp
(
− 1

2
σ−2

2 (Y1:t −Φ1:tγ −ZT1:tv)T (Y1:t −Φ1:tγ −ZT1:tv)
)
exp
(
− 1

2
σ−2

1 vT v
)

∝ exp
(
− 1

2
vT (σ−2

2 Z1:tZ
T
1:t + σ−2

1 IN )v + vTσ−2
2 Z1:t(Y1:t −Φ1:tγ)

)
∼ N ((σ−2

2 Z1:tZ
T
1:t + σ−2

1 IN )−1σ−2
2 Z1:t(Y1:t −Φ1:tγ)︸ ︷︷ ︸

µ∗∗

, (σ−2
2 Z1:tZ

T
1:t + σ−2

1 IN )−1).

Using the Woodbury matrix identity, we have

µ∗∗ = σ2
1Z1:t(σ

2
2ICt

+ σ2
1Z

T
1:tZ1:t)

−1(Y1:t −Φ1:tγ).

Furthermore,

σ−2
2 Z1:tZ

T
1:t + σ−2

1 IN = σ−2
2 diag(nt(1), · · · , nt(N)) + σ−2

1 IN

= diag(σ−2
1 + σ−2

2 nt(1), · · · , σ−2
1 + σ−2

2 nt(N)).

Since θ = Φγ + v, then

θ|γ,Ht+1 ∼ N (Φγ + µ∗∗, diag(σ−2
1 + σ−2

2 nt(1), · · · , σ−2
1 + σ−2

2 nt(N))−1).

Therefore, for each item i ∈ [N ],

θi|γ,Ht+1 ∼ N (µ̂t+1,γ(i), σ̂2
t+1,γ(i)),

µ̂t+1,γ(i) = xTi γ + σ2
1Z1:t,i(σ

2
2ICt

+ σ2
1Z

T
1:tZ1:t)

−1(Y1:t −Φ1:tγ),

σ̂−2
t+1,γ(i) = σ−2

1 + σ−2
2 nt(i).

(10)
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C Preliminary and Definitions

We first clarify common notations used in our proof. Suppose that there are N items, each with d features. We will
recommend a slate of at most K items each time. In total, there are T rounds of the interaction. Let us recall that
Ht = (Al,Yl(Al))

t−1
l=1 includes history up to round t and excluding round t, where H1 = ∅ and Yl(Al) = (Yk,l, k ∈

Al). Given the Ht, the conditional probability is given as Pt(·) = P(·|Ht), and the conditional expectation is given as
Et(·) = E(·|Ht). Similarly, we define the probability independent of all history as P(·) and the expectation independent
of all history as E(·). Additionally, denote the number of pulls of arm k for the first t rounds (including round t) as nt(k).
SupposeX ∈ Rd×d, let λ1(X) denote the maximum eigenvalue ofX , and λd(X) denote the minimum eigenvalue ofX .

We also need introduce some basic quantities from information theory. Let P and Q be two probability measures, and P is
absolutely continuous with respect toQ. Then the Kullback–Leibler divergence betweenP andQ is defined asD(P‖Q) =∫
log( dPdQ )dP, where dP

dQ is the Radon–Nikodym derivative of P with respect to Q. Then the mutual information between
two random variables X and Y is defined as the Kullback–Leibler divergence between the joint distribution of X and Y
and the product of the marginal distributions, I(X;Y ) = D(P(X,Y )‖P(X)P(Y )). The mutual information measures
the information gained about one random variable by observing the other random variable, which is always non-negative
and equals to 0 only if two random variables are independent to each other. For example, in the proof, we use I(γ;Ht)
to quantify the information gain of γ by observing the historic interactions between agents and users, Ht. We also need a
conditional mutual information term to quantify the difference between random variables X and Y conditioned on another
random variable Z, which is defined as I(X;Y |Z) = E[D(P(X,Y |Z)‖P(X|Z)P(Y |Z))] (the expectation is taken over
Z).

C.1 General History-Dependent Mutual Information

Conditional on historyHt, the mutual information between the parameter θ and the observations at round t, Yt, is defined
as follows:

It(θ;At,Yt) = Et
[
log
( Pt(θ;At,Yt)

Pt(θ)Pt(At,Yt)

)]
.

Similarly, the history dependent mutual information between the meta parameter γ and the observations at round t, Yt, is
defined as follows:

It(γ;At,Yt) = Et
[
log
( Pt(γ, At,Yt)

Pt(γ)Pt(At,Yt)

)]
.

Then, the history dependent mutual information between the parameters (θ,γ) and the observations at round t, Yt, is
defined as below:

It(θ,γ;At,Yt) = Et
[
log
( Pt(θ,γ, At,Yt)

Pt(θ,γ)Pt(At,Yt)

)]
.

Finally, the history dependent mutual information between the parameters θ and the observations at round t, Yt, given that
the meta parameter γ is known, is defined as below:

It(θ;At,Yt|γ) = Et
[
log
( Pt(θ, At,Yt|γ)

Pt(θ|γ)Pt(At,Yt|γ)

)]
.

By the definition of conditional mutual information, we have

I(·;At,Yt|Ht) = E(It(·;At,Yt)),
I(·;At,Yt|γ,Ht) = E(It(·;At,Yt|γ)).

C.2 History-Dependent/Independent Mutual Information and Entropy for Semi-Bandits

Conditional on history Ht, the mutual information between the parameter θk and the observations at round t, Yk,t, is
defined as follows:

It(θk; k, Yk,t) = Et
[
log
( Pt(θk; k, Yk,t)

Pt(θk)Pt(k, Yk,t)

)]
.
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Similarly, the history dependent mutual information between the meta parameter γ and the observations at round t, Yk,t,
is defined as follows:

It(γ; k, Yk,t) = Et
[
log
( Pt(γ, k, Yk,t)

Pt(γ)Pt(k, Yk,t)

)]
.

Then, the history dependent mutual information between the parameters (θk,γ) and the observations at round t, Yk,t, is
defined as below:

It(θk,γ; k, Yk,t) = Et
[
log
( Pt(θk,γ, k, Yk,t)

Pt(θk,γ)Pt(k, Yk,t)

)]
.

Finally, the history dependent mutual information between the parameters θk and the observations at round t, Yk,t, given
that the meta parameter γ is known, is defined as below:

It(θk; k, Yk,t|γ) = Et
[
log
( Pt(θk, k, Yk,t|γ)

Pt(θk|γ)Pt(k, Yk,t|γ)

)]
.

Based on the definition of entropy, we further defined the history dependent entropy terms as follows:

Conditional Entropy of θk : ht(θk) = −Et[log(Pt(θk))],

Conditional Entropy of γ : ht(γ) = −Et[log(Pt(γ))],

Conditional Entropy of θk given γ : ht(θk|γ) = −Et[log(Pt(θk|γ))].

Straightforwardly, by the definition of conditional mutual information, the history independent conditional mutual infor-
mation terms are defined as the expectation of the history dependent term.

I(·; k, Yk,t|Ht) = E(It(·; k, Yk,t)),
I(·; k, Yk,t|γ,Ht) = E(It(·; k, Yk,t|γ)).

Similarly, the history independent conditional entropy terms are defined as follows:

h(·|Ht) = E(ht(·)),
h(·|γ,Ht) = E(ht(·|γ)).

C.3 Others

In the following, we restate several properties of the mutual information and entropy and an inequality lemma that we
mainly used in our proof.

Decomposition of Mutual Information. Based on the definition of mutual information and entropy, we can decompose
the mutual information term as below.

It(·; k, Yk,t) = ht(·)− ht+1(·),
It(·; k, Yk,t|γ) = ht(·|γ)− ht+1(·|γ).

Chain Rule. I(X,Y ;Z) = I(Y ;Z) + I(X;Z|Y ).

Weyl’s inequality. For Hermitian matrixA,B ∈ Cd×d and i = 1, · · · , d,

λi(A+B) ≤ λi(A) + λ1(B).

D Main Proof

D.1 Proof for Theorem 1

Proof. First, following the property of mutual information and the chain rule of conditional mutual information, we can
derive that It(θ;At,Yt) ≤ It(θ,γ;At,Yt) = It(γ;At,Yt) + It(θ;At,Yt|γ). Taking the square root of it and applying
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the Cauchy-Schwartz inequality, we have that
√
It(γ;At,Yt) + It(θ;At,Yt|γ) ≤

√
It(γ;At,Yt) +

√
It(θ;At,Yt|γ).

After that, using the assumption that Γt ≤ Γ w.p.1 and collecting the terms, we finish the proof. Here, the regret bound
can be divided into two parts, where the first part is the cost of learning the meta parameter γ, the second part is the regret
for learning θ with known γ.

Mathematically,

BR(T ) = E[
∑
t

∆t]

≤ E[
∑
t

Γt
√
It(θ;At,Yt) + εt]

≤ E[
∑
t

Γt
√
It(θ,γ;At,Yt)] + E[

∑
t

εt]

= E[
∑
t

Γt
√
It(γ;At,Yt) + It(θ;At,Yt|γ)] + E[

∑
t

εt]

≤ E[Γt
∑
t

√
It(γ;At,Yt) +

√
It(θ;At,Yt|γ)] + E[

∑
t

εt]

≤ Γ
∑
t

E[
√
It(γ;At,Yt)]︸ ︷︷ ︸

Regret due to not knowing γ

+
∑
t

ΓE[
√
It(θ;At,Yt|γ)]+E[εt]︸ ︷︷ ︸

Regret suffered even with known γ

.

The first inequality directly uses the (4). The second inequality follows the property of mutual information that I(X;Z) ≤
I(X,Y ;Z). Here X = θ, Y = γ, and Z = (At,Yt). The third equality uses the chain rule of mutual information,
I(X,Y ;Z) = I(Y ;Z) + I(X;Z|Y ). The forth inequality follows the fact that

√
a+ b ≤

√
a+
√
b. The final inequality

follows that Γt ≤ Γ w.p.1.

D.2 Proof for Theorem 2

Roadmap: There are two main steps in the proof. First, we decompose the Bayes regret into two parts as (12). To derive
the Bayes regret decomposition, we first show that (11) holds for all t ∈ [T ] in Lemma 1, and then prove that (12) holds
under the condition (11) in Lemma 2. Second, we get the bound of each component in (12). In particular, the upper bounds
of Γt and εt are derived in Lemma 1, whereas the upper bounds of I(γ;HT+1) and I(θk;HT+1) are derived in Lemma
3. Gathering the bounds of all components, we get the regret bound in Theorem 2. Following are the details of the main
proof.

We start by stating several lemmas, which will be used in our main proof. Proofs of the lemmas are deferred to Appendix
E. Without loss of generality, we assume that all available items have bounded norm (Assumption 1) and all parameters
are bounded (Assumption 2).

Using the independence between rewards generated by different arms, we first decompose the per-round expected regret in
a similar form of (4), with suitably selected history-dependent constants Γt and εt. Based on the properties of the Gaussian
distributions and the fact that MTSS samples rewards from corresponding posterior distributions for every round, we bound
both Γt and εt by functions of δ

N ∈ (0, 1].

Lemma 1. For anyHt-adapted sequence of actions (Al)
t−1
l=1 , and any δ such that δ

N ∈ (0, 1], the expected regret in round
t conditioned onHt is bounded as

Et[∆t] ≤
∑
k∈[N ]

Pt(k ∈ At)Γk,t
√
It(θk; k, Yk,t) + εt, (11)

where

Γk,t = 4

√
σ̂2
t (k)

log(1 + σ̂2
t (k)/σ2

2)
log(

4N

δ
), εt =

∑
k∈[N ]

Pt(k ∈ At)
√

2δ
1

N
σ̂2
t (k).

Moreover, for each k, the following history-independent bound holds almost surely.

σ̂2
t (k) ≤ λ1(Σγ) + σ2

1 .
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Based on Lemma 1, we get that Γk,t = O(
√
log(Nδ )) and εt = O(K

√
δ
N ). Then, similar to Theorem 1, based on the

per-round conditional expected regret decomposition, we develop a decomposition of the total regret over T rounds of
interactions by summing the per-round regret over T rounds and then taking the expectation over historical interactions.

Lemma 2. Suppose that (11) holds for all t ∈ [T ], for some suitably chosen Γk,t and εt. Let Γk and Γ be some non-negative
constants such that Γk,t ≤ Γk ≤ Γ holds for all t ∈ [T ] and k ∈ [N ] almost surely. Then

BR(T ) ≤ ΓK
√
TI(γ;HT+1)︸ ︷︷ ︸

Regret due to not knowing γ

+ Γ
√
NTK

√√√√ 1

N

∑
k∈[N ]

I(θk;HT+1|γ) +
∑
t

E[εt]

︸ ︷︷ ︸
Regret suffered even with known γ

. (12)

Here, the first term is the cost for learning the meta parameter γ, and the second term is regret for unknown item-specific
parameter θk given known γ. We show the benefits of information sharing among items mainly by the first term, which
indicates that the extra regret due to unknown γ is much lower that the cost of learning θ with known γ. Using the
assumption that Γk,t ≤ Γk ≤ Γ w.p.1 and the bound of Γk,t and εt, we directly get the bound of Γ and E[εt]. Then,
our next lemma find the bound of the mutual information terms involved in (12), by using the properties of Gaussian
distribution and the properties of LMM.

Lemma 3. For any k ∈ [N ] and anyHT+1-adapted sequence of actions (Al)
T
l=1, we have

I(γ;HT+1) ≤ d

2
log
(

1 +
Nλ1(Σγ)

σ2
1 + σ2

2/T

)
, I(θk;HT+1|γ) ≤ 1

2
log(1 +

σ2
1

σ2
2

T ).

Now we are ready to combine these results and present our main proof of Theorem 2. Specifically, we get the bounds of
Γk,t and εt from Lemma 1 and the bounds of mutual information terms from Lemma 3, and then plug them into the regret
decomposition derived in Lemma 2.

Proof of Theorem 2. From Lemma 1, we showed that (11) holds for suitably chosen Γk,t and εt. Using the upper bounds
of σ̂t(k) in Lemma 1, since

√
x

log(1+ax) is an increasing function in x when a > 0, we can bound w.p.1 that

Γk,t ≤ 4

√
λ1(Σγ) + σ2

1

log(1 + (λ1(Σγ) + σ2
1)/σ2

2)
log(

4N

δ
) = Γ.

Then, we have the upper bound of Γk,t ≤ Γ for all t and k w.p.1. Similarly, we have

εt ≤
∑
k∈[N ]

Pt(k ∈ At)
√

2δ
1

N
(λ1(Σγ) + σ2

1).

From Lemma 2, for any δ > 0, let c1 = 4
√

λ1(Σγ)+σ2
1

log(1+(λ1(Σγ)+σ2
1)/σ2

2)
log( 4N

δ ), we have

BR(T ) ≤ΓK
√
TI(γ;HT+1) + Γ

√
NTK

√√√√ 1

N

∑
k∈[N ]

I(θk;HT+1|γ) +
∑
t

E(εt)

≤c1K
√
T

√
d

2
log
(

1 +
Nλ1(Σγ)

σ2
1 + σ2

2/T

)
+ c1
√
NTK

√
1

2
log(1 +

σ2
1

σ2
2

T )

+ TK

√
2δ

1

N
(λ1(Σγ) + σ2

1)

The inequality holds by first using the upper bound of mutual information in Lemma 3, and the upper bound of Γ and εt,
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then we derive the history-independent upper bound of
∑
t E(εt) as the following.

∑
t

E
[ ∑
k∈[N ]

Pt(k ∈ At)
√

2δ
1

N
(λ1(Σγ) + σ2

1)
]

=

√
2δ

1

N
(λ1(Σγ) + σ2

1)E
[∑

t

∑
k∈[N ]

Pt(k ∈ At)
]

≤ TK
√

2δ
1

N
(λ1(Σγ) + σ2

1).

Let δ = 1
T 2 ,

BR(T ) ≤c1K
√
T

√
d

2
log
(

1 +
Nλ1(Σγ)

σ2
1 + σ2

2/T

)
+ c1
√
NTK

√
1

2
log(1 +

σ2
1

σ2
2

T )

+K

√
2

N
(λ1(Σγ) + σ2

1)

=O(K
√
Tdlog(N)log(NT 2) +

√
NTKlog(T )log(NT 2) +K

√
1

N
)

=Õ(K
√
Td+

√
NTK).

E Proof of Lemmas

E.1 Proof for Lemma 1

Proof. First, using the probability matching property of Thompson Sampling and the independence between the rewards
generated by different arms, we decompose the per-round expected regret as

∑
k∈[N ] Pt(k ∈ At)Et[θ̂k,t − θk], where θ̂k,t

is the estimated mean reward for arm k given the history Ht. Then, following Lemma 5 in Lu and Van Roy [2019], we
define a confidence set Θt(k) for both θ̂k,t and θk with high probability for each arm k at round t, with suitably selected
non-negative random variables Γk,t, which leads to the bound of Et[θ̂k,t − θk] and concludes the proof of the first part of
the lemma directly. The εt is some non-negative random variables derived appropriately. For the second part of the lemma,
we bound the Γk,t and εt by finding the upper bound of σ̂2

t (k) for each arm k at round t conditional on the historyHt.

Now we are ready to prove Lemma 1 in detail, as follows.

Since
∑
k∈A∗ θk|Ht

d
=
∑
k∈At

θ̂k,t|Ht, we have

Et[∆t] = Et[
∑
k∈A∗

θk −
∑
k∈At

θk]

= Et[
∑
k∈At

θ̂k,t −
∑
k∈At

θk]

= Et[
∑
k∈[N ]

1(k ∈ At)(θ̂k,t − θk)]

=
∑
k∈[N ]

Pt(k ∈ At)Et[θ̂k,t − θk].

For each k ∈ [N ], we know that θ̂k,t|Ht ∼ N (µ̂t(k), σ̂2
t (k)). Let us consider the confidence set of θ̂k for each arm k:

Θt(k) = {θ : |θ − µ̂t(k)| ≤ Γk,t
2

√
It(θk; k, Yk,t)}.
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The history dependent conditional mutual entropy of θk given the historyHt, It(θk; k, Yk,t), can be computed as follows:

It(θk; k, Yk,t) = ht(θk)− ht+1(θk)

=
1

2
log(det(2πeσ̂2

t (k))− 1

2
log(det(2πeσ̂2

t+1(k))

=
1

2
log(σ̂2

t (k)σ̂−2
t+1(k))

=
1

2
log(σ̂2

t (k)[σ̂−2
t (k) + σ−2

2 ])

=
1

2
log
(

1 +
σ̂2
t (k)

σ2
2

)
.

For δ
N > 0, let

Γk,t = 4

√
σ̂2
t (k)

log(1 + σ̂2
t (k)/σ2

2)
log(

4N

δ
).

Then, following Lemma 5 in Lu and Van Roy [2019], for any k and any δ such that δ
N ∈ (0, 1], we have

Pt(θ̂k,t ∈ Θt(k)) ≥ 1− δ

2N
.

Now we continue the regret decomposition as

Et[θ̂k,t − θk] = Et[1(θ̂k,t, θk ∈ Θt(k))(θ̂k,t − θk)] + Et[1c(θ̂k,t, θk ∈ Θt(k))(θ̂k,t − θk)]

≤ Γk,t

√
It(θk; k, Yk,t) +

√
P(θ̂k,t or θk 6∈ Θt(k))Et[(θ̂k,t − θk)2]

≤ Γk,t

√
It(θk; k, Yk,t) +

√
δ

1

N
Et[(θ̂k,t − µ̂t(k))2 + (θk − µ̂t(k))2]

≤ Γk,t

√
It(θk; k, Yk,t) +

√
2δ

1

N
σ̂2
t (k).

The second inequality uses that P(θ̂k,t or θk 6∈ Θt(k)) ≤ P(θ̂k,t 6∈ Θt(k))+P(θk 6∈ Θt(k)) = δ
N . Therefore, we conclude

our proof of the first part.

Et[∆t] =
∑
k∈[N ]

Pt(k ∈ At)Et[θ̂k,t − θk]

≤
∑
k∈[N ]

Pt(k ∈ At)
(

Γk,t

√
It(θk; k, Yk,t) +

√
2δ

1

N
σ̂2
t (k)

)

=
∑
k∈[N ]

Pt(k ∈ At)Γk,t
√
It(θk; k, Yk,t) +

∑
k∈[N ]

Pt(k ∈ At)
√

2δ
1

N
σ̂2
t (k)

=
∑
k∈[N ]

Pt(k ∈ At)Γk,t
√
It(θk; k, Yk,t) + εt.

Bounding σ̂2
t (k). Recall that

σ̂2
t (k) = xTi Σγxi + σ2

1 − (xTi ΣγΦT
1:t + σ2

1Z1:t,i)

× (σ2
2IKt + Φ1:tΣγΦT

1:t + σ2
1Z

T
1:tZ1:t)

−1(xTi ΣγΦT
1:t + σ2

1Z1:t,i)
T

≤ xTk Σγxk + σ2
1

≤ maxk∈[N ]x
T
k Σγxk + σ2

1

≤ maxk∈[N ]x
T
k λ1(Σγ)xk + σ2

1

≤ λ1(Σγ) + σ2
1 .
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The first inequality results form that

(xTi ΣγΦT
1:t + σ2

1Z1:t,i)(σ
2
2IKt + Φ1:tΣγΦT

1:t + σ2
1Z

T
1:tZ1:t)

−1(xTi ΣγΦT
1:t + σ2

1Z1:t,i)
T

is positive semi-definite. By the assumption that ‖xi‖2 ≤ 1, we have the last inequality.

E.2 Proof for Lemma 2

Proof. First, suppose that (11) holds for all round t, we adapt Theorem 1 to bound the expected regret for each arm k.
Here, At = k, Yt = Yk,t, and Γt = Pt(k ∈ At)Γk,t. Summing the regret bound for each arm k, similar to Theorem 1,
we can decompose the Bayes regret bound into three parts, where the first part is the cost of learning γ, and the rest two
parts constitute the cost of learning θ = (θk)Nk=1. While the third part is bounded in Lemma 1, we bound the first two
parts separately. Particularly, by Lemma 4, the expectation of the history dependent mutual information terms in the first
two parts are bounded by the history independent mutual information, respectively. The proof is concluded by utilizing
inequalities and the assumption that Γk,t ≤ Γk ≤ Γ w.p.1.

Mathematically,

BR(T ) =E[R(T )] = E[
∑
t

∆t]

≤E
[∑

t

∑
k∈[N ]

Pt(k ∈ At)Γk,t
√
It(θk; k, Yk,t)

]
+ E

∑
t

εt

=
∑
k∈[N ]

E
[∑

t

Pt(k ∈ At)Γk,t
√
It(θk; k, Yk,t)

]
+ E

∑
t

εt

≤
∑
k∈[N ]

Γk
∑
t

E[Pt(k ∈ At)
√
It(γ; k, Yk,t)]︸ ︷︷ ︸

Regret due to not knowing γ

+
∑
k∈[N ]

Γk
∑
t

E[Pt(k ∈ At)
√
It(θk; k, Yk,t|γ)] +

∑
t

E[εt]︸ ︷︷ ︸
Regret suffered even with known γ

.

The first inequality directly uses the (11). Similar to the proof of Theorem 1, we have the second inequality with the
assumption that Γk,t ≤ Γk w.p.1.

We now derive the bounds of the first two terms separately. For the first term, we have∑
k∈[N ]

ΓkE
∑
t

Pt(k ∈ At)
√
It(γ; k, Yk,t)

≤ ΓE
∑
t

∑
k∈[N ]

Pt(k ∈ At)
√
It(γ; k, Yk,t)

≤ ΓKE
∑
t

√
It(γ;At,Yt)

≤ ΓKE

√
T
∑
t

It(γ;At,Yt)

≤ ΓK

√
T
∑
t

EIt(γ;At,Yt)

= ΓK
√
TI(γ;HT+1).

The first inequality follows that Γk ≤ Γ w.p.1. The second inequality holds by Lemma 4. The third inequality follows∑
i aibi ≤

√∑
i a

2
i

∑
i b

2
i with ai = 1 and bi =

√
It(γ;At, Yt). The forth inequality follows the Jensen’s Inequality for√

·. The final equality follows the chain rule of mutual information. Specifically, I(γ;HT+1) =
∑T
t=1 I(γ;At,Yt|Ht) =

E
∑T
t=1 It(γ;At,Yt).
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For the second term, we have

∑
k∈[N ]

ΓkE
∑
t

Pt(k ∈ At)
√
It(θk; k, Yk,t|γ)

=
∑
k∈[N ]

ΓkE
[∑

t

√
Pt(k ∈ At)

√
Pt(k ∈ At)It(θk; k, Yk,t|γ)

]
≤
∑
k∈[N ]

ΓkE
[√∑

t

Pt(k ∈ At)
∑
t

Pt(k ∈ At)It(θk; k, Yk,t|γ)
]

≤
∑
k∈[N ]

Γk

√
E
∑
t

Pt(k ∈ At)
√

E
∑
t

Pt(k ∈ At)It(θk; k, Yk,t|γ)

≤
∑
k∈[N ]

Γk
√
E[nT (k)]

√
I(θk;HT+1|γ)

≤
√
N
∑
k∈[N ]

E[nT (k)]

√√√√ 1

N

∑
k∈[N ]

Γ2
kI(θk;HT+1|γ)

≤
√
NTK

√√√√ 1

N

∑
k∈[N ]

Γ2I(θk;HT+1|γ)

= Γ
√
NTK

√√√√ 1

N

∑
k∈[N ]

I(θk;HT+1|γ).

The first inequality uses the Cauchy-Schwartz inequality, that
∑
i aibi ≤

√∑
i a

2
i

∑
i b

2
i . Here ai =

√
Pt(k ∈ At) and

bi =
√
Pt(k ∈ At)It(θk; k, Yk,t|γ). The second inequality follows that E(XY ) ≤

√
E(X2)E(Y 2) for X,Y > 0 w.p.1.

The third inequality uses the result of Lemma 4. The next inequality uses the Cauchy-Schwartz inequality again with
ai =

√
E[nT (k)] and bi =

√
I(θk;HT+1|γ). The last inequality is because of Γk ≤ Γ w.p.1.

E.3 Proof for Lemma 3

Proof. First, we derive the mutual information of the meta-parameter γ given the history as follows.

I(γ;HT+1) = h(γ)− h(γ|HT+1)

= h(γ)− E[hT+1(γ)]

=
1

2
log(det(2πeΣγ))− E[

1

2
log(det(2πeΣ̃T+1))]

=
1

2
E[log(det(Σγ)det(Σ̃−1

T+1))]

=
1

2
E[log(

d∏
i=1

λi(Σγ)λi(Σ̃
−1
T+1))]

≤ 1

2
E
[
log(

d∏
i=1

λi(Σγ)
( 1

λi(Σγ)
+

N

σ2
2/T + σ2

1

)]
≤ d

2
log
(

1 +
Nλ1(Σγ)

σ2
1 + σ2

2/T

)
.
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For the final inequality, we derive the history independent bound as follows.

λi(Σ̃
−1
T+1)) = λi(Σ

−1
γ +

N∑
i=1

nT (i)

σ2
2 + σ2

1nT (i)
xix

T
i )

≤ λi(Σ−1
γ ) + λ1(

N∑
i=1

nT (i)

σ2
2 + σ2

1nT (i)
xix

T
i )

≤ 1

λi(Σγ)
+ tr(

N∑
i=1

nT (i)

σ2
2 + σ2

1nT (i)
xix

T
i )

=
1

λi(Σγ)
+

N∑
i=1

nT (i)

σ2
2 + σ2

1nT (i)
tr(xTi xi)

≤ 1

λi(Σγ)
+

N∑
i=1

nT (i)

σ2
2 + σ2

1nT (i)

≤ 1

λi(Σγ)
+

N

σ2
2/T + σ2

1

.

The first inequality follows the Weyl’s inequality. The second equality first uses linearity of trace, and then uses the cyclic
property of trace. By assumption 1, we have tr(xTi xi) = ‖xi‖22 ≤ 1, and the second last inequality holds.

Now we derive the mutual information of θk for each item k ∈ [N ], given the history and the meta-parameter γ.

I(θk;HT+1|γ) = h(θk|γ)− h(θk|γ,HT+1)

= h(θk|γ)− E[hT+1(θk|γ)]

=
1

2
log(det(2πeσ2

1))− E[
1

2
log(det(2πeσ̂2

T+1,γ(k))]

=
1

2
E
[
log[σ2

1(σ−2
1 + σ−2

2 nT (k))]
]

=
1

2
P(nT (k) ≥ 1)E

[
log[1 +

σ2
1

σ2
2

nT (k)]
]

≤ 1

2
log(1 +

σ2
1

σ2
2

E[nT (k)])

≤ 1

2
log(1 +

σ2
1

σ2
2

T ).

The first inequality first uses the fact that P(nT (k) ≥ 1) ≤ 1, then follows the Jensen’s inequality of log.

E.4 Proof for Lemma 4

Lemma 4. For any k ∈ [N ] andHt-adapted sequence of actions (Al)
t−1
l=1 , the following statements hold

I(θk;HT+1|γ) = E
∑
t

Pt(k ∈ At)It(θk; k, Yk,t|γ),

K
√
It(γ;At,Yt) ≥

∑
k∈[N ]

Pt(k ∈ At)
√
It(γ; k, Yk,t).

Proof. First, we derive the conditional mutual information of θk given history and the meta-parameter γ. Note that, in the
rounds when arm k was not played, the mutual information gain for θk given γ is zero. In order words, It(θk; k, Yk,t|γ) =
0 if arm k was not played at round t. Then we used the chain rule of the mutual information (I(X;Y,Z) = I(X;Z) +
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I(X;Y |Z)) to finish the proof.

I(θk;HT+1|γ) =
∑
t

I(θk;At,Yt|γ,Ht)

= E
∑
t

It(θk;At,Yt|γ)

= E
∑
t

∑
a∈A

Pt(At = a)It(θk; a,Yt(a)|γ)

= E
∑
t

∑
a∈A

Pt(At = a)1(k ∈ a)It(θk; k, Yk,t|γ)

+ E
∑
t

∑
a∈A

Pt(At = a)It(θk; a¬k, Yt(a¬k)|γ, (k, Yk,t))

= E
∑
t

Pt(k ∈ At)It(θk; k, Yk,t|γ).

a¬k indicates that arm k is removed from action set a, and Yt(a) is the observed rewards of set a. The last
inequality follows that, given (θk; k, Yk,t|γ), history and γ, θk ⊥⊥ (a¬k, Yt(a¬k)), and E

∑
t

∑
a∈A Pt(At =

a)It(θk; a¬k, Yt(a¬k)|γ, (k, Yk,t)) = 0.

For the second part of the lemma, we use the fact that I(X;Y,Z) ≥ max(I(X;Z), I(X,Y )), which is intuitive, as more
observations will provide more mutual information gain. For a fixed At, we have∑

k∈[N ]

Pt(k ∈ At)
√
It(γ; k, Yk,t) ≤

∑
k∈[N ]

Pt(k ∈ At)
√
It(γ;At,Yt)

≤ K
√
It(γ;At,Yt).

The second inequality is attained by noticing that
∑
k∈[N ] P(k ∈ At) ≤ K, as at most K arms are played in each round.

Note that this inequality typically show the benefits of information sharing among arms. Intuitively, with no feature sharing,
we need to learn N independent meta parameters separately, and we gain mutual information for each arm-specific meta
parameter only when the corresponding arm is pulled. However, with feature sharing, we keep gaining information for γ,
which leads to a lower regret for learning meta parameter.

F Experiment details

F.1 Robustness to model misspecification

To facilitate scalablity, we assume that θi|xi,γ ∼ g(θi|xi,γ). When the model g is correctly specified, MTSS has shown
superior theoretical and numerical performance.

Intuitively, as this model is used to construct a prior for the feature-agnostic model, as long as the learned priors provide
reasonable information compared to the manually specified ones, this framework is still valuable. Indeed, related feature-
agnostic TS algorithms typically enjoy prior-independent or instance-independent sublinear regrets [Wang and Chen, 2018,
Perrault et al., 2020, Zhong et al., 2021].

In this section, we numerically study the impact of model misspecification on MTSS. When focusing on semi-bandits,
the results under other problems are similar and therefore omitted. Specifically, instead of generating data according to
θi ∼ N

(
xTi γ, σ

2
1

)
, we consider the data generation process θi ∼ N

(
λcos(cix

T
i γ)/ci + (1 − λ)xTi γ, σ

2
1

)
, where c is

a normalization constant such that cixTi γ ∈ [−π/2, π/2], and λ ∈ [0, 1] controls the degree of misspecification. When
λ = 0, we are considering the LMM; while when λ = 1, the features provide few information through such a linear form.

In results reported in Figure 3, we observe that MTSS is fairly robust to model misspecifications. Although when λ and
σ1 increase, the advantage over feature-agnostic decreases, MTSS still always outperforms. Notably, MTSS always yield
a nice sublinear regret unlike feature-determined TS, which further demonstrates the claimed robustness. We can even see
that, perhaps surprisingly, when λ = 1, MTSS still outperforms feature-agnostic TS. This is mainly due to that, with an
intercept term in xi, our algorithm can at least learn P(θi|γ) and enjoy the corresponding benefits. This is similar to the
observations in Kveton et al. [2021] and Basu et al. [2021].
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(a) λ = 0.25.

(b) λ = 0.5.

(c) λ = 0.75.

(d) λ = 1.0.

Figure 3: Robustness results. Shaded areas indicate the standard errors of the averages.

F.2 Model estimation with sparse features

Methodologically, the proposed framework is general and does not specify whether γ is sparse or not. The proposed
framework can address the sparsity issue with minor modifications as a special case of our problem setting. Specifically,
we can use the spike-and-slab prior for γ, which is popular in Bayesian sparse regression.

As an example, using combinatorial semi-bandits, we numerically demonstrated in Fig 4 that: when the number of non-
zero parameters is fixed (i.e., d = 4), the regret does not scale quickly with the total number of parameters (i.e., P) involved
in the model specification, with the approach proposed above. In contrast, the regret increases much quicker with the
non-sparse regression (with Gaussian prior).

F.3 Experiment results with cold-start problems

In real-world applications, the set of items is typically not fixed. New items will be frequently introduced, and old items
will be removed. Since there is no logged data for those newly-added items, such a challenge is typically referred to as the
cold-start problem.

In this section, we compare the performance of various methods with the existence of the cold-start problem. We use
semi-bandits as an example. Specifically, we set L = 1000, T = 1000,K = 5, p = 5, σ1 = σ2 = 1. We start with
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Figure 4: Experiment results for Sparse/Non-Sparse MTSS under Combinatorial Semi-Bandits.

Figure 5: Experiment results for semi-bandits with the cold start problem.

N = 1000 items. The main difference with the experiments in the main text is that, every 100 time points, we will remove
∆N existing items and introduce ∆N new items. We vary the value of ∆N from 0 (no cold-start problem) to 200.

The experiment results can be found in Figure 5. As expected, in such a changing environment, all algorithms suffer a
linear regret. The performance of feature-agnostic TS deteriorates significantly, as no information can be carried over to the
new items. The difference between the regret of oracle-TS and MTSS is fairly stable, which implies that MTSS has learned
the generalization function well and performs almost the same as oracle-TS eventually. MTSS consistently outperforms
feature-agnostic TS and feature-determined TS.

F.4 Additional experiment results under other hyper-parameter settings

In this section, we present more simulation results under other combinations of L,K, d. See Figure 6 for details. Overall,
the performance and conclusions are fairly consistent with the ones presented in the main text.

F.5 Additional experiment details

In this section, we first introduce how we evaluate the performance of the learning algorithms and the low-rank matrix
factorization, which is widely used to construct features. Then, details for each real experiment are discussed.

Evaluation of Learning Algorithm. While the synthetic experiments compare the learning algorithms by Bayes Regret
defined in the main context, here for the real experiment, we focus on the expected cumulative regret conditioned on the
true θ, which is derived carefully from the dataset. Mathematically,

R(T,θ) =

T∑
t=1

[
max
a∈A

r(a,θ)− r(At,θ)
]
.

Low-rank Matrix Factorization. Motivated by the collaborative filtering approach in recommender systems, low-rank
factorization is widely used to construct the vectors of features. Suppose A ∈ RU×N includes the U observations of N
items. Let A ≈ UΣV T be a rank-p truncated SVD of A, where U ∈ RU×p, Σ ∈ Rp×p, and V ∈ RN×p. Then the
features of items are the rows of V Σ.
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F.5.1 Cascading Bandits

Here, we use the data related to business and reviews from the Yelp Dataset Challenge, the usage license of which is
described in Asghar [2016]. For our experiments, we extract N = 3000 restaurants with the most number of reviews and
U = 20K users writing the most number of reviews. Similar to Zong et al. [2016], we aim to maximize the probability
of the user being attracted to at least one restaurant recommended. Following the experiment in Zong et al. [2016], we
convert the review data to an observation matrix W ∈ {0, 1}U×N , where each entry indicates if the user is attracted by the
restaurant, by assuming that a restaurant will attract a user if the user reviewed the restaurants at least once before. After
that, we split W into two distinct parts Wtrain ∈ {0, 1}

U
2 ×N and Wtest ∈ {0, 1}

U
2 ×N . While the Wtrain is used to extract

the features of each restaurant, the Wtest is used to evaluate the learning algorithms. Specifically, we applied the low-rank
matrix factorization to Wtrain to derive the features of restaurants with p = 10. The final features are standardized in the
experiment, and an intercept is considered, which leads to d = 11. Finally, the true parameter θ is computed by taking
the sample average of Wtest, and the true parameter φ is derived appropriately from the Wtest by analyzing its posterior
distribution. For each round, the observation is randomly selected from Wtest.

F.5.2 Semi-Bandits

Following the experiment setup in Wen et al. [2015], we use the Adult dataset, whose usage license is described in Dua and
Graff [2017]. The Adult dataset includes features of 33K people. In our experiment, we focus on only N = 3000 people
randomly selected. Our objective is to identify a set of K = 20 users among the 3000 people, including ten females and
ten males, that are most likely to accept an advertisement. We considered d = 4 features including age, gender, whether
the person works more than 40 hrs per week, and the length of education in years. Finally, we compute the true parameters
from the dataset appropriately. First, we assume that the true expected acceptance probability (i.e., θ) depends on the user’s
income class. Specifically,

θi =

{
.15, income > 50K.
.05, otherwise.

Then, the true parameter σ1 is learned by investigating the corresponding posterior distribution.

F.5.3 MNL Bandits

Following the experimental setup in Oh and Iyengar [2019], we use the dataset “MovieLens 1M” for our experiment, the
usage license of which is described in Harper and Konstan [2015]. The dataset includes 1 million ratings of 6K movies
from U = 4K users. In our experiment, we use N = 1000 movies with the most ratings. While the range of ratings is
from 1 to 5, we divide the ratings by 5 and consider it the utility of a movie to a user. Let the rating matrix be W ∈ RU×N .
We split W into equal-size training dataset Wtrain ∈ R

U
2 ×N , and test dataset Wtest ∈ R

U
2 ×N . Since most ratings are

not complete, as most users do not review all the selected movies, we first implement the low-rank matrix completion
Keshavan et al. [2009] to fill the missing ratings in Wtrain. Similar to Oh and Iyengar [2019], we then apply the low-rank
matrix factorization to the imputed Wtrain to construct the feature vector of each movie with p = 5. Then, we use the
L2 normalization technique to normalize the features. Also, we consider including an intercept in the model. Therefore,
d = 6 in the experiment. After that, we get the true mean utility vi of each movie as the sample average of Wtest, and the
true parameter θ is obtained directly. Finally, we learn the true parameter φ from Wtest in the same way as before.

F.5.4 Real experiments with larger datasets

For a fair comparison, we chose the sample size N within the ranges used in related feature-determined papers [Oh and
Iyengar, 2019, Wen et al., 2015, Zong et al., 2016], using the same datasets they used. However, we believe a more
extensive dataset will help support the performance of the proposed methods even more.

Considering the limitation of large open datasets, in the following, we try our best to repeat the experiments with a larger
size for all three problem instances, using the same set of datasets and similar pre-processing steps. Specifically, for the
Yelp dataset, we increase N from 3000 to 8000 candidate restaurants; for the Adult dataset, we increase N from 3000
to 8000 individuals; for the MovieLens dataset, we increase N from 1000 to 2818 movies. The results showing in Fig 7
are similar to what we presented in the main context, with the proposed method consistently outperforming the baseline
approaches.
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(a) Combinatorial semi-bandits:L = 1000,K = 5, p = 10

(b) Combinatorial semi-bandits:L = 3000,K = 5, p = 10

(c) Cascading bandits:L = 250,K = 5, p = 3

(d) Cascading bandits:L = 1000,K = 5, p = 10

(e) MNL bandits: L = 1000,K = 3, p = 5

(f) MNL bandits: L = 1000,K = 10, p = 3

Figure 6: Simulation results under additional settings.
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Figure 7: Experiment results for larger datasets.
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