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Abstract

Data valuation has wide use cases in machine
learning, including improving data quality and
creating economic incentives for data sharing.
This paper studies the robustness of data valuation
to noisy model performance scores. Particularly,
we find that the inherent randomness of the widely
used stochastic gradient descent can cause exist-
ing data value notions (e.g., the Shapley value and
the Leave-one-out error) to produce inconsistent
data value rankings across different runs. To ad-
dress this challenge, we introduce the concept of
safety margin, which measures the robustness of
a data value notion. We show that the Banzhaf
value, a famous value notion that originated from
cooperative game theory literature, achieves the
largest safety margin among all semivalues (a
class of value notions that satisfy crucial prop-
erties entailed by ML applications and include the
famous Shapley value and Leave-one-out error).
We propose an algorithm to efficiently estimate
the Banzhaf value based on the Maximum Sample
Reuse (MSR) principle. Our evaluation demon-
strates that the Banzhaf value outperforms the
existing semivalue-based data value notions on
several ML tasks such as learning with weighted
samples and noisy label detection. Overall, our
study suggests that when the underlying ML algo-
rithm is stochastic, the Banzhaf value is a promis-
ing alternative to the other semivalue-based data
value schemes given its computational advantage
and ability to robustly differentiate data quality.

1 INTRODUCTION

Data valuation, i.e., quantifying the usefulness of a data
source, is an essential component in developing machine
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learning (ML) applications. For instance, evaluating the
worth of data plays a vital role in cleaning bad data (Tang
et al., 2021; Karlaš et al., 2022) and understanding the
model’s test-time behavior (Koh and Liang, 2017). Further-
more, determining the value of data is crucial in creating
incentives for data sharing and in implementing policies
regarding the monetization of personal data (Ghorbani and
Zou, 2019; Zhu et al., 2019).

Due to the great potential in real applications, there has been
a surge of research efforts on developing data value notions
for supervised ML (Jia et al., 2019b; Ghorbani and Zou,
2019; Yan and Procaccia, 2020; Ghorbani et al., 2021; Kwon
and Zou, 2021; Yoon et al., 2020). In the ML context, a data
point’s value depends on other data points used in model
training. For instance, a data point’s value will decrease
if we add extra data points that are similar to the existing
one into the training set. To accommodate this interplay,
current data valuation techniques typically start by defining
the “utility” of a set of data points, and then measure the
value of an individual data point based on the change of
utility when the point is added to an existing dataset. For
ML tasks, the utility of a dataset is naturally chosen to be the
performance score (e.g., test accuracy) of a model trained
on the dataset.

However, the utility scores can be noisy and unreliable.
Stochastic training methods such as stochastic gradient de-
scent (SGD) are widely adopted in ML, especially for deep
learning. The models trained with stochastic methods are in-
herently random, and so are their performance scores. This,
in turn, makes the data values calculated from the perfor-
mance scores noisy. Despite being ignored in past research,
we find that the noise in a typical learning process is actually
substantial enough to make different runs of the same data
valuation algorithm produce inconsistent value rankings.
Such inconsistency can pose challenges for building reliable
applications based on the data value scores and rankings,
e.g., low-quality data identification.

In this paper, we initiate the study of the robustness of data
valuation to noisy model performance scores. Our technical
contributions are listed as follows.

Theoretical framework for quantifying robustness. We
start by formalizing what it means mathematically for a
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data value notion to be robust. We introduce the concept of
safety margin, which is the magnitude of the largest pertur-
bation of model performance scores that can be tolerated
so that the value order of every pair of data points remains
unchanged. We consider the two most popular data valu-
ation schemes—the Shapley value and the Leave-one-out
(LOO) error and show that the safety margin of the Shapley
value is greater than that of the LOO error. Our results shed
light on a common observation in the past works (Ghorbani
and Zou, 2019; Jia et al., 2019c) that the Shapley value
often outperforms the LOO error in identifying low-quality
training data.

Banzhaf value: a robust data value notion. Surprisingly,
we found that the Banzhaf value (Banzhaf III, 1964), a
classic value notion from cooperative game theory that was
proposed more than half a century ago, achieves the largest
safety margin among all semivalues — a collection of value
notions (including LOO error and the Shapley value) that
satisfy essential properties of a proper data value notion in
the ML context (Kwon and Zou, 2021). Particularly, the
safety margin of the Banzhaf value is exponentially larger
than that of the Shapley value and the LOO error.

Efficient Banzhaf value estimation algorithm. Similar to
the Shapley value, the Banzhaf value is also costly in com-
putation. We present an efficient estimation algorithm based
on the Maximum Sample Reuse (MSR) principle, which
can achieve ℓ∞ and ℓ2 error guarantees for approximating
the Banzhaf value with logarithmic and nearly linear sample
complexity, respectively. We show that the existence of an
efficient MSR estimator is unique for the Banzhaf value
among all existing semivalue-based data value notions. We
derive a lower bound of sample complexity for the Banzhaf
value estimation, and show that our MSR estimator’s sample
complexity is close to this lower bound. Additionally, we
show that the MSR estimator is robust against the noise in
performance scores.

Empirical evaluations. Our evaluation demonstrates the
ability of the Banzhaf value in preserving value rankings
given noisy model performance scores. We also empirically
validate the sample efficiency of the MSR estimator for the
Banzhaf value. We show that the Banzhaf value outperforms
the state-of-the-art semivalue-based data value notions (in-
cluding the Shapley value, the LOO error, and the recently
proposed Beta Shapley (Kwon and Zou, 2021)) on several
ML tasks including bad data detection and data reweighting,
when the underlying learning algorithm is SGD.

We call the suite of our data value notion and the associ-
ated estimation algorithm as the Data Banzhaf framework.
Overall, our work suggests that Data Banzhaf is a promis-
ing alternative to the existing semivalue-based data value
notions given its computational advantage and the ability to
robustly distinguish data quality in the presence of learning
stochasticity.

2 BACKGROUND: FROM LOO TO
SHAPLEY TO SEMIVALUE

In this section, we formalize the data valuation problem
for ML. Then, we review the concept of LOO and Shapley
value—the most popular data value notions in the existing
literature, as well as the framework of semivalues, which
are recently introduced as a natural relaxation of Shapley
value in the ML context.

Data Valuation Problem Set-up. Let N = {1, . . . , n} de-
notes a training set of size n. The objective of data valuation
is to assign a score to each training data point in a way that
reflects their contribution to model training. We will refer to
these scores as data values. To analyze a point’s “contribu-
tion”, we define a utility function U : 2N → R, which maps
any subset of the training set to a score indicating the use-
fulness of the subset. 2N represents the power set of N , i.e.,
the collection of all subsets of N , including the empty set
and N itself. For classification tasks, a common choice for
U is the validation accuracy of a model trained on the input
subset. Formally, we have U(S) = acc(A(S)), where A
is a learning algorithm that takes a dataset S as input and
returns a model, and acc is a metric function to evaluate
the performance of a given model, e.g., the accuracy of a
model on a hold-out test set. Without loss of generality, we
assume throughout the paper that U(S) ∈ [0, 1]. For nota-
tional simplicity, we sometimes denote S∪ i := S∪{i} and
S \ i := S \ {i} for singleton {i}, where i ∈ N represents
a single data point.

We denote the data value of data point i ∈ N computed
from U as ϕ(i;U). We review the famous data value notions
in the following.

LOO Error. A simple data value measure is leave-one-
out (LOO) error, which calculates the change of model
performance when the data point i is excluded from the
training set N :

ϕloo(i;U) := U(N)− U(N \ i) (1)

However, many empirical studies (Ghorbani and Zou, 2019;
Jia et al., 2019c) suggest that it underperforms other alterna-
tives in differentiating data quality.

Shapley Value. The Shapley value is arguably the most
widely studied scheme for data valuation. At a high level, it
appraises each point based on the (weighted) average utility
change caused by adding the point into different subsets.
The Shapley value of a data point i is defined as

ϕshap (i;U)

:=
1

n

n∑
k=1

(
n− 1

k − 1

)−1 ∑
S⊆N\{i},|S|=k−1

[U(S ∪ i)− U(S)]

The popularity of the Shapley value is attributable to the
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fact that it is the unique data value notion satisfying the
following four axioms (Shapley, 1953):

• Dummy player: if U (S ∪ i) = U(S) + c for all S ⊆
N \ i and some c ∈ R, then ϕ (i;U) = c.
• Symmetry: if U(S∪i) = U(S∪j) for all S ⊆ N \{i, j},

then ϕ(i;U) = ϕ(j;U).
• Linearity: For utility functions U1, U2 and any α1, α2 ∈
R, ϕ (i;α1U1 + α2U2) = α1ϕ (i;U1)+ α2ϕ (i;U2).
• Efficiency: for every U,

∑
i∈N ϕ(i;U) = U(N).

The difference U(S∪i)−U(S) is often termed the marginal
contribution of data point i to subset S ⊆ N \ i. We
refer the readers to (Ghorbani and Zou, 2019; Jia et al.,
2019b) for a detailed discussion about the interpretation
of dummy player, symmetry, and linearity axioms in ML.
The efficiency axiom, however, receives more controversy
than the other three. The efficiency axiom requires the
total sum of data values to be equal to the utility of full
dataset U(N). Recent work (Kwon and Zou, 2021) argues
that this axiom is considered not essential in ML. Firstly,
the choice of utility function in the ML context is often
not directly related to monetary value so it is unnecessary
to ensure the sum of data values matches the total utility.
Moreover, many applications of data valuation, such as bad
data detection, are performed based only on the ranking of
data values. For instance, multiplying the Shapley value by
a positive constant does not affect the ranking of the data
values. Hence, there are many data values that do not satisfy
the efficiency axiom, but can still be used for differentiating
data quality, just like the Shapley value.

Semivalue. The class of data values that satisfy all the
Shapley axioms except efficiency is called semivalues. It
was originally studied in the field of economics and recently
proposed to tackle the data valuation problem (Kwon and
Zou, 2021). Unlike the Shapley value, semivalues are not
unique. The following theorem by the seminal work of
(Dubey et al., 1981) shows that every semivalue of a player i
(in our case the player is a data point) can be expressed as the
weighted average of marginal contributions U(S∪i)−U(S)
across different subsets S ⊆ N \ i.
Theorem 2.1 (Representation of Semivalue (Dubey et al.,
1981)). A value function ϕsemi is a semivalue, if and only
if, there exists a weight function w : [n] → R such that∑n

k=1

(
n−1
k−1

)
w(k) = n and the value function ϕsemi can be

expressed as follows:

ϕsemi (i;U,w) :=

n∑
k=1

w(k)

n

∑
S⊆N\{i},
|S|=k−1

[U(S ∪ i)− U(S)] (2)

Semivalues subsume both the Shapley value and the LOO
error with wshap(k) =

(
n−1
k−1

)−1
and wloo(k) = n1[k = n],

respectively. Despite the theoretical attraction, the question
remains which one of the many semivalues we should adopt.

3 UTILITY FUNCTIONS CAN BE
STOCHASTIC

In the existing literature, the utility of a dataset U(S) is
often defined to be acc(A(S)), i.e., the performance of a
model A(S) trained on a dataset S. However, many learn-
ing algorithms A such as SGD contain randomness. Since
the loss function for training neural networks is non-convex,
the trained model depends on the randomness of the training
process, e.g., random mini-batch selection. Thus, U(S) de-
fined in this way inherently becomes a randomized function.
As noted in many studies on the reproducibility of neural net-
work training, the learning stochasticity can introduce large
variations into the predictive performance of deep learning
models (Summers and Dinneen, 2021; Zhuang et al., 2022;
Raste et al., 2022). On the other hand, the existing data
value notions compute the value of data points based on
the performance scores of models trained on different data
subsets and therefore will also be noisy given stochastic
learning algorithms. In this section, we delve into the in-
fluence of learning stochasticity on data valuation results,
and show that the run-to-run variability of the resulting data
value rankings is large for the existing data value notions.

Instability of data value rankings. Semivalues are calcu-
lated by taking a weighted average of marginal contribu-
tions. When the weights are not properly chosen, the noisy
estimate of marginal contributions can cause significant in-
stability in ranking the data values. Figure 1 (a)-(b) illustrate
the distribution of the estimates of two popular data value
notions—LOO error and the Shapley value—across 5 runs
with different training random seeds. The utility function
is the accuracy of a neural network trained via SGD on a
held-out dataset; we show the box-plot of the estimates’
distribution for 20 CIFAR10 images, with 5 of them being
mislabeled (marked in red). The experiment settings are
detailed in Appendix D.1. As we can see, the variance of
the data value estimates caused by learning stochasticity
significantly outweighs their magnitude for both LOO and
the Shapley value. As a result, the rankings of data values
across different runs are largely inconsistent (the average
Spearman coefficient of individual points’ values across dif-
ferent runs for LOO is≈ 0.001 and for Shapley is≈ 0.038).
Leveraging the rankings of such data values to differentiate
data quality is unreliable, as we can see that the 5 mislabeled
images’ value estimates distribution has a large overlap with
the value estimates of the clean images. Further investiga-
tion of these data value notion’s efficacy in identifying data
quality is provided in the Evaluation section.

When interpreting a learning algorithm, one may be inter-
ested in finding a small set of data points with the most pos-
itive/negative influences on model performance. In Figure
2, we show how many data points are consistently ranked in
the top or bottom-k% across all the runs. Both LOO and the
Shapley value has only < 10% data points that are consis-
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Figure 1: Box-plot of the estimates of (a) LOO, (b) Shapley Value, and (c) Banzhaf value of 20 randomly selected CIFAR10
images, with 5 mislabeled images. The 5 mislabeled images are shown in red and clean images are shown in green. The
variance is only due to the stochasticity in utility evaluation. ‘SP’ means the average Spearman index across different runs.

Figure 2: The percentage of the CIFAR10 data points that
are ranked in (a) top-k% and (b) bottom-k% across all runs,
among the top/bottom-k% data points.

tently ranked high/low for any k ≤ 50%. This means that
the high/low-influence data points selected by these data
value notions have a large run-to-run variation and cannot
form a reliable explanation for model behaviors.

Redefine U as expected performance. To make the data
value notions independent of the learning stochasticity, a nat-
ural choice is to redefine U to be U(S) := EA[acc(A(S))],
i.e., the expected performance of the trained model. How-
ever, accurately estimating U(S) under this new definition
requires running A multiple times on the same S, and cal-
culating the average utility of S. Obviously, this simple
approach incurs a large extra computational cost. On the
other hand, if we estimate U(S) with only one or few calls
of A, the estimate of U(S) will be very noisy. Hence, we
pose the question: how to find a more robust semivalue
against perturbation in model performance scores?

4 DATA BANZHAF: A ROBUST DATA
VALUE NOTION

To address the question posed above, this section starts
by formalizing the notion of robustness in data valuation.
Then, we show that the most robust semivalue, surprisingly,
coincides with the Banzhaf value (Banzhaf III, 1964)—a
classic solution concept in cooperative game theory.

4.1 Ranking Stability as a Robustness Notion

In many applications of data valuation such as data selec-
tion, it is the order of data values that matter (Kwon and
Zou, 2021). For instance, to filter out low-quality data,
one will first rank the data points based on their values and
then throws the points with the lowest values. When the
utility functions are perturbed by noise, we would like the
rankings of the data values to remain stable. Recall that
a semivalue is defined by a weight function w such that∑n

k=1

(
n−1
k−1

)
w(k) = n. The (scaled) difference between

the semivalues of two data points i and j can be computed
from (2):

Di,j(U ;w) := n(ϕ(i;w)− ϕ(j;w))

=

n−1∑
k=1

(w(k) + w(k + 1))

(
n− 2

k − 1

)
∆

(k)
i,j (U),

where ∆
(k)
i,j (U) :=

(
n−2
k−1

)−1∑
|S|=k−1,S⊆N\{i,j}[U(S ∪

i)− U(S ∪ j)], representing the average distinguishability
between i and j on size-k sets using the noiseless utility
function U . Let Û denote a noisy estimate of U . We can
see that Û and U produce different data value orders for
i, j if and only if Di,j(U ;w)Di,j(Û ;w) ≤ 0.1 An initial at-
tempt to define robustness is in terms of the smallest amount
of perturbation magnitude

∥∥∥Û − U
∥∥∥ such that U and Û

produce different data rankings.2 However, such a defini-
tion is problematic due to its dependency on the original
utility function U . If the noiseless U itself cannot suffi-
ciently differentiate between i and j (i.e., ∆(k)

i,j (U) ≃ 0 for
k = 1, . . . , n − 1), then Di,j(U ;w) will be (nearly) zero
and infinitesimal perturbation can switch the ranking of ϕ(i)
and ϕ(j). To reasonably define the robustness of semivalues,
we solely consider the collection of utility functions that can
sufficiently “distinguish” between i and j.

1We note that when the two data points receive the same value,
we usually break tie randomly, thus we use ≤ 0 instead of < 0.

2Here, we view the utility function U as a size-2n vector where
each entry corresponds to U(S) of a subset S ⊆ N .
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Figure 3: Illustration of Safety Margin. Intuitively, it is the
smallest distance from the space of distinguishable utility
function to the space of functions that will reverse the value
rank between at least one pair of data points i and j. The
figure shows the distance between the space of distinguish-
able utility function and the space of utility function where
ϕbanz(i;U) < ϕbanz(j;U) (i.e., the order of i, j being re-
versed) is the largest among the three value notions.

Definition 4.1 (Distinguishability). We say a data point pair
(i, j) is τ -distinguishable by U if and only if ∆(k)

i,j (U) ≥ τ
for all k ∈ {1, . . . , n− 1}.

Let U (τ)
i,j denote the collection of utility functions U that

can τ -distinguish a pair (i, j). With the definition of distin-
guishability, we characterize the robustness of a semivalue
by deriving its “safety margin”, which is defined as the min-
imum amount of perturbation

∥∥∥Û − U
∥∥∥ needed to reverse

the ranking of at least one pair of data points (i, j), for at
least one utility function U from U (τ)

i,j .

Definition 4.2 (Safety margin). Given τ > 0, we define the
safety margin of a semivalue for a data point pair (i, j) as

Safei,j(τ ;w) := min
U∈U(τ)

i,j

min
Û∈{Û :Di,j(U ;w)Di,j(Û ;w)≤0}

∥∥∥Û − U
∥∥∥

and we define the safety margin of a semivalue as

Safe(τ ;w) := min
i,j∈N,i ̸=j

Safei,j(τ ;w)

In other words, the safety margin captures the largest noise
that can be tolerated by a semivalue without altering the
ranking of any pair of data points that are distinguishable
by the original utility function. The geometric intuition of
safety margin is illustrated in Figure 3.
Remark 4.3. The definition of the safety margin is noise-
structure-agnostic in the sense that it does not depend

on the actual noise distribution induced by a specific
stochastic training algorithm. While one might be tempted
to have a noise-dependent robustness definition, we argue
that the safety margin is advantageous from the following
aspects: (1) The analysis of the utility noise distribution
caused by stochastic training is difficult even for very
simple settings. In Appendix B.2.1, we consider a simple
(if not the simplest) setting: 1-dimensional linear regres-
sion trained by full-batch gradient descent with Gaussian
random initialization. We show that, even for such a set-
ting, there are significant technical challenges in making
any analytical assertion on the noise distribution. (2) It
might be computationally infeasible to estimate the per-
turbation distribution of U(S), as there are exponentially
many S that need to be considered. (3) One may not have
prior knowledge about the dataset and source of noise;
in that case, a worst-case robustness notion is preferred.
In practice, the datasets may not be known in advance for
privacy consideration (Agahari et al., 2022). Furthermore,
the performance scores may also be perturbed due to other
factors such as hardware faults, software bugs, or even ad-
versarial attacks. Given the diversity and unknownness of
utility perturbations in practical scenarios, it is preferable
to define the robustness in terms of the worst-case pertur-
bation (i.e., Kerckhoffs’s principle). Such definitions are
common in machine learning. For instance, robust learning
against adversarial examples is aimed at being resilient to
the worst-case noise (Madry et al., 2017) within a norm ball;
differential privacy (Dwork et al., 2006) protects individual
data record’s information from arbitrary attackers.

A full discussion for important considerations in Definition
4.2 can be found in Appendix B.

Safety Margin for LOO and Shapley Value. In order to
demonstrate the usefulness of this robustness notion, we
derive the LOO and Shapley value’s safety margin.

Theorem 4.4. For any τ > 0, Leave-one-out error
(wloo(k) = n1[k = n]) achieves Safe(τ ;wloo) =

τ , and Shapley value (wshap(k) =
(
n−1
k−1

)−1
) achieves

Safe(τ ;wshap) = τ n−1√∑n−1
k=1 (

n−2
k−1)

−1
.

One can easily see that Safe(τ ;wloo) <
Safe(τ ;wshap) < τ(n − 1). The fact that
Safe(τ ;wloo) < Safe(τ ;wshap) sheds light on the
phenomenon we observe in Figure 1 and 2 where the
Shapley value is slightly more stable than LOO. It provides
an explanation for a widely observed but puzzling phe-
nomenon observed in several prior works (Jia et al., 2019c;
Wang et al., 2020) that the Shapley value outperforms
the LOO error in a range of data selection tasks in the
stochastic learning setting. We note that the Shapley
value is also shown to be better than LOO in deterministic
learning (Ghorbani and Zou, 2019; Jia et al., 2019b), where
theoretical underpinning is an open question.
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4.2 Banzhaf Value Achieves the Largest Safety Margin

Surprisingly, the semivalue that achieves the largest safety
margin coincides with the Banzhaf value, another famous
value notion that averages the marginal contribution across
all subsets. We first recall the definition of the Banzhaf
value.

Definition 4.5 (Banzhaf III (1964)). The Banzhaf value for
data point i is defined as

ϕbanz(i;U,N) :=
1

2n−1

∑
S⊆N\i

[U(S ∪ i)− U(S)] (3)

The Banzhaf value is a semivalue, as we can recover its
definition (3) from the general expression of semivalues (2)
by setting the constant weight function w(k) = n

2n−1 for all
k ∈ {1, . . . , n}. We then show our main result.

Theorem 4.6. For any τ > 0, Banzhaf value (w(k) =
n

2n−1 ) achieves the largest safety margin Safe(τ ;w) =

τ2n/2−1 among all semivalues.

Intuition. The superior robustness of the Banzhaf value
can be explained intuitively as follows: Semivalues assign
different weights to the marginal contribution against dif-
ferent data subsets according to the weight function w. To
construct a perturbation of the utility function that maxi-
mizes the influence on the corresponding semivalue, one
needs to perturb the utility of the subsets that are assigned
with higher weights. Hence, the best robustification strategy
is to assign uniform weights to all subsets, which leads to
the Banzhaf value. On the other hand, semivalues that as-
sign heterogeneous weights to different subsets, such as the
Shapley value and LOO error, suffer a lower safety margin.
Remark 4.7. Banzhaf value is also the most robust semi-
value in terms of the data value magnitude. One can also
show that the Banzhaf value is the most robust in the sense
that the utility noise will minimally affect data value magni-
tude changes. Specifically, the Banzhaf value achieves the
smallest Lipschitz constant L such that ∥ϕ(U)− ϕ(Û)∥ ≤
L∥U − Û∥ for all possible pairs of U and Û . The details
are deferred to Appendix C.4.

4.3 Efficient Banzhaf Value Estimation

Similar to the Shapley value and the other semivalue-based
data value notions, the exact computation of the Banzhaf
value can be expensive because it requires an exponential
number of utility function evaluations, which entails an
exponential number of model fittings. This could be a major
challenge for adopting the Banzhaf value in practice. To
address this issue, we present a novel Monte Carlo algorithm
to approximate the Banzhaf value.

We start by defining the estimation error of an estimator. We
say a semivalue estimator ϕ̂ is an (ε, δ)-approximation to the

true semivalue ϕ (in ℓp-norm) if and only if Prϕ̂[∥ϕ−ϕ̂∥p ≤
ε] ≥ 1−δ where the randomness is over the execution of the
estimator. For any data point pair (i, j), if |ϕ(i)− ϕ(j)| ≥
2ε, then an estimator that is (ε, δ)-approximation in ℓ∞-
norm is guaranteed to keep the data value order of i and j
with probability at least 1− δ.

Baseline: Simple Monte Carlo. The Banzhaf value can be
equivalently expressed as follows:

ϕbanz(i) = ES∼Unif(2N\i) [U(S ∪ i)− U(S)] (4)

where Unif(·) to denote Uniform distribution over the power
set of N \ {i}. Thus, a straightforward Monte Carlo
(MC) method to estimate ϕbanz(i) is to sample a collec-
tion of data subsets Si from 2N\i uniformly at random, and
then compute ϕ̂MC(i) = 1

|Si|
∑

S∈Si
(U(S ∪ i)− U(S)).

We can repeat the above procedure for each i ∈ N

and obtain the approximated semivalue vector ϕ̂MC =

[ϕ̂MC(1), . . . , ϕ̂MC(n)]. The sample complexity of this sim-
ple MC estimator can be bounded by Hoeffding’s inequality.

Theorem 4.8. ϕ̂MC is an (ε, δ)-approximation to the exact
Banzhaf value in ℓ2-norm with O(n

2

ε2 log(nδ )) calls of U(·),
and in ℓ∞-norm with O( n

ε2 log(
n
δ )) calls of U(·).

Proposed Algorithm: Maximum Sample Reuse (MSR)
Monte Carlo. The simple MC method is sub-optimal
since, for each sampled S ∈ Si, the value of U(S) and
U(S ∪ i) are only used for estimating ϕbanz(i), i.e., the
Banzhaf value of a single datum i. This inevitably results
in a factor of n in the final sample complexity as we need
the same amount of samples to estimate each i ∈ N . To
address this weakness, we propose an advanced MC estima-
tor which achieves maximum sample reuse (MSR). Specif-
ically, by the linearity of expectation, we have ϕbanz(i) =
ES∼Unif(2N\i) [U(S ∪ i)]−ES∼Unif(2N\i) [U(S)]. Suppose
we have m samples S = {S1, . . . , Sm} i.i.d. drawn
from Unif(2N ). For every data point i we can divide S
into S∋i ∪ S̸∋i where S∋i = {S ∈ S : i ∈ S} and
S̸∋i = {S ∈ S : i /∈ S} = S \ S∋i. We can then esti-
mate ϕ(i) by

ϕ̂MSR(i) =
1

|S∋i|
∑

S∈S∋i

U(S)− 1

|S̸∋i|
∑

S∈S ̸∋i

U(S) (5)

or set ϕ̂MSR(i) = 0 if either of |S∋i| and |S̸∋i| is 0. In
this way, the maximal sample reuse is achieved since all
evaluations of U(S) are used in the estimation of ϕ(i) for
every i ∈ N . We refer to this new estimator ϕ̂MSR as MSR
estimator. Compared with Simple MC method, the MSR
estimator saves a factor of n in the sample complexity.

Theorem 4.9. ϕ̂MSR is an (ε, δ)-approximation to the exact
Banzhaf value in ℓ2-norm with O

(
n
ε2 log(

n
δ )
)

calls of U(·),
and in ℓ∞-norm with O

(
1
ε2 log(

n
δ )
)

calls of U(·).

Proof overview. We remark that deriving this sample com-
plexity is non-trivial. Unlike the simple Monte Carlo, the
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sizes of the samples that we average over in (5) (i.e., |S∋i|
and |S̸∋i|) are also random variables. Hence, we cannot sim-
ply apply Hoeffding’s inequality to get a high-probability
bound for ∥ϕ̂MSR−ϕbanz∥. The key to the proof is to notice
that |S∋i| follows binomial distribution Bin(m, 0.5). Thus,
we first show that |S∋i| is close to m/2 with high probability,
and then apply Hoeffding’s inequality to bound the differ-
ence between 1

m/2

∑
S∈S∋i

U(S)− 1
m/2

∑
S∈S ̸∋i

U(S) and
ϕbanz(i).

The actual estimator of the Banzhaf value that we build is
based upon the noisy variant Û . In Appendix C.3, we study
the impact of noisy utility function evaluation on the sample
complexity of the MSR estimator. It can be shown that our
MSR algorithm has the same sample complexity with the
noisy Û , despite a small extra irreducible error.

The existence of an efficient MSR estimator is unique for
the Banzhaf value. Every semivalue can be written as the
expectation of weighted marginal contribution. Hence, one
could construct an MSR estimator for arbitrary semivalue
as follows: ϕ̂MSR(i) = 2n−1

n|S∋i|
∑

S∈S∋i
w(|S|)U(S) −

2n−1

n|S̸∋i|
∑

S∈S̸∋i
w(|S| + 1)U(S). For the Shapley value,

w(|S|) =
(

n−1
|S|−1

)−1
. This combinatorial coefficient makes

the calculation of this estimator numerically unstable when
n is large. As we will show in the Appendix C.2, it turns out
that it is also impossible to construct a distribution D over
2N s.t. ϕshap (i) = ES∼D|D∋i [U(S)]− ES∼D|D̸∋i [U(S)]
for the Shapley value and any other data value notions ex-
cept the Banzhaf value. Hence, the existence of the efficient
MSR estimator is a unique advantage of the Banzhaf value.

Lower Bound for Banzhaf Value Estimation. To un-
derstand the optimality of the MSR estimator, we derive a
lower bound for any Banzhaf estimator that achieves (ε, δ)-
approximation in ℓ∞-norm. The main idea of deriving the
lower bound is to use Yao’s minimax principle. Specifically,
we construct a distribution over instances of utility func-
tions and prove that no deterministic algorithm can work
well against that distribution.

Theorem 4.10. Every (randomized) Banzhaf value esti-
mator that achieves (ε, δ)-approximation in ℓ∞-norm for
constant δ ∈ (0, 1/2) has sample complexity at least Ω( 1ε ).

Recall that our MSR algorithm achieves Õ( 1
ε2 )

3 sample
complexity. This means that our MSR algorithm is close to
optimal, with an extra factor of 1

ε .

5 EVALUATION

Our evaluation covers the following aspects: (1) Sample
efficiency of the proposed MSR estimator for the Banzhaf
value; (2) Robustness of the Banzhaf value compared to the

3Throughout the paper, we use Õ to hide logarithmic factors.

Figure 4: (a) Convergence of the MSR and simple MC esti-
mator for the Banzhaf value of a data point from a synthetic
dataset. The shaded area means the estimation variance over
5 runs of sampling. (b) The Relative Spearman Index of the
estimators for Shapley and Banzhaf value on the MNIST
dataset. ‘SV-GT’ refers to Group Testing-based Shapley
estimator, and ‘SV-Perm.’ refers to Permutation Sampling
Shapley estimator. For ‘SV-GT’, we implement the im-
proved Group Testing-based Shapley estimator proposed in
Wang and Jia (2023) instead of the original version from Jia
et al. (2019b).

six existing semivalue-based data value notions (including
Shapley value, LOO error, and four representatives from
Beta Shapley4); (3) Effectiveness of performing noisy label
detection and learning with weighted samples based on the
Banzhaf value. Detailed settings are provided in Appendix
D.

5.1 Sample Efficiency

MSR vs. Simple MC. We compare the sample complexity
of the MSR and the simple MC estimator for approximat-
ing the Banzhaf value. In order to exactly evaluate the
estimation error of the two estimators, we use a synthetic
dataset generated by multivariate Gaussian with only 10
data points—a scale where we can compute the Banzhaf
value exactly. The utility function is the validation accu-
racy of logistic regression trained with full-batch gradient
descent (no randomness in training). Thus, the randomness
associated with the estimator error is solely from random
sampling in the estimation algorithm. Figure 4 (a) compares
the variance of the two estimators as the number of samples
grows. As we can see, the estimation error of the MSR esti-
mator reduces much more quickly than that of the simple
MC estimator. Furthermore, given the same amount of sam-
ples, the MSR estimator exhibits a much smaller variance
across different runs compared to the simple MC method.

Banzhaf vs. Shapley. We then compare the two Banzhaf
value estimators with two popular Shapley value estima-
tors: the Permutation Sampling (Castro et al., 2009) and the
Group Testing algorithm (Jia et al., 2019b; Wang and Jia,
2023). Since the Shapley and Banzhaf values are of different
scales, for a fair comparison, we measure the consistency
of the ranking of estimated data values. Specifically, we
increase the sample size by adding a new batch of samples

4We evaluate Beta(1, 4), Beta(1, 16), Beta(4, 1), Beta(16, 1) as
the original paper.
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Dataset Data Banzhaf LOO Beta(16, 1) Beta(4, 1) Data Shapley Beta(1, 4) Beta(1, 16) Uniform

MNIST 0.745 (0.026) 0.708 (0.04) - - 0.74 (0.029) - - 0.733 (0.021)
FMNIST 0.591 (0.014) 0.584 (0.02) - - 0.581 (0.017) - - 0.586 (0.013)
CIFAR10 0.642 (0.002) 0.618 (0.005) - - 0.635 (0.004) - - 0.609 (0.004)

Click 0.6 (0.002) 0.575 (0.005) - - 0.589 (0.002) - - 0.57 (0.005)
Fraud 0.923 (0.002) 0.907 (0.002) 0.912 (0.004) 0.919 (0.005) 0.899 (0.002) 0.897 (0.001) 0.897 (0.001) 0.906 (0.002)

Creditcard 0.66 (0.002) 0.637 (0.006) 0.646 (0.003) 0.658 (0.007) 0.654 (0.003) 0.643 (0.004) 0.629 (0.007) 0.632 (0.003)
Vehicle 0.814 (0.003) 0.792 (0.008) 0.796 (0.003) 0.806 (0.004) 0.808 (0.003) 0.805 (0.005) 0.8 (0.004) 0.791 (0.005)
Apsfail 0.925 (0.0) 0.921 (0.003) 0.924 (0.001) 0.926 (0.001) 0.921 (0.002) 0.92 (0.002) 0.919 (0.001) 0.921 (0.002)

Phoneme 0.778 (0.001) 0.766 (0.006) 0.765 (0.002) 0.766 (0.005) 0.77 (0.004) 0.767 (0.003) 0.766 (0.003) 0.758 (0.002)
Wind 0.832 (0.003) 0.828 (0.002) 0.827 (0.003) 0.831 (0.002) 0.825 (0.002) 0.823 (0.002) 0.823 (0.002) 0.825 (0.003)
Pol 0.856 (0.005) 0.834 (0.008) 0.837 (0.009) 0.848 (0.004) 0.836 (0.014) 0.824 (0.007) 0.812 (0.008) 0.841 (0.009)

CPU 0.896 (0.001) 0.897 (0.002) 0.899 (0.001) 0.897 (0.002) 0.894 (0.002) 0.892 (0.001) 0.889 (0.002) 0.895 (0.001)
2DPlanes 0.846 (0.006) 0.83 (0.006) 0.837 (0.006) 0.841 (0.003) 0.846 (0.005) 0.843 (0.006) 0.838 (0.007) 0.829 (0.007)

Table 1: Accuracy comparison of models trained with weighted samples. We compare the seven data valuation methods on
the 13 classification datasets. For MNIST, FMNIST, and CIFAR10 we use a size-2000 subset. The average and standard
error of classification accuracy are denoted by ’average (standard error)’. The standard error is only due to the stochasticity
in utility function evaluation. Boldface numbers denote the best method. Beta Shapley does NOT applicable for datasets
with ≥ 1000 data points (MNIST, FMNIST, CIFAR10, and Click) due to numerical instability. ‘Uniform’ denotes training
with uniformly weighted samples.

Figure 5: Impact of the noise in utility scores on the Spear-
man index between the ranking of reference data value and
the ranking of data value estimated from noisy utility scores.
The ‘k’ in x-axis means the number of repeated evaluations
of U(S). The larger the k, the smaller the noise magni-
tude. Detailed experiment procedure are in Appendix D.4.

at every iteration, and evaluate each of the estimators on
different sample sizes. For each estimator, we calculate the
Relative Spearman Index, which is the Spearman index
of the value estimates between two adjacent iterations. A
high Relative Spearman Index means the ranking does not
change too much with extra samples, which implies con-
vergence of data value rankings. Figure 4 (b) compares the
Relative Spearman Index of different data value estimators
on MNIST dataset. We can see that the MSR estimator for
the Banzhaf value converges much faster than the two esti-
mators for the Shapley value in terms of data value rankings.

5.2 Ranking Stability under Noisy Utility Functions

We compare the robustness of data value notions in preserv-
ing the value ranking against the utility score perturbation
due to the stochasticity in SGD. The tricky part in the exper-
iment design is that we need to adjust the scale of the per-

turbation caused by natural stochastic learning algorithm.
In Appendix D.4, we show a procedure for controlling the
magnitude of perturbation via repeatedly evaluating U(S)
for k times: the larger the k, the smaller the noise magnitude
in the averaged Û(S). In Figure 5, we plot the Spearman
index between the ranking of reference data values5 and the
ranking of data values estimated from noisy utility scores.
Detailed settings are in Appendix D.4. As we can see, Data
Banzhaf achieves the most stable ranking and its stability
advantage gets more prominent as the noise increases. More-
over, we show the box-plot of Banzhaf value estimates in
Figure 1 (c). Compared with LOO and Shapley value, learn-
ing stochasticity has a much smaller impact on the ranking
of Banzhaf values (the average Spearman index ≈ 0.856
compared with the one for Shapley value ≈ 0.038). Back
to Figure 2, the high/low-quality data points selected by the
Banzhaf value is much more consistent across different runs
compared with LOO and Shapley value.

5.3 Applications of Data Banzhaf

Given the promising results obtained from the proof-of-
concept evaluation in Section 5.1 and 5.2, we move forward
to real-world applications and evaluate the effectiveness of
Data Banzhaf in distinguishing data quality for machine
learning tasks. Particularly, we considered two applications
enabled by data valuation: one is to reweight training data
during learning and another is to detect mislabeled points.
We use neural networks trained with Adam as the learning
algorithm wherein the associated utility function is noisy in
nature. We remark that most prior works (e.g., Ghorbani
and Zou (2019) and Kwon and Zou (2021)) use determin-
istic Logistic Regression to avoid the randomness in data

5We approximate the ground-truth by setting k = 50.
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Dataset Data Banzhaf LOO Beta(16, 1) Beta(4, 1) Data Shapley Beta(1, 4) Beta(1, 16)

MNIST 0.193 (0.017) 0.165 (0.009) - - 0.135 (0.025) - -
FMNIST 0.156 (0.018) 0.164 (0.014) - - 0.135 (0.016) - -
CIFAR10 0.22 (0.003) 0.086 (0.02) - - 0.152 (0.023) - -

Click 0.206 (0.01) 0.096 (0.034) - - 0.116 (0.024) - -
Fraud 0.47 (0.024) 0.157 (0.046) 0.55 (0.032) 0.59 (0.037) 0.65 (0.032) 0.19 (0.058) 0.14 (0.058)

Creditcard 0.27 (0.024) 0.113 (0.073) 0.25 (0.063) 0.28 (0.081) 0.26 (0.049) 0.17 (0.024) 0.17 (0.087)
Vehicle 0.45 (0.0) 0.123 (0.068) 0.43 (0.051) 0.42 (0.068) 0.41 (0.066) 0.16 (0.058) 0.1 (0.055)
Apsfail 0.49 (0.037) 0.096 (0.09) 0.36 (0.02) 0.42 (0.024) 0.47 (0.024) 0.22 (0.051) 0.2 (0.071)

Phoneme 0.216 (0.023) 0.115 (0.026) 0.232 (0.02) 0.236 (0.027) 0.216 (0.032) 0.124 (0.039) 0.088 (0.02)
Wind 0.36 (0.02) 0.073 (0.022) 0.51 (0.037) 0.52 (0.04) 0.57 (0.068) 0.19 (0.086) 0.17 (0.06)
Pol 0.47 (0.04) 0.097 (0.093) 0.26 (0.037) 0.4 (0.055) 0.44 (0.058) 0.17 (0.051) 0.09 (0.02)

CPU 0.35 (0.045) 0.107 (0.074) 0.45 (0.055) 0.48 (0.06) 0.46 (0.037) 0.13 (0.068) 0.08 (0.081)
2DPlanes 0.422 (0.025) 0.153 (0.057) 0.338 (0.034) 0.471 (0.041) 0.512 (0.082) 0.471 (0.041) 0.338 (0.034)

Table 2: Comparison of mislabel data detection ability of the seven data valuation methods on the 13 classification datasets.
The average and standard error of F1-score are denoted by ‘average (standard error)’. The standard error is only due to the
random noise in the utility function evaluation. Boldface numbers denote the best method in F1-score average.

value results. We compare with 6 baselines that are previ-
ously proposed semivalue-based data value notions: Data
Shapley, Leave-one-out (LOO), and 4 variations of Beta
Shapley (Kwon and Zou, 2021) (Beta(1, 4), Beta(1, 16),
Beta(4, 1), Beta(16, 1)).6 We use 13 standard datasets that
are previously used in the data valuation literature as the
benchmark tasks.

Learning with Weighted Samples. Similar to Kwon and
Zou (2021), we weight each training point by normalizing
the associated data value between [0,1]. Then, during train-
ing, each training sample will be selected with a probability
equal to the assigned weight. As a result, data points with
a higher value are more likely to be selected in the random
mini-batch of SGD, and data points with a lower value are
rarely used. We train a neural network classifier to mini-
mize the weighted loss, and then evaluate the accuracy on
the held-out test dataset. As Table 1 shows, Data Banzhaf
outperforms other baselines.

Noisy Label Detection. We investigate the ability of differ-
ent data value notions in detecting mislabeled points under
noisy utility functions. We generate noisy labeled samples
by flipping labels for a randomly chosen 10% of training
data points. We mark a data point as a mislabeled one if its
data value is less than 10 percentile of all data value scores.
We use F1-score as the performance metric for mislabeling
detection. Table 2 in the Appendix shows the F1-score of
the 7 data valuation methods and Data Banzhaf shows the
best overall performance.

6Beta Shapley does not apply for datasets with ≥ 1000 data
points due to numerical instability.

6 LIMITATION AND FUTURE WORK

This work presents the first focused study on the reliability
of data valuation in the presence of learning stochasticity.
We develop Data Banzhaf, a new data valuation method
that is more robust against the perturbations to the model
performance scores than existing ones. One limitation of
this study is that the robustness guarantee is a worst-case
guarantee, which assumes the perturbation could be arbi-
trary or even adversarial. While such a robustness notion
is advantageous in many aspects as discussed in Remark
4.3, the threat model might be strong when the source of
perturbation is known. Developing new robustness notions
which take into account specific utility noise distributions
induced by learning stochasticity is important future work,
and it requires a breakthrough in understanding the noise
structure caused by learning stochasticity.
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A EXTENDED RELATED WORK

Cooperative Game Theory-based Data Valuation. Game-theoretic formulations of data valuation have become popular
in recent years due to the formal, axiomatic justification. Particularly, the Shapley value has become a popular data value
notion (Ghorbani and Zou, 2019; Jia et al., 2019b) as it is the unique value notion that satisfies the four axioms: linearity,
dummy player, symmetry, and efficiency. Alternatives to the Shapley value for data valuation have also been proposed
through the relaxation of the Shapley axioms. As we mentioned in the main text, by relaxing the efficiency axiom, the
class of solution concepts that satisfy linearity, dummy player, and symmetry is called semivalue (Weber, 1988). Kwon
and Zou (2021) propose Beta Shapley, which is a collection of semivalues that enjoy certain mathematical elegance in the
representation. However, the construction of Beta Shapley does not take the perturbation of performance scores into account;
the original paper only uses deterministic learning algorithms (such as Logistic Regression) for the experiment. In this work,
we characterize the Banzhaf value as a robust semivalue against the perturbation in the performance scores, which is critical
for applications involving stochastic training such as neural network training.

In addition, by relaxing the linearity axiom of the Shapley value, Yan and Procaccia (2020) propose to use the Least core
(Deng and Papadimitriou, 1994), another classic concept in cooperative game theory, as an alternative to the Shapley value
for data valuation. At a high level, the Least Core is a profit allocation scheme that requires the smallest subsidy to each
coalition S so that no participant has the incentive to deviate from the grand coalition N . It is computed by solving the
linear programming problem below:

min
ϕLC

e s.t.
n∑

i=1

ϕLC(i) = U(N),
∑
i∈S

ϕLC(i) + e ≥ U(S),∀S ⊆ N (6)

We show additional experiment results for the robustness of the Least core in Appendix D.4.

Distributional Shapley value (Ghorbani et al., 2020; Kwon et al., 2021) is a variant of Data Shapley which measures the
contribution of a data point with respect to a data distribution instead of a static dataset. The stability notion discussed in
the paper is in terms of the perturbation to the data point instead of model performance scores. Bian et al. (2021) take a
probabilistic treatment of cooperative games. Through mean-field variational inference in the energy-based model, they
develop multiple step variational value as a data value notion that satisfies null player, marginalism, and symmetry. The
marginalism axiom requires a player’s payoffs to depend only on his own marginal contributions – whenever they remain
unchanged, his payoffs should be unaffected. Yona et al. (2021) relax the assumption that the learning algorithm is fixed
in advance in the previous work, and extend Shapley value to jointly quantify the contribution of data points and learning
algorithms. It improves the stability of data value under domain shifts by attributing the responsibility to the learning
algorithm. Agussurja et al. (2022) derive the convergence property of the Shapley value in parametric Bayesian learning
games, and apply the result to establish an online collaborative learning framework that is asymptotically Shapley-fair.

Banzhaf value, Banzhaf power index, and friends. What is known today as the Banzhaf value or Banzhaf power index
was originally introduced by Lionel Penrose in 1946 (Penrose, 1946). It was reinvented by John F. Banzhaf III in 1964
(Banzhaf III, 1964), and was reinvented once more by James Samuel Coleman in 1971 (Coleman, 1971) before it became
part of the mainstream literature. In the field of machine learning, the Banzhaf value has been previously applied to the
problem of measuring feature importance (Datta et al., 2015; Kulynych and Troncoso, 2017; Sliwinski et al., 2019; Patel
et al., 2021; Karczmarz et al., 2021). While these works suggest that the Banzhaf value could be an alternative to the
popular Shapley value-based model interpretation methods (Lundberg and Lee, 2017), it remains unclear in which settings
the Banzhaf value may be preferable to the Shapley value. This work provides the first theoretical understanding of the
advantage of the Banzhaf value in terms of robustness. In addition, the empirical study by Karczmarz et al. (2021) observes
that the Banzhaf value is much more robust than the Shapley value when the numerical precision is low in the computation,
which validates our theoretical result.

We would like to note that the Banzhaf value is a generalization of the Banzhaf power index (Banzhaf III, 1964) which is
designed for gauging the voting power of players in a simple voting game. In a simple voting game, the utility function
U : 2N → {0, 1} where U(∅) = 0, U(N) = 1 and U(S) ≤ U(T ) whenever S ⊆ T . In contrast, the setting of data
valuation is more complicated and challenging as we do not assume any particular structure of the utility function U . There
are also many kinds of power indices available, such as Shapley-Shubik index (Shapley, 1953), Holler index (Holler, 1982),
and Deegan-Packel index (Deegan and Packel, 1978). The interpretation and computation of these power indices are active
topics in cooperative game theory (e.g., (Holler and Packel, 1983; Aziz, 2008)). In this work, we explore the most robust
data value notion among the space of semivalues. Exploring the possibility of extending other kinds of cooperative solution
concepts to data valuation is an interesting and promising future research direction.
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Efficient Estimation of the Banzhaf and Shapley value. Most of the estimation algorithms for the Banzhaf and Shapley
value are based on Monte Carlo techniques, especially when no prior knowledge about the structure of utility function U is
available. The Simple Monte Carlo estimation for Shapley value (i.e., the Permutation Sampling) was mentioned in very
early works (Mann and Shapley, 1960), and the sample complexity analysis of Permutation sampling for Shapley value
can be found in (Maleki, 2015). Covert et al. propose an improved Shapley estimator based on the Importance Sampling
technique. Jia et al. (2019b) improve the sample complexity of Monte Carlo-based Shapley estimation based on group
testing technique (which is further improved by Wang and Jia (2023) later). G-Shapley, TMC-Shapley (Ghorbani and Zou,
2019) and KNN-Shapley (Jia et al., 2019a) have been proposed as the efficient proxies of Shapley value. However, these
are biased estimators for the Shapley value in nature. The sample complexity of the Simple Monte Carlo method for the
Banzhaf value / Banzhaf power index (Merrill III, 1982) first appeared in Bachrach et al. (2010).

Another line of works studies the estimation of the Shapley and Banzhaf value in the problems with specific structures, e.g.,
(weighted) voting games (Owen, 1972; Fatima et al., 2008; Teneggi et al., 2021), the games where only a few players have
non-zero contribution (Jia et al., 2019b; Lin et al., 2022).

Alternative Approaches for Data Valuation in ML. We review some recent works on data valuation methods here that
are not based on cooperative game theory, and we refer the readers to Sim et al. (2022) for a comprehensive technical
survey of data valuation in ML. Sim et al. (2020) use the reduction in uncertainty of the model parameters given the data as
the valuation metric. Axioms that are important for collaborative learning such as strict desirability and monotonicity are
also mentioned in the paper. Training-free and task-agnostic data valuation methods have also been proposed. Tay et al.
(2022) suggest a data valuation method utilizing maximum mean discrepancy (MMD) between the data source and the true
data distribution. Xu et al. (2021) come up with a diversity measure called robust volume (RV) for valuing data sources.
The robustness of the proposed data value notion is discussed in terms of the stability against data replication (via direct
data copying). Han et al. (2020) also study the replication robustness of semivalues. Wu et al. (2022) use a domain-aware
generalization bound for data valuation, where the bound is based on neural tangent kernel (NTK) theory. Amiri et al. (2022)
use the statistical differences between the source data and a baseline dataset as the valuation metric.
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B FURTHER DISCUSSION ABOUT CONSIDERATIONS IN DEFINITION 4.2

B.1 Why do we consider rank stability?

As mentioned in the main text, rank stability is a reasonable robustness measure as the ranking of data values is important in
many applications such as data subset selection and data pruning. Yet, another natural robustness measure is the stability in
absolute value. Specifically, we can view a semivalue as a function ϕ : R2n → Rn which takes a utility function U ∈ R2n

as input, and output the values of data points ϕ(U) ∈ Rn. By taking this functional view, a natural robustness measure for
semivalue ϕ(·;w) is its Lipschitz constant L, which is defined as the smallest constant such that∥∥∥ϕ(U ;w)− ϕ(Û ;w)

∥∥∥ ≤ L
∥∥∥U − Û

∥∥∥ (7)

for all possible pairs of U and Û . However, since the efficiency axiom is relaxed for semivalue, such a robustness measure
has the issue that different semivalues have different scales; the same change in the absolute value may mean differently for
them. On the other hand, rank stability provides a fair measure for comparison between different semivalues.

B.2 Why do we consider a noise-structure-agnostic definition?

The safety margin defined in Definition 4.2 does not depend on the actual noise induced by a specific stochastic training
algorithm. Indeed, one may attempt to directly analyze the potential perturbation distribution of utility function U(S)
caused by the stochasticity in learning algorithm (e.g., random initialization, mini-batch selection), and define the safety
margin with respect to the specific perturbation (distribution).

However, we did not adopt such a definition (referred to as noise-structure-specific notion later) due to several considerations.

I. Even if the datasets and learning algorithm are known in advance, it is usually intractable to analytically derive
a definite assertion on the noise in performance scores. The probability distribution of the model performance scores
U(S) = acc(A(S)) change with different training data S, test data (characterized by acc(·)), and the hyperparameters
of learning algorithm A. Even if such information is all available in advance (before we pick the data value notion), it is
difficult to analyze the distribution of U(S) without actually training on S for common learning algorithms such as SGD. In
order to illustrate the technical difficulty, we show such an attempt in Section B.2.1.

Specifically, under the simple (if not the simplest) setting of 1-dimensional linear regression trained by full batch gradient
descent with Gaussian random initialization, we show the derivation of the probability distribution of validation mean
squared error.7 We show that the distribution of validation mean squared error is a generalized χ2 distribution. Unfortunately,
the probability density and cumulative density of generalized χ2 distribution are known for being intractable, which impedes
further analysis of its impact on data values. Furthermore, it is unclear how to analyze the validation loss distribution for
batch stochastic gradient descent (see the discussion at the end of Appendix B.2.1). As we can see, even for such a simple
setting, there are significant challenges in designing noise-structure-specific robust data value notions.

II. Noise-structure-specific robust data value notion may be computationally infeasible. More importantly, in order to
design noise-structure-specific robust data value notion for a dataset N of size n, we need to understand the noise distribution
of U(S) for every subset S ⊆ N , which introduces an exponentially large computationally burden. While one might be able
to resort to numerical methods to approximate the intractable probability density issue mentioned before, the computational
costs incurred by modeling the performance distribution on exponential subsets are prohibitive.

III. In practice, one may not have prior knowledge about the dataset and source of perturbation; in that case, a
worst-case robustness notion is preferred. Another difficulty regarding the noise-structure-specific robustness notion is
that in practice, the datasets may not be known in advance for privacy consideration (Agahari et al., 2022; Tian et al., 2022).
Furthermore, the performance scores may also be perturbed due to other factors such as hardware faults, software bugs, or
even adversarial attacks. Given the uncertainty of the perturbation in the practical scenario, it makes more sense to define the
robustness in terms of the worst-case perturbation. This is exactly Kerckhoffs’s principle and such definitions are common
in machine learning. For instance, robust learning against adversarial examples is aimed at being resilient to the worst-case
noise (Madry et al., 2017) within a norm ball; differential privacy (Dwork et al., 2006) protects individual data record’s
information from arbitrary attackers.

Based on the identified difficulties for the potential noise-structure-specific notion, and the advantages of the noise-structure-
agnostic notion, we believe it is ideal to define the robustness through the way in Section 4.1. Importantly, the proposed

7We use full batch gradient descent so the only randomness in the learning algorithm is the random initialization.
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robustness notion can not only lead to tractable robustness analysis for celebrated data value notions (Shapley, LOO); at
the same time, the data value notion obtained by optimizing the proposed robustness measure, i.e., the Banzhaf value, indeed
achieves good robustness against realistic learning stochasticity (as shown in the experiment section). Last but not least,
the study of how to characterize the dependency between performance score and learning stochasticity itself needs to be
investigated in depth before one could claim a reasonable probabilistic robustness definition under learning stochasticity.

B.2.1 Difficulties in Analytical Analysis of U(S)

As we mentioned in Section 3, the utility of a dataset U(S) is defined as acc(A(S)), i.e., the performance of a model
A(S) trained on a dataset S. However, the learning algorithms may have randomness during the training process. For
instance, the stochastic gradient descent (SGD) algorithm involves random weights initialization and random mini-batch
selection. Formally, we can view A as a randomized function that takes a dataset S as input, and output a trained model
A(S; r), where r is a random string that describes all randomness used during the training process. For SGD, r is the
weights initialization and mini-batch selection choices. For each execution of the learning algorithm, r is sampled from the
corresponding probability distribution PA specified by the learning algorithm, e.g., the weights are initialized by isotropic
Gaussian distribution and mini-batch selection is based on Binomial distribution. Since the trained model A(S) is a random
variable, the utility U(S) is inherently a randomized function and the randomness depends on r. To make data value notions
such as Shapley and Banzhaf value to be well-defined and independent from the learning stochasticity, at the end of Section
3 we refine U(S) := Er∼P [acc(A(S; r))]. Let Û(S) denote the random utility acc(A(S; r)) with a randomly r ∼ P . In
order to find the most robust semivalue against the random noise Û(S) − U(S), one natural idea would be analytically
derive the probability distribution of Û(S), and design the corresponding data value accordingly.

Unfortunately, it is actually non-trivial to conclude a definite assumption on the performance noise caused by learning
stochasticity. In this section, we illustrate such difficulty by directly analyzing the distribution of Û(S) for arguably the
simplest setting: 1-dimensional linear regression trained by gradient descent with random initialization. The model here
is defined as f(x; θ) := θx and is trained on a dataset S = {(x, y)} via mean squared error L(θ;S) = 1

2

∑
(x,y)∈S(y −

f(x; θ))2. The space of both input feature x and model parameter θ are R.

The source of the randomness in the learning algorithm here is random initialization. Specifically, we use gradient descent
to train the linear regression model with Gaussian random initialization.

θ0 ∼ N (0, σ2)

θ1 ← θ0 − η∇L(θ0)
. . .

θT ← θ0 − η∇L(θT−1)

where η is the learning rate and T is the total number of iterations. The utility of the trained model is given by the mean
squared error Û(S) := L(θT ;Sval) on validation set Sval = {(x∗, y∗)}.

Due to the simplicity of the setting, we can derive the evolution of the distribution of θT as well as L(θT ;Sval). Since
∇L(θ) =

∑
(x,y)∈S x(xθ − y), at iteration t we have

θt+1 = θt − η
∑

(x,y)∈S

x(xθt − y)

= θt

1− η
∑

(x,y)∈S

x2

+ η
∑

(x,y)∈S

xy

Therefore, {θt} is a sequence of Gaussian random variables, where

E[θt+1] = E[θt]

1− η
∑

(x,y)∈S

x2

+ η
∑

(x,y)∈S

xy

Var(θt+1) = Var(θt)

1− η
∑

(x,y)∈S

x2

2
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To simplify the notation, let f(S) =
∑

(x,y)∈S xy and g(S) =
∑

(x,y)∈S x2. By a simple analysis, we can derive the general
term formula for θT as

E[θT ] =
f(S)

g(S)

(
1− (1− ηg(S))T

)
Var(θT ) = σ2 (1− ηg(S))

2T

For each validation data point (x∗, y∗), we have

x∗θT − y∗ ∼ N
(
x∗E[θT ]− y∗,Var(θT )(x

∗)2
)

Therefore, (x∗θT − y∗)2 is a (scaled) non-central χ′2 distribution with degree of freedom 1 and non-centrality parameter
(x∗E[θT ]−y∗)2

Var(θT )(x∗)2 . (Abramowitz and Stegun (1964), Section 26.4.25):

(x∗θT − y∗)2 ∼ Var(θT )(x
∗)2 · χ′2

(
1,

(
x∗E[θT ]− y∗

Std(θT )(x∗)

)2
)

∼ Var(θT )(x
∗)2 · χ′2

(
1,

(x∗E[θT ]− y∗)
2

Var(θT )(x∗)2

)

Consequently, the validation loss L(θT ;Sval) =
∑

(x∗,y∗)∈Sval
(x∗θT − y∗)2 is a generalized chi-squared distribution

(Davies, 1980):

L(θT ;Sval) ∼
∑

(x∗,y∗)∈Sval

Var(θT )(x
∗)2 · χ′2

(
1,

(x∗E[θT ]− y∗)
2

Var(θT )(x∗)2

)

There are two major difficulties in applying the above results for designing robust data value notions specific to such a
simplified setting:

1. The generalized chi-squared distribution is known for intractable probability density or cumulative distribution (Davies,
1980; Das and Geisler, 2021).

2. To design noise-structure-specific robust data value notion for a dataset N of size n, we need to understand the noise
distribution for every subset S ⊆ N , which introduces an exponentially large computational burden. While one might
be able to resort to numerical methods to approximate the intractable probability density, the computational costs
incurred by modeling the performance distribution on exponential subsets are prohibitive.

Therefore, even for such a very simple setting, there are significant difficulties in designing noise-structure-specific robust
data value notions based on directly analyzing noise distribution.

Difficulties in Extending to Batch Stochastic Gradient Descent. Furthermore, it is unclear how to extend the above
analysis to batch stochastic gradient descent. For the case of batch stochastic gradient descent, while it is easy to see that the
parameter in the first iteration θ1 is a Gaussian mixture, the distribution of parameters after the first iteration is intractable to
analyze.

Based on the above-identified difficulties, it is preferable to define the robustness in a noise-structure-agnostic way as we did
in Section 4.

B.3 Why do we consider a U -structure-agnostic definition?

This consideration shares the same reason as II and III in Appendix B.2. If the safety margin depends on the specific U , it
means that we need to know about U(S) for every S ⊆ N , which is computationally infeasible or even impossible. On the
other hand, the definition of “τ -distinguishable” utility functions characterizes the collection of Us such that the semivalue
should be robust on, while also leading to tractable robustness analysis for semivalues.
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C PROOFS AND ADDITIONAL THEORETICAL RESULTS

We provide a summary of the content in this section for the convenience of the readers.

• Appendix C.1: Proofs for the theorems appeared in the maintext.

• Appendix C.2: The MSR Estimator does not Extend to the Shapley Value and Other Known Semivalues.

• Appendix C.3: Robustness of the MSR Estimator.

• Appendix C.4: Stability of Banzhaf value in ℓ2-norm.

C.1 Proofs for Theorem 4.4, 4.6, 4.8, 4.9, 4.10 in the Main Text

We omit the parameters of U,N , or w when it’s clear from the context.

C.1.1 The Safety Margin for the LOO error, the Shapley value, and the Banzhaf value

Lemma C.1. Given a semivalue with weight function w(·), we have

Safe(τ ;w) = τ

√√√√√(∑n−1
k=1

(
n−2
k−1

)
(w(k) + w(k + 1))

)2
∑n−1

k=1

(
n−2
k−1

)
(w(k) + w(k + 1))

2 (8)

for any τ > 0.

Proof. For any τ > 0 and any pair of (i, j), we denote

Safei,j(τ ;w) = min
U∈U(τ)

i,j

min
Û∈{Û :Di,j(U ;w)Di,j(Û ;w)≤0}

∥∥∥Û − U
∥∥∥

as the minimum amount of noise that is required to reverse the ranking of (i, j) among all utility functions that τ -distinguish
(i, j). Thus, the safety margin of the semivalue w is

Safe(τ ;w) = min
i ̸=j

Safei,j(τ ;w)

Note that Di,j(U ;w) can be written as a dot product of U and a column vector a ∈ R2n

Di,j(U ;w) = aTU

where each entry of a corresponds to a subset S ⊆ N . We use a[·] to denote the value of a’s entry corresponds to S. For all
S ⊆ N \ {i, j}, a[S ∪ i] = w(|S|+1)+w(|S|+2) and a[S ∪ j] = −(w(|S|+1)+w(|S|+2)), and for all other subsets
a[S] = 0. Let the perturbation x = Û − U and matrix A = aaT .

Di,j(U ;w)Di,j(Û ;w) = (aTU)(aT Û)

= (aTU)T (aT Û)

= UTaaT Û

= UTAÛ

= UTA(U + x)
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Thus, if Di,j(U ;w)Di,j(Û ;w) ≤ 0, the size of the perturbation x must be at least

∥x∥ ≥ |U
TAU |
∥UTA∥

=
|UTAU |√
UTAAU

=
|UTAU |√

aTa
√
|UTAU |

(9)

=

√
|UTAU |
aTa

where (9) is because AA = (aaT )(aaT ) = a(aTa)aT = (aTa)aaT = (aTa)A. This lower bound is achievable when we
set x on the direction of UTA. Therefore, we have

Safei,j(τ ;w) = min
U∈U(τ)

i,j

√
|UTAU |
aTa

To make the notations less cumbersome, denote f(S) = w(|S|+ 1) + w(|S|+ 2), and g(S) = U(S ∪ i)− U(S ∪ j). By
expanding the expression, we have

|UTAU |
aTa

=

∣∣∣∑S1⊆N\{i,j}
∑

S2⊆N\{i,j} f(S1)f(S2)g(S1)g(S2)
∣∣∣∑

S⊆N\{i,j} f
2(S)

=

∣∣∣(∑S1⊆N\{i,j} f(S1)g(S1)
)(∑

S2⊆N\{i,j} f(S2)g(S2)
)∣∣∣∑

S⊆N\{i,j} f
2(S)

=

(∑
S⊆N\{i,j} f(S)g(S)

)2
∑

S⊆N\{i,j} f
2(S)

=

(∑n−1
k=1 (w(k) + w(k + 1))

∑
S⊆N\{i,j},|S|=k−1 (U(S ∪ i)− U(S ∪ j))

)2
∑n−1

k=1

(
n−2
k−1

)
(w(k) + w(k + 1))

2

=

(∑n−1
k=1

(
n−2
k−1

)
(w(k) + w(k + 1))

(
n−2
k−1

)−1∑
S⊆N\{i,j},|S|=k−1 (U(S ∪ i)− U(S ∪ j))

)2
∑n−1

k=1

(
n−2
k−1

)
(w(k) + w(k + 1))

2 (10)

Clearly, the minimum of (10) is achieved when(
n− 2

k − 1

)−1 ∑
S⊆N\{i,j},|S|=k−1

(U(S ∪ i)− U(S ∪ j)) = τ

for all k, i.e., Safei,j(τ ;w) = τ

√
(
∑n−1

k=1 (
n−2
k−1)(w(k)+w(k+1)))

2∑n−1
k=1 (

n−2
k−1)(w(k)+w(k+1))2

. This holds for every pair of data points (i, j), which leads

to our conclusion where Safe(τ ;w) = τ

√
(
∑n−1

k=1 (
n−2
k−1)(w(k)+w(k+1)))

2∑n−1
k=1 (

n−2
k−1)(w(k)+w(k+1))2

.

The Safety Margin for the LOO error and the Shapley value.
Theorem 4.4 (restated). For any τ > 0, Leave-one-out error (wloo(k) = n1[k = n]) achieves Safe(τ ;wloo) = τ , and
Shapley value (wshap(k) =

(
n−1
k−1

)−1
) achieves Safe(τ ;wshap) = τ n−1√∑n−1

k=1 (
n−2
k−1)

−1
.

Proof. By plugging in wloo(k) = n1[k = n] to (8), we have Safe(τ ;wloo) = τ . By plugging in wshap(k) =
(
n−1
k−1

)−1
to

(8), we have Safe(τ ;wshap) = τ n−1√∑n−1
k=1 (

n−2
k−1)

−1
.
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Banzhaf Value Achieves the Largest Safety Margin.
Theorem 4.6 (restated). For any τ > 0, the Banzhaf value (w(k) = n

2n−1 ) achieves the largest safety margin Safe(τ ;w) =
τ2n/2−1 among all semivalues.

Proof. By Lemma C.1, we want to find the optimal semivalue weight function w that maximizes
(
∑n−1

k=1 (
n−2
k−1)(w(k)+w(k+1)))

2∑n−1
k=1 (

n−2
k−1)(w(k)+w(k+1))2

. Notice that

(∑n−1
k=1

(
n−2
k−1

)
(w(k) + w(k + 1))

)2
∑n−1

k=1

(
n−2
k−1

)
(w(k) + w(k + 1))

2 =

(∑n−1
k=1

√(
n−2
k−1

)√(
n−2
k−1

)
(w(k) + w(k + 1))

)2
∑n−1

k=1

(
n−2
k−1

)
(w(k) + w(k + 1))

2

≤
∑n−1

k=1

(
n−2
k−1

)∑n−1
k=1

(
n−2
k−1

)
(w(k) + w(k + 1))

2∑n−1
k=1

(
n−2
k−1

)
(w(k) + w(k + 1))

2 (11)

=

n−1∑
k=1

(
n− 2

k − 1

)
= 2n−2

where (11) is due to Cauchy-Schwarz inequality.

Note that this upper bound is achievable whenever w(|S|+ 1) + w(|S|+ 2) is a constant due to the equality condition of
Cauchy-Schwarz, which the weight function of Banzhaf value clearly satisfies. Therefore, the Banzhaf value achieves the
largest Safe(τ ;w) among all possible semivalues.

Further Discussion of Theorem 4.6. The safety margin is the largest noise in utility that can be tolerated such that the
ranking of exact semivalues calculated from clean utility match with that of exact semivalues calculated from a noisy
utility. However, calculating exact semivalues for a given utility function is NP-hard in general, and in practice, one often
resorts to evaluating the utility function at limited sampled subsets and then using these limited samples to approximate
semivalues. Hence, a natural question to ask is whether we can characterize the maximally-tolerable utility noise on the
limited sampled subsets such that the ranking of approximate semivalues calculated from the clean utility samples align with
that of approximate semivalues calculated from the noisy samples. However, one issue with this type of characterization
is that the “safety margin” in this case depends on both the expression of the semivalue (i.e., w that parameterizes the
semivalue), as well as the underlying estimation algorithm for that semivalue. Since different semivalues have different
estimation algorithms, such a result for different semivalues is not really comparable. On the other hand, our result in
Theorem 4.6 lifts the dependence on the underlying estimation algorithm. As a consequence, it allows one to compare the
robustness between different semivalues.

We also note that, the Banzhaf value is not the unique semivalue that achieves the maximal robustness in the setup of
Theorem 4.6. Any semivalues with a weight function w s.t. w(k) + w(k + 1) is a constant also achieve the same safety
margin. Such a semivalue must have w(1) = w(3) = w(5) = . . . and w(2) = w(4) = w(6) = . . .. However, there’s no
natural explanation for why the semivalue should weigh odd and even cardinalities differently. Hence, the Banzhaf value is
the only “reasonable” semivalue with maximal robustness.

C.1.2 Sample Complexity of Simple MC and MSR Estimator.

Theorem 4.8 (restated). ϕ̂MC is an (ε, δ)-approximation to the exact Banzhaf value in ℓ2-norm with O(n
2

ε2 log(nδ )) calls of
U(·), and in ℓ∞-norm with O( n

ε2 log(
n
δ )) calls of U(·).

Proof. Let S = {S1, . . . , Sm} be the samples used for computing ϕ̂MC(i). Since the marginal contribution U(S∪ i)−U(S)
is always bounded between [−1, 1], by Hoeffding, we have

Pr
[∣∣∣ϕ̂MC(i)− ϕ(i)

∣∣∣ ≥ ε
]
≤ 2 exp

(
−2mε2

)
which holds for every i ∈ N .
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Thus, with union bound, for ℓ2-norm we have

Pr
ϕ̂MC

[∥∥∥ϕ̂MC − ϕ
∥∥∥
2
≥ ε
]
= 1− Pr

ϕ̂MC

[∥∥∥ϕ̂MC − ϕ
∥∥∥2
2
≤ ε2

]
≤ 1− Pr

ϕ̂MC

[
∩i
∣∣∣ϕ̂MC(i)− ϕ(i)

∣∣∣ ≤ ε/
√
n
]

= Pr
ϕ̂MC

[
∪i
∣∣∣ϕ̂MC(i)− ϕ(i)

∣∣∣ ≥ ε/
√
n
]

≤
n∑

i=1

Pr
ϕ̂MC

[∣∣∣ϕ̂MC(i)− ϕ(i)
∣∣∣ ≥ ε/

√
n
]

≤ 2n exp
(
−2mε2/n

)
By setting 2n exp

(
−2mε2/n

)
≤ δ, we get m ≥ n

2ε2 log
(
2n
δ

)
= O

(
n
ε2 log(

n
δ )
)
. However, this m only corresponds to the

number of samples used to estimate a single ϕ(i), so the total number of samples required is O
(

n2

ε2 log(nδ )
)

.

For ℓ∞-norm we have

Pr
ϕ̂MC

[∥∥∥ϕ̂MC − ϕ
∥∥∥
∞
≥ ε
]
= Pr

ϕ̂MC

[
∪i
∣∣∣ϕ̂MC(i)− ϕ(i)

∣∣∣ ≥ ε
]

≤
n∑

i=1

Pr
ϕ̂MC

[∣∣∣ϕ̂MC(i)− ϕ(i)
∣∣∣ ≥ ε

]
≤ 2n exp

(
−2mε2

)
By setting 2n exp

(
−2mε2

)
≤ δ, we get m ≥ 1

2ε2 log
(
2n
δ

)
= O

(
1
ε2 log(

n
δ )
)
. However, this m only corresponds to the

number of samples used to estimate a single ϕ(i), so the total number of samples required is O
(

n
ε2 log(

n
δ )
)
.

Theorem 4.9 (restated). ϕ̂MSR is an (ε, δ)-approximation to the exact Banzhaf value in ℓ2-norm with O
(

n
ε2 log(

n
δ )
)

calls of
U(·), and in ℓ∞-norm with O

(
1
ε2 log(

n
δ )
)

calls of U(·).

Proof. Since S = {S1, . . . , Sm} each i.i.d. drawn from Unif(2N ), it is easy to see that the size of sampled subsets that
include data point i follows binomial distribution |S∋i| ∼ Bin(m, 0.5), and |S∋i| = m− |S ̸∋i|.

We first define an alternative estimator

ϕ̃(i) =
1

m/2

∑
S∈S∋i

U(S)− 1

m/2

∑
S∈S ̸∋i

U(S)

which is independent of |S∋i| and |S̸∋i|. When both |S∋i| and |S ̸∋i| > 0, we have

∣∣∣ϕ̂(i)− ϕ̃(i)
∣∣∣ =

∣∣∣∣∣∣
(

1

|S∋i|
− 1

m/2

) ∑
S∈S∋i

U(S)−
(

1

|S ̸∋i|
− 1

m/2

) ∑
S∈S ̸∋i

U(S)

∣∣∣∣∣∣
≤
∣∣∣∣1− 2|S∋i|

m

∣∣∣∣+ ∣∣∣∣1− 2|S̸∋i|
m

∣∣∣∣ (12)

= 2

∣∣∣∣1− 2|S∋i|
m

∣∣∣∣ (13)

=
4

m

∣∣∣|S∋i| −
m

2

∣∣∣
where (12) is due to U(S) ≤ 1 and (13) is due to |S∋i| = m− |S ̸∋i|. When one of |S∋i| and |S̸∋i| = 0, this upper bound
also clearly holds.

Since |S∋i| ∼ Bin(m, 0.5), by Hoeffding inequality we have

Pr
[∣∣∣|S∋i| −

m

2

∣∣∣ ≥ ∆
]
≤ 2 exp

(
−2∆2

m

)
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Hence, with probability at least 1− 2 exp
(
− 2∆2

m

)
, we have

∣∣∣ϕ̂(i)− ϕ̃(i)
∣∣∣ ≤ 4∆

m

Since

ϕ̃(i) =
2

m

 ∑
S∈S∋i

U(S)−
∑

S∈S ̸∋i

U(S)


=

1

m

∑
S∈S

2U(S)sign(i, S)

where sign(i, S) = 21[i ∈ S]− 1 ∈ {±1}. Thus, 2U(S)sign(i, S) ∈ [−2, 2] and we can apply Hoeffding to bound the tail
of |ϕ̃(i)− ϕ(i)|:

Pr
[
|ϕ̃(i)− ϕ(i)| ≥ t

]
≤ 2 exp

(
−mt2

8

)

Now we bound |ϕ̂(i)− ϕ(i)| as follows:

Pr
[
|ϕ̂(i)− ϕ(i)| ≥ ε

]
= Pr

[
|ϕ̂(i)− ϕ(i)| ≥ ε|

∣∣∣|S∋i| −
m

2

∣∣∣ ≤ ∆
]
Pr
[∣∣∣|S∋i| −

m

2

∣∣∣ ≤ ∆
]

+ Pr
[
|ϕ̂(i)− ϕ(i)| ≥ ε|

∣∣∣|S∋i| −
m

2

∣∣∣ > ∆
]
Pr
[∣∣∣|S∋i| −

m

2

∣∣∣ > ∆
]

≤ Pr
[
|ϕ̂(i)− ϕ(i)| ≥ ε|

∣∣∣|S∋i| −
m

2

∣∣∣ ≤ ∆
]
+ 2 exp

(
−2∆2

m

)
≤ Pr

[
|ϕ̃(i)− ϕ(i)| ≥ ε− 4∆

m
|
∣∣∣|S∋i| −

m

2

∣∣∣ ≤ ∆

]
+ 2 exp

(
−2∆2

m

)

≤
Pr
[
|ϕ̃(i)− ϕ(i)| ≥ ε− 4∆

m

]
1− 2 exp

(
− 2∆2

m

) + 2 exp

(
−2∆2

m

)
≤

2 exp
(
− 1

8m(ε− 4∆
m )2

)
1− 2 exp

(
− 2∆2

m

) + 2 exp

(
−2∆2

m

)

≤ 3 exp

(
−1

8
m

(
ε− 4∆

m

)2
)

+ 2 exp

(
−2∆2

m

)

where the last inequality holds whenever 1− 2 exp
(
− 2∆2

m

)
≥ 2

3 .

We can then optimize this bound by setting − 1
8m
(
ε− 4∆

m

)2
= − 2∆2

m , where we obtain ∆ = mε
8 , and the bound becomes

Pr
[
|ϕ̂(i)− ϕ(i)| ≥ ε

]
≤ 3 exp

(
−1

8
m

(
ε− 4∆

m

)2
)

+ 2 exp

(
−2∆2

m

)
= 5 exp

(
−mε2

32

)

By union bound, we have

Pr
ϕ̂MSR

[∥∥∥ϕ̂MSR − ϕ
∥∥∥
2
≥ ε
]
≤ 5n exp

(
−mε2

32n

)
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and

Pr
ϕ̂MSR

[∥∥∥ϕ̂MSR − ϕ
∥∥∥
∞
≥ ε
]
≤ 5n exp

(
−mε2

32

)

By setting δ ≤ 5n exp
(
−mε2

32n

)
, we obtain the sample complexity O

(
n
ε2 log(

n
δ )
)

for ℓ2 norm, and by setting δ ≤

5n exp
(
−mε2

32

)
, we obtain the sample complexity O

(
1
ε2 log(

n
δ )
)

for ℓ∞-norm.

C.1.3 Lower Bound for the Banzhaf Value Estimator

Theorem 4.10 (restated). Every (possibly randomized) Banzhaf value estimation algorithm that achieves (ε, δ)-approximation
in ℓ∞-norm for constant δ ∈ (0, 1/2) has sample complexity at least Ω( 1ε ).

Proof. To show the lower bound of the sample complexity for Banzhaf value estimation, we use Yao’s minimax principle:
to show a lower bound on a randomized algorithm, it suffices to define a distribution on some family of instances and show a
lower bound for deterministic algorithms on this distribution.

Fix ε ∈ (0, 1). We define the collection of instance I0 as all utility functions U such that U(S) = U(S ∪ n) for all
S ⊆ [n − 1]. We define the collection of instance I1 as all utility functions U s.t. there are exactly 2n−1(2ε) of the
S ⊆ [n− 1] has U(S) = 0, U(S ∪ n) = 1, and for all other S we have U(S) = U(S ∪ n). We define a distribution over
I0 ∪I1 by first randomly picking I0 or I1 with probability 1/2, and then picking a utility function from the selected instance
class uniformly at random.

For any U ∈ I0, we have ϕ(n;U) = 0, and for any U ∈ I1, we have ϕ(n;U) = 2n−1(2ε)
2n−1 = 2ε. Thus, in order to

achieve
∥∥∥ϕ̂− ϕ

∥∥∥
∞

< ε, the estimator must be able to distinguish between whether the utility function is from I0 or I1.

For this, it needs to identify at least one S ⊆ [n − 1] s.t. U(S) = 0, U(S ∪ n) = 1. However, since those S are chosen
uniformly at random, no matter what sampling strategy the algorithm has, each query succeeds with probability at most
2n−1(2ε)/2n−1 = 2ε. Thus, for m queries, the total failure probability is at least (1 − 2mε)/2. To make the failure
probability at most δ, we need number of samples m s.t. (1 − 2mε)/2 ≤ δ, which leads to the lower bound m ≥ 1−2δ

2ε .
Thus, we have m ∈ Ω( 1ε ).
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C.2 MSR Estimator does not Extend to the Shapley Value and Other Known Semivalues

In this section, we provide proof and more discussion about why the existence of the MSR estimator is a unique advantage
of Banzhaf value.

Numerical Instability. It is easy to see that semivalue can be written as the expectation of weighted marginal contribution

ϕsemi (i;U,N,w) :=
1

n

n∑
k=1

w(k)
∑

S⊆N\i,|S|=k−1

[U(S ∪ i)− U(S)]

= ES∼Unif(2N\i)

[
2n−1w(|S|+ 1)

n
(U(S ∪ i)− U(S))

]
= ES∼Unif(2N\i)

[
2n−1w(|S|+ 1)

n
U(S ∪ i)

]
− ES∼Unif(2N\i)

[
2n−1w(|S|+ 1)

n
U(S)

]
= ES∼Unif({S∈2N :S∋i})

[
2n−1w(|S|)

n
U(S)

]
− ES∼Unif(2N\i)

[
2n−1w(|S|+ 1)

n
U(S)

]
(14)

Hence, a straightforward way to design MSR estimator for arbitrary semivalue is to to sample S = {S1, . . . , Sm} each i.i.d.
drawn from Unif(2N ), and estimate ϕ(i) as

ϕ̂MSR(i) =
1

|S∋i|
∑

S∈S∋i

2n−1w(|S|)
n

U(S)− 1

|S̸∋i|
∑

S∈S̸∋i

2n−1w(|S|+ 1)

n
U(S)

For Shapley value, w(|S|) =
(

n−1
|S|−1

)−1
, which makes the MSR estimator for Shapley value becomes

ϕ̂MSR(i) =
1

|S∋i|
∑

S∈S∋i

1

n

(
n− 1

|S| − 1

)−1

U(S)− 1

|S̸∋i|
∑

S∈S̸∋i

1

n

(
n− 1

|S|

)−1

U(S)

which is numerically unstable for large n due to the combinatorial coefficients.

Impossible to construct a special sampling distribution for MSR. The MSR estimator for Banzhaf value samples
from Unif(2N ) since for a random set S ∼ Unif(2N ), we have its conditional distribution S|S ̸∋ i ∼ Unif(2N\i) and
S|S ∋ i ∼ Unif({S ∈ 2N : S ∋ i}), which exactly matches the two distributions the expectation in (14) is taken
over for Banzhaf value. For a semivalue with weight function w, can we design a similar distribution D over 2N so that
ϕsemi (i;U,N,w) = ES∼D|D∋i [U(S)]− ES∼D|D̸∋i [U(S)]? The answer is unfortunately negative. Note that in order to
write ϕsemi (i;U,N,w) in this way, we must have

Pr[D = S|i ∈ S] =
1

n
w(|S|+ 1)

Pr[D = S|i /∈ S] =
1

n
w(|S|)

for any i ∈ N . Now, we consider a particular S s.t. i /∈ S, j ∈ S. Denote x = Pr[i /∈ D], y = Pr[j /∈ D], and k = |S|+ 1.
By Bayes theorem, we have

Pr[D = S|i /∈ S, j ∈ S] =
Pr[j ∈ D|D = S, i /∈ D] Pr[D = S|i /∈ D]

Pr[j ∈ D]

=
w(k − 1)

n(1− y)

=
Pr[i /∈ D|D = S, j ∈ D] Pr[D = S|j ∈ D]

Pr[i /∈ D]

=
w(k)

nx
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Thus we have w(k − 1)x = w(k)(1 − y). Similarly, consider a S′ of the same size s.t. i ∈ S, j /∈ S, we obtain
w(k − 1)y = w(k)(1− x).

Given

w(k − 1)x = w(k)(1− y)

w(k − 1)y = w(k)(1− x)

If x = y, then we have x = w(k−1)
w(k−1)+w(k) which clearly depends on k unless w(1), w(2), . . . , w(n) is a geometric series

(w(k − 1) + w(k) cannot be 0 for all k, and x can also not be 0). The only known semivalue-based data valuation method
that satisfies this property is the Banzhaf value.

If x ̸= y, then we have w(k − 1)(x− y) = w(k)(x− y), which clearly leads to w(k − 1) = w(k) where Banzhaf value is
still the only choice.
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C.3 Robustness of MSR Estimator

Robustness of MSR Estimator Under Noisy Utility Function. As discussed in Section 3, the utility function U is
re-defined as the expected model performance due to the stochasticity of the underlying learning algorithm. Hence, the
actual estimator of the Banzhaf value that we build is based upon the noisy variant Û :

ϕ̃MSR(i) =
1

|S∋i|
∑

S∈S∋i

Û(S)− 1

|S ̸∋i|
∑

S∈S̸∋i

Û(S). (15)

Hence, it is interesting to understand the impact of noisy utility function evaluation on the sample complexity of the MSR
estimator.

Theorem C.2. When ∥U − Û∥2 ≤ γ, ϕ̃MSR is (ε + γ
√
n

2n/2−1 , δ)-approximation in ℓ2-norm with O( n
ε2 log(

n
δ )) calls, and

(ε+ γ
2n/2−1 , δ)-approximation in ℓ∞-norm with O( 1

ε2 log(
n
δ )) calls to Û .

The theorem above shows that our MSR algorithm has the same sample complexity in the presence of noise in Û , with a
small extra irreducible error since typically γ ∝

√
2n.

Recall that

ϕ̃MSR(i) =
1

|S∋i|
∑

S∈S∋i

Û(S)− 1

|S̸∋i|
∑

S∈S ̸∋i

Û(S)

Theorem C.2. When ∥U − Û∥2 ≤ γ, ϕ̃MSR is (ε + γ
√
n

2n/2−1 , δ)-approximation in ℓ2-norm with O( n
ε2 log(

n
δ )) calls, and

(ε+ γ
2n/2−1 , δ)-approximation in ℓ∞-norm with O( 1

ε2 log(
n
δ )) calls to Û .

Proof. Note that for each i ∈ N , ∣∣∣ϕ̃(i)− ϕ(i)
∣∣∣ ≤ ∣∣∣ϕ̃(i)− ϕ̂(i)

∣∣∣+ ∣∣∣ϕ̂(i)− ϕ(i)
∣∣∣

From Theorem 4.9, we have

Pr
ϕ̂

[∣∣∣ϕ̂(i)− ϕ(i)
∣∣∣ ≥ ∆

]
≤ 5 exp

(
−m

32
∆2
)

Now we bound
∣∣∣ϕ̃(i)− ϕ̂(i)

∣∣∣.
∣∣∣ϕ̃(i)− ϕ̂(i)

∣∣∣ =
∣∣∣∣∣∣ 1

|S∋i|
∑

S∈S∋i

(
U(S)− Û(S)

)
− 1

|S̸∋i|
∑

S∈S ̸∋i

(
U(S)− Û(S)

)∣∣∣∣∣∣
≤ 1

|S∋i|
∑

S∈S∋i

∣∣∣U(S)− Û(S)
∣∣∣+ 1

|S̸∋i|
∑

S∈S ̸∋i

∣∣∣U(S)− Û(S)
∣∣∣

Given
∥∥∥U − Û

∥∥∥ ≤ γ, we bound
∣∣∣ϕ̃(i)− ϕ̂(i)

∣∣∣ as follows:

Pr
[∣∣∣ϕ̃(i)− ϕ̂(i)

∣∣∣ ≥ ε
]

≤ Pr

 1

|S∋i|
∑

S∈S∋i

∣∣∣U(S)− Û(S)
∣∣∣+ 1

|S̸∋i|
∑

S∈S ̸∋i

∣∣∣U(S)− Û(S)
∣∣∣ ≥ ε


≤ Pr

 1

|S∋i|
∑

S∈S∋i

∣∣∣U(S)− Û(S)
∣∣∣+ 1

|S̸∋i|
∑

S∈S ̸∋i

∣∣∣U(S)− Û(S)
∣∣∣ ≥ ε|

∣∣∣|S∋i| −
m

2

∣∣∣ ≤ ∆

+ 2 exp

(
−2∆2

m

)

≤
Pr
[

2
m

∑
S⊆S

∣∣∣U(S)− Û(S)
∣∣∣ ≥ ε− 4∆

m

]
1− 2 exp

(
− 2∆2

m

) + 2 exp

(
−2∆2

m

)
(16)
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By
∥∥∥U − Û

∥∥∥ ≤ γ, we have

E[|U(S)− Û(S)|] = 1

2n

∑
S⊆N

∣∣∣U(S)− Û(S)
∣∣∣ = 1

2n

∥∥∥U − Û
∥∥∥
1
≤
√
2n

2n

∥∥∥U − Û
∥∥∥ =

γ

2n/2

Set ε′ = ε− γ
2n/2−1 . Thus

(16) =
Pr
[

2
m

∑
S⊆S

∣∣∣U(S)− Û(S)
∣∣∣− γ

2n/2−1 ≥ ε′ − 4∆
m

]
1− 2 exp

(
− 2∆2

m

) + 2 exp

(
−2∆2

m

)

≤
Pr
[

2
m

∑
S⊆S

∣∣∣U(S)− Û(S)
∣∣∣− 2E[|U(S)− Û(S)|] ≥ ε′ − 4∆

m

]
1− 2 exp

(
− 2∆2

m

) + 2 exp

(
−2∆2

m

)

≤
Pr
[∣∣∣ 2m ∑S⊆S

∣∣∣U(S)− Û(S)
∣∣∣− γ

2n/2−1

∣∣∣ ≥ ε′ − 4∆
m

]
1− 2 exp

(
− 2∆2

m

) + 2 exp

(
−2∆2

m

)

≤
2 exp

(
− 1

8m
(
ε′ − 4∆

m

)2)
1− 2 exp

(
− 2∆2

m

) + 2 exp

(
−2∆2

m

)
≤ 5 exp

(
−m

32
(ε′)2

)
Thus, we have

Pr
ϕ̂

[∣∣∣ϕ̂(i)− ϕ̃(i)
∣∣∣ ≥ ε+

γ

2n/2−1

]
≤ 5 exp

(
−m

32
ε2
)

Therefore,

Pr
[∣∣∣ϕ̃(i)− ϕ(i)

∣∣∣ ≥ ε+
γ

2n/2−1

]
≤ Pr

[∣∣∣ϕ̃(i)− ϕ̂(i)
∣∣∣+ ∣∣∣ϕ̂(i)− ϕ(i)

∣∣∣ ≥ ε+
γ

2n/2−1

]
= 1− Pr

[∣∣∣ϕ̃(i)− ϕ̂(i)
∣∣∣+ ∣∣∣ϕ̂(i)− ϕ(i)

∣∣∣ ≤ ε+
γ

2n/2−1

]
≤ 1− Pr

[∣∣∣ϕ̃(i)− ϕ̂(i)
∣∣∣ ≤ ε

2
+

γ

2n/2−1
∧
∣∣∣ϕ̂(i)− ϕ(i)

∣∣∣ ≤ ε

2

]
≤ Pr

[∣∣∣ϕ̃(i)− ϕ̂(i)
∣∣∣ ≥ ε

2
+

γ

2n/2−1

]
+ Pr

[∣∣∣ϕ̂(i)− ϕ(i)
∣∣∣ ≥ ε

2

]
= 10 exp

(
− m

128
ε2
)

By union bound, we have

Pr

[∥∥∥ϕ̃MSR − ϕ
∥∥∥
2
≥ ε+

γ
√
n

2n/2−1

]
≤ 10n exp

(
− mε2

128n

)
and

Pr
[∥∥∥ϕ̃MSR − ϕ

∥∥∥
∞
≥ ε+

γ

2n/2−1

]
≤ 10n exp

(
−mε2

128

)

By setting δ ≤ 10n exp
(
− mε2

128n

)
, we obtain the sample complexity O

(
n
ε2 log(

n
δ )
)

for ℓ2-norm, and by setting δ ≤

10n exp
(
−mε2

128

)
, we obtain the sample complexity O

(
1
ε2 log(

n
δ )
)

for ℓ∞-norm.
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C.4 Stability of Banzhaf value in ℓ2-norm

As mentioned previously, we can alternatively view a semivalue as a function ϕ : R2n → Rn which takes a utility function
U ∈ R2n as input, and output the values of data points ϕ(U) ∈ Rn. By taking this functional view, a natural robustness
measure for semivalue ϕ(·;w) is its Lipschitz constant L, which is defined as the smallest constant such that∥∥∥ϕ(U ;w)− ϕ(Û ;w)

∥∥∥ ≤ L
∥∥∥U − Û

∥∥∥
for all possible pairs of U and Û .

Theorem C.3. Among all semivalues, Banzhaf value (w(k) = n
2n−1 ) achieves the smallest Lipschitz constant L = 1

2n/2−1 .
In other words, for the Banzhaf value we have∥∥∥ϕbanz(U)− ϕbanz(Û ;w)

∥∥∥ ≤ 1

2n/2−1

∥∥∥U − Û
∥∥∥

for all possible pairs of U and Û , and L = 1
2n/2−1 is the smallest constant among all semivalues.

Proof. Recall that a semivalue has the following representation

ϕsemi (i;U,w) :=
1

n

n∑
k=1

w(k)
∑

S⊆N\{i},|S|=k−1

[U(S ∪ i)− U(S)]

An interesting observation about semivalue is that the transformation ϕ : R2n → Rn is always a linear transformation. Thus,
for every semivalue, we can define Semivalue matrix Sn ∈ Rn×2n where ϕ(U) = SnU . We denote the ith row of Sn as
(Sn)i, and the entry in the ith row corresponding to subset S as (Sn)i,S . It is not hard to see that

(Sn)i,S =
1

n
w(|S|) if i ∈ S

(Sn)i,S = − 1

n
w(|S|+ 1) if i /∈ S

The Lipschitz constant of ϕ is thus equal to the operator norm of matrix Sn, which is the square root of the largest eigenvalue
of matrix SnS

T
n . Now we compute the eigenvalue of matrix SnS

T
n .

For matrix SnS
T
n , its diagonal entry is

d1 =
∑

S∈2n,i∈S

1

n2
w2(|S|) +

∑
S∈2n,i/∈S

1

n2
w2(|S|+ 1)

=
1

n2

[
n∑

k=1

(
n− 1

k − 1

)
w2(k) +

n∑
k=1

(
n− 1

k − 1

)
w2(k)

]

=
2

n2

n∑
k=1

(
n− 1

k − 1

)
w2(k)

and its non-diagonal entry is

d2 =

n∑
k=2

(
n− 2

k − 2

)(
1

n
w(k)

)2

+ 2

n−1∑
k=1

(
n− 2

k − 1

)(
− 1

n2
w(k)w(k + 1)

)
+

n−2∑
k=0

(
n− 2

k

)(
1

n
w(k + 1)

)2

=
1

n2

n−2∑
k=0

(
n− 2

k

)[
w2(k + 2)− 2w(k + 1)w(k + 2) + w2(k + 1)

]
=

1

n2

n−2∑
k=0

(
n− 2

k

)
(w(k + 2)− w(k + 1))

2
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Therefore we can write SnS
T
n = (d1 − d2)1n + d21n where 1n ∈ Rn×n is the identity matrix and 1n ∈ Rn is all-one

matrix. The two eigenvalues are d1 +(n− 1)d2 and d1− d2. Since d2 ≥ 0, the top eigenvalue is d1 +(n− 1)d2. Therefore,
our goal is to find weight function w such that

min
w

d1 + (n− 1)d2

subject to
n∑

k=1

(
n− 1

k − 1

)
w(k) = n

that is, we want to solve

min
w

2

n2

n∑
k=1

(
n− 1

k − 1

)
w(k)2 +

n− 1

n2

n−1∑
k=1

(
n− 2

k − 1

)
(w(k)− w(k + 1))

2

subject to
n∑

k=1

(
n− 1

k − 1

)
w(k) = n

Note that by Cauchy-Schwarz inequality,

n2 =

(
n∑

k=1

(
n− 1

k − 1

)
w(k)

)2

=

(
n∑

k=1

√(
n− 1

k − 1

)√(
n− 1

k − 1

)
w(k)

)2

≤

(
n∑

k=1

(
n− 1

k − 1

))( n∑
k=1

(
n− 1

k − 1

)
w(k)2

)

= 2n−1
n∑

k=1

(
n− 1

k − 1

)
w(k)2

Thus the first term in the objective function is lower bounded by 2
2n−1 , which is achieved when w(1) = . . . = w(n) = n

2n−1 ,
and this is also where the minimum of the second term achieved, i.e., just 0. Thus, the minimum possible minw =

d1 + (n− 1)d2 = 1
2n−2 , and thus the operator norm of Sn =

√
1

2n−2 = 1
2n/2−1 .
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D EXPERIMENT SETTINGS & ADDITIONAL EXPERIMENTAL RESULTS

We provide a summary of the content in this section for the convenience of the readers.

• Appendix D.1: Experiment Settings for Figure 1 and 2 in the main text.

• Appendix D.2: Experiment Settings for Sample Efficiency Experiment in Section 5.1.

• Appendix D.3: Experiment Settings for Applications in Section 5.3.

• Appendix D.4: Experiment Settings and Additional Results for Rank Stability Experiment in Section 5.2.

• Appendix D.5: Additional Results for Rank Stability Experiment on Tiny Datasets.

• Appendix D.6: Additional Results for Rank Stability on Gradient Descent with Randomized Smoothing.

D.1 Experiment Settings for Figure 1 and 2 in the Main Text.

We estimate the LOO error, Shapley, and Banzhaf value on a size-2000 CIFAR10 dataset where we randomly flip the label
of 10% data points. We use the state-of-the-art estimator for the Shapley and Banzhaf value for Figure 1 (b) and (c), i.e.,
Permutation sampling for the Shapley value and our MSR estimator for Banzhaf value. For both the Shapley and Banzhaf
value, we set the number of samples as 50,000 where the sampling distributions depend on the corresponding estimators.
We compute the LOO with its exact formula but with noisy utility scores, and we align the number of (potentially repeated)
samples also as 50,000. For each sample S, we train 5 models on it with different random seeds, and obtain 5 noisy versions
of U(S). We then compute 5 different LOO/Shapley/Banzhaf values for 20 randomly selected CIFAR10 images (including
5 mislabeled images), and draw the corresponding box-plot in Figure 1. The learning architecture we use is a standard CNN
adapted from PyTorch tutorial8, with batch size 32, learning rate 10−3 and Adam optimizer for training.

In Figure 2, we compare the stability of different data valuation techniques in maintaining a consistent set of top-influence
data points. Specifically, we follow the same protocol as the setting for Figure 1 and compute 5 different versions of data
value scores for each data point. We then count the percentage of data points that are consistently ranked in the top or
bottom-k% across all the runs.
Remark D.1. The results in Figure 1 and 2 in the main text also depend on the robustness of data valuation methods’
corresponding estimator. We use the best-known estimators for each data valuation method in the experiment to reduce the
impact of the estimation procedure as much as possible.

D.2 Experiment Settings for Sample Efficiency Experiment in Section 5.1

For Figure 4 (a), we use a synthetic dataset with only 10 data points. To generate the synthetic dataset, we sample 10 data
points from a bivariate Gaussian distribution where the means are 0.1 and −0.1 on each dimension, and the covariance
matrix is the identity matrix. The labels are assigned to be the sign of the sum of the two features. The utility of a subset is
the test accuracy of the model trained on the subset. A logistic regression classifier trained on the 10 data points achieves
around 80% test accuracy. We show the Banzhaf value estimate for one data point in Figure 4 (a).

For Figure 4 (b), we use a size-500 MNIST dataset. The Relative Spearman Index is computed by the Spearman Index of the
ranking of the value estimates between the current iteration, and the ranking of the value estimates when given additional
1000 samples. The learning architecture we use is LeNet (LeCun et al., 1989), with batch size 32, (initial) learning rate
10−3 and Adam optimizer for training.

D.3 Experiment Settings for Applications in Section 5.3

D.3.1 Datasets & Models

A comprehensive list of datasets and sources is summarized in Table 3. Similar to the existing data valuation literature
(Ghorbani and Zou, 2019; Kwon and Zou, 2021; Jia et al., 2019b; Wang et al., 2021), we preprocess datasets for the ease of
training. For Fraud, Creditcard, Vehicle, and all datasets from OpenML, we subsample the dataset to balance positive and
negative labels. For these datasets, if they have multi-class, we binarize the label by considering 1[y = 1]. For the image

8https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html

https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html
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Dataset Source

MNIST LeCun (1998)
FMNIST Xiao et al. (2017)
CIFAR10 (Krizhevsky et al., 2009)

Click https://www.openml.org/d/1218
Fraud Dal Pozzolo et al. (2015)

Creditcard Yeh and Lien (2009)
Vehicle Duarte and Hu (2004)
Apsfail https://www.openml.org/d/41138

Phoneme https://www.openml.org/d/1489
Wind https://www.openml.org/d/847
Pol https://www.openml.org/d/722

CPU https://www.openml.org/d/761
2DPlanes https://www.openml.org/d/727

Table 3: A summary of datasets used in Section 5.3’s experiments.

dataset CIFAR10, we follow the common procedure in prior works (Ghorbani and Zou, 2019; Jia et al., 2019b; Kwon and
Zou, 2021): we extract the penultimate layer outputs from the pre-trained ResNet18 (He et al., 2016). The pre-training is
done with the ImageNet dataset (Deng et al., 2009) and the weight is publicly available from PyTorch. We choose features
from the class of Dog and Cat. The extracted outputs have dimension 512. For the image dataset MNIST and FMNIST, we
directly train on the original data format, which is a more challenging setting compared with the previous literature.

For MNIST and FMNIST, we use LeNet (LeCun et al., 1989), with batch size 128, (initial) learning rate 10−3 and Adam
optimizer for training. For CIFAR10 dataset, we use a two-layer MLP where there are 256 neurons in the hidden layer, with
activation function ReLU, with batch size 128, (initial) learning rate 10−3 and Adam optimizer for training. For the rest
of the datasets, we use a two-layer MLP where there are 100 neurons in the hidden layer, with activation function ReLU,
(initial) learning rate 10−2, and Adam optimizer for training. We use batch size 128 for Creditcard, Apsfail, Click, and CPU
dataset, and batch size 32 for the rest of datasets.

D.3.2 Experiment Settings

For MNIST, FMNIST, and CIFAR10, we consider the number of data points being valued as 2000. For Click dataset, we
consider the number of data points to be valued as 1000. For Phoneme dataset, we consider the number of data points to be
valued as 500. For the rest of the datasets, we consider the number of data points to be valued as 200. For each data value
we show in Table 1 and 2, we use the corresponding state-of-the-art estimator to estimate them (for Data Shapley, we use
Permutation Sampling; for Data Banzhaf, we use our MSR estimator; for Beta Shapley, we use the Monte Carlo estimator
by Kwon and Zou (2021)). We stress that the Monte Carlo estimator by Kwon and Zou (2021) is not numerically stable
when the training set size > 500, so for datasets with > 500 data points (MNIST, FMNIST, CIFAR10, and Click), we omit
the results for Beta Shapley. We set the number of samples to estimate Data Banzhaf, Data Shapley, and Beta Shapley as
100,000.

All of our experiments are performed on Tesla P100-PCIE-16GB GPU.

Learning with Weighted Samples. For each estimated data value, we normalize it to [0, 1] by value−min
max−min . Let ϕ(i) be

the normalized value for data point i. We compare the test accuracy of a weighted risk minimizer fϕ defined as

fϕ := argmin
f

∑
i∈N

ϕ(i)lossf (i) (17)

where lossf (i) denote the loss of f on data point i ∈ N .

Noisy Label Detection. We flip 10% of the labels by picking an alternative label from the rest of the classes uniformly at
random.

https://www.openml.org/d/1218
https://www.openml.org/d/41138
https://www.openml.org/d/1489
https://www.openml.org/d/847
https://www.openml.org/d/722
https://www.openml.org/d/761
https://www.openml.org/d/727
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Figure 6: The stability of data value ranking measured by Spearman index between the ranking of “ground-truth” data value
and the ranking of data value estimated from noisy utility scores, where (a) is on CPU dataset and (b) is on CIFAR10 dataset
(same as Figure 5 except for the additional curve for the Least core).

D.4 Experiment Settings and Additional Results for Rank Stability Experiment in Section 5.2

In this section, we describe the detailed settings and additional results on comparing the rank stability of different data
values on natural datasets. We also evaluate an additional baseline, the least cores, another existing data value notion which
is not a semivalue but also originates from cooperative game theory (see the description in Appendix A). The estimation
algorithm for the least core is the Monte Carlo algorithm from Yan and Procaccia (2020).

Settings. We experiment on ‘CPU’ (200 data points) and ‘CIFAR10’ (500 data points) datasets from Table 3. The data
preprocessing procedure, model training hyperparameters, and the estimation algorithm for semivalues are the same as
what have described in Appendix D.3.1 and D.3.2. The perturbations of the model performance scores are caused by the
randomness in neural network initialization and mini-batch selection in SGD.

The tricky part of the experiment design is that we need to find a way to adjust the scale of the perturbation caused by a
natural stochastic learning algorithm. Our preliminary experiments show that the variance of performance scores does not
have a clear dependency on the training hyperparameters such as mini-batch sizes. To solve this challenge, we design the
following procedure to control the magnitude of the perturbation with a single parameter k:

1. Sample m data subsets S1, . . . , Sm (the subset sampling distributions depend on specific semivalue estimators).

2. For each subset Si, we execute Û(Si) for k times and obtain k independent performance score samples u1, . . . , uk ∼
Û(Si). We compute Ũk(Si) =

1
k

∑k
j=1 uj .

3. Estimate the semivalue with the corresponding estimators based on samples Ũk(S1), . . . , Ũk(Sm).

In other words, k is the number of runs that we execute a stochastic learning algorithm in order to estimate the expected utility
on a given subset. With a larger k, the noise in the estimated utility will become smaller. Since it is infeasible to compute
the ground-truth data values for this experiment, we approximate the ground-truth by setting k = 50 (called reference data
value in the caption of figures). As k increases, the difference between Ûk(Si) and the approximated ground-truth scores
will be smaller with high probability. We set the budget of samples used to estimate the semivalues as m = 2000 (same for
the ground-truth) for all semivalues for a fair comparison. It is worth noting that in this case, the rank stability is not just
related to the property of the data value notion, but also the corresponding estimator.

Results. We plot the Spearman index between the approximated ground-truth data value ranking and the estimated data
value ranking with different ks in Figure 6, where (b) is the same figure we show in the main text (with the additional
baseline of the Least core). As we can see, Data Banzhaf once again outperforms all other data value notions on both
datasets. It achieves better rank stability than others by a large margin for a wide range of ks.
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Figure 7: Impact of the noise in utility scores on the stability of data value ranking measured by Spearman index between
the ranking of exact data value and the ranking of data value estimated from noisy utility scores.

D.5 Additional Results for Ranking Stability Experiment on Tiny Datasets

The ranking stability results in Section 5.2 and Appendix D.4 do not compute the exact data value but use the corresponding
estimation algorithms. In this section, we present an additional result of ranking stability on tiny datasets when we are able
to compute the exact data value.

Similar to the evaluation protocol for sample efficiency comparison, we experiment on a synthetic dataset with a scale (10
data points) that we can compute the exact ranking for different data value notions. We use the same synthetic dataset as
in the sample efficiency experiment in Section 5.1. The performance score of a subset is the test accuracy of the Logistic
regression model trained on the subset. In Figure 7, we plot the Spearman index between the ranking of exact data values
and the ranking of data values computed from noisy utility scores. For each noise scale σ on the x-axis of Figure 7 (a), we
add random Gaussian noise N (0, σI) to perturb the performance score. That is, Û = U +N (0, σI). We then compute the
Spearman index between the ranking of exact data values (derived from U ) and the ranking of data values derived from
noisy utility scores Û . We repeat this procedure 20 times and take the average Spearman index for each point in the figure.

The main considerations behind the design choices of synthetic dataset and Gaussian noise addition are the following:

• In order to rule out the influence of estimation error, we would like to compute the exact ranking of data points in terms
of different data value notions, which means that we can only use a toy example with ≤ 15 data points. In this case, it
does not make sense to use SGD for training.
• According to our preliminary experiment results, the variance of performance scores does not have a clear dependency

on the SGD’s training hyperparameters such as mini-batch sizes. The relationship between performance variance and
training hyperparameters is an interesting direction for future work.

D.6 Additional Results for Rank Stability on Gradient Descent with Randomized Smoothing

In our experiment, we mainly use SGD and its variants as the test case since SGD is arguably the most frequently used
stochastic learning algorithm nowadays. However, the robustness guarantee derived in our theory (Section 4) is agnostic to
the structure of perturbation, which means that it applies to perturbations caused by arbitrary kinds of learning algorithms.
Therefore, we expect to get similar rank stability results when experimenting with other kinds of stochastic learning
algorithms. For completeness, we perform an additional ranking stability experiment with another useful stochastic learning
algorithm, gradient descent with randomized smoothing (Duchi et al., 2012).

We use loss(θ,N) =
∑

i∈N loss(θ, i) to denote the loss of model with parameter θ on the dataset N . For regular gradient
descent, at iteration t, the model is updated as

θt+1 = θt − η∇loss(θt, N) (18)

where ∇ denotes the derivative with respect to θ. In contrast to the regular gradient descent, the randomized smoothing
technique convolves Gaussian noise with the original learning loss function and the model is updated instead by “smoothed
gradient”:

θt+1 = θt − η
1

ℓ

ℓ∑
j=1

∇loss(θt + αN (0, I), N) (19)
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Figure 8: The stability of data value ranking measured by Spearman index between the ranking of reference data value and
the ranking of data value estimated from noisy utility scores, where (a) is on CPU dataset and (b) is on CIFAR10 dataset.

We compare the rank stability of different semivalues on the CPU dataset and the CIFAR10 dataset, with exactly the same
experiment setting as in Appendix D.4, except for replacing SGD-based training with the gradient descent with randomized
smoothing technique. We set ℓ = 1 to introduce larger randomness, and the smoothing radius α to be equal to the learning
rate. The results are shown in Figure 8. As we can see, Data Banzhaf once again outperforms all other data value notions
when the sources of performance score perturbation are changed from SGD to gradient descent with randomized smoothing.
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