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Abstract

This paper proposes probabilistic conformal pre-
diction (PCP), a predictive inference algorithm
that estimates a target variable by a discontinuous
predictive set. Given inputs, PCP constructs the
predictive set based on random samples from an
estimated generative model. It is efficient and
compatible with conditional generative models
with either explicit or implicit density functions.
We show that PCP guarantees correct marginal
coverage with finite samples and give empirical
evidence of conditional coverage. We study PCP
on a variety of simulated and real datasets. Com-
pared to existing conformal prediction methods,
PCP provides sharper predictive sets.

1 INTRODUCTION

A core problem in supervised machine learning is to predict
a target variable Y ∈ Y given a vector of inputs X ∈ Rp.
In this problem, a predictive function q(Y |X) is fitted on
an observed dataset D = {(Xi, Yi)}Ni=1 and then used to
predict the target YN+1 of a new data point with inputs
XN+1. While much of machine learning focuses on point
predictions of Y , the problem of predictive inference aims
at more robust prediction. In predictive inference, our goal
is to create a predictive set that is likely to contain the
unobserved target (Geisser, 1993).

In particular, the field of conformal prediction develops pre-
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dictive inference algorithms that aim for calibrated coverage
probabilities (Papadopoulos et al., 2002; Vovk et al., 2005).
Assume the data pairs (Xi, Yi) are sampled independent
and identically distributed (i.i.d) from a population distri-
bution P(X,Y ). Given an input X , a conformal prediction
algorithm provides a set Cα(X) such that

PX,Y (Y ∈ Ĉα(X)) ≥ 1− α. (1)

The scalar α ∈ [0, 1] is a predefined miscoverage rate and
Ĉα(X) ⊂ Y is the predictive set. A set that satisfies Eq. (1)
is called a valid predictive set. Since the trivial set Ĉα(X) =
Y is valid, a major desideratum is to keep the size of the
predictive set small and thus informative. This property
is known as sharpness (Lei et al., 2015). In this paper,
we develop a new method for conformal prediction that
produces valid and sharp predictive sets.

Existing conformal prediction methods often produce a con-
tinuous interval as the predictive set (Lei and Wasserman,
2014; Barber et al., 2019b; Romano et al., 2019; Sesia and
Romano, 2021; Messoudi et al., 2021). Such intervals are
appropriate in some predictive situations. However, consider
a target distribution with separated high-density regions. In
this setting, to ensure validity the set must include all of the
high-density regions; but since it is continuous it must also
include the low-density regions between them. In a nutshell,
the continuity of the predictive sets posits a tension between
the validity and sharpness.

For example, consider a prediction problem that estimates
the drop-off location of a taxi passenger based on the pas-
senger’s information. The target distribution is likely to be
multimodal, centered around locations such as tourist attrac-
tions and transit centers. A continuous predictive set have
to encompass these regions, regardless of how far apart they
are. A more informative set would contain the regions them-
selves, but not the areas between them. The multimodal
target distribution is prevalent in practice such as the effects
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(a) Sample Data (b) CDSplit (c) CHR (d) PCP (Ours) (e) HD-PCP (Ours)

Figure 1: NYC Taxi data. The covariates are pickup location (red pin) and other passenger information; The targe is the
dropoff location (blue pin). Left to right: Five random samples from Travel Data; Predictive sets output by CDSplit (Izbicki
et al., 2020), CHR (Sesia and Romano, 2021), PCP, and HD-PCP for one travel record.

of a stroke on brain regions (Gillmann et al., 2021) and the
action rewards of a robot (Myers et al., 2022).

Fig. 1 provides an example of the taxi application. Panel (a)
illustrates the data, the destinations of NYC taxi passengers.
Given a new set of inputs, panels (b) and (c) show existing
conformal prediction methods, which predict large regions
for the possible destinations. Panels (d) and (e) show the
results of our algorithms (probabilistic conformal prediction
(PCP)), which form sharper predictive sets from distinct
subregions of the map. Fig. 2 illustrates the algorithm.

In more detail, PCP builds on the split conformal prediction
framework (Lei and Wasserman, 2014; Papadopoulos et al.,
2002). It begins by randomly splitting the observed data
D into a preliminary set Dpre and a calibration set Dcal. It
then has three stages. (1) It fits a conditional generative
model q(Y |X) to the preliminary data Dpre. (2) For each
point (Xi, Yi) in the calibration set Dcal, it generates K

independent samples of preditions ŶXi
= {Ŷi1, · · · , ŶiK}

from the fitted model q(Y |Xi). It then calculates the dis-
tance between each sampled predition and the true label
Yi. These quantities are called the nonconformity scores
and measure the goodness-of-fit of the generative model.
(3) Finally, it calculates and records the (1− α) empirical
quantile of the nonconformity scores. The quantile will be
used to construct the predictive sets.

To form the predictive set of a new datapoint, first PCP gen-
erates prediction samples from the fitted target distribution.
Then each sample is expanded to a ball that centers at the
sample point and has a radius equal to the quantile com-
puted from the calibration set. Finally, the predictive set is
defined as the union of the balls over the samples. Because
it is centered at high-density regions, this predictive set is
sharp. Further, as we prove below, it is valid.

There are several advantages to PCP (and a related exten-
sion, high-density PCP). First, it adapts automatically to
the landscape of the target distribution, providing sharp and
valid predictive sets regardless of the underlying distribution.
Second, the generative model for PCP may have an explicit

or implicit density function as long as it can generate ran-
dom samples. Without requiring an explicit density, PCP
is compatible with the likelihood-free prediction (Alsing
et al., 2019; Chan et al., 2018) and is less prone to model
misspecification (Mirza and Osindero, 2014). Last, (HD-
)PCP can be applied to multi-target regression where the
target variable Y ∈ RT , T ≥ 1 (Breiman and Friedman,
1997; Messoudi et al., 2021). As we shall see, (HD-)PCP
scales efficiently with the target dimension and creates a
sharp predictive set by capturing the targets’ dependencies.

2 RELATED WORK

PCP provides a contribution to the growing field of confor-
mal prediction. Some conformal prediction methods are
based on predicting summary statistics of the target distri-
bution, for example, by fitting a mean response function
(Lei et al., 2018), conditional quantile functions (Romano
et al., 2019) and approximate histograms (Sesia and Ro-
mano, 2021). However, these methods produce a single
continuous interval as the predictive set, which might be too
loose for multimodal targets.

Other conformal prediction methods estimate the full target
distribution. Distributional conformal prediction (DCP) is
based on the estimated cumulative density function (Cher-
nozhukov et al., 2021) but its prediction is often sensitive
to the tail estimation (Sesia and Romano, 2021). CDSplit
uses a level set of the estimated probability density function
as the predictive set (Izbicki et al., 2020). Similar to PCP,
CDSplit can produce discontinuous predictive sets. How-
ever, the level set might be loose when the distribution has
high dispersion and it has to be computed approximately.
PCP is more computationally efficient than CDSplit, and
further it is compatible with likelihood-free predictions due
to the sampling-based design. Empirically, across multi-
ple datasets, PCP creates sharper predictive sets than these
existing conformal methods.

Finally, there are a few conformal methods for multi-
target regression (Messoudi et al., 2020, 2021; Neeven and
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Smirnov, 2018). Compared to these methods, PCP models
the target variables jointly and can produce discontinuous
predictive sets. As we show in the empirical studies, PCP
provides sharper and more interpretable predictions.

3 PROBABILISTIC CONFORMAL
PREDICTION

Problem setup Consider i.i.d. pairs of covariates Xi and a
target variable Yi, i.e., D = {(Xi, Yi)}Ni=1, from a distribu-
tion P (X,Y ). We observe data D and the covariates XN+1

of a new data point. To form a predictive set Ĉ(XN+1)
for the unobserved target YN+1 with valid uncertainty es-
timation, we create a predictive set Ĉα(·) : X 7→ Y that
satisfies Eq. (1) for α ∈ [0, 1]. Since an arbitrary wide pre-
dictive set has valid coverage, a predictive set should be as
sharp as possible. Classic conformal prediction is based on
leave-one-out estimation (Vovk et al., 2005), which has high
computational cost due to multiple model fitting. In this
paper, we adopt the split conformal prediction framework,
which improves computational efficiency by data-splitting
(Lei et al., 2018; Papadopoulos et al., 2002). It randomly
splits the observed data to a preliminary set and a calibration
set. The model is fitted on the preliminary set and kept fixed
in computing the nonconformity scores on the calibration
set and the test set.

3.1 Generative model fitting

The proposed PCP depends on random samples from a
conditional generative model (CGM) q(Y |X) that approxi-
mates the target variable distribution p(Y |X). This differs
from standard conformal prediction methods that are based
on fitting the summary statistics such as the conditional
mean and quantiles of the target (Lei and Wasserman, 2014;
Romano et al., 2019) and that depend on evaluating prob-
ability densities (Izbicki et al., 2020; Chernozhukov et al.,
2021; Hoff, 2021). Since the only requirement is to sample
from q(Y |X), we consider both typical CGMs with explicit
density functions and popular CGMs with implicit density.
In particular, we consider PCP with explicit models such as
Kernel Mixture Network (KMN) (Ambrogioni et al., 2017),
Mixture Density Network (MixD) (Bishop, 1994), and im-
plicit models such as GAN (Mirza and Osindero, 2014). See
Section D for more details about CGMs used. We regard
CGMs as backbone models for PCP.

3.2 Uncertainty calibration with random samples

Suppose a conditional density model is fitted on a prelim-
inary dataset Dpre. We use the fitted model q(Y |X) and
the calibration data to construct a predictive set for a new
test data point. For a data point (Xi, Yi) in the calibration
set, the algorithm first generates K random samples Ŷik,
k = 1, · · · ,K independently from q(Y |Xi), denoted as

Ŷi = {Ŷi1, · · · , ŶiK}. Then, it computes the distance from
the observed outcome to this set of samples as

Ei = min
1≤k≤K

∥∥∥Yi − Ŷik

∥∥∥ . (2)

The scalar Ei is set as the nonconformity score. The norm
∥·∥ in Eq. (2) is user-specified. For the regression problems
considered in this paper, we choose the Euclidean norm.

The score in Eq. (2) adopts the standard notation of dis-
tance between a point and a set. Intuitively, a small score
indicates that the speculated outcomes Ŷik are close to the
observed outcome Yi, where Ŷik are from the approximate
density q(Y |Xi) and Yi is from the true underlying density
p(Y |Xi). We use the empirical quantile of the noncon-
formity scores from the calibration data to construct the
predictive set. The α-th empirical quantile is defined as
Qα(E1:n) = infE{(

∑n
i=1 1[Ei ≤ E])/n ≥ α} where

α ∈ [0, 1] and 1[·] is the indicator function.

For a new data point with covariates X , we generate
Ŷ = {Ŷ1, · · · , ŶK} with Ŷk ∼ q(Y |X). Suppose that the
desired nominal coverage is 1− α. Then, each sample Ŷk

is expanded to a region Rk = {y : ||y − Ŷk|| ≤ r} with
r = Q1−α({E1, · · · , En} ∪ {∞}). We call Rk an element
region of the data point X . The proposed predictive set is
the union of the element regions,

Ĉ(X, Ŷ) = ∪K
k=1Rk

= ∪K
k=1

{
y :

∥∥∥y − Ŷk

∥∥∥ ≤ Q1−α(E1:n ∪ {∞})
}
. (3)

As a special case, when the outcome is a scalar, the
predictive set can be written explicitly as

Ĉ(X, Ŷ) = ∪K
k=1

[
Ŷk −Q1−α(E1:n ∪ {∞}),

Ŷk +Q1−α(E1:n ∪ {∞})
]
. (4)

The proposed PCP algorithm is summarized in Algorithm 1.

3.3 Properties of the nonconformity score

The nonconformity score in Eq. (2) measures the local
conformity with several desired properties. First, the min-
imization operator in Eq. (2) leads to high conformity when
one of the generated samples is close to the observed target,
regardless of the positions of other samples. Considering
a multimodal target distribution, some samples can capture
the modes that the observed Y is not at but do not increase
the nonconformity score. The points at the low density
regions between the modes would have high nonconformity
scores and hence are not included in the predictive set. This
is in contrast to other ways of score design such as the mean
distance between {Ŷik} and Yi. Second, the score in Eq. (2)
reflects the goodness-of-fit. Consider a CGM with high
density and a CGM with low density at the region where
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Figure 2: Illustration of PCP. Data: i.i.d data D = {(Xi, Yi)}Ni=1; Modeling: K random samples generated from a fitted
q(Y |X); Calibration: compute scores Ei and the quantile ∆y; Prediction: construct the predictive set Ĉ(X) for a test data.

p(Y |X) is high. Though at a first glance, for a specific data
point, both CGMs might produce a set of samples leading to
similar scores. However, the quantile Q1−α(E1:n ∪ {∞})
is computed over multiple points. The CGM with a better fit
has more samples around the observed target, thus produc-
ing a smaller score in expectation due to the minimization
operator, a lower Q1−α, and finally a sharper predictive set.

As shown in Eq. (3), the predictive set can be either contin-
uous or discontinuous. Therefore, it can produce a sharp
estimate by automatically adapting to the target distribu-
tion. When the generative model is not fitted well, PCP
maintains a valid marginal coverage, properly quantifying
the predictive uncertainty. When the generative model fits
well, the predictive set allocates its volume according to the
random samples. For example, if p(Y |X) is multimodal
and the multimodality is captured by the estimated q(Y |X),
the predictive set would consist of discontinuous sets around
the modes where each set is relatively small.

Though in some situations, a continuous interval prediction
is preferred in terms of interpretability (Sesia and Romano,
2021), when the target is multimodal, a discontinuous set
might be more interpretable. For example, when predicting
a watch price based on its appearance without knowing the
brand, a price range ($100, $200) ∪ ($1000, $1200) might
be more informative than ($100, $1200). Nevertheless, one
can take the convex hull of a discontinuous set to form a
continuous interval but not vice versa.

By the construction of the predictive set in Eq. (3), the esti-
mated density q(Y |X) can be explicit or implicit, allowing
for a wide range of CGMs. Moreover, the predictive set in
Eq. (3) can be computed without approximation, making
PCP scalable to a high dimensional target Y .

3.4 Statistical guarantees

PCP has a guaranteed marginal coverage as in Theorem 1.

Theorem 1. Suppose (Xi, Yi), i ∈ {1, 2, · · · , n} and
(X,Y ) are exchangeable, then

Algorithm 1 Probabilistic Conformal Prediction
Input: Data D = {(Xi, Yi)}Ni=1, model q(Y |X), nominal
level α, test point X , sample size K.

Step I: Conditional generative model
1: Split the data into three folds Ztr, Zval, Zcal with set of

index as Itr, Ival, Ical respectively
2: Fit q(Y |X) on Ztr with hyper-parameter chosen by

cross validation on Zval

Step II: Predictive set for a test point
1: For i ∈ Ical, sample Ŷi1, · · · , ŶiK ∼ q(Y |Xi)
2: For test point X , sample Ŷ1, · · · , ŶK ∼ q(Y |X)
3: Compute nonconformity score {Ei}i∈Ical by Eq. (2),

EN+1 = ∞, Ĩcal = Ical ∪ {N + 1}
4: Set r as the (1− α) empirical quantile of {Ei}i∈Ĩcal

5: Compute the predictive set Ĉ(X, Ŷ) by Eq. (3)
Output: Predictive set Ĉ(X, Ŷ)

(1) the predictive set in Eq. (3) satisfies

PX,Y,Ŷ(Y ∈ Ĉ(X, Ŷ)) ≥ 1− α; (5)

(2) when the scores E1, · · · , En are distinct almost surely,

PX,Y,Ŷ(Y ∈ Ĉ(X, Ŷ)) ≤ 1− α+
1

n+ 1
. (6)

Theorem 1 demonstrates that the marginal coverage of PCP
is valid and tight. In particular, the condition of the upper
bound is satisfied when p(Y |X) is continuous in the regres-
sion setting. Note that the coverage probability in Theorem 1
is with respect to both (X,Y ) and Ŷ, which requires new
adaptations of the standard conformal inference proof. The
details are in Section A.

In practice, we take the quantile of E1:n instead of the in-
flated scores E1:n∪{∞} in Eq. (3). The following corollary
offers the coverage guarantee under such modification.
Corollary 1. Under the conditions of Theorem 1 and sup-
pose α ≥ 1/(n+1), if the quantile in Eq. (3) is Q1−α(E1:n),
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then P(Y ∈ Ĉ(X, Ŷ)) ∈ [1−α−1/(n+1), 1−α+1/(n+
1)]; if the quantile in Eq. (3) is Q(1−α)(1+ 1

n )(E1:n), then

P(Y ∈ Ĉ(X, Ŷ)) ∈ [1− α, 1− α+ 1/(n+ 1)]

Conditional coverage. The guarantees in Theorem 1 is not
for a fixed Xi. The miss of conditional coverage has been
shown as a consequence of the distribution-free assumption
(Barber et al., 2019a). Some existing work establish condi-
tional coverage under strong assumptions such as unimodal
and bounded target distribution (Sesia and Romano, 2021),
asymptotic assumption with n → ∞, and the consistency of
the predictive model (Chernozhukov et al., 2021; Sesia and
Romano, 2021). In this paper, instead of invoking strong
assumptions, we empirically evaluate the conditional cover-
age of PCP with metrics developed and adopted by a variety
of conformal prediction studies (Romano et al., 2020; Gibbs
and Candès, 2022; Taufiq et al., 2022; Xu and Xie, 2022).

3.5 High Density Probabilistic Conformal Prediction

Ideally, we may want the predictive sets to contain only
high density regions to offer interpretable predictions. As
shown in Section B, for different sets with the same coverage
probability under a multimodal distribution, the high density
region has the smallest size.

In PCP, the generated random samples include low density
samples. This may lead to many isolated sets and make
interpretation difficult. To mitigate this problem, we propose
High Density Probabilistic Conformal Prediction (HD-PCP)
to filter out β fraction low-density samples to identify the
high density regions when q(Y |X) is explicit. Instead of
sampling K samples from q(Y |X) like in PCP, we keep
(1 − β) fraction of K samples with the highest estimated
density. The HD-PCP algorithm is summarized in Section B.
The marginal coverage guarantee still holds for HD-PCP.

Corollary 2. Under the conditions of Theorem 1, HD-PCP
has the same marginal coverage as PCP.

4 EXPERIMENTS

In this section, we conduct a comprehensive analysis demon-
strating the advantages of PCP compared to previously pro-
posed conformal prediction methods. We aim to answer the
following questions: (a) how does PCP perform in terms
of coverage and predictive set size when compared with
baseline models on synthetic datasets? (b) Does the filtering
improve the predictive set of HD-PCP? (c) How well do
PCP and HD-PCP perform on real datasets with a single
target? (d) How do the backbone models impact the perfor-
mance of PCP? (e) Does PCP provide better predictive sets
in tasks with multi-dimensional targets?

We first conduct experiment on classic 2D synthetic data
to answer question (a) and (b). Then, we compare PCP

and HD-PCP with a full set of baseline methods on sev-
eral selected real datasets to address question (b), (c) and
(d). Finally, we conduct experiments on multi-dimensional
regression tasks to address question (e).

Baselines. We consider CHR (Sesia and Romano, 2021),
DistSplit (Izbicki et al., 2020), CDSplit (Izbicki et al., 2020),
DCP (Chernozhukov et al., 2021), and CQR (Romano et al.,
2019) as our comparison baselines. For CHR, we use two
different conditional density estimation models based on
neural networks and random forest, and we denote them as
CHR-NN and CHR-QRF. We evaluate all baselines with
their public implementations except for CDSplit. We im-
plement a python-based CDSplit based on the official R
code to use the same backbone generative model for a fair
comparison, denoted as CDSplit-KMN and CDSplit-MixD.

Choosing the hyperparameter K. We conduct an ablation
study on the effect of the sample size K of PCP. As shown
in Fig. 5, empirically we find when K increases, the average
size of the predictive sets first reduces fast and then reduces
slow. In practice, we set K moderately large to balance
the sharpness and the computational cost, i.e., K = 40 or
K = 1000 (two-dimensional targets). K = 1000 is chosen
since it is at the same magnitude as 402.

4.1 Synthetic data experiments

To evaluate the effectiveness of the proposed methods, we
compare the predictive set of PCP and HD-PCP with other
baseline methods on synthetic data. We show the evaluation
results of the s-curve and the 25-Gaussians in Fig. 3 and
place detailed results in Appendix E.

Fig. 3 illustrates that when the dataset has multimodal
p(Y |X) distribution, models considering multimodality,
such as CDSplit and (HD-)PCP, work apparently better
than the models that can only provide unimodal predictions
(question (a)). Quantitatively, all models achieve the target
marginal coverage (1 − α), while the average set sizes of
CDSplit and (HD-)PCP are several times smaller than that
from CHR. CDSplit and PCP both can provide sharp and
informative predictive sets for these multimodal datasets
and PCP is slightly better with respect to the set size. The
right two panels show the effect of filtering high density
samples. The predictive sets by HD-PCP become cleaner
and concentrated on the correct modes. Correspondingly,
the average set size of HD-PCP is smaller than PCP. The
histogram moving from blue bins to orange bins also shows
the effectiveness of the filtering (question (b)).

4.2 Real data experiments

We study regression tasks on several real datasets to evaluate
PCP and HD-PCP. We consider multiple types of generative
models q(Y |X), including implicit models (GAN Goodfel-
low et al. (2014)) and semi-implicit model (Yin and Zhou,
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Figure 3: Visualization of predictive sets (α = 0.1) on 2D toy datasets: s-curve and 25-Gaussians. We shows the predictive
sets on 100 test data samples. Blues lines: the predictive sets from each method; Blue dots: test points that are not covered
by the predictive sets; Reds dots: test points covered. We report the marginal coverage and the average set size across
test datapoints in the x-axis label. The fifth column shows the histogram of the number of predicted intervals of PCP and
HD-PCP. We set K = 40 for (HD-)PCP, β = 0.2. Detailed experiments are in Section E.
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Figure 4: (a): Conditional data distribution p(Y |X) for multi-target synthetic dataset. (b), (c): Marginal coverage and
set size for baselines. Though all methods achieve similar coverage in (b), PCP produces the smallest set size when the
covariance ρ increases as shown in (c).

2018a,b), explicit models (KMN (Ambrogioni et al., 2017),
MixD (Bishop, 1994), and QRF (Meinshausen, 2006)). We
denote them as PCP-GAN, PCP-SIVI, PCP-KMN, PCP-
MixD and PCP-QRF respectively.

Datasets. We conduct real data experiments on 9 public-
domain datasets: bike sharing data (bike), physicochemical
properties of protein (bio), blog feedback (blog), and Face-
book comment volume, variants one (fb1) and two (fb2),
medical expenditure panel survey number 19 (meps19),
number 20 (meps20), and number 21 (meps21) (Romano
et al., 2019) and temperature forecast data (Cho et al., 2020).
See Section F for detailed data statistics.

Evaluation Protocol. We compute the marginal coverage,
conditional coverage (approximated by the worst-slab cov-
erage (Cauchois et al., 2021; Romano et al., 2020)), and the
predictive set size for all datasets. We report results based
on 50 random splits for all datasets.

Table 1 shows numerical results. For our methods, we report
PCP-MixD and HD-PCP-MixD; for baselines, we report the
backbone model that works generally the best across the 9
datasets with respect to the set size in the main paper. See
detailed results in Section F: Table 1 reports the best results
among the variants of each method in terms of predictive
sets ; Table 5, Table 6 and Table 7 report full experiment
results.

We observe that all conformal methods achieve (1 − α)
marginal coverage. Thus, our comparison focuses on the
size of predictive sets. As shown in Table 1, HD-PCP-MixD
outperforms all the other baselines on 7 out of 9 datasets
in terms of the predictive set size. If choosing an optimal
backbone model for each dataset, our methods outperform
baselines on all datasets. Comparing HD-PCP with PCP,
we find that the filtering technique brings consistent perfor-
mance improvement. Table 1 shows that PCP outperforms
the baselines by a large margin, especially on blog, face-
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Table 1: Summary results of real data experiments, where Marg. C and Cond. C denotes the marginal coverage and
approximated conditional coverage. The results are averaged over 50 random cross-validation splits. We report the set size
mean and standard error (inside the parentheses, the default is 0.00) based on the same 50 splits. The nominal coverage
rate (1 − α) is 90%, the K for (HD-)PCP is set as 40. To save space and keep consistency, here we report PCP-MixD,
HD-PCP-MixD, CHR-QRF, CDSplit-MixD and CQR, which include the variant that works generally the best across the 9
datasets. The detailed results are placed in Section F.

Data Metric PCP (ours) HD-PCP (ours) CHR DistSplit CDSplit DCP CQR

bike
Marg. C 0.90 0.90 0.90 0.90 0.92 0.90 0.90
Cond. C 0.86 0.88 0.88 0.87 0.91 0.88 0.89
Set Size 128.13(0.53) 102.92(0.48) 204.10(1.03) 423.13(1.51) 115.74(0.50) 443.76(1.36) 403.88(0.86)

bio
Marg. C 0.90 0.90 0.90 0.90 0.90 0.90 0.90
Cond. C 0.89 0.90 0.89 0.89 0.90 0.89 0.89
Set Size 11.47(0.04) 10.06(0.05) 10.21(0.04) 13.19(0.04) 9.58(0.04) 12.95(0.04) 13.00(0.02)

blog
Marg. C 0.89 0.90 0.90 0.90 0.96 0.90 0.90
Cond. C 0.85 0.87 0.87 0.87 0.95 0.88 0.87
Set Size 10.78(0.17) 9.44(0.19) 10.81(0.17) 16.27(0.23) 39.00(0.40) 1422.36(0.03) 15.15(0.26)

facebook1
Marg. C 0.90 0.90 0.90 0.90 0.95 0.90 0.90
Cond. C 0.82 0.85 0.86 0.89 0.95 0.89 0.88
Set Size 9.99(0.14) 8.93(0.12) 11.21(0.12) 14.03(0.16) 33.69(0.16) 1303.01(0.04) 13.79(0.15)

facebook2
Marg. C 0.90 0.90 0.90 0.90 0.97 0.90 0.90
Cond. C 0.82 0.84 0.87 0.89 0.96 0.89 0.89
Set Size 9.93(0.11) 8.84(0.10) 10.81(0.14) 13.48(0.19) 45.75(0.16) 1963.68(0.03) 13.00(0.17)

meps19
Marg. C 0.90 0.90 0.90 0.90 0.93 0.90 0.90
Cond. C 0.87 0.88 0.89 0.89 0.92 0.88 0.89
Set Size 19.28(0.16) 17.78(0.18) 18.26(0.15) 29.96(0.28) 23.86(0.17) 559.23(0.01) 28.71(0.18)

meps20
Marg. C 0.90 0.90 0.90 0.90 0.92 0.90 0.90
Cond. C 0.87 0.88 0.90 0.90 0.92 0.88 0.90
Set Size 19.52(0.16) 18.19(0.17) 17.94(0.18) 29.35(0.23) 22.93(0.16) 520.25(0.01) 27.57(0.15)

meps21
Marg. C 0.90 0.90 0.90 0.90 0.93 0.90 0.90
Cond. C 0.87 0.88 0.90 0.89 0.92 0.88 0.89
Set Size 19.18(0.12) 17.91(0.15) 18.65(0.16) 30.32(0.31) 23.63(0.17) 531.25(0.01) 29.89(0.20)

temperature
Marg. C 0.90 0.90 0.90 0.90 0.92 0.90 0.90
Cond. C 0.90 0.89 0.89 0.89 0.91 0.88 0.87
Set Size 2.10(0.01) 1.85(0.01) 3.24(0.01) 3.07(0.01) 2.23(0.01) 3.10(0.02) 3.55(0.03)

Table 2: Summary results of Multi-Target Regression experiments, where Marg. C and Cond. C denote the marginal
coverage and approximated conditional coverage. Results are averaged over 10 random cross-validation splits. We report
the standard error inside the parentheses. The nominal coverage rate (1− α) is 90%, the K for (HD-)PCP is set as 1000.

Data Metric PCP (ours) HD-PCP (ours) CHR DistSplit CDSplit DCP CQR

Taxi
Marg. C 0.90(0.01) 0.89(0.01) 0.87(0.01) 0.91(0.01) 0.91(0.01) 0.89(0.01) 0.90(0.01)
Cond. C 0.89(0.03) 0.87(0.02) 0.84(0.04) 0.92(0.03) 0.89(0.03) 0.84(0.03) 0.86(0.04)
Set Size 0.0089(0.0001) 0.0064(0.0002) 0.0245(0.0009) 0.0202(0.0009) 0.0097(0.0023) 0.0354(0.0013) 1.9302(0.5202)

Energy
Marg. C 0.89(0.01) 0.90(0.01) 0.93(0.01) 0.92(0.01) 0.93(0.01) 0.93(0.01) 0.91(0.01)
Cond. C 0.87(0.04) 0.94(0.03) 0.93(0.05) 0.83(0.10) 0.89(0.06) 0.97(0.02) 0.94(0.03)
Set Size 19.22(2.55) 14.13(3.55) 27.41(2.65) 36.31(3.04) 36.88(3.94) 34.18(3.61) 45.20(3.19)

book1 and facebook2 datasets (question (c)).

Moreover, note that PCP can work with any CGMs. The
flexibility of PCP makes it achieve good performance by
choosing a proper generative model according to datasets.
For example, PCP-SIVI works well in bike and facebook
data with implicit generative models, as shown in Table 5
(question (d)).

The limitation of CDSplit may be because the method needs
to make partitions of data based on K-means algorithm,
which is known to be unstable due to local minima. It also
needs to approximate the level set on a grid of the target
space to form the predictive set. It may be sensitive to
the range and coarseness of the grid. Thus, we notice that
CDSplit produces large predictive sets on facebook data and
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Figure 5: Ablation study on choosing hyperparameter K and filtering ratio β. We run experiments of PCP and HD-PCP
with MixD and KMN as backbone models on two datasets, bike and bio. The K grid is [10, 20, 30, . . . , 100] and the β grid
is [0.1, 0.2, . . . , 0.7]. In the first row, we show predictive set sizes with K = 50 and varying β. Second row shows how
predictive set size varies with K.

meps data. Similar to Sesia and Romano (2021), we observe
that DCP is sensitive to the estimation of the distribution
tails, which makes it unstable for some datasets. CHR is
more robust but it could only provide a single continuous
interval and produces a loose predictive set when the data
exhibits mulimodality. CQR predicts intervals based on
the learned lower and upper quantiles, which leads to large
intervals when the data distribution is multimodal.

4.3 Multi-dimensional targets

We further study PCP and HD-PCP on multi-target datasets.
We adapt previous baselines to multi-target conformal algo-
rithms by fitting each dimension separately with coverage
level (1 − α)/d (Neeven and Smirnov, 2018), where d is
the dimension of target Y (this ensures the coverage of the
target vector is 1− α (Lei and Candès, 2021)).

We construct a synthetic dataset to illustrate the benefit of
PCP that models the targets dependently. Covariates X ∼
N (0, I5) and the target Y ∼ 0.5N (µ1,Σ) + 0.5N (µ2,Σ).

µi = (x⊤, 1)βi and βi ∼ N (0, I6), Σ =

(
10 ρ
ρ 10

)
. The

synthetic data distribution in Figure 4a shows that the distri-
bution concentrates as ρ increases. As shown in Fig. 4b and
Fig. 4c, PCP achieves the best performance in terms of aver-
age predictive set size. We observe when ρ gets higher, only
PCP shrinks the predictive set accordingly while the pre-
dictions from other methods have little change and become
loose. The detailed results are in Table 8, Section E.

We further study two multi-target real datasets. Taxi
Data are the taxi trip records of NYC. For energy dataset,

we predict the heating load and cooling load for energy
efficiency analysis (Tsanas and Xifara, 2012). To calculate
the predictive set size of PCP, due to the overlapped regions,
the set size cannot be calculated exactly. We estimate it
by Monte Carlo simulation with a grid size of 100 on each
dimension. For (HD-)PCP and CDSplit, we use MixD as
the backbone model.

As shown in Table 2, algorithms considering multimodal-
ity have significantly better performance compared to other
baselines. We visualize the conformal region predicted by
(HD-)PCP in Fig. 1 (See Section G for more results). PCP
can capture the most popular regions of New York city
for drop-off such as downtown of Manhattan, LaGuardia
airport and JFK airport, while methods with continuous pre-
dictive sets would learn a wide bounding box. Furthermore,
PCP has smaller predictive set than CDSplit, potentially
because the joint estimation of the high-dimensional targets
can capture dependencies between the target elements. Ap-
plying the filtering, HD-PCP provides a cleaner and more
interpretable predictive set and further reduces the set size
(question (e)).

We include more experiments with two other multi-target
real datasets in Section H (8 and 3 targets). PCP and HD-
PCP consistently offer significantly sharper predictive sets
compared to baselines, and HD-PCP can further improve
the performance of PCP.

4.4 MNIST experiments

We further evaluate PCP on high dimensional data, MNIST
dataset (Deng, 2012). We first fit a VAE model on handwrit-
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ten digit images of (3, 5) and (1, 7) respectively. The upper
half of the digits is masked as the input for the VAE. Then,
we build our PCP onto the 14 × 28 = 392 dimensional
target. As shown in Fig. 6, PCP could produce reasonable
predictive sets, which not only cover the true data samples
but also covers both modes and the high density regions
around them, e.g. PCP covers both 3 and 5 in its predictive
set. See Section I for details and additional experiment.

PCP
Cover

Input Data

Figure 6: MNIST data. We show that PCP could produce
proper predictive sets for high dimensional image data.

5 DISCUSSION AND FUTURE WORK

We proposed PCP and HD-PCP as new conformal prediction
algorithms that find valid and sharp predictive sets using
random samples from a conditional generative model. PCP
and HD-PCP outperform existing methods for the sharpness
of the predictive set, particularly with multimodal data and
multi-dimensional targets.

There are several limitations that we consider as future work.
First, we focus on the regression tasks here. Future research
might adapt (HD-)PCP to causal effect estimation and clas-
sification problems (Gao et al., 2021; Biggs et al., 2021;
Romano et al., 2020; Yin et al., 2021). For classification
problems, since the target is categorical without ordering,
one may need to create a class embedding by the meth-
ods such as multidimensional scaling (Looveren and Klaise,
2021). Second, we focus on the Euclidean distance in com-
puting the (HD-)PCP nonconformity score. It would be
interesting to study the geometry of the predictive sets un-
der different distance measures. Finally, it is intriguing to
combine (HD-)PCP with the most recent deep generative
models to provide statistical guarantees (Song et al., 2020;
Ho et al., 2020).

Acknowledgements

D. M. Blei acknowledges the support of NSF IIS 2127869,
ONR N00014-17-1-2131, ONR N00014-15-1-2209, Simons
Foundation, Open Philanthropy. M. Yin acknowledges the
computing support by HiPerGator.

References
Alsing, J., Charnock, T., Feeney, S., and Wandelt, B. (2019).

Fast likelihood-free cosmology with neural density esti-

mators and active learning. Monthly Notices of the Royal
Astronomical Society, 488(3):4440–4458.

Ambrogioni, L., Güçlü, U., van Gerven, M. A., and Maris,
E. (2017). The kernel mixture network: A nonparametric
method for conditional density estimation of continuous
random variables. arXiv preprint arXiv:1705.07111.

Barber, R. F., Candès, E. J., Ramdas, A., and Tibshirani,
R. J. (2019a). The limits of distribution-free conditional
predictive inference.

Barber, R. F., Candes, E. J., Ramdas, A., and Tibshirani,
R. J. (2019b). Predictive inference with the jackknife+.
arXiv.

Biggs, M., Gao, R., and Sun, W. (2021). Loss functions for
discrete contextual pricing with observational data. arXiv
preprint arXiv:2111.09933.

Bishop, C. M. (1994). Mixture density networks. Technical
report, Aston University.

Breiman, L. and Friedman, J. H. (1997). Predicting multi-
variate responses in multiple linear regression. Journal of
the Royal Statistical Society: Series B (Statistical Method-
ology), 59(1):3–54.

Cauchois, M., Gupta, S., and Duchi, J. C. (2021). Knowing
what you know: valid and validated confidence sets in
multiclass and multilabel prediction. J. Mach. Learn.
Res., 22:81:1–81:42.

Chan, J., Perrone, V., Spence, J., Jenkins, P., Mathieson,
S., and Song, Y. (2018). A likelihood-free inference
framework for population genetic data using exchange-
able neural networks. Advances in neural information
processing systems, 31.

Chernozhukov, V., Wüthrich, K., and Zhu, Y. (2021). Dis-
tributional conformal prediction. Proceedings of the Na-
tional Academy of Sciences, 118.

Cho, D., Yoo, C., Im, J., and Cha, D. (2020). Comparative
assessment of various machine learning-based bias cor-
rection methods for numerical weather prediction model
forecasts of extreme air temperatures in urban areas.
Earth and Space Science, 7.

Deng, L. (2012). The mnist database of handwritten digit
images for machine learning research. IEEE Signal Pro-
cessing Magazine, 29(6):141–142.

Gao, R., Biggs, M., Sun, W., and Han, L. (2021). Enhanc-
ing counterfactual classification via self-training. arXiv
preprint arXiv:2112.04461.

Geisser, S. (1993). Predictive Inference, volume 55. CRC
Press.

Gibbs, I. and Candès, E. (2022). Conformal inference for
online prediction with arbitrary distribution shifts. arXiv
preprint arXiv:2208.08401.

Gillmann, C., Peter, L., Schmidt, C., Saur, D., and Scheuer-
mann, G. (2021). Visualizing multimodal deep learning



Probabilistic Conformal Prediction Using Conditional Random Samples

for lesion prediction. IEEE Computer Graphics and Ap-
plications, 41(5):90–98.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A. C., and Bengio,
Y. (2014). Generative adversarial nets. In NIPS.

Ho, J., Jain, A., and Abbeel, P. (2020). Denoising diffusion
probabilistic models. Advances in Neural Information
Processing Systems, 33:6840–6851.

Hoff, P. (2021). Bayes-optimal prediction with frequentist
coverage control. arXiv.

Izbicki, R., Shimizu, G., and Stern, R. (2020). Flexible
distribution-free conditional predictive bands using den-
sity estimators. In International Conference on Artificial
Intelligence and Statistics, pages 3068–3077. PMLR.

Kingma, D. P. and Welling, M. (2013). Auto-encoding
variational bayes. arXiv preprint arXiv:1312.6114.

Kuchibhotla, A. K. (2020). Exchangeability, conformal
prediction, and rank tests. arXiv.

Lei, J., G’Sell, M., Rinaldo, A., Tibshirani, R. J., and
Wasserman, L. (2018). Distribution-free predictive infer-
ence for regression. Journal of the American Statistical
Association, 113(523):1094–1111.

Lei, J., Rinaldo, A., and Wasserman, L. (2015). A conformal
prediction approach to explore functional data. Annals of
Mathematics and Artificial Intelligence, 74(1):29–43.

Lei, J. and Wasserman, L. (2014). Distribution-free predic-
tion bands for non-parametric regression. Journal of the
Royal Statistical Society: Series B: Statistical Methodol-
ogy, pages 71–96.

Lei, L. and Candès, E. J. (2021). Conformal inference of
counterfactuals and individual treatment effects. Journal
of the Royal Statistical Society: Series B.

Looveren, A. V. and Klaise, J. (2021). Interpretable coun-
terfactual explanations guided by prototypes. In Joint
European Conference on Machine Learning and Knowl-
edge Discovery in Databases, pages 650–665. Springer.

Meinshausen, N. (2006). Quantile regression forests. J.
Mach. Learn. Res., 7:983–999.

Messoudi, S., Destercke, S., and Rousseau, S. (2020). Con-
formal multi-target regression using neural networks. In
Conformal and Probabilistic Prediction and Applications,
pages 65–83. PMLR.

Messoudi, S., Destercke, S., and Rousseau, S. (2021).
Copula-based conformal prediction for multi-target re-
gression. Pattern Recognition, 120:108101.

Mirza, M. and Osindero, S. (2014). Conditional generative
adversarial nets. arXiv preprint arXiv:1411.1784.

Myers, V., Biyik, E., Anari, N., and Sadigh, D. (2022).
Learning multimodal rewards from rankings. In Confer-
ence on Robot Learning, pages 342–352. PMLR.

Neeven, J. and Smirnov, E. (2018). Conformal stacked
weather forecasting. In Conformal and Probabilistic
Prediction and Applications, pages 220–233. PMLR.

Papadopoulos, H., Proedrou, K., Vovk, V., and Gammerman,
A. (2002). Inductive confidence machines for regression.
In European Conference on Machine Learning, pages
345–356. Springer.

Romano, Y., Patterson, E., and Candès, E. J. (2019). Con-
formalized quantile regression. In NeurIPS.

Romano, Y., Sesia, M., and Candès, E. J. (2020). Classifica-
tion with valid and adaptive coverage. arXiv: Methodol-
ogy.

Sesia, M. and Romano, Y. (2021). Conformal prediction
using conditional histograms. Advances in Neural Infor-
mation Processing Systems, 34.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A.,
Ermon, S., and Poole, B. (2020). Score-based generative
modeling through stochastic differential equations. arXiv
preprint arXiv:2011.13456.

Spyromitros-Xioufis, E., Tsoumakas, G., Groves, W., and
Vlahavas, I. (2016). Multi-target regression via input
space expansion: treating targets as inputs. Machine
Learning, 104(1):55–98.

Taufiq, M. F., Ton, J.-F., Cornish, R., Teh, Y. W., and Doucet,
A. (2022). Conformal off-policy prediction in contextual
bandits. arXiv preprint arXiv:2206.04405.

Tibshirani, R. J., Foygel Barber, R., Candes, E., and Ramdas,
A. (2019). Conformal prediction under covariate shift.
In Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc.

Tsanas, A. and Xifara, A. (2012). Accurate quantitative
estimation of energy performance of residential build-
ings using statistical machine learning tools. Energy and
buildings, 49:560–567.

Vovk, V., Gammerman, A., and Shafer, G. (2005). Algo-
rithmic learning in a random world. Springer Science &
Business Media.

Xu, C. and Xie, Y. (2022). Conformal prediction set for
time-series. arXiv preprint arXiv:2206.07851.

Yin, M., Shi, C., Wang, Y., and Blei, D. M. (2021). Confor-
mal sensitivity analysis for individual treatment effects.
arXiv.

Yin, M. and Zhou, M. (2018a). Semi-implicit genera-
tive model. Proceedings of the NeurIPS Workshop on
Bayesian Deep Learning.

Yin, M. and Zhou, M. (2018b). Semi-implicit variational
inference. In International Conference on Machine Learn-
ing, pages 5660–5669. PMLR.



Wang, Z., Gao, R., Yin, M., Zhou, M., Blei, D. M.

A Proof

For completeness, we first present a lemma adapted from Tibshirani et al. (2019); Romano et al. (2019).

Lemma 1. Suppose Z1, · · · , Zn, Zn+1 are scalar random variables that are exchangeable and almost surely distinct, then
for β ∈ [0, 1]

β ≤ P(Zn+1 ≤ Qβ(Z1:n ∪ {∞})) ≤ β +
1

n+ 1
.

Proof of Lemma 1. Denote the inflated Z1:n as

Z̃1:n = Z1:n ∪ {∞}. (7)

The β-th empirical quantile is defined as

Qβ(Z1:n) := inf{x : (

n∑
i=1

1[Zi ≤ x])/n ≥ β}. (8)

By the definition in (8), Qβ(Z1:n) = Z(⌈nβ⌉) where Z(k) is the k-th order statistics. By Lemma 1 of Tibshirani et al. (2019),
the events

Zn+1 ≤ Qβ(Z̃1:n) ⇔ Zn+1 ≤ Qβ(Z1:n+1). (9)

Furthermore, by exchangeability and the definition of empirical quantile,

P(Zn+1 ≤ Qβ(Z1:n+1)) =P(Zn+1 ≤ Z(⌈(n+1)β⌉))

≥⌈(n+ 1)β⌉
n+ 1

≥ β.
(10)

When Z1:n+1 are almost surely distinct,

P(Zn+1 ≤ Qβ(Z1:n+1)) =P(Zn+1 ≤ Z(⌈(n+1)β⌉))

=
⌈(n+ 1)β⌉

n+ 1
≤ ⌊(n+ 1)β⌋+ 1

n+ 1
≤ β +

1

n+ 1
.

(11)

By Eq. (9), the proof is completed.

Proof of Theorem 1. Given the estimated conditional density q(Y |X) on an independently sampled training set Dtr. By
assumption, the calibration set {(Xi, Yi)}ni=1 and the test point (Xn+1, Yn+1) are exchangeable. Denote Di = (Xi, Yi, Ŷi)

for i = 1, · · · , n, n+ 1. Then Di ∼ p(X,Y )qK(Y |Xi) and {D1:n+1} are exchangeable because Ŷi |= Ŷj .

The nonconformity score Ei in Eq. (2) is defined as a deterministic function of Di. Therefore {Ei}n+1
i=1 are exchangeable

(Kuchibhotla, 2020) and are almost surely distinct. By Lemma 1,

1− α ≤ P(En+1 ≤ Qα(E1:n ∪ {∞}) |Dtr) ≤ 1− α+
1

n+ 1
. (12)

Next we demonstrate that for

Ĉ(Xn+1, Ŷn+1) = ∪K
k=1

{
y :

∥∥∥y − Ŷn+1,k

∥∥∥ ≤ Q̂
}
, Q̂ = Q1−α(E1:n ∪ {∞}),

the following statement holds

Yn+1 ∈ Ĉ(Xn+1, Ŷn+1) ⇔ En+1 ≤ Q̂.

Suppose the LHS is true, then ∃m, 1 ≤ m ≤ K, s.t. Yn+1 ∈
{
y :

∥∥∥y − Ŷn+1,m

∥∥∥ ≤ Q̂
}

. This means
∥∥∥Yn+1 − Ŷn+1,m

∥∥∥ ≤

Q̂. Hence En+1 = mink

∥∥∥Yn+1 − Ŷn+1,k

∥∥∥ ≤
∥∥∥Yn+1 − Ŷn+1,m

∥∥∥ ≤ Q̂.
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Algorithm 2 High Density Probabilistic Conformal Prediction
Input: Data D = {(Xi, Yi)}Ni=1, nominal level α, test point X , generative model class Q, sample size K, β grid B (For
HD-PCP).

Step I: Conditional generative model
1: Split the data into three folds Ztr, Zval, Zcal with set of index as Itr, Ival, Ical respectively
2: Estimate q(Y |X) on Ztr with hyper-parameter chosen by cross validation on Zval

Step II: Predictive set for a test point
1: For i ∈ Ical, sample Ŷi1, · · · , ŶiK ∼ q(Y |Xi)
2: For β ∈ B, Filtering out β fraction of {Ŷik}Kk=1 with the lowest density. Repeat Line 3-7 for x ∈ Ical. β0 =

argminβ λ(
∑

x∈Ical
Ĉβ(x, Ŷ))

3: For a test point, sample Ŷ1, · · · , ŶK ∼ q(Y |X)
4: Filtering out β fraction of {Ŷk}Kk=1 with the lowest density
5: Compute nonconformity score {Ei}i∈Ical by Eq. (2), EN+1 = ∞, Ĩcal = Ical ∪ {N + 1}
6: Set r as the (1− α) empirical quantile of {Ei}i∈Ĩcal

7: Compute the predictive set Ĉβ(X, Ŷ) by Eq. (3)

Output: Predictive set Ĉβ0
(X, Ŷ)

On the other hand, suppose the RHS is true, letting t = argmink

∥∥∥Yn+1 − Ŷn+1,k

∥∥∥, we have
∥∥∥Yn+1 − Ŷn+1,t

∥∥∥ ≤ Q̂, i.e.,

Yn+1 ∈
{
y :

∥∥∥y − Ŷn+1,t

∥∥∥ ≤ Q̂
}

. Therefore, Yn+1 ∈ Ĉ(Xn+1, Ŷn+1).

Then by Eq. (12), we have

1− α ≤ P(Yn+1 ∈ Ĉ(Xn+1, Ŷn+1) |Dtr) ≤ 1− α+
1

n+ 1
. (13)

Marginalizing out Dtr the statement is proved.

Proof of Corollary 1. Suppose 0 ≤ β ≤ n/(n+ 1), then ⌈(n+ 1)β⌉ ≠ n+ 1. We have

Qβ(Z̃1:n) = Z̃(⌈(n+1)β⌉,n+1) = Z(⌈nn+1
n β,n⌉) = Q(1+ 1

n )β(Z1:n) (14)

where Z̃1:n is defined in Eq. (7). By Eqs. (9) to (11),

β ≤ P(Zn+1 ≤ Q(1+ 1
n )β(Z1:n)) ≤ β +

1

n+ 1
. (15)

By Eq. (15), we have

β − 1

n+ 1
≤ P(Zn+1 ≤ Qβ(Z1:n)) ≤ β +

1

n+ 1
. (16)

Proof of Corollary 2. With the notations in the proof of Theorem 1, Di = (Xi, Yi, Ŷi) are i.i.d. varariables. For a fixed
conditional density function q(y|x), the nonconformity score Ei is fully determined by Xi, Yi, Ŷi. So Ei = g(Di) where
g(·) is a deterministic function including the filtering step of HD-PCP. By Kuchibhotla (2020), since {Di}n+1

i=1 are i.i.d.,
{Ei}n+1

i=1 are exchangeable. The other parts of proof follow the same as the proof of Theorem 1.

B High Density Probabilistic Conformal Prediction

Figure 7 shows the different predictive sets with 95% coverage when the underlying distribution is bi-mode normal.

We summarize our HD-PCP algorithm in Algorithm 2.
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Figure 7: High Density Region can capture multi-mode easier comparing to other predictive set.

C Hyperparameters

PCP introduces one additional hyperparameter, the sample size K. We conduct ablation study on the effect of K in Fig. 5
and find that as long as K is set moderately large, i.e., K = 40, the predictive set size is near optimal. K is not a very
sensitive hyperparameter that needs much effort for tuning.

D Summary of Conditional generative models

SIVI Model. Following (Yin and Zhou, 2018b), we build a conditional distribution estimator by using semi-implicit
variational inference and we call it SIVI model. Specifically, we approximate P(Y |X) by an inference distribution
qϕ(Y |X) with respect to parameter ϕ. We construct the inference distribution as a hierarchical model,

y ∼ qϕ1
(y|x, z), z ∼ qϕ2

(z|x,ψ),ψ ∼ p(ψ)

Here z ∈ Rd is an auxiliary latent variable and p(ψ) is a known noise distribution, i.e., N (0, I). The inference distribution
is the marginal distribution of the hierarchical model, qϕ(y |x) =

∫
qϕ1

(y|z)qϕ2
(z|x)dz with ϕ = (ϕ1,ϕ2). We model

qϕ1
(y|z) and qϕ2

(z|x) as Gaussian distributions, whose mean and standard deviation are the outputs of neural networks
feed with corresponding (x, z) and (x,ψ). The marginal distribution q(y |x) can thus be constructed with flexibility in
modeling multimodality, skewness and kurtosis. We learn the ϕ by maximizing the ELBO,

LK = E
ψ(0),...,ψ(K)iid∼ p(ψ)

Ez∼q(· |ψ(0),x)

[
ln qϕ1

(y |x, z) + ln
p(z)

1
K+1

∑K
k=0 qϕ2

(z |ψ(k),x)

]
,

where p(z) is a prior distribution for latent variable z, i.e.,N (0, I) and K is set as 20.

GAN model. To fit a conditional distribution, we follows (Mirza and Osindero, 2014) to build a Conditional GAN model
with a generator G(x, z) and a discriminator D(x, y). For simplicity, we call it GAN model. Here, the z is a latent variable,
which is usually set as z ∼ N (0, I), G(x, z) is modeled by a neural network, whose outputs are the samples of y, and
D(x, y) is another neural network, which outputs the probability that the given y is from the true data distribution. We train
G and D with the following adversarial loss,

min
G

max
D

V (G,D) = Ex,y∼pdata(x,y)[logD(x, y)] + Ez∼p(z),x∼pdata(x)[log(1−D(x, G(x, z)))]

Kernel Mixture Network. Ambrogioni et al. (2017) model arbitrarily complex conditional densities as linear combinations
of a family of kernel functions centered at a subset of training points. The weights are determined by the outer layer of a
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deep neural network, trained by minimizing the negative log likelihood. The conditional density function is modeled as
follows,

q(y|x) = 1∑
p,j wp,j(x;W )

∑
p,j

wp,j(x;W )Kj(y, y
(p)),

where p denotes the index of the observed data points, Kj is the pre-set kernel function, j is the index of selected bandwidth
for Kj , and wp,j(x;W ) represents the weight of each kernel. A common choice for Kj is the Gaussian kernel,

Kj(y, y
′;σj) =

1√
2πσj

exp
− (y−y′)2

2σ2
j .

The weights wp,j(x;W ) are determined by a deep neural network (DNN), with covariates x as the inputs and W as the
parameters. All weights are non negative by applying non-negative activation functions on the output layer of DNN. We
train the KMN model by minimizing the loss function,

L(W ) = −
∑
q

[
log

∑
p,j

wp,j(x;W )Kj(y, y
(p))− log

∑
p,j

wp,j(x;W )

]

Mixture Density Network. Bishop (1994) proposes the mixture density network as fellows,

q(y|x) =
K∑

k=1

πk(x)N (y|µk(x), σ
2
k(x))

where πk(·), µk(·) and σk(·) are all modeled by neural networks.
∑K

k=1 πk(x) = 1 is guaranteed by using softmax
activation function. The model is trained by minimizing the loss function,

L = −
N∑
i=1

log

[ K∑
k=1

πk(xi)N (yi|µk(xi), σ
2
k(xi))

]
,

where {(xi, yi)}Ni=1 are the observed data points.

Quantile Regression Forest Meinshausen (2006) shows that random forests provide information about the full conditional
distribution of the response variable, not only about the conditional mean. Conditional quantiles can be inferred with quantile
regression forests, a generalisation of random forests. Quantile regression forests give a non-parametric and accurate way of
estimating conditional quantiles for high-dimensional predictor variables. We refer to (Meinshausen, 2006) for more details
about QRF model. PCP needs to get samples from QRF. We first sample a percentile τ ∼ U [0, 1], the uniform distribution
on the unit interval, and then use QRF to get the estimated conditional quantile value yτ as a y sample.

E Full synthetic experiment results

We include the Full synthetic experiment results for 2D toy datasets, s-curve, half-moons, 25-Gaussians, 8-Gaussians, circle
and swiss-roll, in Fig. 8 and Fig. 9. We compare conformal prediction with mean estimation (CP-MeanPred), CHR-QRF
and CDSplit-MixD with our method (HD-)PCP.

The data used to plot Fig. 4b and Fig. 4c is included in Table 8. When ρ increases, the set size decreases for PCP and
HD-PCP while keeping nearly constant for other baselines, which overlooks the joint relationship between targets.

F Full real data experiment results

We report all experiment results for our single target real data regression tasks in Table 5, Table 6 and Table 7. Table 4
illustrates the best performance of each method with best backbone model picked for each dataset repsectively.

G Additional Plots for NYC Taxi Data

Fig. 10 shows the additonal plots for NYC Taxi data for PCP, HD-PCP, CHR and CDSplit. Each row representsone individual
record in the test set and we show the predictive set generated by each algorithm. Clearly, PCP and HD-PCP generate the
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Figure 8: Visualization of predictive sets (α = 0.1) on 2D toy datasets: s-curve, half-moons, 25-Gaussians, 8-Gaussians,
circle and swiss-roll. For ours, we show the PCP in the last two columns. We show the predictive sets on 100 test data
samples, where blues lines represent the predictive sets, blue dots are test points that are not covered by the predictive
sets and reds dots are the test points covered. We show the marginal coverage and the average interval length across test
datapoints in the x-axis label. The fifth column shows the histogram of the number predicted intervals of PCP.
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Figure 9: Visualization of predictive sets (α = 0.1, β = 0.2) on 2D toy datasets: s-curve, half-moons, 25-Gaussians,
8-Gaussians, circle and swiss-roll. For ours, we show the HD-PCP in the last two columns. We show the predictive sets on
100 test data samples, where blues lines represent the predictive sets, blue dots are test points that are not covered by the
predictive sets and reds dots are the test points covered. We show the marginal coverage and the average interval length
across test datapoints in the x-axis label. The fifth column shows the histogram of the number predicted intervals of HD-PCP.
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Data n_train n_calib n_test

bike 6886 2000 2000
bio 41730 2000 2000
blog 48397 2000 2000
facebook1 36948 2000 2000
facebook2 77311 2000 2000
meps_19 11785 2000 2000
meps_20 13541 2000 2000
meps_21 11656 2000 2000
temperature 5314 1138 1138

Table 3: Dataset splits for training, calibration and testing.

(a) P1: PCP (b) P1: HD-PCP (c) P1: CDSplit (d) P1: CHR

(e) P2: PCP (f) P2: HD-PCP (g) P2: CDSplit (h) P2: CHR

(i) P3: PCP (j) P3: HD-PCP (k) P3: CDSplit (l) P3: CHR

Figure 10: NYC Taxi data. Red Pin: pickup location; Blue Pin: dropoff location. Left to right: Predictive set output by PCP,
HD-PCP, CDSplit and CHR. Each row represents a random selected individual record sampled from the dataset.
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Data Method Marg. Coverage Cond. Coverage Set Size Mean Set Size SE

bike PCP-SIVI 0.90 0.86 134.55 1.13
HD-PCP-MixD(β = 0.2) 0.90 0.88 102.92 0.48
CHR-QRF 0.90 0.88 204.10 1.03
DistSplit 0.90 0.87 423.13 1.51
CDSplit-MixD 0.92 0.92 115.74 0.50
DCP 0.90 0.88 443.76 1.36
CQR 0.90 0.89 403.88 0.86

bio PCP-KMN 0.90 0.89 10.30 0.05
HD-PCP-KMN(β = 0.2) 0.90 0.89 8.76 0.05
CHR-QRF 0.90 0.89 10.21 0.04
DistSplit 0.90 0.89 13.19 0.04
CDSplit-KMN 0.9 0.9 9.13 0.04
DCP 0.90 0.89 12.95 0.04
CQR2 0.90 0.89 12.88 0.05

blogdata PCP-QRF 0.89 0.85 3.68 0.65
HD-PCP-MixD(β = 0.2) 0.90 0.87 9.44 0.19
CHR-QRF 0.90 0.87 10.81 0.17
DistSplit 0.90 0.87 16.27 0.23
CDSplit-MixD 0.96 0.95 39.00 0.40
DCP 0.90 0.88 1422.36 0.03
CQR2 0.90 0.87 13.91 0.27

facebook1 PCP-QRF 0.90 0.82 4.52 0.76
HD-PCP-KMN(β = 0.2) 0.90 0.83 8.62 0.06
CHR-NNet 0.90 0.87 9.96 0.11
DistSplit 0.90 0.89 14.03 0.16
CDSplit-MixD 0.95 0.95 33.69 0.16
DCP 0.90 0.89 1303.01 0.04
CQR2 0.90 0.88 12.17 0.15

facebook2 PCP-QRF 0.90 0.82 3.62 0.72
HD-PCP-KMN(β = 0.2) 0.90 0.82 8.34 0.07
CHR-NNet 0.90 0.87 10.15 0.13
DistSplit 0.90 0.89 13.48 0.19
CDSplit-KMN 0.95 0.94 44.53 0.26
DCP 0.90 0.89 1963.68 0.03
CQR2 0.90 0.89 11.41 0.17

meps19 PCP-GAN 0.90 0.86 18.41 0.17
HD-PCP-MixD(β = 0.2) 0.90 0.88 17.78 0.18
CHR-QRF 0.90 0.89 18.26 0.15
DistSplit 0.90 0.89 29.96 0.28
CDSplit-MixD 0.93 0.92 23.86 0.17
DCP 0.90 0.88 559.23 0.01
CQR 0.90 0.89 28.71 0.18

meps20 PCP-MixD 0.90 0.87 19.52 0.16
HD-PCP-MixD(β = 0.2) 0.90 0.88 18.19 0.17
CHR-QRF 0.90 0.90 17.94 0.18
DistSplit 0.90 0.90 29.35 0.23
CDSplit-MixD 0.92 0.92 22.93 0.16
DCP 0.90 0.88 520.25 0.01
CQR 0.90 0.90 27.57 0.15

meps21 PCP-MixD 0.90 0.87 19.18 0.12
HD-PCP-MixD(β = 0.2) 0.90 0.88 17.91 0.15
CHR-QRF 0.90 0.90 18.65 0.16
DistSplit 0.90 0.89 30.32 0.31
CDSplit-MixD 0.93 0.92 23.63 0.17
DCP 0.90 0.88 531.25 0.01
CQR 0.90 0.89 29.89 0.2

temperature PCP-MixD 0.90 0.90 2.10 0.01
HD-PCP-MixD(β = 0.2) 0.90 0.89 1.85 0.01
CHR-NNet 0.90 0.89 3.17 0.01
DistSplit 0.90 0.89 3.07 0.01
CDSplit-MixD 0.92 0.91 2.23 0.01
DCP 0.90 0.88 3.1 0.02
CQR2 0.90 0.88 3.14 0.02

Table 4: Best results of real data experiments (the best variant of each method for each dataset is selected).
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Data Method Marg. Coverage Cond. Coverage Set Size Mean Set Size SE

bike PCP-SIVI 0.90 0.86 134.55 1.13
PCP-GAN 0.90 0.88 399.32 2.48
PCP-QRF 0.90 0.87 241.11 3.35
PCP-MixD 0.90 0.87 128.13 0.53
HD-PCP-MixD(β = 0.2) 0.90 0.88 102.92 0.48
PCP-KMN 0.90 0.88 172.92 1.04
HD-PCP-KMN(β = 0.2) 0.90 0.88 146.24 1.06
CHR-NNet 0.90 0.89 353.51 1.59
CHR-QRF 0.90 0.88 204.10 1.03
DistSplit 0.90 0.87 423.13 1.51
CDSplit-KMN 0.92 0.91 161.16 0.72
CDSplit-MixD 0.92 0.92 115.74 0.50
DCP 0.90 0.88 443.76 1.36
CQR 0.90 0.89 403.88 0.86
CQR2 0.90 0.88 416.75 1.57

bio PCP-SIVI 0.90 0.89 14.08 0.06
PCP-GAN 0.90 0.89 13.11 0.05
PCP-QRF 0.90 0.89 11.08 0.16
PCP-MixD 0.90 0.89 11.47 0.04
HD-PCP-MixD(β = 0.2) 0.90 0.90 10.06 0.05
PCP-KMN 0.90 0.89 10.30 0.05
HD-PCP-KMN(β = 0.2) 0.90 0.89 8.76 0.05
CHR-NNet 0.90 0.89 11.74 0.04
CHR-QRF 0.90 0.89 10.21 0.04
DistSplit 0.90 0.89 13.19 0.04
CDSplit-KMN 0.90 0.90 9.13 0.04
CDSplit-MixD 0.90 0.90 9.58 0.04
DCP 0.90 0.89 12.95 0.04
CQR 0.90 0.89 13.00 0.02
CQR2 0.90 0.89 12.88 0.05

blog PCP-SIVI 0.90 0.85 11.21 0.32
PCP-GAN 0.90 0.86 11.67 0.16
PCP-QRF 0.89 0.85 3.68 0.65
PCP-MixD 0.90 0.85 10.78 0.17
HD-PCP-MixD(β = 0.2) 0.90 0.87 9.44 0.19
PCP-KMN 0.90 0.85 10.67 0.13
HD-PCP-KMN(β = 0.2) 0.90 0.86 10.51 0.14
CHR-NNet 0.90 0.88 11.1 0.19
CHR-QRF 0.90 0.87 10.81 0.17
DistSplit 0.90 0.87 16.27 0.23
CDSplit-KMN 0.96 0.95 45.90 0.62
CDSplit-MixD 0.96 0.95 39.00 0.40
DCP 0.90 0.88 1422.36 0.03
CQR 0.90 0.87 15.15 0.26
CQR2 0.90 0.87 13.91 0.27

facebook1 PCP-SIVI 0.90 0.83 8.8 0.06
PCP-GAN 0.90 0.85 9.22 0.05
PCP-QRF 0.90 0.82 4.52 0.76
PCP-MixD 0.90 0.82 9.99 0.14
HD-PCP-MixD(β = 0.2) 0.90 0.85 8.93 0.12
PCP-KMN 0.90 0.82 10.60 0.06
HD-PCP-KMN(β = 0.2) 0.90 0.83 8.62 0.06
CHR-NNet 0.90 0.87 9.96 0.11
CHR-QRF 0.90 0.86 11.21 0.12
DistSplit 0.90 0.89 14.03 0.16
CDSplit-KMN 0.95 0.94 33.88 0.19
CDSplit-MixD 0.95 0.95 33.69 0.16
DCP 0.90 0.89 1303.01 0.04
CQR 0.90 0.89 13.79 0.15
CQR2 0.90 0.88 12.17 0.15

Table 5: Detailed results of experiments on data: bike, bio, blog and facebook1.
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Data Method Marg. Coverage Cond. Coverage Set Size Mean Set Size SE

facebook2 PCP-SIVI 0.90 0.83 8.69 0.17
PCP-GAN 0.90 0.84 9.47 0.1
PCP-QRF 0.90 0.82 3.62 0.72
PCP-MixD 0.90 0.82 9.93 0.11
HD-PCP-MixD(β = 0.2) 0.90 0.84 8.84 0.10
PCP-KMN 0.90 0.81 10.42 0.07
HD-PCP-KMN(β = 0.2) 0.90 0.82 8.34 0.07
CHR-NNet 0.90 0.87 10.15 0.13
CHR-QRF 0.90 0.87 10.81 0.14
DistSplit 0.90 0.89 13.48 0.19
CDSplit-KMN 0.95 0.94 44.53 0.26
CDSplit-MixD 0.97 0.96 45.75 0.16
DCP 0.90 0.89 1963.68 0.03
CQR 0.90 0.89 13 0.17
CQR2 0.90 0.89 11.41 0.17

meps19 PCP-SIVI 0.90 0.85 26.93 0.3
PCP-GAN 0.90 0.86 18.41 0.17
PCP-QRF 0.90 0.86 20.16 0.48
PCP-MixD 0.90 0.87 19.28 0.16
HD-PCP-MixD(β = 0.2) 0.90 0.88 17.78 0.18
PCP-KMN 0.90 0.85 23.24 0.21
HD-PCP-KMN(β = 0.2) 0.90 0.84 23.48 0.20
CHR-NNet 0.90 0.90 20.17 0.2
CHR-QRF 0.90 0.89 18.26 0.15
DistSplit 0.90 0.89 29.96 0.28
CDSplit-KMN 0.93 0.91 31.10 0.33
CDSplit-MixD 0.93 0.92 23.86 0.17
DCP 0.90 0.88 559.23 0.01
CQR 0.90 0.89 28.71 0.18
CQR2 0.90 0.89 30.78 0.36

meps20 PCP-SIVI 0.90 0.86 23.87 0.16
PCP-GAN 0.90 0.86 19.92 0.18
PCP-QRF 0.90 0.86 20.47 0.52
PCP-MixD 0.90 0.87 19.52 0.16
HD-PCP-MixD(β = 0.2) 0.90 0.88 18.19 0.17
PCP-KMN 0.90 0.85 22.96 0.17
HD-PCP-KMN(β = 0.2) 0.90 0.85 23.35 0.18
CHR-NNet 0.90 0.9 19.43 0.18
CHR-QRF 0.90 0.90 17.94 0.18
DistSplit 0.90 0.90 29.35 0.23
CDSplit-KMN 0.93 0.90 29.05 0.30
CDSplit-MixD 0.92 0.92 22.93 0.16
DCP 0.90 0.88 520.25 0.01
CQR 0.90 0.90 27.57 0.15
CQR2 0.90 0.90 29.94 0.31

meps21 PCP-SIVI 0.90 0.85 23.74 0.27
PCP-GAN 0.90 0.86 19.73 0.16
PCP-QRF 0.89 0.86 18.52 0.45
PCP-MixD 0.90 0.87 19.18 0.12
HD-PCP-MixD(β = 0.2) 0.90 0.88 17.91 0.15
PCP-KMN 0.90 0.85 23.13 0.17
HD-PCP-KMN(β = 0.2) 0.90 0.85 23.70 0.19
CHR-NNet 0.90 0.90 20.07 0.22
CHR-QRF 0.90 0.90 18.65 0.16
DistSplit 0.90 0.89 30.32 0.31
CDSplit-KMN 0.92 0.91 30.42 0.41
CDSplit-MixD 0.93 0.92 23.63 0.17
DCP 0.90 0.88 531.25 0.01
CQR 0.90 0.89 29.89 0.2
CQR2 0.90 0.89 31.78 0.36

Table 6: Detailed results of experiments on data: facebook2, meps19, meps20 and meps21.
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Data Method Marg. Coverage Cond. Coverage Set Size Mean Set Size SE

temperature PCP-SIVI 0.90 0.90 3.27 0.06
PCP-GAN 0.90 0.89 3.51 0.04
PCP-QRF 0.88 0.86 3.78 0.09
PCP-MixD 0.90 0.90 2.10 0.01
HD-PCP-MixD(β = 0.2) 0.90 0.89 1.85 0.01
PCP-KMN 0.90 0.89 2.68 0.01
HD-PCP-KMN(β = 0.2) 0.90 0.89 2.43 0.01
CHR-NNet 0.90 0.89 3.17 0.01
CHR-QRF 0.90 0.89 3.24 0.01
DistSplit 0.90 0.89 3.07 0.01
CDSplit-KMN 0.91 0.90 2.84 0.02
CDSplit-MixD 0.92 0.91 2.23 0.01
DCP 0.90 0.88 3.1 0.02
CQR 0.90 0.87 3.55 0.03
CQR2 0.90 0.88 3.14 0.02

Table 7: Detailed results of experiments on data: temperature.

Synthetic Data Method Cond. Coverage Marg. Coverage Set Size Mean Set Size SE

ρ = 0 HD-PCP-MixD 0.92 (0.03) 0.90 (0.01) 356.82 10.78
PCP-MixD 0.94 (0.02) 0.90 (0.01) 412.40 12.70
CHR-NNet 0.88 (0.05) 0.92 (0.01) 690.49 51.55
DistSplit 0.93 (0.01) 0.92 (0.01) 714.92 54.81
CDSplit-MixD 0.87 (0.03) 0.90 (0.01) 437.98 20.20
DCP 0.90 (0.03) 0.92 (0.01) 710.64 53.99
CQR 0.95 (0.02) 0.92 (0.01) 667.01 51.47
CQR2 0.89 (0.03) 0.92 (0.01) 694.64 52.40

ρ = 5 HD-PCP-MixD 0.88 (0.03) 0.89 (0.01) 302.64 9.88
PCP-MixD 0.87 (0.03) 0.88 (0.01) 348.93 10.70
CHR-NNet 0.92 (0.03) 0.91 (0.01) 689.22 57.47
DistSplit 0.93 (0.02) 0.91 (0.01) 702.56 54.02
CDSplit-MixD 0.87 (0.03) 0.90 (0.01) 415.86 17.49
DCP 0.89 (0.05) 0.91 (0.02) 697.18 54.01
CQR 0.87 (0.03) 0.91 (0.02) 653.64 53.59
CQR2 0.88 (0.05) 0.91 (0.02) 693.10 56.18

ρ = 9 HD-PCP-MixD 0.83 (0.07) 0.89 (0.02) 171.61 8.36
PCP-MixD 0.89 (0.03) 090 (0.01) 205.63 5.76
CHR-NNet 0.92 (0.02) 0.92 (0.02) 664.31 51.59
DistSplit 0.91 (0.05) 0.91 (0.01) 689.72 59.96
CDSplit-MixD 0.92 (0.02) 0.91 (0.01) 416.86 16.96
DCP 0.90 (0.03) 0.91 (0.02) 666.13 50.61
CQR 0.93 (0.04) 0.92 (0.01) 639.00 50.19
CQR2 0.92 (0.02) 0.91 (0.01) 663.54 54.59

Table 8: Detailed results for multidimensional target synthetic dataset. The set size for PCP and HD-PCP decreases when ρ
increases while the set sizes for other baselines are similar for different ρ since the marginal distribution remains the same.
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most informative predictive set where popular neighborhoods and airports are tagged, while HD-PCP offers a more sparse
and clean set. As expected, CHR offers a wide predictive set. Both CDSplit and CHR fail to provide predictive set with
clear interpretation. Fig. 12 shows the predictive set and heatmap for pickup from SOHO and Chinatown. Most popular
spots in NYC have higher density, which means passengers are more likely to be dropped off there.

H Additional Results for Multi-Target Regression Task

We include more experiment results for multi-target regression task in this section. We use two datasets for river flow
prediction (Spyromitros-Xioufis et al., 2016) and stock prediction from StatLib repository. River flow dataset predicts
the rivernetwork flows for future 48 hours for 8 sites (8 targets) and the stock dataset has stock price for 10 aerospace
companies and we try to predict 3 companies’ price using remaining companies’. There are 64 features including past river
flow information for river flow predictions. For train, calibration and test size, we use 6925, 2000 and 200 for river flow
prediction and 750, 100 and 100 for stock prediction respectively.

Since the Monte-Carlo estimation of overlapping hypersphere suffers from curse of dimensionality. We convert each dataset
into two-dimensional pairwise comparisions to evaluate the robustness of each method (8 targets result in 28 pairs). We plot
the pairwise comparison of PCP and HD-PCP against CHR and CDSplit, the two baselines that performs generally the best
among other datasets. We use Mixture density Network for CDSplit, PCP and HD-PCP and Neural Netork based CHR, the
results are averaged over 5 runs.
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(a) CDSplit vs HD-PCP
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(b) CHR vs HD-PCP
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(c) CDSplit vs PCP
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(d) CHR vs PCP
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(e) CDSplit vs HD-PCP
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(f) CHR vs HD-PCP
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(g) CDSplit vs PCP
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(h) CHR vs PCP

Figure 11: Additional Results for Multi-Target Regression Task. Each point corresponds to the size of predictive set for two
elements of the target vector.

(a) PCP (b) HD-PCP (c) SOHO (d) Chinatown

Figure 12: NYC Taxi data. (a), (b): predictive set for an individual using PCP and HD-PCP; (c): predictive set for riders
from SoHo; (d): predictive set for riders from Chinatown.
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Figure 13: MNIST data. We show that PCP could produce proper predictive sets for high dimensional MNIST datasets.

For X-axis, we plot the set size of PCP / HD-PCP and for Y-axis, we plot the set size for CDSplit and CHR, and we also
show the Y = X line. If all points fall into the left region, it means PCP / HD-PCP outputs a sharper predictive set. For
PCP, almost all pointsfall into the left region, which indicates PCP has a better or comparable performance with CDSplit
and CHR in all pairwise comparisions. HD-PCP has a much better performance and the points all fall into the far left part in
the figure, which shows HD-PCP offers a much sharper predictive set.

I MNIST Experiments

In this experiment, we aim to evaluate whether PCP could produce reasonable predictive sets for high dimentional data. We
use the MNIST dataset (Deng, 2012), which constains 70000 (28× 28) images (60000 for training and 10000 for testing) of
handwritten digits from 0 to 9. We choose digits (3, 5) and (1, 7) from the dataset. The upper half of the digits is masked as
the input X and the origal unmasked images are the outputs Y .

We first fit a Conditional VAE model onto the selected data (X,Y ). We follows the original VAE (Kingma and Welling,
2013) arhitecture, where the encoder and decoder are multilayer perceptron (MLP) based with 500 hidden units for each
layer. The latent variable dimention is set as 50. We train the VAE model with 10 epochs on the selected traning data.

We build our PCP onto the pretrained VAE model, with additional 500 calibration datapoints. Since now Y has 14×28 = 392
dimensions, we compute the L2 distance between the Ŷ samples and the true Y , and select the minimum L2 as our
nonconformity score. Then, we compute the (1 − α) quantile of the nonconformity scores over the calibration data to
obtian the predictive set radius r. Finally, we evaluate PCP on test data points. For each test datapoint, we sample K = 10
random samples from the VAE model, build the predictive set via radius r and then sample from the predictive set to get
PCP samples, as shown in Fig. 13.
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