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Abstract

Confidence sequences are confidence intervals
that can be sequentially tracked, and are valid
at arbitrary data-dependent stopping times. This
paper presents confidence sequences for a uni-
variate mean of an unknown distribution with a
known upper bound on the p-th central moment
(p > 1), but allowing for (at most) ε fraction
of arbitrary distribution corruption, as in Huber’s
contamination model. We do this by designing
new robust exponential supermartingales, and
show that the resulting confidence sequences at-
tain the optimal width achieved in the nonse-
quential setting. Perhaps surprisingly, the con-
stant margin between our sequential result and
the lower bound is smaller than even fixed-time
robust confidence intervals based on the trimmed
mean, for example. Since confidence sequences
are a common tool used within A/B/n testing and
bandits, these results open the door to sequential
experimentation that is robust to outliers and ad-
versarial corruptions.

1 INTRODUCTION

In this paper, we study the problem of robust, sequential
mean estimation; we are not just interested in producing a
point estimator of the mean (of which there are many ro-
bust ones), but in quantifying uncertainty in a manner that
is both theoretically optimal and practically tight. Let P be
an unknown distribution over R with a known upper bound
σ2 on the variance, and unknown mean µ that we want to
estimate. Let Q be another distribution, seen as a “cor-
ruption” of P , such that its total variation (TV) distance
from P is at most ε. We assume that an infinite stream
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of data X1, X2, . . . is generated i.i.d. according to the cor-
rupted distribution Q. The task that this paper shall focus
on, is the derivation of a robust confidence sequence (CS)
(Darling and Robbins, 1967) for µ, which is a sequence of
confidence intervals {CIt}t∈N+ that guarantees that

∀ stopping times τ > 0, P[µ ∈ CIτ ] ⩾ 1− α, (1)

where α is a predefined miscoverage tolerance. Howard
et al. (2021) showed that condition (1) is equivalent to the
time-uniform coverage condition

P[∀t ∈ N+, µ ∈ CIt] ⩾ 1− α. (2)

Both (equivalent) guarantees are of course much stronger
than fixed-time confidence intervals for µ, for which the
sample size must be fixed in advance. Instead a CS allows
for sequentially tracking the mean and stopping at any data-
dependent time, while still having correct inference. Note
that the covered parameter µ is the mean of the uncorrupted
P , while the mean of the corrupted, data-generating Q may
be arbitrarily away from µ, or even undefined. Also, the
variance of Q need not exist.

Confidence sequences are increasingly common in sequen-
tial experimentation in the IT industry. Even though they
are cast in terms of estimation, they can be used to de-
fine anytime-valid p-values (Johari et al., 2021; Howard
et al., 2021) for composite hypotheses like testing if µ ⩽ 0.
CSs are useful for A/B testing or multi-armed bandit test-
ing (Yang et al., 2017; Howard and Ramdas, 2022). In
fact, they are explicitly used in internal tools or external
services of Adobe (Analytics for Target), Amazon (Ev-
idently) and Netflix (Lindon et al., 2022), for example.
CSs are an integral part of multi-armed bandit algorithms,
right from the original papers on regret minimization (Lai
and Robbins, 1985, Section 4) and best-arm identifica-
tion (Jamieson et al., 2014). Thus robust CSs, that are the-
oretically tight and not practically loose, could have imme-
diate downstream applications.

1.1 Our Contributions

The CS that we shall present in this paper is partly inspired
by the non-sequential + non-robust study by Catoni (2012),
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and the recent sequential + non-robust extension due to
Wang and Ramdas (2022). Like the latter paper, both the
upper and lower endpoints of the CS can be seen as M-
estimators. In fact, setting ε = 0 in this work recovers
the latter paper’s results, which in turn recovers the former
paper when interested only in fixed-time CIs under heavy-
tailed settings. In this sense, the current paper strengthens
the ties between heavy-tailed mean estimation and robust
mean estimation, two goals that are often separately pur-
sued but closely related (Prasad et al., 2019).

Our CS not only works nonparametrically for any distri-
bution P and its corruption Q that satisfy the succinct as-
sumptions we stated in the beginning of this section, but
also enjoys near-optimal tightness. To elaborate, the width
of our robust CS provably matches the lower bound σ

√
ε

for any robust estimation methods, sequential or not. Math-
ematically, we prove that its width is optimal up to a con-
stant factor (currently 28) with high probability. Perhaps
both lower and upper bound can be improved by constant
factors in future work, but the important point is that one
does not appear to pay even this constant factor price in
practice. This is to be contrasted with the non-sequential
recent work by Lugosi and Mendelson (2021), whose anal-
ysis only yields robust confidence intervals with widths at
least 96

√
2 times the lower bound. The reason behind it is

simple: most works, including the above, are not aiming
at tight or practical uncertainty quantification — they typi-
cally design point estimators and prove mathematically that
these are “close” to the true mean achieving the optimal rate
in terms of σ, ε and sample size; these rate-optimal theo-
rems can be translated to confidence intervals, but these are
loose. It is true that these authors often do not to optimize
their constants, but the reality is that if we desire a (1−α)-
CI using their techniques, we must pay a practical price for
their loose analysis. This is because their constants appear
in the actual construction of the CI. In contrast, our CS does
not have large constants in the actual construction: the fac-
tor of 28 only arises in the theoretical analysis. This means
that our CS is much tighter in practice (than their method,
and than our bounds); see Figure 4 for details.

1.2 Related Work

Robust Statistics. The coinage of the term “robust” in the
statistical literature was first due to Box (1953), albeit more
in today’s sense of nonparametric statistics. Early pioneers
in the development of the concept include Tukey (1960);
Huber (1964, 1965, 1968, 1973); Bickel (1965), and Ham-
pel (1968, 1971). While historically “loaded with many,
sometimes inconsistent, connotations” (Ronchetti and Hu-
ber, 2009), the concept of statistical robustness in recent
years refers almost exclusively to the one pioneered by Hu-
ber (1964), i.e. the setting where data are subject to a cer-
tain level of contamination — which may either be on the
underlying distribution (Huber, 1964; Maronna et al., 2019;

Diakonikolas et al., 2019), or directly on the data (Lecué
and Lerasle, 2020; Lugosi and Mendelson, 2021; Minsker
and Ndaoud, 2021). In either case, valid inference on func-
tionals of the original, uncontaminated distribution is of in-
terest. The definition of robustness (Definition 1) that we
shall use in this paper also follows this recent convention.
Also, we discuss the relation to another notion of robust-
ness in Section 4.1, as the premise for a comparative study.

Prominent ideas in robust estimation include, among oth-
ers, M-estimators and trimming. The use of M-estimators
in robust statistical procedures dates back to Huber (1964),
which achieve robustness by curbing and bounding the in-
fluence that individual data points can make on the statis-
tics. A recent work by Bhatt et al. (2022a), concurrent
with ours, shows that the fixed sample size M-estimator
due to Catoni (2012) is robustly minimax. On the other
hand, trimming refers to the practice of directly discard-
ing outliers (Anscombe, 1960), and trimmed means have
long been known to be robust (Bickel, 1965). Recently, a
sample splitting variant of the trimmed mean due to Lu-
gosi and Mendelson (2021) was shown to be robust non-
parametrically over all finite variance distributions, which
we shall discuss in Section 4.2. Other recent techniques
in obtaining robust estimators include median of means
(Lerasle and Oliveira, 2011; Depersin and Lecué, 2022),
self-normalization (Minsker and Ndaoud, 2021), and filter-
ing (Diakonikolas et al., 2019).

Sequential Statistics. Wald (1945) first formulated the
problem of sequential statistical testing, as deciding to re-
ject the null or not every time a new data point is seen. The
sequential type I error is the probability of ever rejecting
the null when it is true. Apart from sequential tests, the is-
sue of sequential validity leads to a tapestry of concepts
including the anytime valid p-value (Johari et al., 2021;
Howard et al., 2021), and the e-process (Howard et al.,
2020; Grünwald et al., 2019; Ramdas et al., 2022b). The
confidence sequence (1) (Darling and Robbins, 1967) is the
only concept that focuses on sequential estimation rather
than testing, and from which the other tools can be derived.
Since Howard et al. (2020), the use of nonnegative (su-
per)martingales in conjunction with Ville’s inequality (see
Section 2.4) has been increasingly common practice in se-
quential inference, generalizing Wald’s (1945) likelihood
ratios favored by the earlier works, and yielding new tools
in nonparametric settings (Howard et al., 2021). Sequen-
tially valid methods provide a theoretical safeguard against
the potential peril of p-hacking. We refer the reader to a
recent survey (Ramdas et al., 2022a) for more details.

There have been a few studies in the literature that address
the feasibility of robustifying sequential tests, mostly no-
tably the works by Huber (1965) and by Quang (1985),
both of them robustifying the likelihood ratio by censor-
ing. Hence they only apply to relatively simple parametric
settings, and it is hard to generalize them into our nonpara-



Hongjian Wang, Aaditya Ramdas

metric setting — indeed our class of distributions consists
of both continuous and discrete distributions with any sup-
port, and so there is no single common reference measure
with respect to which one can define likelihood ratios be-
tween pairs of distributions in our class, and so we will
need to entirely avoid likelihood ratio style methods.

In summary, we believe this is the first work to design a
robust confidence sequence in any setting.

2 PRELIMINARIES

2.1 Notation and Problem Setup

Throughout the paper, R denotes the set of real num-
bers and B(R) its Borel σ-algebra. The diameter of any
I ∈ B(R) is denoted by diam(I). N and N+ denotes re-
spectively the set of nonnegative and positive integers. We
fix a universal probability space (Ω,A,P) and a filtration
{Ft}t∈N when discussing randomness.

Denote by M the set of all probability measures over
(R,B(R)). Its elements, understood as the distributions of
real-valued data, are denoted by upper-case italic letters P ,
Q and so on. The following important nonparametric sub-
sets of M are of interest. We denote by M1 the set of all
distributions with finite mean on R, where µ : M1 → R
denotes the mean functional

µ(P ) =

∫
x dP. (3)

For p > 1, denote by Mp the subset of M1 of those distri-
butions with that have both means and finite p-th moments
on R, while vp : Mp → R denotes the p-th absolute central
moment functional

vp(P ) =

∫
|x− µ(P )|p dP. (4)

Finally, we use Mp
κ = {P ∈ Mp : vp(P ) ⩽ κ} to denote

distributions with p-th absolute central moment bounded
by κ. The familiar class of distributions with variance
bounded by σ2 is hence denoted by M2

σ2 .

Recall that the total variation (TV) distance DTV is defined
via DTV(P,Q) = supA∈B(R) |P (A)−Q(A)| and is a met-
ric on M. Further, it is an integral probability metric in the
sense that for any pair of real numbers c1 < c2,

DTV(P,Q) =
1

c2 − c1
sup

c1⩽f⩽c2

∣∣∣∣ E
X∼P

f(X)− E
X∼Q

f(X)

∣∣∣∣ ,
(5)

where the supremum is taken over all measurable func-
tions from R to [c1, c2]. For any P ∈ M, we denote by
BTV(P, ε) the closed TV ball of radius ε around P ,

BTV(P, ε) = {Q ∈ M : DTV(P,Q) ⩽ ε}. (6)

We are now ready to define robust CIs and CSs (applicable
beyond the scope of this paper).

2.2 Definition of a Robust CS

Definition 1 (Robust CI and CS). Let P ⊆ M and
χ : P → R be a functional. A sequence of measurable
interval-valued functions {CIt}

CIt : Rt →
{
[l, u] : −∞ ⩽ l ⩽ u ⩽ ∞

}
(7)

is called a sequence of ε-robust (1−α)-confidence intervals
over P for the functional χ, or (ε, 1 − α)-RCIs for (P, χ)
for short, if

∀P ∈ P, ∀Q ∈ BTV(P, ε), ∀t ∈ N+,

P
Xi

iid∼Q

[χ(P ) ∈ CIt(X1, . . . , Xt)] ⩾ 1− α. (8)

{CIt} is called an ε-robust (1 − α)-confidence sequence
over P for χ, or an (ε, 1− α)-RCS for (P, χ), if

∀P ∈ P, ∀Q ∈ BTV(P, ε),

P
Xi

iid∼Q

[
∀t ∈ N+, χ(P ) ∈ CIt(X1, . . . , Xt)

]
⩾ 1− α.

(9)

The central question that the current paper seeks to answer
is the possibility of constructing a tight RCS for (M2

σ2 , µ).
While our method actually produces RCS for (Mp

κ, µ)
where p may be any real number > 1, we shall focus pri-
marily on the p = 2 case for simplicity until Section 5.2.

Remark 1. Our formulation of robustness via the TV-
ball allows for a more general class of contaminations
compared to the notion of “gross error model” by Huber
(1964, 1965, 1968, 1973) where data are drawn with ε
chance from an arbitrary other distribution. To wit, the
ε-contamination neighborhood in Huber’s cited works, is

C(P, ε) := {(1− ε)P + εP ′ : P ′ ∈ M}, (10)

and it is easy to see that C(P, ε) ⊆ BTV(P, ε).

Remark 2. Trivially, any RCS yields an RCI at a fixed
time; and with any RCI, for example the one by Lugosi
and Mendelson (2021), one may define an RCS by simply
applying a union bound to it (e.g. defining CIt to be the(
ε, 1− α

T

)
-RCI for t ⩽ T , and repeating CIT for t > T ,

or alternatively defining it to be the entire real line before
time T and repeating CIT after T ). Our supermartingale
techniques lead to much better performance than such triv-
ial constructions, as shown at the end of Section 4.2.

Remark 3. We note that in this paper σ, ε are assumed
known. As discussed in Wang and Ramdas (2022) which
deals with the contamination-free case, not knowing a
bound on σ makes nonasymptotic inference impossible. In-
deed, the class M2 (or any Mp) is one that satisfies the
impossibility result of Bahadur and Savage (1956, Theo-
rem 1). Hence by Bahadur and Savage (1956, Corollary
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2), no nontrivial CI exists for µ over these classes. The
smaller class M2

σ2 (or any Mp
κ) with known bounds σ2

or κ suffers from no such limitation. Catoni (2012) and
Bhatt et al. (2022b) use the well-known “Lepskii’s method”
to obtain point estimators that adapt to unknown variance
(whose dominant terms of the mean squared error depend
on the true variance which is smaller than σ2), but it is
important to note that no adaptive CI exists (or can exist).
However, we do not know if robust CIs require the contam-
ination parameter ε to be known, and no prior work, to
the best of our knowledge, either bypasses this requirement
or proves it necessary. While Minsker and Ndaoud (2021,
Section 4.1) have a robust mean estimator that “adapts” to
ε, the corresponding CI does not (the coverage probability
depends on the unknown number of outliers). We leave the
problem to future work.

2.3 Width Lower Bound

It is well-known that robust mean estimators cannot attain
consistency (meaning the width of robust CIs cannot shrink
to zero), and various information-theoretic lower bounds
state that an error scaling as a function (depending on the
distribution class) of ε is unavoidable for ε-robust methods
(Chen et al., 2018; Lugosi and Mendelson, 2021). For the
sake of completeness, we state (and prove in Appendix A)
the following lower bound for the diameter of RCIs and
RCSs for (M2

σ2 , µ).

Lemma 1 (Lower bound for RCIs and RCSs for
(M2

σ2 , µ)). Suppose {CIt} is a sequence of (ε, 1 − α)-
RCIs for (M2

σ2 , µ). Then, there is some P ∈ M2
σ2 such

that

∀t ∈ N+, P
Xi

iid∼P

[
diam(CIt) ⩾ σ

√
ε
]
⩾ 1− 2α. (11)

Further, if {CIt} is an (ε, 1− α)-RCS for (M2
σ2 , µ), then

P
Xi

iid∼P

[
∀t ∈ N+, diam(CIt) ⩾ σ

√
ε
]
⩾ 1− 2α. (12)

2.4 Supermartingales and Ville’s inequality

A stochastic process {Mt}t∈N adapted to the filtration
{Ft}t∈N is called a supermartingale if E[Mt|Ft−1] ⩽
Mt−1 for all t ∈ N+. Nonnegative supermartingales
are widely used to construct CSs (Howard et al., 2021;
Waudby-Smith and Ramdas, 2023; Wang and Ramdas,
2022) thanks to the following theorem by Ville (1939).

Lemma 2 (Ville’s inequality). Let {Mt}t∈N be a nonnega-
tive supermartingale and α ∈ (0, 1). Then, with probabil-
ity at least 1− α, supt∈N+ Mt ⩽ α−1E[M0].

We refer the reader to Howard et al. (2020) for a short,
modern proof of Lemma 2.

3 MAIN RESULTS

We now present our RCS construction. It is based on the
design of new robust supermartingales, inspired by recent
Catoni-style supermartingales (Wang and Ramdas, 2022).

3.1 Robust Nonnegative Supermartingales

Consider the “narrowest possible” influence function in
Catoni (2012, Equation (2.3)), given by

ϕ(x) =


log 2, x ⩾ 1,

− log(1− x+ x2/2), 0 ⩽ x < 1,

log(1 + x+ x2/2), −1 ⩽ x < 0,

− log 2, x < −1.

(13)

−3 −2 −1 0 1 2 3

0

log2

- log2

φ(x)

Figure 1: The influence function (13). The shaded region
refers to Catoni’s condition (14).

It is easy to check (see Figure 1) that it satisfies

− log(1− x+ x2/2) ⩽ ϕ(x) ⩽ log(1 + x+ x2/2) (14)

and |ϕ(x)| ⩽ log 2. Catoni (2012) uses any function
that satisfies (14) to construct sub-Gaussian M-estimators
of mean over M2

σ2 , explicitly stating that their objective
“should not be confused with robust statistics”. However,
in a concurrent work, Bhatt et al. (2022a) show that (14)
does lead to (fixed-time) robustness if boundedness is fur-
ther assumed. We shall show that time-uniform robustness
is also viable by this idea of logarithmic influence function.
The key is to obtain the following pair of “robust nonnega-
tive supermartingales” over the entire TV ball around P .

Lemma 3 (Robust Catoni Supermartingales). For any P ∈
M2

σ2 and Q ∈ BTV(P, ε), let

X1, X2, . . .
iid∼ Q, each Xt being Ft-measurable. (15)

Let {λt}t∈N+ be an {Ft}-predictable process. Then, the
following processes {MRC

t }t∈N, {NRC
t }t∈N, with MRC

0 =
NRC

0 = 1, are nonnegative supermartingales:

MRC
t =

t∏
i=1

exp{ϕ(λi(Xi − µ(P )))}
1 + λ2

iσ
2/2 + 1.5ε

, (16)

NRC
t =

t∏
i=1

exp{−ϕ(λi(Xi − µ(P )))}
1 + λ2

iσ
2/2 + 1.5ε

. (17)
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Note in particular that by setting ε = 0 and apply-
ing 1 + x ⩽ ex to the denominator, one recovers the
(non-robust) Catoni supermartingales of Wang and Ram-
das (2022, Lemma 8).

The constant 1.5 appearing above is not magical: it arises
because the maximum and minimum values of exp(ϕ(x))
are 1/2 and 2, differing by 3/2. Indeed, the proof of
Lemma 3 is based on the boundedness of exp(ϕ(x)), with
the property (5) of TV that leads to the translation of expec-
tation from under Q to under P . Given the centrality of the
above lemma, and its uniqueness as being the first robust
nonnegative supermartingale we are aware of, we present
the proof immediately.

Proof of Lemma 3. Since |ϕ(x)| ⩽ log 2, we have 1/2 ⩽
exp{ϕ(λt(x− µ(P )))} ⩽ 2. Note that

E
[
exp{ϕ(λt(Xt − µ(P )))}

1 + λ2
tσ

2/2 + 1.5ε

∣∣∣∣Ft−1

]
(18)

=
EXt∼Q [exp{ϕ(λt(Xt − µ(P )))}]

1 + λ2
tσ

2/2 + 1.5ε
(19)

⩽
EXt∼P [exp{ϕ(λt(Xt − µ(P )))}] + 1.5ε

1 + λ2
tσ

2/2 + 1.5ε
(20)

⩽
EXt∼P [1+λt(Xt−µ(P ))+λ2

t (Xt−µ(P ))2/2]+1.5ε

1+λ2
tσ

2/2+1.5ε
(21)

=
EXt∼P

[
1 + λ2

t (Xt − µ(P ))2/2
]
+ 1.5ε

1 + λ2
tσ

2/2 + 1.5ε
(22)

=
(1 + λ2

t v2(P )/2) + 1.5ε

1 + λ2
tσ

2/2 + 1.5ε
⩽ 1. (23)

The first inequality above is due to (5) and Q ∈ BTV(P, ε).
Hence {MRC

t } is a supermartingale. The proof for {NRC
t }

is analogous.

It is clear from the proof above that the i.i.d. assumption
Xi ∼ Q ∈ BTV(P, ε) can be relaxed; it suffices to assume
that each Xi is generated from some distribution (or even a
random distribution measurable w.r.t. Ft−1) in BTV(P, ε).
We keep the i.i.d. assumption (and notation) throughout the
paper for simplicity.

3.2 Our Huber-Robust CS

Applying Ville’s inequality (Lemma 2) on (16) and (17)
leads to our robust confidence sequence, stated next and
proved soon after.
Theorem 1 (Huber-robust CS). Define ft(m) :=∑t

i=1 ϕ(λi(Xi −m)). We define CIRt (X1, . . . , Xt) to be{
m ∈ R : |ft(m)| ⩽

log(2/α) +

t∑
i=1

log
(
1 + λ2

iσ
2/2 + 1.5ε

)}
. (24)

Then, {CIRt } is an (ε, 1− α)-RCS for (M2
σ2 , µ).

The confidence sequence is defined like M-estimators are;
indeed, both end points of the interval CIRt are level points
of ft(m) (where the inequality holds with equality). If a
point estimate of the mean is desired, we may define µ̂R

t as
the solution to the estimating equation ft(m) = 0. While it
is always true that µ̂R

t ∈ CIRt , note that µ̂R
t is not the center

of CIRt (despite its apparently symmetric definition).

Proof of Theorem 1. For any Q ∈ BTV(P, ε), applying
Ville’s inequality (Lemma 2) to the nonnegative super-
martingale {MRC

t } under Q, we infer the following: with
probability at least 1− α/2, we have that ∀t ∈ N+,

ft(µ(P )) ⩽
t∑

i=1

log{1+λ2
iσ

2/2+1.5ε}+log(2/α). (25)

Applying the same logic to {NRC
t }: with probability at

least 1− α/2, we have that ∀t ∈ N+,

− ft(µ(P )) ⩽
t∑

i=1

log{1+λ2
iσ

2/2+1.5ε}+ log(2/α). (26)

Combining them with a union bound concludes the proof
of the theorem.

The confidence sequence, as many previous ones in the lit-
erature, is tunable up to a sequence of parameters {λt},
which could be seen as weights put on the data sequence
{Xt}. Past works that involve such sequence parameters
have oftentimes set it to be a decreasing sequence with
a rate of decay approximately t−1/2 (Waudby-Smith and
Ramdas, 2023; Wang and Ramdas, 2022), which led to a
t−1/2 polylog(t) rate of shrinkage in the width of the CS.
However, as we have seen in Lemma 1, shrinkage of any
RCIs (and thus any RCS) to zero at any rate is impossible,
so intuitive a decaying {λt} would no longer be preferred.
Indeed, as we shall soon see in Section 3.3, the CS would
unboundedly inflate if {λt} is set either to decrease, or in-
crease, at a polynomial rate. Instead, a constant sequence
λ1 = λ2 = · · · = λ, where λ ∝ ε1/2σ−1, leads to near-
optimal width of the CS.

Under the choice λ = 0.5ε1/2σ−1, we conduct a simu-
lation with true distribution P being N (0, 9), along with
a 1/9 chance of contamination from an asymmetric 0.75-
Lévy stable distribution with location parameter 0 and
skewness parameter β = 0.5. Our RCS with σ2 = 9, ε =
1/9 is compared to a non-robust CS for σ2-subGaussian
distributions of Howard et al. (2021, Eq. (11)) in Figure 2.
In practice, our RCS is much better than the concentration
bound we will prove in Theorem 2, presented next.

We finally remark on the computational aspects of our RCS
in Theorem 1. As the function ft(m) is continuous and
monotonic, root-finding algorithms including the bisection
method, secant method, and Brent’s method can efficiently
calculate the upper and lower endpoints according to (24).
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Figure 2: Our robust confidence sequence versus a non-
robust confidence sequence by Howard et al. (2021), under
contaminated Gaussian data. Our RCS always cover the
true mean µ(P ) = 0 while non-robust CS does not. The
y-axis of the plot scales one-to-one with the lower bound
σ
√
ε = 1. Our RCS is tighter than our Theorem 2 would

predict.

We can further accelerate the root-finding via warm start-
ing, viz., initializing the iterate for finding max(CIRt ) with
the previous solution max(CIRt−1).

3.3 Tuning and Width Analysis

Our tightness bound for the RCS in Theorem 1 is stated in
the form of a concentration bound, since the width of (24),
unlike traditional confidence intervals, is random. Simi-
lar width concentration results have been used in random-
width CSs by, for example, Wang and Ramdas (2022). Sup-
posing that the weight sequence is taken constant, λ1 =
λ2 = · · · = λ, we have the following bound.

Theorem 2. For any 0 < δ, α < 1 and 0 < ε ⩽ 1/7,
suppose that t > 4ε−1 log(4/αδ) and λ2 = ε

4σ2 . Under
any corrupted distribution Q ∈ BTV(P, ε), the (ε, 1− α)-
RCS for (M2

σ2 , µ) stated in Theorem 1 satisfies

P
Xi

iid∼Q

[
diam(CIRt ) ⩽ 28σ

√
ε
]
⩾ 1− δ, (27)

matching the lower bound σ
√
ε.

Despite its centrality, the proof of Theorem 2 is a bit long,
and is thus deferred to Appendix A.

We remark that Theorem 2 answers the question of tun-
ing in a satisfactory manner, since we have shown that
setting λ ∝ ε1/2σ−1 leads to an optimal width. We fur-
ther demonstrate the point by following experiments: we
set the true distribution P to be N (0, 9), with 1/9 chance
of contamination from an asymmetric 0.3-Lévy stable dis-
tribution with location parameter 1000 and skewness pa-
rameter β = 0.5. RCS with σ2 = 9, ε = 1/9 and
λt = 0.5ε1/2σ−1tu, where u ∈ {−0.5,−0.25, 0, 0.25}.

The comparison is shown in Figure 3. We can observe from
the plots that only setting {λt} to a constant can keep the
RCS within constant width.

4 AN EMPIRICAL COMPARISON

Robust uncertainty quantification (i.e. valid (1 − α)-RCIs
or RCSs) has not been a key focus of past work, which
has been dominated by point estimators. Thus, we must in
some sense extract an RCI from related work as a point of
comparison, and we do this below.

4.1 Relationship between Robustness Models

Apart from the robustness model in Definition 1 we con-
sider (which is itself a generalization of the model of Hu-
ber (1964)), there is in the literature another model of ro-
bustness, where, instead of an ε chance of random contam-
ination to the distribution, there is an adversary who can
replace up to ε fraction of the data after they are gener-
ated from the true distribution. This fully adversarial set-up
has been considered, among others, by Diakonikolas et al.
(2019); Cheng et al. (2019), and Lugosi and Mendelson
(2021) whose distribution assumption closely matches ours
(both being M2

σ2 ). To compare our results to those by Lu-
gosi and Mendelson (2021), we first formally relate the ro-
bustness model they operate on to ours.

Let ε ∈ (0, 1) and t ∈ N+. Define Rε,t as the class of
all functions Rt → Rt that change at most ⌊εt⌋ of the
t coordinates into constants. For example, the function
c(x, y, z) = (x, 100, z) satisfies c ∈ Rε,3 for all ε ⩾ 1/3.
We call Rε,t the set of ε-replacements.

Definition 2 (Replacement robust CI (RRCI)). Let P ⊆ M
and χ : P → R be a functional. A sequence of measurable
interval-valued functions {CIt} is called a sequence of ε-
replacement robust (1−α)-confidence intervals over P for
the functional χ, or (ε, 1− α)-RRCIs for (P, χ), if

∀P ∈ P, ∀t ∈ N+,

P
Xi

iid∼P

[∀c ∈ Rε,t, χ(P ) ∈ CIt (c(X1, . . . , Xt))] ⩾ 1−α.

(28)

We emphasize that the probability bound is uniform over
∀c ∈ Rε,t because the adversary may examine the data be-
fore deciding on how to corrupt them with a replacement
c ∈ Rε,t. While it is tempting to sequentialize Defini-
tion 2 by, say, putting “∀t ∈ N+” inside the probability
bound, such ostensible generalization does not make prac-
tical sense. As we have pointed out, Definition 2 is moti-
vated by the setting where an adversary corrupts the data
offline, after they are entirely generated, which is an inher-
ently fixed-time scenario. By contrast, sequential statistics
is concerned with the scenario where we face an infinite
stream of data, and inference is conducted online along the
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Figure 3: Our robust confidence sequences with different choice of {λt}. Indeed as discussed earlier, setting {λt} to a
constant multiple of

√
ε/σ (the third plot in red) controls the width, but other choices do not.

way, instead of post-hoc. This is why we hold ourselves
back from defining “RRCS”. Still, we define RRCIs largely
due to its following relation with RCIs in Definition 1.
Lemma 4. Any sequence of (2ε, 1 − α)-RRCIs for (P, χ)

is a sequence of (ε, 1− (α+ e−2tε2))-RCIs for (P, χ).

Lemma 4 states that RRCIs can simulate RCIs up to a con-
stant. While similar statements have been known, for ex-
ample in Li (2019, Corollary 2.1), we prove Lemma 4 in
full in Appendix A. We now have the necessary terminol-
ogy to introduce the trimmed mean RCI.

4.2 Comparison with the Trimmed Mean RCI

A variant of the trimmed mean based on sample splitting
is shown by Lugosi and Mendelson (2021) to be robustly
concentrated in the replacement sense, which can be used
to construct a sequence of RRCIs. We rephrase as follows
the main finding of Lugosi and Mendelson (2021).
Theorem 3 (Theorem 1 of Lugosi and Mendelson (2021),
rephrased). Let µ̂t(x1, . . . , xt) be (a slight variant of) the
trimmed mean of x1, . . . , xt. Suppose 0 < α < 1, and
t/2 ⩾ log(1/4α). Then, for all P ∈ M2

σ2 , with probability

at least 1− α over X1, X2,
iid∼ P ,

|µ̂t(c(X1, . . . , Xt))−µ(P )| ⩽ 12
√
2ε′σ+2σ

√
log(4/α)

t/2

(29)
uniformly over all c ∈ Rε,t, where

ε′ = 8ε+
12 log(4/α)

t/2
. (30)

In particular, if we are to construct (ε, 1− α)-RRCIs from
the concentration bound (29), the width is strictly and
deterministically greater than 24

√
2ε′σ which is in turn

greater than 96
√
ε.1 For example, if we assume

t ⩾ max

{
ε−1 log(4/α)

0.09
, 2 log(1/4α)

}
. (31)

1In Lugosi and Mendelson (2021, Theorem 1), the first dis-
played equation is correct (which we quote in (29)), while their
second displayed equation is off by a constant.

Then, [µ̂t±49
√
εσ] is a valid RRCI. Now recall Lemma 4.

To simulate a sequence of (ε, 1 − α)-RCIs, one needs a
sequence of (2ε, 1−α′)-RRCIs where α′ is slightly smaller
than α. Hence, the RCIs simulated by Theorem 3 are at
least 96

√
2ε wide. Compare this with our RCS which is

only 28
√
εσ wide, with high probability (Theorem 2).

As mentioned before, Theorem 2 is quite conservative
about the tightness of our RCS. In practice, the advantage
of our approach is even more pronounced. The comparison
shown in Figure 4 is conducted under σ2 = 1/ε = 36, with
contamination from an asymmetric 0.3-Lévy stable distri-
bution with location parameter 1000 and skewness param-
eter β = 0.5. When t is small, Lugosi and Mendelson’s
(2021) split-sample trimming is even undefined (all of the
data trimmed); and when their RCIs are defined, they are in
a cosmic distance compared to our RCS. Other robust mean
estimators over M2

σ2 (e.g. Depersin and Lecué, 2022) suf-
fer from even larger, “galactic” concentration constants.

We remark that the advantage of our approach lies in the
fact that it directly solves for the interval, instead of hing-
ing on some concentration inequality on a point estimator
(which causes many other works to have large constants,
in turn causing very loose CIs). We do use concentration
bounds to analyze our widths in Theorem 2, but not to con-
struct them; thus constant-factor bottlenecks in theoretical
analysis do hurt practical performance of other estimators,
but not ours. Even if concentration constants are improved
in other methods, they are unlikely to beat ours in practice
as Ville’s inequality is known for its tightness.

Another important advantage of our M-estimation ap-
proach lies in its large break-down point. That is, it tol-
erates large amount of corruption. The advantage is also
mentioned by Bhatt et al. (2022a) in their fixed-time study,
their robust M-estimator breaking down at a higher ε (36%
for M2

σ2 ) compared to the trimmed mean of Lugosi and
Mendelson (2021) (which breaks down at ε = 1/16). In
our Theorem 1, taking each λi = λ, the interval in (24)
will not span the entire R if t log 2 > log(2/α) + t log(1+
λ2σ2/2 + 1.5ε), which will happen for large t as long as
2 > 1 + λ2σ2/2 + 1.5ε. Under our choice λ2 = ε

4σ2 this



Huber-Robust Confidence Sequences

101 102 103 104

time

−100

−75

−50

−25

0

25

50

75

100

Lugosi-Mendelson trimmed mean

Lugosi-Mendelson robust CI

Our robust CS

Figure 4: Comparison of our RCS with Lugosi and
Mendelson’s (2021) RCIs. The lack of dashed lines before
t ≈ 2 × 103 is because all the data are trimmed using the
latter approach. Again, the y-axis of the plot scales one-to-
one with the lower bound σ

√
ε = 1.

amounts to ε < 8/13.

Finally, we return to the trivial RCS construction men-
tioned in Remark 2. First, as we can observe in Figure 4,
even the best fixed-time (1−α)-RCIs are already very loose
as they suffer from impractical large constants. Second,
the use of union bounds will lead to even poorer results as
union bounds can only be tight when the underlying events
are nearly independent; here the miscoverage events at sub-
sequent times are highly dependent. Nonnegative super-
martingales and Ville’s inequality, on the other hand, pay
no such (indeed, constant-level) price. It is worth stressing
here that constants matter in confidence sequences, espe-
cially because they are widely used in deployed IT services.

5 EXTENSIONS

5.1 Robust Test Supermartingales

The well-known duality between confidence intervals and
hypothesis testing also extends to the robust sequential set-
ting. For some set S in the range of a functional χ, consider
the null hypothesis:

H0 = {P ∈ P : χ(P ) ∈ S}. (32)

If {CIt} is an (ε, 1−α)-RCS for (P, χ), then the sequential
decision to reject H0 whenever S and CIt do not intersect
attains the following robustified control of type I error:

∀Q ∈ BTV(H0, ε), P
Xi

iid∼Q

[ever rejecting H0] ⩽ α. (33)

Here BTV(H0, ε) is the closed ε-neighorhood of the null
set H0 under the TV metric, i.e.,

⋃
P∈H0

BTV(P, ε). Ro-
bust tests thus enlarge H0 to its neighbor BTV(H0, ε).

In particular, our RCS in Theorem 1 can be used to robustly
test if µ(P ) = µ0. Equivalently, µ(P ) = µ0 is rejected
when both of the supermartingales in Lemma 3 (replacing
µ(P ) with µ0) surpass 2/α. Moreover, similar to the dis-
cussion of Wang and Ramdas (2022, Section 10.4), each
one of the supermartingale pair in Lemma 3 works implic-
itly to test a one-sided composite null. To wit, whenever

MRC
t =

t∏
i=1

exp{ϕ(λi(Xi − µ0))}
1 + λ2

iσ
2/2 + 1.5ε

(34)

is greater than 1/α, reject the one-sided composite

H0 = {P ∈ M2
σ2 : µ(P ) ⩽ µ0}.

Then, the sequential type I error is controlled at level α
over the enlarged null BTV(H0, ε). While it is natural to
think that the powers of these tests, characterized by the
growth of the test processes under the alternative, are re-
duced due to the trade-off with robustification (i.e. prevent-
ing false rejections due to corrupted data), an exponential
rate of growth, similar to the nonrobust tests, can still be
achieved under sufficient separation between the null and
the alternative. We formalize this with the following dual
to Theorem 2, proved in Appendix A:

Corollary 1. Under the assumptions of Theorem 2 except
t ⩾ 4ε−1 log(4/αδ), when µ(P ) > µ0 + 14σ

√
ε, the pro-

cess {MRC
t } in (34) grows exponentially with

P
Xi

iid∼Q

[
MRC

t >
δ

4
exp

(
tε

4

)]
⩾ 1− δ/2. (35)

5.2 Infinite Variance

Recalling the notation around (4), we now turn to the ques-
tion of constructing RCS for (Mp

κ, µ), for 1 < p < 2.

Now, instead of (13), we define

ϕp(x) =


log p, x ⩾ 1,

− log(1− x+ xp/p), 0 ⩽ x < 1,

log(1 + x+ |x|p/p), −1 ⩽ x < 0,

− log p, x < −1.

(36)

Then, akin to Lemma 3, we have,

Lemma 5. For any P ∈ Mp
κ and Q ∈ BTV(P, ε), let

X1, X2, . . .
iid∼ Q, each Xt being Ft-measurable. Let

{λt}t∈N+ be a {Ft}-predictable process. Then, the fol-
lowing processes {MRC

t
p}t∈N, {NRC

t
p}t∈N are nonnega-
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tive supermartingales adapted to {Ft}:

MRC
0

p
= NRC

0

p
= 1, (37)

MRC
t

p
=

t∏
i=1

exp{ϕp(λi(Xi − µ(P )))}
1 + λp

i κ/p+ (p− 1/p)ε
, (38)

NRC
t

p
=

t∏
i=1

exp{−ϕp(λi(Xi − µ(P )))}
1 + λp

i κ/p+ (p− 1/p)ε
. (39)

Applying Ville’s inequality, we can extend Theorem 1.

Theorem 4. Define fpt(m) :=
∑t

i=1 ϕp(λi(Xi−m)). We
define CIRt

p
(X1, . . . , Xt) to be{

m ∈ R : |fpt(m)| ⩽

log(2/α) +

t∑
i=1

log {1 + λp
i κ/p+ (p− 1/p)ε}

}
, (40)

Then, {CIRt
p} is an (ε, 1− α)-RCS for (Mp

κ, µ).

This RCS, again, has random widths and satisfies a high
probability width bound:

Theorem 5. For any 0 < α, δ < 1 and 0 < ε ⩽ p−1
7p ,

suppose t ⩾ ε−1 log(4/αδ), under any corrupted distri-
bution Q ∈ BTV(P, ε), the (ε, 1 − α)-RCS {CIRt

p} with
λt = (ε/κ)1/p for all t satisfies

P
Xi

iid∼Q

[
diam(CIRt

p
) ⩽

14p

p− 1
κ1/pε(p−1)/p

]
⩾ 1− δ. (41)

We defer the above proofs to Appendix A. The lower bound
from Bhatt et al. (2022a, Theorem 4.4) implies that RCIs
for (Mp

κ, µ) must, with high probability, have widths at
least 1

8κ
1/pε(p−1)/p. Thus, our width is optimal up to con-

stant factors.

We remark that in (36), we set the coefficient of xp and |x|p
to be 1/p, as this leads to a succinct, aesthetically pleasing
bound (41). One may also follow the tuning technique by
Bhatt et al. (2022b) in their fixed-time, non-robust setting,
to set the coefficient unknown and then optimize over it.
This may lead to constant-level improvement.

5.3 Robust Betting

We finally demonstrate a sibling case of potential inter-
est, the robust extension of the Kelly betting scheme by
Waudby-Smith and Ramdas (2023) for bounded data. Let
M[0,1] be the set of all distributions on [0, 1]; the original
and corrupted distribution both belong to this class. The
following theorem (proved in Appendix A) establishes a ro-
bust supermartingale analogous to the capital process when
betting on µ(P ) (cf. Waudby-Smith and Ramdas (2023,
Section 4)).

Theorem 6. Let P ∈ M[0,1] and Q ∈ BTV(P, ε)∩M[0,1].

Suppose X1, X2, . . .
iid∼ Q and each Xt is Ft-measurable.

The process {Lt} defined as follows is a supermartingale:

Lt =

t∏
i=1

(1 + λi(Xi − µ(P ))− ε|λi|), |λi| ⩽
1

1 + ε
. (42)

Unlike (16), the ε-dependent term here (which is like an
“insurance cost” against corruptions) scales linearly with
λi, and does not discount the process if λi is 0. When test-
ing µ(P ) = µ0 (replacing µ(P ) with µ0 in (42)), the trade-
off between rate of growth and safeguard against falsely
rejecting the null due to corrupted observations is smaller
if the “bet” λi is smaller.

6 CONCLUSION

In this paper, we derive Huber-robust confidence sequences
for the class of distributions with bounded p-th central mo-
ments, the first Huber-robust CSs we are aware of for any
class. These are based on the design of new robust nonneg-
ative supermartingales.

Our CS matches the width lower bound (up to a con-
stant) and it performs even better than robust nonsequential
(fixed-time) CIs in the literature. As referenced earlier, our
methods will enable immediate robustification of down-
stream applications of confidence sequences, e.g., multi-
armed bandits with contaminated distributions, and A/B/n
testing within existing experimentation pipelines in multi-
ple companies in the IT industry.

We hope that followup work can extend our ideas to mul-
tidimensional settings, perhaps utilizing the recent reduc-
tions presented in Prasad et al. (2020) (“A robust univari-
ate mean estimator is all you need”). This does not ap-
pear to be straightforward because the aforementioned pa-
per often hides constants (which do not matter for the rate-
optimality results they are interested in, but which do mat-
ter for achieving the desired level α), and it operates in a
fixed-sample size setting. It appears that many theoretical
and practical details need to be worked out for an exact and
practical (1− α)-RCIs or RCS to be feasible.

Other problems of potential future interest that this paper
brings up include the necessity (or lack thereof) of fore-
knowledge of the parameter ε, as well as a further un-
derstanding of the betting scheme and especially its λi-
proportional robustification cost in Section 5.3. Last, given
the well known connections between robust statistics and
differential privacy (Dwork and Lei, 2009), the privacy im-
plications of this work may be interesting to pursue. In-
deed, large-scale private and robust sequential experimen-
tation is certainly of increasing interest in the IT industry.
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A ADDITIONAL THEORETICAL RESULTS AND PROOFS

Lemma 6. For every ε ∈ (0, 1/2) and σ > 0, there exist P1, P2 ∈ M2
σ2 such that

1. P2 = (1− ε)P1 + εN for some N ∈ M, and

2. |µ(P1)− µ(P2)| = σ
√
ε.

Proof of Lemma 6. We take P1 = δ0 and N = δσε−1/2 , the Dirac point mass at 0 and σε−1/2 respectively. The fact that
P1 ∈ M2

σ2 is obvious. Note that
µ(P2) = (1− ε)µ(P1) + εµ(N) = σε1/2, (43)

and
v2(P2) = (1− ε)

∫
(x− σε1/2)2 dP1 + ε

∫
(x− σε1/2)2 dP2 = (1− ε)σ2. (44)

So P2 ∈ M2
σ2 , concluding the proof.

Proof of Lemma 1. Let P1 and P2 be the two distributions in Lemma 6. First applying the definition of RCS with P2 ∈
BTV(P1, ε), we have

P
Xi

iid∼P2

[
∀t ∈ N+, µ(P1) ∈ CIt(X1, . . . , Xt)

]
⩾ 1− α. (45)

Then applying the definition of an RCS with P2 ∈ BTV(P2, ε), we get

P
Xi

iid∼P2

[
∀t ∈ N+, µ(P2) ∈ CIt(X1, . . . , Xt)

]
⩾ 1− α. (46)

We see that, by a union bound,

P
Xi

iid∼P2

[
∀t ∈ N+, {µ(P1), µ(P2)} ⊆ CIt(X1, . . . , Xt)

]
⩾ 1− 2α. (47)

This implies that
P

Xi
iid∼P2

[
∀t ∈ N+, diam(CIt(X1, . . . , Xt)) ⩾ σ

√
ε
]
⩾ 1− 2α, (48)

as claimed. The case for RCIs is entirely analogous, by taking “∀t ∈ N+” outside of “P[ · ]”.

Lemma 7. On x ∈ [0, 1/7], we have

0 ⩽
x

4
− 2

(
1

1 + x/8 + 1.5x
− (1.5x+ 1)

)
︸ ︷︷ ︸

A(x)

⩽
x

4
− 2

(
exp(−x/4)

1 + x/8 + 1.5x
− (1.5x+ 1)

)
︸ ︷︷ ︸

B(x)

⩽ 7x ⩽ 1. (49)

Proof of Lemma 7. The first inequality is straightforward when writing A(x) as 3.25x(1.625x+2)
1.625x+1 . The second inequality is

trivial. To prove the third inequality, first note that B(x) = 3.25x− 2 exp(−x/4)
1.625x+1 + 2; then note that

2 exp(−x/4) ⩾ 2− 0.5x ⩾ 2− 0.5x− 3.75× 1.625x2 = (2− 3.75x)(1.625x+ 1), (50)

which clearly implies B(x) ⩽ 7x. The fourth inequality is trivial.

Proof of Theorem 2. Let X1, X2, . . .
iid∼ Q ∈ BTV(P, ε).

Define

Mt(m) =

t∏
i=1

exp{ϕ(λi(Xi −m))}
1 + λi(µ(P )−m) +

λ2
i

2 (σ2 + (µ(P )−m)2) + 1.5ε
(51)

=

∏t
i=1 exp{ϕ(λ(Xi −m))}(

1 + λ(µ(P )−m) + λ2

2 (σ2 + (µ(P )−m)2) + 1.5ε
)t . (52)



Hongjian Wang, Aaditya Ramdas

Note that

E

[
exp{ϕ(λt(Xt −m))}

1 + λt(µ(P )−m) +
λ2
t

2 (σ2 + (µ(P )−m)2) + 1.5ε

∣∣∣∣∣Ft−1

]
(53)

=
EXt∼Q [exp{ϕ(λt(Xt −m))}]

1 + λt(µ(P )−m) +
λ2
t

2 (σ2 + (µ(P )−m)2) + 1.5ε
(54)

⩽
EXt∼P [exp{ϕ(λt(Xt −m))}] + 1.5ε

1 + λt(µ(P )−m) +
λ2
t

2 (σ2 + (µ(P )−m)2) + 1.5ε
(55)

⩽
EXt∼P

[
1 + λt(Xt −m) + λ2

t (Xt −m)2/2
]
+ 1.5ε

1 + λt(µ(P )−m) +
λ2
t

2 (σ2 + (µ(P )−m)2) + 1.5ε
(56)

=
(1 + λt(µ(P )−m) +

λ2
t

2

(
v2(P ) + (µ(P )−m)2)

)
+ 1.5ε

1 + λt(µ(P )−m) +
λ2
t

2 (σ2 + (µ(P )−m)2) + 1.5ε
(57)

⩽
(1 + λt(µ(P )−m) +

λ2
t

2

(
σ2 + (µ(P )−m)2)

)
+ 1.5ε

1 + λt(µ(P )−m) +
λ2
t

2 (σ2 + (µ(P )−m)2) + 1.5ε
= 1. (58)

Hence, {Mt(m)} is a supermartingale under X1, X2, . . .
iid∼ Q. We remark that Mt(µ(P )) is just MRC

t and when ε = 0 it
is reduced to the non-robust case in our last paper.

Now that {Mt(m)} is a supermartingale with M0(m) = 1, we see that EMt(m) ⩽ 1; that is,

E exp(ft(m)) ⩽

(
1 + λ(µ(P )−m) +

λ2

2

(
σ2 + (µ(P )−m)2

)
+ 1.5ε

)t

. (59)

Define the function

B+
t (m) = t log

(
1 + λ(µ(P )−m) +

λ2

2

(
σ2 + (µ(P )−m)2

)
+ 1.5ε

)
+ log(2/δ). (60)

By Markov’s inequality,
∀m ∈ R, P[ft(m) ⩽ B+

t (m)] ⩾ 1− δ/2. (61)

Let m = πt be the smaller solution (whose existence is discussed soon) to the following quadratic equation

B+
t (m) = − log(2/α)− t log(1 + λ2σ2/2 + 1.5ε). (62)

Then
P[ft(πt) ⩽ − log(2/α)− t log(1 + λ2σ2/2 + 1.5ε)] ⩾ 1− δ/2, (63)

P[max(CIRt ) ⩽ πt] ⩾ 1− δ/2. (64)

Let us see how πt can exist. πt is a solution to a quadratic equation. Hence it has closed-form expressions. Consider the
equation (62),

− λ(m− µ(P )) +
λ2

2

(
σ2 + (m− µ(P ))2)

)
=

(
4

αδ

)−1/t
1

1 + λ2σ2/2 + 1.5ε
− (1 + 1.5ε). (65)

It has roots if and only if

1−
(
λ2σ2 − 2

((
4

αδ

)−1/t
1

1 + λ2σ2/2 + 1.5ε
− (1 + 1.5ε)

))
⩾ 0. (66)

Recall that we assume the following:

1. t > 4ε−1 log(4/αδ), consequently e−ε/4 <
(

4
αδ

)−1/t
< 1,
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2. λ2 = ε
4σ2 ,

3. 0 < ε ⩽ 1/7.

Hence we can apply Lemma 7 on ε ∈ [0, 1/7] to get

0 ⩽ λ2σ2 − 2

((
4

αδ

)−1/t
1

1 + λ2σ2/2 + 1.5ε
− (1 + 1.5ε)

)
⩽ 7ε ⩽ 1. (67)

So the smaller root exists and it satisfies

πt = µ(P ) +

1−
√

1−
(
λ2σ2 − 2

((
4
αδ

)−1/t 1
1+λ2σ2/2+1.5ε − (1 + 1.5ε)

))
λ

(68)

⩽ µ(P ) +
1−

[
1−

(
λ2σ2 − 2

((
4
αδ

)−1/t 1
1+λ2σ2/2+1.5ε − (1 + 1.5ε)

))]
λ

(69)

= µ(P ) +
λ2σ2 − 2

((
4
αδ

)−1/t 1
1+λ2σ2/2+1.5ε − (1 + 1.5ε)

)
λ

(70)

⩽ µ(P ) +
7ε

λ
(71)

= µ(P ) + 14σ
√
ε. (72)

We see that
P[max(CIRt ) ⩽ µ(P ) + 14σ

√
ε] ⩾ 1− δ/2. (73)

Similarly, {Nt(m)} is a supermartingale under X1, X2, . . .
iid∼ Q, where

Nt(m) =

t∏
i=1

exp{−ϕ(λi(Xi −m))}
1− λi(µ(P )−m) +

λ2
i

2 (σ2 + (µ(P )−m)2)) + 1.5ε
(74)

=

∏t
i=1 exp{−ϕ(λ(Xi −m))}(

1− λ(µ(P )−m) + λ2

2 (σ2 + (µ(P )−m)2)) + 1.5ε
)t . (75)

Define the function

B−
t (m) = −t log

(
1− λ(µ(P )−m) +

λ2

2

(
σ2 + (µ(P )−m)2)

)
+ 1.5ε

)
− log(2/δ). (76)

By Markov’s inequality,
∀m ∈ R, P[ft(m) ⩾ B−

t (m)] ⩾ 1− δ/2. (77)

Let m = ρt be the larger solution to the following equation

B−
t (m) = log(2/α) + t log{1 + λ2σ2/2 + 1.5ε}. (78)

Then
P[min(CIRt ) ⩾ ρt] ⩾ 1− δ/2. (79)

Now, consider the equation (76),

− λ(µ(P )−m) +
λ2

2
(σ2 + (µ(P )−m)2) =

(
4

αδ

)−1/t
1

1 + λ2σ2/2 + 1.5ε
− (1 + 1.5ε). (80)

The obvious isometry (m − µ(P ) ↔ µ(P ) −m) between (65) and (80) yields that ρt ⩾ µ(P ) − 16σ
√
ε. Therefore, we

see that
P[min(CIRt ) ⩾ µ(P )− 14σ

√
ε] ⩾ 1− δ/2. (81)

Combining two boxed inequalities via a union bound, we complete the proof.
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Proof of Lemma 4. For any P ∈ P and any Q ∈ BTV(P, ε), consider Z1, . . . , Zt
iid∼ Q. Recall that the TV metric

between P and Q always equals the minimum of P(X,Y )∼(P,Q)[X ̸= Y ] over all coupling (X,Y ) with marginals P and
Q respectively (Gibbs and Su, 2002). Take the coupling (P,Q) such that P(X,Y )∼(P,Q)[X ̸= Y ] = DTV(P,Q) ⩽ ε. Let

(X1, Y1), . . . , (Xt, Yt)
iid∼ (P,Q). Then,

P
Zi

iid∼Q

[χ(P ) ∈ CIt(Z1, . . . , Zt)] (82)

= P
(Xi,Yi)

iid∼(P,Q)

[χ(P ) ∈ CIt(Y1, . . . , Yt)] (83)

⩾ P
(Xi,Yi)

iid∼(P,Q)

[∃c0 ∈ R2ε,t, (Y1, . . . , Yt) = c0(X1, . . . , Xt) and χ(P ) ∈ CIt(c0(X1, . . . , Xt))] (84)

⩾ P
(Xi,Yi)

iid∼(P,Q)

[∃c0 ∈ R2ε,t, (Y1, . . . , Yt) = c0(X1, . . . , Xt)] + P
Xi

iid∼P

[∀c ∈ R2ε,t, χ(P ) ∈ CIt(c(X1, . . . , Xt))]− 1

(85)

(bounding the first term by Hoeffding’s inequality) (86)

⩾(1− e−2tε2) + (1− α)− 1 = 1− (α+ e−2tε2). (87)

This completes the proof.

Proof of Corollary 1. Recall the definition of {Mt(m)} back in (51). Note that min(CIRt ) is the solution for m of the
equation Mt(m) = 1/α.

Under the assumptions of Theorem 2, inequality (81) holds. Therefore, if µ0 < µ(P ) − 14σ
√
ε, P[min(CIRt ) > µ0] ⩾

1− δ/2. Note that Mt(m) is a decreasing function of m. This implies that P[Mt(µ0) > 1/α] ⩾ 1− δ/2.

Let us use the smallest α that satisfies the assumption t ⩾ 4ε−1 log(4/αδ) of Theorem 2. This would give

P
Xi∼Q

[
Mt(µ0) >

δ

4
exp

(
tε

4

)]
⩾ 1− δ/2. (88)

The proof is complete as Mt(µ0) is just the MRC
t in Corollary 1.

Proof of Lemma 5 and Theorem 4. Since |ϕp(x)| ⩽ log p, we have 1/p ⩽ exp{ϕ(λt(x− µ(P )))} ⩽ p. Note that

E
[
exp{ϕp(λt(Xt − µ(P )))}
1 + λp

tκ/p+ (p− 1/p)ε

∣∣∣∣Ft−1

]
(89)

=
EXt∼Q [exp{ϕp(λt(Xt − µ(P )))}]

1 + λp
tκ/p+ (p− 1/p)ε

(90)

⩽
EXt∼P [exp{ϕp(λt(Xt − µ(P )))}] + (p− 1/p)ε

1 + λp
tκ/p+ (p− 1/p)ε

(91)

⩽
EXt∼P [1 + λt(Xt − µ(P )) + λp

t |Xt − µ(P )|p/p] + (p− 1/p)ε

1 + λp
tκ/p+ (p− 1/p)ε

(92)

=
EXt∼P [1 + λp

t |Xt − µ(P )|p/p] + (p− 1/p)ε

1 + λp
tκ/2 + (p− 1/p)ε

(93)

=
(1 + λp

t vp(P )/p) + (p− 1/p)ε

1 + λp
tκ/p+ (p− 1/p)ε

⩽ 1. (94)

The first inequality above is due to (5) and Q ∈ BTV(P, ε). Hence {MRC
t

p} is a supermartingale. The proof for {NRC
t

p} is
analogous. Now apply Ville’s inequality (Lemma 2) to {MRC

t
p}. With probability at least 1−α/2, we have that ∀t ∈ N+,

fpt(µ(P )) ⩽
t∑

i=1

log{1 + λp
i κ/p+ (p− 1/p)ε}+ log(2/α). (95)

And to {NRC
t

p},

− fpt(µ(P )) ⩽
t∑

i=1

log{1 + λp
i κ/p+ (p− 1/p)ε}+ log(2/α). (96)
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A union of the above two bounds concludes the proof.

Lemma 8. Let p ∈ (1, 2], C > 0, and g(y) = yp− y+C. Suppose there is a c > 0 such that C =
(

c
(1+c)p

)1/(p−1)

. Then

g((1 + c)C) = 0.

The above lemma is checked by direct substitution, so the proof is omitted.
Lemma 9. Let p ∈ (1, 2], A,B,C > 0, and g(x) = Axp − Bx + C. Suppose there is a c > 0 such that

A1/(p−1)B−p/(p−1)C =
(

c
(1+c)p

)1/(p−1)

. Then g has a positive zero (1 + c)B−1C.

Proof of Lemma 9. Substituting x = (B/A)1/(p−1)y, the equation reads

yp − y +A1/(p−1)B−p/(p−1)C = 0. (97)

So there is a solution y0 = (1 + c)A1/(p−1)B−p/(p−1)C due to Lemma 8. Correspondingly x0 = (B/A)1/(p−1) · (1 +
c)A1/(p−1)B−p/(p−1)C = (1 + c)B−1C.

Lemma 10 (One-dimensional special case of Lemma 7 of Wang et al. (2021), Appendix A). Let p ∈ (1, 2]. For any real
x and y, |x+ y|p ⩽ |x|p + 4|y|p + py|x|p−1 sgn(x).
Lemma 11. For any p ∈ (1, 2] and x > 0, we have

0 < 1 + (p+ 3/p)x− 1

1 + px︸ ︷︷ ︸
A(p,x)

< 1 + (p+ 3/p)x− e−x 1

1 + px
< 7x. (98)

Proof of Lemma 11. The first inequality is straightforward when writing A(p, x) as x(p3x+2p2+3px+3)
p(px+1) . The second in-

equality is trivial. The third inequality is equivalent to e−x > (1 + px)(1 + (p+ 3/p− 7)x). Since p+ 3/p− 7 < 0 and
2p+ 3/p < 6, we have (1 + px)(1 + (p+ 3/p− 7)x) < 1 + (2p+ 3/p− 7)x < 1− x < e−x.

Proof of Theorem 5. Define

Mp
t (m) =

∏t
i=1 exp{ϕp(λi(Xi −m))}∏t

i=1

(
1 + λi(µ(P )−m) +

λp
i

p (4κ+ |µ(P )−m|p) + (p− 1/p)ε
) . (99)

Then

E

 exp{ϕp(λt(Xt −m))}
1 + λt(µ(P )−m) +

λp
t

p (4κ+ |µ(P )−m|p) + (p− 1/p)ε

∣∣∣∣∣∣Ft−1

 (100)

=
EXt∼Q[exp{ϕp(λt(Xt −m))}]

1 + λt(µ(P )−m) +
λp
t

p (4κ+ |µ(P )−m|p) + (p− 1/p)ε
(101)

⩽
EXt∼P [exp{ϕp(λt(Xt −m))}] + (p− 1/p)ε

1 + λt(µ(P )−m) +
λp
t

p (4κ+ |µ(P )−m|p) + (p− 1/p)ε
(102)

⩽
EXt∼P [1 + λt(Xt −m) + λp

t |Xt −m|p/p] + (p− 1/p)ε

1 + λt(µ(P )−m) +
λp
t

p (4κ+ |µ(P )−m|p) + (p− 1/p)ε
(103)

(by Lemma 10) (104)

⩽EXt∼P [1+λt(Xt−m)+(λp
t /p)(|µ(P )−m|p+4|Xt−µ(P )|p+p(Xt−µ(P ))|µ(P )−m|p−1 sgn(µ(P )−m))]+(p−1/p)ε

1+λt(µ(P )−m)+
λ
p
t
p (4κ+|µ(P )−m|p)+(p−1/p)ε

(105)

⩽
1 + λt(µ(P )−m) + (λp

t /p)(|µ(P )−m|p + 4κ) + (p− 1/p)ε

1 + λt(µ(P )−m) +
λp
t

p (4κ+ |µ(P )−m|p) + (p− 1/p)ε
= 1. (106)
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Thus {Mp
t (m)} is a nonnegative supermartingale issued at 1.

When λ1 = · · · = λ, we see that

E exp(fpt(m)) ⩽

(
1 + λ(µ(P )−m) +

λp

p
(4κ+ |µ(P )−m|p) + (p− 1/p)ε

)t

. (107)

Define the function

B+
pt(m) = t log

(
1 + λ(µ(P )−m) +

λp

p
(4κ+ |µ(P )−m|p) + (p− 1/p)ε

)
+ log(2/δ). (108)

Markov’s inequality yields
∀m ∈ R,P[fpt(m) ⩽ B+

pt(m)] ⩾ 1− δ/2. (109)

Suppose m = πt is a solution in (µ,∞) (existence to be discussed soon) to the equation

B+
pt(m) = − log(2/α)− t log(1 + λpκ/p+ (p− 1/p)ε). (110)

Then

P[fpt(πt) ⩽ − log(2/α)− t log(1 + λpκ/p+ (p− 1/p)ε)] ⩾ 1− δ/2 (111)

P[max(CIRt
p
) ⩽ πt] ⩾ 1− δ/2. (112)

Let us see how πt can exist. The equation that πt would satisfy, (110), expands into

1− λ(m− µ(P )) +
λp

p
(4κ+ |m− µ(P )|p) + (p− 1/p)ε =

(
4

αδ

)−1/t
1

1 + λpκ/p+ (p− 1/p)ε
; (113)

λp

p
|m− µ(P )|p − λ(m− µ(P )) + 1 + 4λpκ/p+ (p− 1/p)ε−

(
4

αδ

)−1/t
1

1 + λpκ/p+ (p− 1/p)ε︸ ︷︷ ︸
C

= 0 (114)

So, if we can make sure that there is a c > 0 such that

(λp/p)1/(p−1)λ−p/(p−1)︸ ︷︷ ︸
p−1/(p−1)

C =

(
c

(1 + c)p

)1/(p−1)

(115)

then according to Lemma 9 such πt exists and

πt = µ(P ) + (1 + c)λ−1C. (116)

To achieve this, recall that we have the following assumptions:

1. t ⩾ ε−1 log(4/αδ). So e−ε ⩽
(

4
αδ

)−1/t
< 1.

2. λpκ = ε.

3. ε ∈ (0, p−1
7p ].

Then, we can bound C = 1 + 4λpκ/p+ (p− 1/p)ε−
(

4
αδ

)−1/t 1
1+λpκ/p+(p−1/p)ε by functions of ε:

1 + (p+ 3/p)ε− 1

1 + pε
⩽ C ⩽ 1 + (p+ 3/p)ε− e−ε 1

1 + pε
. (117)

Applying Lemma 11, we have 0 < C < 7ε ⩽ p−1
p .
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By elementary calculus, the function x
(1+x)p (x > 0) takes its maximum J = (p−1)p−1

pp at xp = 1
p−1 . Since C ⩽ p−1

p =

(pJ)1/(p−1), there is a c ∈ (0, xp] that satisfies C =
(

pc
(1+c)p

)1/(p−1)

, which is exactly the condition (115).

Therefore, πt exists and πt = µ(p) + (1 + c)λ−1C ⩽ µ(P ) + 7(1 + xp)κ
1/pε(p−1)/p. It then follows that

P[max(CIRt
p
) ⩽ µ(P ) + 7(1 + xp)κ

1/pε(p−1)/p] ⩾ 1− δ/2. (118)

The other direction, P[min(CIRt
p
) ⩾ µ(P )− 7(1 + xp)κ

1/pε(p−1)/p] ⩾ 1− δ/2, is entirely analogous. So we have

P[diam(CIRt
p
) ⩽ 14(1 + xp)κ

1/pε(p−1)/p] ⩾ 1− δ. (119)

Finally, recall that xp = 1
p−1 . So the bound (119) is exactly the one stated in the Theorem 5.

Proof of Theorem 6. First, each 1 + λi(Xt − µ(P ))− ε|λt| is nonnegative since

ε ⩽
1

|λt|
− 1 ⩽

1

|λt|
+Xt − µ(P ) =

1 + λt(Xt − µ(P ))

|λt|
. (120)

Further,

E
Xt∼Q

[1 + λt(Xt − µ(P ))− ε|λt|] = 1 + λt

(
E

Xt∼Q
[Xt]− µ(P )

)
− ε|λt| (121)

⩽1 + λt

(
E

Xt∼P
[Xt] + ε− µ(P )

)
− ε|λt| (122)

=1 + λtε− ε|λt| ⩽ 1. (123)

Therefore {Lt} is a nonnegative supermartingale.
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