
Adversarial Random Forests for
Density Estimation and Generative Modeling

David S. Watson Kristin Blesch
King’s College London Leibniz Institute for Prevention

Research and Epidemiology – BIPS,
University of Bremen

Jan Kapar Marvin N. Wright
Leibniz Institute for Prevention

Research and Epidemiology – BIPS,
University of Bremen

Leibniz Institute for Prevention
Research and Epidemiology – BIPS,

University of Bremen,
University of Copenhagen

Abstract

We propose methods for density estimation and
data synthesis using a novel form of unsupervised
random forests. Inspired by generative adversarial
networks, we implement a recursive procedure in
which trees gradually learn structural properties
of the data through alternating rounds of genera-
tion and discrimination. The method is provably
consistent under minimal assumptions. Unlike
classic tree-based alternatives, our approach pro-
vides smooth (un)conditional densities and allows
for fully synthetic data generation. We achieve
comparable or superior performance to state-of-
the-art probabilistic circuits and deep learning
models on various tabular data benchmarks while
executing about two orders of magnitude faster
on average. An accompanying R package, arf,
is available on CRAN.

1 INTRODUCTION

Density estimation is a fundamental unsupervised learn-
ing task, an essential subroutine in various methods for
data imputation (Efron, 1994; Rubin, 1996), clustering
(Bramer, 2007; Rokach and Maimon, 2005), anomaly de-
tection (Chandola et al., 2009; Pang et al., 2021), and clas-
sification (Lugosi and Nobel, 1996; Vincent and Bengio,

Proceedings of the 26th International Conference on Artificial Intel-
ligence and Statistics (AISTATS) 2023, Valencia, Spain. PMLR:
Volume 206. Copyright 2023 by the author(s).

2002). One important application for density estimators
is generative modeling, where we aim to create synthetic
samples that mimic the characteristics of real data. These
simulations can be used to test the robustness of classifiers
(Song et al., 2018; Buzhinsky et al., 2021), augment training
sets (Ravuri and Vinyals, 2019; Lopez et al., 2018), or study
complex systems without compromising the privacy of data
subjects (Augenstein et al., 2020; Yelmen et al., 2021).

The current state of the art in generative modeling relies on
deep neural networks, which have proven remarkably adept
at synthesizing images, audio, and even video data. Archi-
tectures built on variational autoencoders (VAEs) (Kingma
and Welling, 2013) and generative adversarial networks
(GANs) (Goodfellow et al., 2014) have dominated the field
for the last decade. Recent advances in normalizing flows
(Papamakarios et al., 2021) and diffusion models (Ramesh
et al., 2022) have sparked considerable interest. While these
algorithms are highly effective with structured data, they can
struggle in tabular settings with continuous and categorical
covariates. Even when successful, deep learning models are
notoriously data-hungry and require extensive tuning.

Another major drawback of these deep learning methods
is that they do not generally permit tractable inference for
tasks such as marginalization and conditioning, which are
essential for coherent probabilistic reasoning. A family of
hierarchical mixture models known as probabilistic circuits
(PCs) (Vergari et al., 2020; Choi et al., 2020) are better
suited to such problems. Despite their attractive theoretical
properties, existing PCs can also be slow to train and are
often far less expressive than unconstrained neural networks.

We introduce an adversarial random forest algorithm that
vastly simplifies the task of density estimation and data
synthesis. Our method naturally accommodates mixed data

Adversarial Random Forests

in tabular settings, and performs well on small and large
datasets using the computational resources of a standard
laptop. It compares favorably with deep learning models
while executing some 100 times faster on average. It can
be compiled into a PC for efficient and exact probabilistic
inference.

Following a brief discussion of related work (Sect. 2), we
review relevant notation and background on random forests
(Sect. 3). We motivate our method with theoretical results
that guarantee convergence under reasonable assumptions
(Sect. 4), and illustrate its performance on a range of bench-
mark tasks (Sect. 5). We conclude with a discussion (Sect. 6)
and directions for future work (Sect. 7).

2 RELATED WORK

A random forest (RF) is a bootstrap-aggregated (bagged) en-
semble of independently randomized trees (Breiman, 2001),
typically built using the greedy classification and regres-
sion tree (CART) algorithm (Breiman et al., 1984). RFs
are extremely popular and effective, widely used in areas
like bioinformatics (Chen and Ishwaran, 2012), remote sens-
ing (Belgiu and Drăguţ, 2016), and ecology (Cutler et al.,
2007), as well as more generic prediction tasks (Fernández-
Delgado et al., 2014). Advantages include their efficiency
(RFs are embarrassingly parallelizable), ease of use (they re-
quire minimal tuning), and ability to adapt to sparse signals
(uninformative features are rarely selected for splits).

It is well-known that tree-based models can approximate
joint distributions. Several authors advocate using leaf
nodes of CART trees as piecewise constant density esti-
mators (Ram and Gray, 2011; Wu et al., 2014; Wen and
Hang, 2022). While this method provably converges on
the true density in the limit of infinite data, finite sample
performance is inevitably rough and discontinuous. Smooth
results can be obtained by fitting a distribution within each
leaf, e.g. via kernel density estimation (KDE) or maximum
likelihood estimation (MLE) (Smyth et al., 1995; Gray and
Moore, 2003; Loh, 2009; Ram and Gray, 2011; Criminisi
et al., 2012), a version of which we develop further below.
Existing methods have mostly been limited to supervised
trees rather than unsupervised forests, and are often ineffi-
cient in high dimensions.

Another strategy, better suited to high-dimensional settings,
uses Chow-Liu trees (Chow and Liu, 1968) to learn a second-
order approximation to the underlying joint distribution
(Bach and Jordan, 2003; Liu et al., 2011; Rahman et al.,
2014). Whereas these methods estimate a series of bivariate
densities over the full support of the data, we attempt to
solve a larger number of simpler tasks, modeling univariate
densities in relatively small subregions.

Despite the popularity of tree-based density estimators, they
are rarely if ever used for fully synthetic data generation.

Instead, they are commonly used for conditional density
estimation and data imputation (Stekhoven and Bühlmann,
2011; Tang and Ishwaran, 2017; Correia et al., 2020; Lund-
berg et al., 2020; Hothorn and Zeileis, 2021; Ćevid et al.,
2022). We highlight that methods optimized for this task
are often ill-suited to generative modeling, since their re-
liance on supervised signals limits their ability to capture
dependencies between features with little predictive value
for the selected outcome variable(s).

Another family of methods for density estimation and data
synthesis is based on probabilistic graphical models (PGMs)
(Lauritzen, 1996; Koller and Friedman, 2009), e.g. Bayesian
networks (Pearl and Russell, 2003; Darwiche, 2009). Learn-
ing graph structure is difficult in practice, which is why
most methods impose restrictive parametric assumptions for
tractability (Heckerman et al., 1995; Drton and Maathuis,
2017). PCs replace the representational semantics of PGMs
with an operational semantics, encoding answers to proba-
bilistic queries in the structural alignment of sum and prod-
uct nodes. This class of computational graphs subsumes
sum-product networks (Poon and Domingos, 2011), cutset
networks (Rahman et al., 2014), and probabilistic senten-
tial decision diagrams (Kisa et al., 2014), among others.
Correia et al. (2020) show that RFs instantiate smooth, de-
composable, deterministic PCs, thereby enabling efficient
marginalization and maximization.

Deep learning approaches to generative modeling became
popular with the introduction of VAEs (Kingma and Welling,
2013) and GANs (Goodfellow et al., 2014), which jointly
optimize parameters for network pairs—encoder-decoder
and generator-discriminator, respectively—via stochastic
gradient descent. Various extensions of these approaches
have been developed (Higgins et al., 2017; Arjovsky et al.,
2017), including some designed for mixed data in the tabu-
lar setting (Choi et al., 2017; Jordon et al., 2019; Xu et al.,
2019). While the evidence lower bound of a VAE approxi-
mates the data likelihood, there is no straightforward way
to compute this quantity with GANs. More recent work
in neural density estimation includes autoregressive net-
works (van den Oord et al., 2016; Ramesh et al., 2021; Roy
et al., 2021), normalizing flows (Kobyzev et al., 2021; Pa-
pamakarios et al., 2021; Lee et al., 2022), and diffusion
models (Kingma et al., 2021; Song et al., 2021; Ramesh
et al., 2022). These methods are generally optimized for
structured data such as images or audio, where they often
attain state-of-the-art results.

3 BACKGROUND

Consider the binary classification setting with training data
D = {(xi, yi)}ni=1, where xi ∈ X ⊂ Rd and yi ∈ Y =
{0, 1}. Samples are independent and identically distributed
according to some fixed but unknown distribution P with
density p. The classic RF algorithm takes B bootstrap sam-

Watson, Blesch, Kapar, & Wright

ples of size n fromD and fits a binary decision tree for each,
in which observations are recursively partitioned according
to some optimization target (e.g., Gini index) evaluated on
a random subset of features at each node. The size of this
subset is controlled by the mtry parameter, conventionally
set at b

√
dc for classification. Resulting splits are literals

of the form Xj ./ x for some Xj , j ∈ [d] = {1, . . . , d},
and value x ∈ Xj , where ./ ∈ {=, <} (the former for cat-
egorical, the latter for continuous variables). Data pass to
left or right child nodes depending on whether they satisfy
the literal. Splits continue until some stopping criterion is
met (e.g., purity). Terminal nodes, a.k.a. leaves, describe
hyperrectangles in feature space with boundaries given by
the learned splits. These disjoint cells collectively cover
all of X . Each leaf is associated with a label ŷ ∈ [0, 1],
representing either the frequency of positive outcomes (soft
labels) or the majority class (hard labels) within that cell.
Because trees are grown on independent bootstraps, an av-
erage of n/e samples are excluded from each tree. This
so-called “out-of-bag” (OOB) data can be used to estimate
empirical risk without need for cross-validation.

Each new datapoint x falls into exactly one leaf in each
tree. Predictions are computed by aggregating over the
trees, e.g. by tallying votes across all B basis functions
of the ensemble. Let θ`b denote the conjunction of literals
that characterize membership in leaf ` ∈ [Lb], where Lb

is the number of leaves in tree b ∈ [B], with correspond-
ing hyperrectangular subspace X `

b ⊂ X . Each leaf has
some nonnegative volume and diameter, denoted vol(X `

b)
and diam(X `

b), where the latter represents the longest line
segment contained in X `

b . Let nb be the number of training
samples for tree b (not necessarily equal to n) and n`b the
number of samples that fall into leaf ` of b. The ratio n`b/nb
represents an empirical estimate of the leaf’s coverage p(θ`b),
i.e. the probability that a random x falls within X `

b . A tree
is fully parametrized by θb =

⋃Lb

`=1 θ
`
b, and the complete

forest by Θ =
⋃B

b=1 θb.

Many variations of the classic algorithm exist, including a
number of simplified versions designed to be more amenable
to statistical analysis. See (Biau and Scornet, 2016) for an
overview. Common sources of variation include how obser-
vations are randomized across trees (e.g., by subsampling or
bootstrapping) and how splits are selected (e.g., uniformly
or according to some adaptive procedure).

Our method builds on the unsupervised random forest (URF)
algorithm (Shi and Horvath, 2006).1 This procedure creates
a synthetic dataset X̃ of n observations by independently
sampling from the marginals of X, i.e. x̃ ∼

∏d
j=1 P (Xj).

A RF classifier is trained to distinguish between X and X̃,
with labels indicating whether samples are original (Y = 1)

1Not to be confused with RF variants that employ non-adaptive
splits, which are sometimes also referred to as unsupervised, since
they ignore the response variable. See, e.g., Genuer (2012).

or synthetic (Y = 0). The method has expected accuracy
1/2 in the worst case, corresponding to a dataset in which
all features are mutually independent. However, if depen-
dencies are present, then a consistent learning procedure
will converge on expected accuracy 1/2 + δ for some δ > 0
as n grows (Kim et al., 2021).

4 ADVERSARIAL RANDOM FORESTS

We introduce a recursive variant of URFs, which we call
adversarial random forest (ARF). The goal of this algo-
rithm is to render data jointly independent within each leaf.
We achieve this by first fitting an ordinary URF f (0) with
synthetic data X̃(0). We compute the coverage of each leaf
w.r.t. original data, then generate a new synthetic dataset
by sampling from marginals within random leaves selected
with probability proportional to this coverage. Call the re-
sulting n×dmatrix X̃(1). A new classifier f (1) is trained to
distinguish X from X̃(1). If OOB accuracy for this model
is sufficiently low, then the ARF has converged, and we
move forward with splits from f (0). Otherwise, we iterate
the procedure, drawing a new synthetic dataset from the
splits learned by f (1) and evaluating performance via a new
classifier. The loop repeats until convergence (see Alg. 1).

ARFs bear some obvious resemblance to GANs. The “gen-
erator” is a simple sampling scheme that draws from the
marginals in adaptively selected subregions; the “discrimi-
nator” is a RF classifier. The result can be understood as a
zero-sum game in which adversaries take turns increasing
and decreasing label uncertainty at each round. However,
beyond this conceptual link between our method and GANs
lie some important differences. Both generator and discrim-
inator share the same parameters in our algorithm. Indeed,
our generator does not, strictly speaking, learn anything; it
merely exploits what the discriminator has learned. This
means that ARFs cannot be used for adversarial attacks of
the sort made famous by GANs, which involve separately
parametrized networks for each model. Moreover, the syn-
thetic data generated by ARFs is relatively naïve, consisting
of bootstrap samples drawn from subsets of the original ob-
servations. That is because our goal is not (yet) to generate
new data, but merely to learn an independence-inducing
partition. Empirically, we find that this is often achieved in
just a single round even with the tolerance δ set to 0.

Formally, we seek a set of splits Θ such that, for all trees b,
leaves `, and samples x, we have p(x|θ`b) =

∏d
j=1 p(xj |θ`b).

Call this the local independence criterion. Our first result
states that ARFs converge on this identity in the limit. We
asssume:

(A1) The feature domain is limited to X = [0, 1]d, with
joint density p bounded away from 0 and∞.

(A2) At each round, the target function P (Y = 1|x) is
Lipschitz-continuous. The Lipschitz constant may

Adversarial Random Forests

Algorithm 1 ADVERSARIAL RANDOM FOREST

Input: Training data X, tolerance δ
Output: Random forest classifier f (0)

Sample X̃(0) ∼
∏d

j=1 P (Xj)

X+ ← row.append(X, X̃(0))
Y ← row.append(1n,0n)

f (0) ← RANDOMFOREST(X+, Y)

if ACC(f (0)) > 1/2 + δ then
converged← FALSE
while not converged do

for all b ∈ [B(0)], ` ∈ [L
(0)
b] do

q(θ`b)← 2
nb

∑
i:xi∈X`

b
yi

end for
for i ∈ [n] do

Sample tree b ∈ [B(0)] uniformly
Sample leaf ` ∈ [L

(0)
b] w.p. q(θ`b)

Sample x̃
(1)
i ∼

∏d
j=1 P (Xj |θ`b)

end for
X+ ← row.append(X, X̃(1))

f (1) ← RANDOMFOREST(X+, Y)

if ACC(f (1)) ≤ 1/2 + δ then
converged← TRUE

else
f (0) ← f (1)

end if
end while

end if

vary with from one round to the next, but it does not
increase faster than 1/max`,b

(
diam(X `

b)
)
.

(A3) Trees satisfy the following conditions: (i) training
data for each tree is split into two subsets: one
to learn split parameters, the other to assign leaf
labels; (ii) trees are grown on subsamples rather
than bootstraps, with subsample size nb satisfying
nb → ∞, nb/n → 0 as n → ∞; (iii) at each in-
ternal node, the probability that a tree splits on any
given Xj is bounded from below by some π > 0;
(iv) every split puts at least a fraction γ ∈ (0, 0.5] of
the available observations into each child node; (v)
for each tree b, the total number of leaves Lb satisfies
Lb → ∞, Lb/n → 0 as n → ∞; and (vi) predic-
tions are made with soft labels both within leaves
and across trees, i.e. by averaging rather than voting.

(A1) is simply for notational convenience, and can be re-
placed w.l.o.g. by bounding the feature domain with arbi-
trary constants. Lipschitz continuity is a common learning
theoretic assumption widely used in the analysis of RFs.
(A2)’s extra condition regarding the Lipschitz constant con-
trols the variation in smoothness over adversarial training
rounds. (A3) imposes standard regularity conditions for RFs
(Meinshausen, 2006; Biau, 2012; Denil et al., 2014; Scornet,
2016; Wager and Athey, 2018). With these assumptions
in place, we have the following result (see Appx. A for all
proofs).

Algorithm 2 FORDE

Input: ARF classifier f , training data X ∈ Rn×d

Output: Estimated density q

for all b ∈ [B], ` ∈ [Lb] do
q(θ`b)← 2

nb

∑
i:xi∈X`

b
yi

for j ∈ [d] do
ψ`

b,j ← estimated parameter(s) for p(xj |θ`b)
q(· ;ψ`

b,j)← corresponding pdf/pmf
end for

end for

Algorithm 3 FORGE

Input: FORDE model q, target sample size m
Output: Synthetic dataset X̃ ∈ Rm×d

for i ∈ [m] do
Sample tree b ∈ [B] uniformly
Sample leaf ` ∈ [Lb] w.p. q(θ`b)
for j ∈ [d] do

Sample data x̃ij ∼ q(· ;ψ`
b,j)

end for
end for

Theorem 1 (Convergence). Under (A1)-(A3), ARFs con-
verge in probability on the local independence criterion. Let
Θn be the parameters of an ARF trained on a sample of size
n. Then for all x ∈ X , θ`b ∈ Θn, and ε > 0:

lim
n→∞

P
[∣∣p(x|θ`b)− d∏

j=1

p(xj |θ`b)
∣∣ ≥ ε] = 0.

4.1 Density Estimation and Data Synthesis

ARFs are the basis for two further algorithms, FORests for
Density Estimation (FORDE) and FORests for GEnerative
modeling (FORGE). We present pseudocode for both (see
Algs. 2 and 3). The key point to recognize is that, un-
der the local independence criterion, joint densities can be
learned by running d separate univariate estimators within
each leaf. This is exponentially easier than multivariate den-
sity estimation, which suffers from the notorious curse of
dimensionality. Summarizing the challenges with estimat-
ing joint densities, one recent textbook on KDE concludes
that “nonparametric methods for kernel density problems
should not be used for high-dimensional data and it seems
that a feasible dimensionality should not exceed five or six...”
(Gramacki, 2018, p. 60). By contrast, our method scales
much better with data dimensionality, exploiting the flexi-
bility of ARFs to learn an independence-inducing partition
that renders density estimation relatively straightforward.

Of course, this does not escape the curse of dimensionality
so much as relocate it. The cost for this move is potentially
deep trees and/or many ARF training rounds, especially
when dependencies between covariates are strong or com-

Watson, Blesch, Kapar, & Wright

plex. However, deep forests are generally more efficient
than deep neural networks in terms of data and computa-
tion, and our experiments suggest that ARF convergence is
usually fast even for δ = 0 (see Sect. 5).

With our ARF in hand, the algorithm proceeds as follows.
For each tree b, we record the split criteria θ`b and empirical
coverage q(θ`b) of each leaf `. Call these the leaf parame-
ters. Then we estimate distribution parameters ψ`

b,j inde-
pendently for each (original) Xj within X `

b , e.g. the kernel
bandwidth for KDE or class probabilities for MLE with
categorical data. In the continuous case, ψ`

b,j must either
encode leaf bounds (e.g., via a truncated normal distribution
with extrema given by θ`b) or include a normalization con-
stant to ensure integration to unity. The generative model
then follows a simple two-step procedure. First, sample a
tree uniformly from [B] and a leaf from that tree with proba-
bility q(θ`b), just as we do to construct synthetic data within
the recursive loop of the ARF algorithm. Next, sample data
for each feature Xj according to the density/mass function
parametrized by ψ`

b,j . We repeat this procedure until the
target number of synthetic samples has been generated.

We are deliberately agnostic about how distribution parame-
ters ψ`

b,j should be learned, as this will tend to vary across
features. In our theoretical analysis, we restrict focus to
continuous variables and consider a flexible family of KDE
methods. In our experiments, we use MLE for continuous
data, effectively implementing a truncated Gaussian mixture
model, and Bayesian inference for categorical variables, to
avoid extreme probabilities when values are unobserved but
not beyond the support of a given leaf. Under local inde-
pendence, distribution learning is completely modular, so
different methods can coexist without issue. We revisit this
topic in Sect. 6.

Our estimated density takes the following form:

q(x) =
1

B

∑
`,b:x∈X `

b

q(θ`b)

d∏
j=1

q(xj ;ψ
`
b,j). (1)

Compare this with the true density:

p(x) =
1

B

∑
`,b:x∈X `

b

p(θ`b) p(x|θ`b). (2)

In both cases, the density evaluated at a given point is just a
coverage-weighted average of its density in all leaves whose
split criteria it satisfies.

Because we are concerned with L2-consistency, our loss
function is the mean integrated squared error (MISE)2, de-
fined as:

MISE(p, q) := E

[∫
X

(
p(x)− q(x)

)2
dx

]
.

2Alternative loss functions may also be suitable, e.g. the
Kullback-Leibler divergence or the Wasserstein distance.

We require one extra assumption, imposing standard condi-
tions for KDE consistency (Silverman, 1986):

(A4) The true density function p is smooth. Specifically,
its second derivative p′′ is finite, continuous, square
integrable, and ultimately monotone.

Our method admits three potential sources of error, quanti-
fied by the following residuals:

ε1 := ε1(`, b) := p(θ`b)− q(θ`b) (3)

ε2 := ε2(`, b,x) :=

d∏
j=1

p(xj |θ`b)−
d∏

j=1

q(xj ;ψ
`
b,j) (4)

ε3 := ε3(`, b,x) := p(x|θ`b)−
d∏

j=1

p(xj |θ`b) (5)

We refer to these as errors of coverage, density, and conver-
gence, respectively. Observe that ε1 is a random variable
that depends on ` and b, while ε2, ε3 are random variables
depending on `, b and x. We suppress the dependencies for
ease of notation.

Lemma 1. The error of our estimator satisfies the following
bound:

MISE(p, q) ≤ 2B−2 E

[∫
X
α2 + β2 dx

]
,

where

α :=
∑

`,b:x∈X `
b

p(θ`b)ε3 and

β :=
∑

`,b:x∈X `
b

(
p(θ`b)ε2 + ε1

d∏
j=1

p(xj |θ`b)− ε1ε2
)
.

This lemma establishes that total error is bounded by a
quadratic function of ε1, ε2, ε3. We know by Thm. 1 that
errors of convergence vanish in the limit. Our next result
states that the same holds for errors of coverage and density.

Theorem 2 (Consistency). Under assumptions (A1)-(A4),
FORDE is L2-consistent. Let qn denote the joint density
estimated on a training sample of size n. Then we have:

lim
n→∞

MISE(p, qn) = 0.

Our consistency proof is fundamentally unlike those of
piecewise constant density estimators with CART trees
(Ram and Gray, 2011; Wu et al., 2014; Correia et al., 2020),
which essentially treat base learners as adaptive histograms
and rely on tree-wise convergence when leaf volume goes to
zero (Devroye et al., 1996; Lugosi and Nobel, 1996). Alter-
native methods that perform KDE or MLE within each leaf
do not come with theoretical guarantees (Smyth et al., 1995;

Adversarial Random Forests

cassini shapes smiley twomoons

O
riginal

S
ynthetic

−2 −1 0 1 2 −2 −1 0 1 2 −2 −1 0 1 2 −2 −1 0 1 2

−2

−1

0

1

2

−2

−1

0

1

2

X

Y

Figure 1: Visual examples. Original (top) and synthetic (bot-
tom) data are presented for four three-dimensional problems
with two continuous covariates and one categorical feature.

Gray and Moore, 2003; Loh, 2009; Ram and Gray, 2011).
Recently, consistency has been shown for some RF-based
conditional density estimators (Hothorn and Zeileis, 2021;
Ćevid et al., 2022). However, these results do not extend to
the unconditional case, since features with little predictive
value for the outcome variable(s) are unlikely to be selected
for splits. The resulting models will therefore fail to detect
dependencies between features deemed uninformative for
the given prediction task. In the rare case that authors use
some form of unsupervised splits, they make no effort to
factorize the distribution and are therefore subject to the
curse of dimensionality (Criminisi et al., 2012; Feng and
Zhou, 2018). By contrast, our method exploits ARFs to find
regions of local independence, and univariate density esti-
mation to compute marginals within each leaf. Though our
consistency result comes at the cost of some extra assump-
tions, we argue that this is a fair price to pay for improved
performance in finite samples.

5 EXPERIMENTS

In this section, we present results from a wide range of ex-
periments conducted on simulated and real-world datasets.
We use 100 trees for density estimation tasks and 20 for
data synthesis. Increasing this parameter tends to improve
performance for FORDE, but appears to have less of an
impact on FORGE. Trees are grown until purity or a min-
imum node size of two (with just a single sample, vari-
ance is undefined). In all cases, we set the slack param-
eter δ = 0 and use the default mtry = b

√
dc. For

more details on hyperparameters and datasets see Appx.
B. Code for reproducing all results is available online at
https://github.com/bips-hb/arf_paper.

5.1 Simulation

FORGE recreates visual patterns. We begin with a sim-
ple proof of concept experiment, illustrating our method on
a handful of low-dimensional datasets that allow for easy
visual assessment. The cassini, shapes, smiley, and
twomoons problems are all three-dimensional examples

8

10

12

14

16

18

20

100 1000 10000
Sample size

N
LL

A

8

10

12

14

16

18

0.00 0.25 0.50 0.75 1.00
Sparsity

B

Method PWC
(sup.)

PWC
(unsup.) GeFs FORDE

Figure 2: Negative log-likelihood (NLL) measured in nats
on a test set for varying sample size (A) and sparsity (B).
Lower is better. Shading represents standard errors.

that combine two continuous covariates with a categorical
class label. We simulate n = 2000 samples from each data
generating process (see Fig. 1, top row) and estimate densi-
ties using FORDE. We proceed to FORGE a synthetic dataset
of n = 1000 samples (Fig. 1, bottom row) and compare re-
sults. We find that the model consistently approximates
its target distribution with high fidelity. Classes are clearly
distinguished in all cases, and the visual form of the origi-
nal data is immediately recognizable. A few stray samples
are evident on close inspection. Such anomalies can be
mitigated with a larger training set.

FORDE outperforms alternative CART-based methods.
We simulate data from a multivariate Gaussian distribu-
tion X ∼ N (0,Σ), with Toeplitz covariance matrix Σij =
0.9|i−j| and fixed d = 10. To compare against super-
vised methods, we also simulate a binary target Y ∼
Bern([1 + exp(−Xβ)]−1), where the coefficient vector β
contains a varying proportion of 0’s (non-informative fea-
tures) and 1’s (informative features). Performance is eval-
uated by the negative log-likelihood (NLL) on a test set of
ntst = 1000. We compare our method to piecewise constant
(PWC) estimators with supervised and unsupervised split
criteria,3 as well as generative forests (GeFs), a RF-based
smooth density estimation procedure (Correia et al., 2020).

Fig. 2 shows the average NLL over 20 replicates for varying
sample sizes (A) and levels of sparsity (B). For the former,
we fix the proportion of informative features at 0.5; for the
latter, we fix ntrn = 2000. We find that PWC methods
fare poorly, with much greater NLL in all settings. This
is likely due to the unrealistic uniformity assumption, ac-
cording to which the corner of a hyperrectangle is no less
probable than the center. GeFs, which also use a Gaussian
mixture model to estimate densities, perform better in this
experiment. However, FORDE dominates throughout.

3Supervised PWC is simply an ensemble version of the clas-
sic method (Gray and Moore, 2003; Ram and Gray, 2011; Wu
et al., 2014). To the best of our knowledge, no one has previously
proposed unsupervised PWC density estimation with CART trees.
This can be understood as a variant of our approach in which all
marginals are uniform within each leaf.

https://github.com/bips-hb/arf_paper

Watson, Blesch, Kapar, & Wright

Table 1: Average NLL on the Twenty Datasets benchmark
for five PC models and FORDE. Winning results in bold.

Dataset EiNet RAT-SPN PGC Strudel CMCLT FORDE

nltcs 6.02 6.01 6.05 6.07 5.99 6.01
msnbc 6.12 6.04 6.06 6.04 6.05 6.10
kdd 2.18 2.13 2.14 2.14 2.12 2.13
plants 13.68 13.44 13.52 13.22 12.26 12.26
audio 39.88 39.96 40.21 42.40 39.02 39.74
jester 52.56 52.97 53.54 54.24 51.94 52.8
netflix 56.64 56.85 57.42 57.93 55.31 56.67
accidents 35.59 35.49 30.46 29.05 28.69 33.85
retail 10.92 10.91 10.84 10.83 10.82 10.93
pumsb 31.95 31.53 29.56 24.39 23.71 28.4
dna 96.09 97.23 80.82 87.15 84.91 91.85
kosarek 11.03 10.89 10.72 10.70 10.56 10.84
msweb 10.03 10.12 9.98 9.74 9.62 9.72
book 34.74 34.68 34.11 34.49 33.75 34.85
movie 51.71 53.63 53.15 53.72 49.23 50.86
webkb 157.28 157.53 155.23 154.83 147.77 153.45
reuters 87.37 87.37 87.65 86.35 81.17 84.15
20ng 153.94 152.06 154.03 153.87 148.17 155.51
bbc 248.33 252.14 254.81 256.53 242.83 240.31
ad 26.27 48.47 21.65 16.52 14.76 21.80

Avg. rank 4.5 4.2 4 3.6 1.2 3.3

Panel (B) clearly illustrates that unsupervised methods are
unaffected by changes in signal sparsity, since their splits
are independent of the outcome variable Y . By contrast,
sparsity appears to benefit the supervised methods. This can
be explained by the fact that splits are random when features
are uninformative, a strategy that is known to work well in
noisy settings (Geurts et al., 2006; Genuer, 2012).

5.2 Real Data

FORDE is competitive with alternative PCs. Building on
Correia et al. (2020)’s observation that RFs can be com-
piled into probabilistic circuits, we compare the perfor-
mance of FORDE to that of five leading PCs on the Twenty
Datasets benchmark (Van Haaren and Davis, 2012), a het-
erogeneous collection of tasks ranging from retail to biology
that is widely used to evaluate tractable probabilistic mod-
els. Each dataset is randomly split into training (70%),
validation (10%), and test sets (20%). Competitors include
Einsum networks (EiNet) (Peharz et al., 2020a), random
sum-product networks (RAT-SPN) (Peharz et al., 2020b),
probabilistic generating circuits (PGC) (Zhang et al., 2021),
Strudel (Dang et al., 2022), and continuous mixtures of
Chow-Liu trees (CMCLT) (Correia et al., 2023). We report
the average NLL on the test set for each model in Table 1.
Though the recently proposed CMCLT algorithm generally
dominates in this experiment, FORDE attains top perfor-
mance on two datasets and is never far behind the state of
the art. Its average rank of 3.3 places it second overall.

FORGE generates realistic tabular data. To evaluate the
performance of FORGE on real-world datasets, we recre-
ate a benchmarking pipeline originally proposed by Xu
et al. (2019). They introduce the conditional tabular GAN
(CTGAN) and tabular VAE (TVAE), two deep learning algo-
rithms for generative modeling with mixed continuous and
categorical features. We include three additional state-of-

the-art tabular GAN architectures for comparison: invertible
tabular GAN (IT-GAN) (Lee et al., 2021), regularized com-
pound conditional GAN (RCC-GAN) (Esmaeilpour et al.,
2022), and a differentially private conditional tabular GAN
(CTAB-GAN+) (Zhao et al., 2022).

A complete summary of the experimental setup is pre-
sented in Appx. B. Briefly, we take five benchmark datasets
for classification and partition the samples into training
and test sets, which we denote by Ztrn = (Xtrn, Ytrn) and
Ztst = (Xtst, Ytst), respectively. Ztrn is used as input to a se-
ries of generative models, each of which creates a synthetic
training set Z̃trn of the same sample size as the original. Sev-
eral classifiers are then trained on Z̃trn and evaluated on Ztst,
with performance metrics averaged across learners. Results
are benchmarked against the same set of algorithms, now
trained on the original data Ztrn. We refer to this model
as the oracle, since it should perform no worse in expecta-
tion than any classifier trained on synthetic data. However,
if the generative model approximates its target with high
fidelity, then differences between the oracle and its competi-
tors should be negligible.4 Similar approaches are widely
used in the evaluation of GANs (Yang et al., 2017; Shmelkov
et al., 2018; Santurkar et al., 2018); for a critical discussion,
see Ravuri and Vinyals (2019).

Results are reported in Table 2, where we average over five
trials of data synthesis and subsequent supervised learning.
We include information on each dataset, including the car-
dinality of the response variable, the training/test sample
size, and dimensionality of the feature space. Performance
is evaluated via accuracy and F1-score (or F1 macro-score
for multiclass problems), as well as wall time. FORGE
fares well in this experiment, attaining the top accuracy
and F1-score in three out of five tasks. On a fourth, the
highly imbalanced credit dataset, the only models that
do better in terms of accuracy receive F1-scores of 0, sug-
gesting that they entirely ignore the minority class. Only
FORGE and RCC-GAN strike a reasonable balance between
sensitivity and specificity on this task. Perhaps most impres-
sive, FORGE executes over 60 times faster than its nearest
competitor on average, and over 100 times faster than the
second fastest method. (We omit results for algorithms that
fail to converge in 24 hours of training time.) Differences in
compute time would be even more dramatic if these deep
learning algorithms were configured with a CPU backend
(we used GPUs here), or if FORGE were run using more
extensive parallelization (we distribute the job across 10
cores). This comparison also obscures the extra time re-
quired to tune hyperparameters for these complex models,
whereas our method is an off-the-shelf solution that works

4Note that the so-called “oracle” is not necessarily optimal w.r.t.
the true data generating process—other models may have lower
risk—but it should be optimal w.r.t. a given function class-dataset
pair. If logistic regression attains 60% test accuracy training on
Ztrn, then it should do about the same training on Z̃trn, regardless
of how much better a well-tuned MLP may perform.

Adversarial Random Forests

Table 2: Performance on the Xu et al. (2019) benchmark for
five deep learning models and FORGE. We report average
results across five replicates ± standard errors. Winning
results in bold.

Dataset Model Accuracy± SE F1± SE Time (sec)

adult Oracle 0.828± 0.006 0.884± 0.004
classes = 2 FORGE 0.819± 0.006 0.877± 0.005 2.9
ntrn = 23k CTGAN 0.786± 0.020 0.853± 0.019 263.3
ntst = 10k CTAB-GAN+ 0.808± 0.008 0.869± 0.006 561.6
d = 14 IT-GAN 0.794± 0.005 0.853± 0.005 3435.6

RCC-GAN 0.770± 0.015 0.841± 0.015 8823.0
TVAE 0.804± 0.007 0.865± 0.006 115.1

census Oracle 0.922± 0.002 0.957± 0.001
classes = 2 FORGE 0.903± 0.019 0.946± 0.012 53.2
ntrn = 200k CTGAN 0.916± 0.015 0.954± 0.009 4287.8
ntst = 100k CTAB-GAN+ 0.912± 0.026 0.952± 0.016 10182.1
d = 40 IT-GAN NA NA >24hr

RCC-GAN 0.900± 0.016 0.944± 0.011 8908.6
TVAE 0.928± 0.007 0.961± 0.004 1814.9

covertype Oracle 0.895± 0.000 0.838± 0.000
classes = 7 FORGE 0.707± 0.006 0.549± 0.006 103.5
ntrn = 481k CTGAN 0.633± 0.009 0.400± 0.009 13387.2
ntst = 100k CTAB-GAN+ NA NA >24hr
d = 54 IT-GAN NA NA >24hr

RCC-GAN NA NA >24hr
TVAE 0.698± 0.013 0.459± 0.013 4882.0

credit Oracle 0.997± 0.001 0.607± 0.029
classes = 2 FORGE 0.995± 0.001 0.527± 0.036 32.2
ntrn = 264k CTGAN 0.881± 0.099 0.047± 0.031 4898.0
ntst = 20k CTAB-GAN+ 0.998± 0.000 0.000± 0.000 7497.3
d = 30 IT-GAN NA NA >24hr

RCC-GAN 0.993± 0.003 0.569± 0.056 10608.4
TVAE 0.998± 0.000 0.000± 0.000 3847.6

intrusion Oracle 0.998± 0.001 0.833± 0.001
classes = 5 FORGE 0.993± 0.001 0.656± 0.001 68.2
ntrn = 394k CTGAN 0.944± 0.088 0.645± 0.088 8749.3
ntst = 100k CTAB-GAN+ NA NA >24hr
d = 40 IT-GAN NA NA >24hr

RCC-GAN NA NA >24hr
TVAE 0.990± 0.002 0.598± 0.002 4306.0

well with default settings.

5.3 Runtime

To further demonstrate the computational efficiency of our
pipeline relative to deep learning methods, we conduct a run-
time experiment using the smallest dataset above, adult.
By repeatedly sampling stratified subsets—varying both
sample size n and dimensionality d—and measuring the
time needed to train a generative model and synthesize data
from it, we illustrate how complexity scales with n and d.
For this experiment, we ran the three fastest deep learning
competitors—CTGAN, TVAE, and CTAB-GAN+—with both
CPU and GPU backends. We use default parameters for all
algorithms, which include automated parallelization over all
available cores (24 in this experiment).

Fig. 3 shows the results. FORGE clearly dominates in train-
ing time (see panels A and C), executing orders of magni-
tude faster than the competition (note the log scale). For
those with limited access to GPUs, deep learning methods
may be completely infeasible for large datasets. Even when
GPUs are available, FORGE still scales far better, complet-
ing the full pipeline about 35 times faster than TVAE, 85
times faster than CTGAN, and nearly 200 times faster than
CTAB-GAN+ in this example. Other methods appear to gen-

erate samples more quickly than FORGE (see panels B and
D), but this computation is trivial compared to training. In-
terestingly, our method is a faster sampler when measured
in processing time (see Fig. 4, Appx. B.4), suggesting that
it could outperform competitors here too with more efficient
parallelization. Note that FORGE attains the highest accu-
racy and F1-score of all methods for the adult dataset, so
this speedup need not come at the cost of performance.

6 DISCUSSION

ARFs enable fast, accurate density estimation and data syn-
thesis. However, the method is not without its limitations.
First, it is not tailored to structured data such as images or
text, for which deep learning models have proven especially
effective. See Appx. B.5 for a comparison to state-of-the-art
models on the MNIST dataset, where convolutional GANs
clearly outperform FORGE, as expected. Where our method
excels, by contrast, is in speed and flexibility.

We caution that our convergence guarantees have no impli-
cations for finite sample performance. Though ARFs only
required a few rounds of training in most of our experiments,
it is entirely possible that discriminator accuracy increase
from one round to the next, or that Alg. 1 fail to terminate
altogether for some datasets. (In practice, this behavior is
mitigated by increasing δ or setting some maximum number
of iterations.) For instance, on MNIST, we generally find
accuracy plateauing around 65% after five rounds with little
improvement thereafter. Of course, the same caveats apply
to any asymptotic guarantee. Finite sample results are rare
in the RF literature, although there has been some recent
work in this area (Gao et al., 2022).

Another potential difficulty for our approach is selecting
an optimal density estimation subroutine. KDE relies on a
smoothness assumption (A4), while MLE requires a (local)
parametric model. Bayesian inference imposes a prior dis-
tribution, which may bias results. All three methods will
struggle when their assumptions are violated. Resampling
alternatives such as permutations or bootstrapping do not
produce any data that was not observed in the training set
and may therefore raise privacy concerns. No approach
is generally guaranteed to strike the optimal balance be-
tween efficiency, accuracy, and privacy, and so the choice
of which combination of methods to employ is irreducibly
context-dependent.

We emphasize that our method performs well in a range
of settings without any model tuning. However, we ac-
knowledge that optimal performance likely depends on RF
parameters (Scornet, 2017; Probst et al., 2019). In particular,
there is an inherent trade-off between the goals of minimiz-
ing errors of density (ε2) and errors of convergence (ε3) in
finite samples. Grow trees too deep, and leaves will not
contain enough data to accurately estimate marginal den-
sities; grow trees too shallow, and ARFs may not satisfy

Watson, Blesch, Kapar, & Wright

1

10

100

1000

10000

1000 3000 10000 30000
Sample size

T
im

e
(s

ec
)

TrainingA

0

1

10

1000 3000 10000 30000
Sample size

SamplingB

1

10

100

1000

10000

4 8 12
Dimensionality

T
im

e
(s

ec
)

TrainingC

0

1

10

4 8 12
Dimensionality

SamplingD

Method
CTABGAN (CPU)

CTABGAN (GPU)

CTGAN (CPU)

CTGAN (GPU)

TVAE (CPU)

TVAE (GPU)

FORGE (CPU)

Figure 3: Complexity curves, evaluated using stratified subsamples of the adult dataset. (A): Training time as a function
of sample size. (B): Sampling time as a function of sample size. (C): Training time as a function of dimensionality. (D):
Sampling time as a function of dimensionality.

the local independence criterion. Meanwhile, the mtry
parameter has been shown to control sparsity in low signal-
to-noise regimes (Mentch and Zhou, 2020). Smaller values
may therefore be appropriate when ε3 is large, in order to
regularize the forest. Adding more trees tends to improve
density estimates, though this incurs extra computational
cost in both time and memory (Probst and Boulesteix, 2017).
Despite these considerations, we reiterate that ARFs do re-
markably well with default parameters.

The ethical implications of generative models are potentially
fraught. Deepfakes have attracted particular attention in this
regard (de Ruiter, 2021; Öhman, 2020; Diakopoulos and
Johnson, 2021), as they can deceive their audience into
believing that people said or did things they never in fact
said or did. These dangers are most acute with convolutional
neural networks or other architectures optimized for visual
and audio data. Despite and in full awareness of these
concerns, we point out that generative models also present
a valuable ethical opportunity, since they may preserve the
privacy of data subjects by creating datasets that preserve
statistical signals without exposing the personal information
of individuals. However, the privacy-utility trade-off can
be unpredictable with synthetic data (Stadler et al., 2022).
As with all powerful technologies, caution is advised and
regulatory frameworks are welcome.

7 CONCLUSION

We have introduced a novel procedure for learning joint
densities and generating synthetic data using a recursive,
adversarial variant of unsupervised random forests. The
method is provably consistent under reasonable assumptions,
and performs well in experiments on simulated and real-
world examples. Our FORDE algorithm is more accurate

than other CART-based density estimators and compares
favorably to leading PC algorithms. Our FORGE algorithm
is competitive with deep learning models for data generation
on tabular data benchmarks, and routinely executes some
100 times faster. An R package, arf, is available on CRAN.
A Python implementation is forthcoming.

Future work will explore further applications for these meth-
ods, such as anomaly detection, clustering, and classifi-
cation, as well as potential connections with differential
privacy (Dwork, 2008). Though we have focused in this
work on unconditional density estimation tasks, it is straight-
forward to compute arbitrary conditional probabilities with
ARFs by reducing the event space to just those leaves that
satisfy some logical constraint(s). More complex function-
als may be estimated with just a few additional steps—e.g.
(conditional) quantiles, CDFs, and copulas—thereby link-
ing these methods with recent work on functional regression
with random forests (Hothorn and Zeileis, 2021; Fu et al.,
2021; Ćevid et al., 2022). Alternative tree-based solutions
based on gradient boosting also warrant further exploration,
especially given promising recent developments in this area
(Friedman, 2020; Gao and Hastie, 2022).

Acknowledgments

MNW and KB received funding from the German Re-
search Foundation (DFG), Emmy Noether Grant 437611051.
MNW and JK received funding from the U Bremen Re-
search Alliance/AI Center for Health Care, financially sup-
ported by the Federal State of Bremen. We are grateful
to Cassio de Campos, Gennaro Gala, Robert Peharz, and
Alvaro H.C. Correia for their feedback on an earlier draft of
this manuscript.

Adversarial Random Forests

References

Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasser-
stein generative adversarial networks. In Proceedings of
the 34th International Conference on Machine Learning,
page 214–223.

Athey, S., Tibshirani, J., and Wager, S. (2019). Generalized
random forests. Ann. Statist., 47(2):1148–1178.

Augenstein, S., McMahan, H. B., Ramage, D., Ramaswamy,
S., Kairouz, P., Chen, M., Mathews, R., and y Arcas, B. A.
(2020). Generative models for effective ML on private,
decentralized datasets. In International Conference on
Learning Representations.

Bach, F. R. and Jordan, M. I. (2003). Beyond independent
components: Trees and clusters. J. Mach. Learn. Res.,
4:1205–1233.

Belgiu, M. and Drăguţ, L. (2016). Random forest in remote
sensing: A review of applications and future directions.
ISPRS J. Photogramm. Remote Sens., 114:24–31.

Biau, G. (2012). Analysis of a random forests model. J.
Mach. Learn. Res., 13:1063–1095.

Biau, G. and Devroye, L. (2010). On the layered nearest
neighbour estimate, the bagged nearest neighbour esti-
mate and the random forest method in regression and
classification. J. Multivar. Anal., 101(10):2499–2518.

Biau, G., Devroye, L., and Lugosi, G. (2008). Consistency
of random forests and other averaging classifiers. J. Mach.
Learn. Res., 9(66):2015–2033.

Biau, G. and Scornet, E. (2016). A random forest guided
tour. TEST, 25(2):197–227.

Blackard, J. (1998). Covertype. UCI Machine Learning
Repository.

Bramer, M. (2007). Clustering, pages 221–238. Springer,
London, UK.

Breiman, L. (2001). Random forests. Mach. Learn., 45(1):1–
33.

Breiman, L. (2004). Consistency for a simple model of ran-
dom forests. Technical Report 670, Statistics Department,
UC Berkeley, Berkeley, CA.

Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. A.
(1984). Classification and Regression Trees. Taylor &
Francis, Boca Raton, FL.

Buzhinsky, I., Nerinovsky, A., and Tripakis, S. (2021). Met-
rics and methods for robustness evaluation of neural net-
works with generative models. Mach. Learn.

Ćevid, D., Michel, L., Näf, J., Bühlmann, P., and Mein-
shausen, N. (2022). Distributional random forests: Het-
erogeneity adjustment and multivariate distributional re-
gression. J. Mach. Learn. Res., 23(333).

Chandola, V., Banerjee, A., and Kumar, V. (2009). Anomaly
detection: A survey. ACM Comput. Surv., 41(3).

Chen, X. and Ishwaran, H. (2012). Random forests for
genomic data analysis. Genomics, 99(6):323–329.

Choi, E., Biswal, S., Malin, B., Duke, J., Stewart, W. F.,
and Sun, J. (2017). Generating multi-label discrete pa-
tient records using generative adversarial networks. In
Proceedings of the 2nd Machine Learning for Healthcare
Conference, pages 286–305.

Choi, Y., Vergari, A., and Van den Broeck, G. (2020). Prob-
abilistic circuits: A unifying framework for tractable
probabilistic models. Technical Report, University of
California, Los Angeles.

Chow, C. and Liu, C. (1968). Approximating discrete prob-
ability distributions with dependence trees. IEEE Trans.
Inf. Theory, 14(3):462–467.

Correia, A., Gala, G., Quaeghebeur, E., de Campos, C.,
and Peharz, R. (2023). Continuous mixtures of tractable
probabilistic models. Proceedings of the 37th AAAI
Conference.

Correia, A., Peharz, R., and de Campos, C. P. (2020). Joints
in random forests. In Advances in Neural Information
Processing Systems, volume 33, pages 11404–11415.

Criminisi, A., Shotton, J., and Konukoglu, E. (2012). De-
cision Forests: A Unified Framework for Classification,
Regression, Density Estimation, Manifold Learning and
Semi-Supervised Learning, volume 7, pages 81–227.
NOW Publishers, Norwell, MA.

Cutler, D. R., Edwards Jr., T. C., Beard, K. H., Cutler,
A., Hess, K. T., Gibson, J., and Lawler, J. J. (2007).
Random forests for classification in ecology. Ecology,
88(11):2783–2792.

Dang, M., Vergari, A., and Van den Broeck, G. (2022).
Strudel: A fast and accurate learner of structured-
decomposable probabilistic circuits. Int. J. Approx. Rea-
son., 140:92–115.

Darwiche, A. (2009). Modeling and Reasoning with
Bayesian Networks. Cambridge University Press, New
York.

de Ruiter, A. (2021). The distinct wrong of deepfakes.
Philos. Technol., 34(4):1311–1332.

Denil, M., Matheson, D., and De Freitas, N. (2014). Nar-
rowing the gap: Random forests in theory and in practice.
In Proceedings of the 31st International Conference on
Machine Learning, pages 665–673.

Devroye, L., Györfi, L., and Lugosi, G. (1996). A Proba-
bilistic Theory of Pattern Recognition. Springer-Verlag,
New York.

Diakopoulos, N. and Johnson, D. (2021). Anticipating and
addressing the ethical implications of deepfakes in the
context of elections. New Media Soc., 23(7):2072–2098.

Drton, M. and Maathuis, M. H. (2017). Structure learning in
graphical modeling. Annu. Rev. Stat. Appl., 4(1):365–393.

Watson, Blesch, Kapar, & Wright

Dua, D. and Graff, C. (2019). UCI machine learning reposi-
tory.

Dwork, C. (2008). Differential privacy: A survey of results.
In Theory and Applications of Models of Computation,
volume 4978, pages 1–19, Berlin, Heidelberg. Springer.

Efron, B. (1994). Missing data, imputation, and the boot-
strap. J. Am. Stat. Assoc., 89(426):463–475.

Esmaeilpour, M., Chaalia, N., Abusitta, A., Devailly, F.-
X., Maazoun, W., and Cardinal, P. (2022). RCC-GAN:
Regularized compound conditional gan for large-scale
tabular data synthesis. arXiv preprint, 2205.11693.

Feng, J. and Zhou, Z.-H. (2018). Autoencoder by forest. In
Proceedings of the 32nd AAAI Conference on Artificial
Intelligence.

Fernández-Delgado, M., Cernadas, E., Barro, S., and
Amorim, D. (2014). Do we need hundreds of classi-
fiers to solve real world classification problems? J. Mach.
Learn. Res., 15(90):3133–3181.

Friedman, J. H. (2020). Contrast trees and distribution
boosting. Proc. Natl. Acad. Sci., 117(35):21175–21184.

Fu, G., Dai, X., and Liang, Y. (2021). Functional random
forests for curve response. Sci. Rep., 11(1):24159.

Gao, W., Xu, F., and Zhou, Z.-H. (2022). Towards conver-
gence rate analysis of random forests for classification.
Artif. Intell., 313(C).

Gao, Z. and Hastie, T. (2022). LinCDE: Conditional density
estimation via Lindsey’s method. J. Mach. Learn. Res.,
23(52):1–55.

Genuer, R. (2012). Variance reduction in purely random
forests. J. Nonparametr. Stat., 24(3):543–562.

Geurts, P., Ernst, D., and Wehenkel, L. (2006). Extremely
randomized trees. Mach. Learn., 63(1):3–42.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio,
Y. (2014). Generative adversarial nets. In Advances in
Neural Information Processing Systems, volume 27, page
2672–2680.

Gramacki, A. (2018). Nonparametric Kernel Density Esti-
mation and Its Computational Aspects. Springer, Cham.

Gray, A. G. and Moore, A. W. (2003). Nonparametric
density estimation: Toward computational tractability. In
Proceedings of the 2003 SIAM International Conference
on Data Mining (SDM), pages 203–211.

Györfi, L., Kohler, M., Krzyżak, A., and Walk, H. (2002).
A Distribution-Free Theory of Nonparametric Regression.
Springer-Verlag, New York.

Heckerman, D., Geiger, D., and Chickering, D. M. (1995).
Learning Bayesian networks: The combination of knowl-
edge and statistical data. Mach. Learn., 20(3):197–243.

Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X.,
Botvinick, M., Mohamed, S., and Lerchner, A. (2017). β-
VAE: Learning basic visual concepts with a constrained
variational framework. In International Conference on
Learning Representations.

Hothorn, T. and Zeileis, A. (2021). Predictive distribution
modeling using transformation forests. J. Comput. Graph.
Stat., 30(4):1181–1196.

Jordon, J., Yoon, J., and van der Schaar, M. (2019). PATE-
GAN: generating synthetic data with differential privacy
guarantees. In International Conference on Learning
Representations.

Kim, I., Ramdas, A., Singh, A., and Wasserman, L. (2021).
Classification accuracy as a proxy for two-sample testing.
Ann. Stat., 49(1):411 – 434.

Kingma, D., Salimans, T., Poole, B., and Ho, J. (2021). Vari-
ational diffusion models. In Advances in Neural Informa-
tion Processing Systems, volume 34, pages 21696–21707.

Kingma, D. and Welling, M. (2013). Auto-encoding varia-
tional Bayes. In International Conference on Learning
Representations.

Kisa, D., Van den Broeck, G., Choi, A., and Darwiche, A.
(2014). Probabilistic sentential decision diagrams. In 14th
International Conference on the Principles of Knowledge
Representation and Reasoning.

Kobyzev, I., Prince, S. J., and Brubaker, M. A. (2021). Nor-
malizing flows: An introduction and review of current
methods. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 43(11):3964–3979.

Koller, D. and Friedman, N. (2009). Probabilistic Graphical
Models. The MIT Press, Cambridge, MA.

Lauritzen, S. L. (1996). Graphical Models. Oxford Statisti-
cal Science Series. Clarendon Press, Oxford.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).
Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11):2278–2324.

Lee, J., Hyeong, J., Jeon, J., Park, N., and Cho, J. (2021).
Invertible tabular GANs: Killing two birds with one stone
for tabular data synthesis. In Advances in Neural Informa-
tion Processing Systems, volume 34, pages 4263–4273.

Lee, J., Kim, M., Jeong, Y., and Ro, Y. (2022). Differentially
private normalizing flows for synthetic tabular data gener-
ation. Proceedings of the AAAI Conference on Artificial
Intelligence, 36(7):7345–7353.

Liu, H., Xu, M., Gu, H., Gupta, A., Lafferty, J., and Wasser-
man, L. (2011). Forest density estimation. J. Mach. Learn.
Res., 12(25):907–951.

Loh, W.-Y. (2009). Improving the precision of classification
trees. Ann. Appl. Stat., 3(4):1710 – 1737.

Lopez, R., Regier, J., Cole, M. B., Jordan, M. I., and Yosef,
N. (2018). Deep generative modeling for single-cell tran-
scriptomics. Nat. Methods, 15(12):1053–1058.

Adversarial Random Forests

Lugosi, G. and Nobel, A. (1996). Consistency of data-driven
histogram methods for density estimation and classifica-
tion. Ann. Stat., 24(2):687 – 706.

Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin,
J. M., Nair, B., Katz, R., Himmelfarb, J., Bansal, N.,
and Lee, S.-I. (2020). From local explanations to global
understanding with explainable AI for trees. Nat. Mach.
Intell., 2(1):56–67.

Malley, J., Kruppa, J., Dasgupta, A., Malley, K., and Ziegler,
A. (2012). Probability machines: Consistent probabil-
ity estimation using nonparametric learning machines.
Methods Inf. Med., 51(1):74–81.

Mandelbrot, B. B. (1982). The Fractal Geometry of Nature.
W.H. Freeman & Co., New York.

Meinshausen, N. (2006). Quantile regression forests. J.
Mach. Learn. Res., 7:983–999.

Mentch, L. and Hooker, G. (2016). Quantifying uncertainty
in random forests via confidence intervals and hypothesis
tests. J. Mach. Learn. Res., 17(26).

Mentch, L. and Zhou, S. (2020). Randomization as regu-
larization: A degrees of freedom explanation for random
forest success. J. Mach. Learn. Res., 21(171).

Mirza, M. and Osindero, S. (2014). Conditional generative
adversarial nets. arXiv preprint, 1411.1784.

Öhman, C. (2020). Introducing the pervert’s dilemma: a con-
tribution to the critique of deepfake pornography. Ethics
Inf. Technol., 22(2):133–140.

Pang, G., Shen, C., Cao, L., and Hengel, A. V. D. (2021).
Deep learning for anomaly detection: A review. ACM
Comput. Surv., 54(2).

Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed,
S., and Lakshminarayanan, B. (2021). Normalizing flows
for probabilistic modeling and inference. J. Mach. Learn.
Res., 22(57):1–64.

Pearl, J. and Russell, S. (2003). Bayesian networks. In Ar-
bib, M. A., editor, Handbook of Brain Theory and Neural
Networks, pages 157–160. The MIT Press, Cambridge,
MA.

Peharz, R., Lang, S., Vergari, A., Stelzner, K., Molina, A.,
Trapp, M., Van Den Broeck, G., Kersting, K., and Ghahra-
mani, Z. (2020a). Einsum networks: Fast and scalable
learning of tractable probabilistic circuits. In Proceed-
ings of the 37th International Conference on Machine
Learning, pages 7563–7574.

Peharz, R., Vergari, A., Stelzner, K., Molina, A., Shao, X.,
Trapp, M., Kersting, K., and Ghahramani, Z. (2020b).
Random sum-product networks: A simple and effective
approach to probabilistic deep learning. In Proceedings
of the 35th Conference on Uncertainty in Artificial Intel-
ligence, volume 115, pages 334–344.

Peng, W., Coleman, T., and Mentch, L. (2022). Rates of con-
vergence for random forests via generalized U-statistics.
Electron. J. Stat., 16(1):232 – 292.

Poon, H. and Domingos, P. (2011). Sum-product networks:
A new deep architecture. In Proceedings of the 27th
Conference on Uncertainty in Artificial Intelligence, page
337–346.

Probst, P. and Boulesteix, A.-L. (2017). To tune or not to
tune the number of trees in random forest. J. Mach. Learn.
Res., 18(1):6673–6690.

Probst, P., Wright, M. N., and Boulesteix, A.-L. (2019).
Hyperparameters and tuning strategies for random for-
est. WIREs Data Mining and Knowledge Discovery,
9(3):e1301.

Rahman, T., Kothalkar, P., and Gogate, V. (2014). Cutset
networks: A simple, tractable, and scalable approach for
improving the accuracy of Chow-Liu trees. In Machine
Learning and Knowledge Discovery in Databases, pages
630–645, Berlin, Heidelberg. Springer Berlin Heidelberg.

Ram, P. and Gray, A. G. (2011). Density estimation trees.
In Proceedings of the 17th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
page 627–635.

Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen, M.
(2022). Hierarchical text-conditional image generation
with CLIP latents. arXiv preprint, 2204.06125.

Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Rad-
ford, A., Chen, M., and Sutskever, I. (2021). Zero-shot
text-to-image generation. arXiv preprint, 2102.12092.

Ravuri, S. and Vinyals, O. (2019). Classification accuracy
score for conditional generative models. In Advances in
Neural Information Processing Systems, volume 32.

Rokach, L. and Maimon, O. (2005). Clustering Methods,
pages 321–352. Springer US, Boston, MA.

Roy, A., Saffar, M., Vaswani, A., and Grangier, D. (2021).
Efficient content-based sparse attention with routing trans-
formers. Transactions of the Association for Computa-
tional Linguistics, 9:53–68.

Rubin, D. B. (1996). Multiple imputation after 18+ years. J.
Am. Stat. Assoc., 91(434):473–489.

Santurkar, S., Schmidt, L., and Madry, A. (2018). A
classification-based study of covariate shift in GAN distri-
butions. In Proceedings of the 35th International Confer-
ence on Machine Learning, volume 80, pages 4480–4489.

Scornet, E. (2016). On the asymptotics of random forests.
J. Multivar. Anal., 146:72–83.

Scornet, E. (2017). Tuning parameters in random forests.
ESAIM: Procs, 60:144–162.

Scornet, E., Biau, G., and Vert, J. P. (2015). Consistency of
random forests. Ann. Statist., 43(4):1716–1741.

Watson, Blesch, Kapar, & Wright

Shi, T. and Horvath, S. (2006). Unsupervised learning
with random forest predictors. J. Comput. Graph. Stat.,
15(1):118–138.

Shmelkov, K., Schmid, C., and Alahari, K. (2018). How
good is my GAN? In Computer Vision – ECCV 2018,
pages 218–234, Cham. Springer International Publishing.

Silverman, B. (1986). Density Estimation for Statistics and
Data Analysis. Chapman & Hall, London.

Smyth, P., Gray, A. G., and Fayyad, U. M. (1995).
Retrofitting decision tree classifiers using kernel density
estimation. In Proceedings of the 12th International Con-
ference on International Conference on Machine Learn-
ing, page 506–514.

Song, Y., Shu, R., Kushman, N., and Ermon, S. (2018).
Constructing unrestricted adversarial examples with gen-
erative models. In Advances in Neural Information Pro-
cessing Systems, volume 31.

Song, Y., Sohl-Dickstein, J., Kingma, D., Kumar, A., Er-
man, S., and Poole, B. (2021). Score-based generative
modeling through stochastic differential equations. In
International Conference on Learning Representations.

Stadler, T., Oprisanu, B., and Troncoso, C. (2022). Synthetic
data – anonymisation groundhog day. In 31st USENIX
Security Symposium, pages 1451–1468.

Stekhoven, D. J. and Bühlmann, P. (2011).
MissForest—non-parametric missing value imputation
for mixed-type data. Bioinformatics, 28(1):112–118.

Stone, C. J. (1977). Consistent nonparametric regression.
Ann. Statist., 5(4):595 – 620.

Tang, C., Garreau, D., and von Luxburg, U. (2018). When
do random forests fail? In Advances in Neural Informa-
tion Processing Systems, volume 31.

Tang, F. and Ishwaran, H. (2017). Random forest missing
data algorithms. Stat. Anal. Data Min., 10(6):363–377.

van den Oord, A., Kalchbrenner, N., and Kavukcuoglu, K.
(2016). Pixel recurrent neural networks. In Proceedings of
The 33rd International Conference on Machine Learning,
volume 48, pages 1747–1756.

Van Haaren, J. and Davis, J. (2012). Markov network struc-
ture learning: A randomized feature generation approach.
In Proceedings of the AAAI Conference on Artificial In-
telligence, volume 26, pages 1148–1154.

Vapnik, V. and Chervonenkis, A. (1971). On the uniform
convergence of relative frequencies of events to their
probabilities. Theory of Probability and its Applications,
16:264 – 280.

Vergari, A., Choi, Y., Peharz, R., and Van den Broeck, G.
(2020). Probabilistic circuits: Representations, inference,
learning and applications. In Tutorial at the 34th AAAI
Conference on Artificial Intelligence.

Vincent, P. and Bengio, Y. (2002). Manifold Parzen win-
dows. In Advances in Neural Information Processing
Systems, volume 15.

Wager, S. and Athey, S. (2018). Estimation and inference
of heterogeneous treatment effects using random forests.
J. Am. Stat. Assoc., 113(523):1228–1242.

Wager, S. and Walther, G. (2015). Adaptive concentration
of regression trees, with application to random forests.
arXiv preprint, 1503.06388.

Wand, M. and Jones, M. (1994). Kernel Smoothing. Chap-
man & Hall, Boca Raton, FL.

Weierstrass, K. (1895). Über continuirliche Functionen
eines reellen Arguments, die für keinen Werth des let-
zeren einen bestimmten Differentialquotienten besitzen.
In Mathematische Werke von Karl Weierstrass, pages
71–74. Mayer & Mueller, Berlin.

Wen, H. and Hang, H. (2022). Random forest density estima-
tion. In Proceedings of the 39th International Conference
on Machine Learning, pages 23701–23722.

Worldline and the ML Group of ULB (2013). Credit card
fraud detection data. license: Open database.

Wu, K., Zhang, K., Fan, W., Edwards, A., and Yu, P. S.
(2014). RS-Forest: A rapid density estimator for stream-
ing anomaly detection. In 2014 IEEE International Con-
ference on Data Mining, pages 600–609.

Xu, L., Skoularidou, M., Cuesta-Infante, A., and Veera-
machaneni, K. (2019). Modeling tabular data using con-
ditional GAN. In Advances in Neural Information Pro-
cessing Systems, volume 32.

Yang, J., Kannan, A., Batra, D., and Parikh, D. (2017). LR-
GAN: Layered recursive generative adversarial networks
for image generation. In International Conference on
Learning Representations.

Yelmen, B., Decelle, A., Ongaro, L., Marnetto, D., Tal-
lec, C., Montinaro, F., Furtlehner, C., Pagani, L., and
Jay, F. (2021). Creating artificial human genomes using
generative neural networks. PLOS Genetics, 17(2):1–22.

Zhang, H., Juba, B., and Van Den Broeck, G. (2021). Prob-
abilistic generating circuits. In Proceedings of the 38th
International Conference on Machine Learning, pages
12447–12457.

Zhao, Z., Kunar, A., Birke, R., and Chen, L. Y. (2022).
CTAB-GAN+: Enhancing tabular data synthesis. arXiv
preprint, 2204.00401.

A PROOFS

A.1 Proof of Thm. 1

To secure the result, we must show that (a) the discriminator reliably converges on the Bayes risk at each iteration t; and (b)
the generator’s sampling strategy drives original and synthetic data closer together, ultimately taking the Bayes risk to 1/2
as n, t→∞. (For the purposes of this proof, we set the tolerance parameter δ to 0.)

Take (a) first. This amounts to a consistency requirement for RFs. The consistency of RF classifiers has been demonstrated
under various assumptions about splitting rules and stopping criteria (Breiman, 2004; Biau et al., 2008; Biau and Devroye,
2010; Gao et al., 2022), but these results generally require trees to be grown to purity or even completion (i.e., n`b = 1 for all
`, b). However, this would turn the generator’s sampling strategy into a simple copy-paste operation and make intra-leaf
density estimation impossible. We therefore follow Malley et al. (2012) in observing that regression procedures constitute
probability machines, since P (Y = 1|x) = E[Y |x] for Y ∈ {0, 1}.

For simplicity, we focus on the single tree case, as the consistency of the ensemble follows from the consistency of the base
method (Biau et al., 2008). We define η(t)(x) := P (Y = 1|x, t) as the target function for fixed t. Let f (t)n (x) be a tree
trained according to (A1)-(A3) on a sample of size n at iteration t. Since L2-consistency entails classifier consistency using
the soft labeling approach of (A3).(vi), our goal in this section is to show that, for all t ∈ N, we have:

lim
n→∞

E
[(
f (t)n (x)− η(t)(x)

)2]
= 0.

Consistency for RF regression has been established for several variants of the algorithm, occasionally under some constraints
on the data generating process (Genuer, 2012; Scornet et al., 2015; Wager and Walther, 2015; Biau and Scornet, 2016).
Recent work in this area has tended to focus on asymptotic normality (Mentch and Hooker, 2016; Wager and Athey, 2018;
Athey et al., 2019; Peng et al., 2022), which requires additional assumptions. These often include an upper bound on leaf
sample size, which would complicate our analysis in Thm. 2. To avoid unnecessary difficulties, we borrow selectively from
Meinshausen (2006), Biau (2012), Denil et al. (2014), Scornet (2016), and Wager and Athey (2018), striking a delicate
balance between theoretical parsimony and fidelity to the classic RF algorithm.5

For full details, we refer readers to the original texts. The main point to recognize is that, under assumptions (A1)-(A3), RFs
satisfy the conditions of Stone’s theorem (Stone, 1977), which guarantees the universal consistency of a large family of local
averaging methods. Devroye et al. (1996, Thm. 6.1) and Györfi et al. (2002, Thm. 4.2) show that partitioning estimators such
as decision trees qualify provided that (1) diam(X`)→p 0 and (2) n` →p ∞ for all ` as n→∞, effectively creating leaves
of infinite density. The former is derived by Meinshausen (2006, Lemma 2) under (A3).(iii) and (A3).(iv); the latter follows
trivially from (A3).(v). Thus RF discriminators weakly converge on the Bayes risk in the large sample limit, completing part
(a) of the proof.

Desideratum (b) effectively says that original and synthetic data become indistinguishable as n and t increase. Recall
that at t = 0, we generate synthetic data X̃(0) ∼

∏d
j=1 P (Xj), which becomes input to the discriminator f (0)n . Let θ(0)

denote the resulting splits once the discriminator has converged. In subsequent rounds, synthetic data are sampled according
to X̃(t+1) ∼

∏d
j=1 P (Xj |θ(t)`)P (θ

(t)
`). (The consistency of coverage estimates is treated separately in Appx. A.3.) We

proceed to train a new discriminator and repeat the process.

Let P ∗ be the target distribution and P (t) the synthetic distribution at round t. For all t ≥ 1, the input data to the discriminator
f
(t)
n is the dataset D(t)

n ∼ 0.5P ∗ + 0.5P (t−1). Our goal in this section is to show that, as n, t→∞:

sup
x∈D(t)

n

|η(t)(x)− 1/2| →p 0.

An apparent challenge to our recursive strategy for generating synthetic data is posed by self-similar distributions, in which
dependencies replicate at ever finer resolutions, as in some fractal equations (Mandelbrot, 1982). For instance, let g be
the Weierstrass function (Weierstrass, 1895), and say that X2 = g(X1). Then the generative model will tend to produce

5Several authors have conjectured that RF consistency may not require honesty (A3).(i) or subsampling (A3).(ii) after all. Empirical
performance certainly seems unencumbered by these requirements. However, both come with major theoretical advantages—the former
by making predictions conditionally independent of the training data while preserving some form of adaptive splits, the latter by avoiding
thorny issues arising from duplicated samples when bootstrapping. See Biau (2012, Rmk. 8), Wager and Athey (2018, Appx. B), and Tang
et al. (2018) for a discussion.

Watson, Blesch, Kapar, & Wright

off-manifold data at each iteration t, no matter how small vol(X`) becomes. However, this only shows that convergence can
fail for finite t. Since the discriminator is consistent, it will accurately identify synthetic points in round t+ 1, pruning the
space still further.

Let [L(t)] be the leaves of the discriminator f (t)n , and define the maximum leaf diameter mt := max`∈[L(t)] diam(X`).We

say that two samples are neighbors in f (t)n if the model places them in the same leaf. We show that, as n, t→∞, conditional
probabilities for neighboring samples converge—including, crucially, original and synthetic counterparts. Our Lipschitz
condition (A2) states that for all x,x′, we have:

|η(t)(x)− η(t)(x′)| ≤ ct ‖x− x′‖2,

where ct denotes the Lipschitz constant at round t. Suppose that x and x′ are neighbors. Then we can replace the second
factor on the rhs with mt, since the L2 distance between neighbors cannot exceed the maximum leaf diameter at round t.
Meinshausen (2006)’s aforementioned Lemma 2 ensures that this value goes to zero in probability as rounds increase. This
could in principle be offset by a sufficient increase in ct over training rounds, but the second condition of (A2) prevents this,
imposing the constraint that ct = o(m−1t). Thus, for observations in the same leaf, ctmt →p 0 as t→∞. Because original
and synthetic samples are equinumerous in all leaves following the generative step, each original sample has a synthetic
counterpart to which it is arbitrarily close in L2 space as t grows large. Since no feature values are sufficient to distinguish
between the two classes in any region, all conditional probabilities go to 1/2, and Bayes risk therefore also converges to 1/2
in probability. This concludes the proof.

A.2 Proof of Lemma 1

Define the first-order approximation to p satisfying local independence:

p̂(x) :=
1

B

∑
`,b:x∈X `

b

p(θ`b)

d∏
j=1

p(xj |θ`b).

We also define the root integrated squared error (RISE), i.e. the Euclidean distance between probability densities:

RISE(p, q) :=

(∫
X

(
p(x)− q(x)

)2
dx

)1/2

.

By the triangle inequality, we have:

RISE(p, q) ≤ RISE(p, p̂) + RISE(p̂, q).

Squaring both sides, we get:

ISE(p, q) ≤ ISE(p, p̂) + ISE(p̂, q) + 2 RISE(p, p̂) RISE(p̂, q).

Adding a nonnegative value to the rhs, we can reduce the expression:

ISE(p, q) ≤ ISE(p, p̂) + ISE(p̂, q) + 2 RISE(p, p̂) RISE(p̂, q) +
(
RISE(p, p̂)− RISE(p̂, q)

)2
= 2
(
ISE(p, p̂) + ISE(p̂, q)

)
.

Now observe that we can rewrite both ISE formulae in terms of our predefined residuals (Eqs. 3-5):

ISE(p, p̂) =

∫
X

(
1

B

∑
`,b:x∈X `

b

(
p(x|θ`b) p(θ`b)−

d∏
j=1

p(xj |θ`) p(θ`b)
))2

dx

=
1

B2

∫
X

(∑
`,b:x∈X `

b

p(θ`b)ε3

)2

dx.

ISE(p̂, q) =

∫
X

(
1

B

∑
`,b:x∈X `

b

(d∏
j=1

p(xj |θ`b) p(θ`b)−
d∏

j=1

q(xj ;θ
`
b,j) q(θ

`
b)
))2

dx

=
1

B2

∫
X

(∑
`,b:x∈X `

b

(
p(θ`b)ε2 + ε1

d∏
j=1

p(xj |θ`b)− ε1ε2
))2

dx.

Adversarial Random Forests

We replace the interior squared terms for ease of presentation:

α :=
∑

`,b:x∈X `
b

p(θ`b)ε3

β :=
∑

`,b:x∈X `
b

(
p(θ`b)ε2 + ε1

d∏
j=1

p(xj |θ`b)− ε1ε2
)
.

Finally, we take expectations on both sides:

MISE(p, q) ≤ 2B−2 E

[∫
X
α2 + β2 dx

]
,

where we have exploited the linearity of expectation to pull the factor outside of the bracketed term, and the monotonicity of
expectation to preserve the inequality.

A.3 Proof of Theorem 2

Lemma 1 states that error is bounded by a quadratic function of ε1, ε2, ε3. Thus for L2-consistency, it suffices to show
that E[ε2j] → 0, for j ∈ {1, 2, 3}. Since this is already established by Thm. 1 for j = 3, we focus here on errors of
coverage and density. Start with ε1. A general version of the Glivenko-Cantelli theorem (Vapnik and Chervonenkis, 1971)
guarantees uniform convergence of empirical proportions to population proportions. Let L denote the set of all possible
hyperrectangular subspaces induced by axis-aligned splits on X . Then the following holds with probability 1:

lim
n→∞

sup
`∈L

∣∣p(θ`)− qn(θ`)
∣∣ = 0.

Next, take ε2. (A4) guarantees that p satisfies the consistency conditions for univariate KDE (Silverman, 1986; Wand
and Jones, 1994; Gramacki, 2018), while condition (v) of (A3) ensures that within-leaf sample size increases even as leaf
volume goes to zero (Meinshausen, 2006, Lemma 2). Our kernel is a nonnegative function K : Rd → R that integrates to 1,
parametrized by the bandwidth h:

ph(x) =
1

nh

n∑
i=1

K
(x− xi

h

)
.

Using standard arguments, we take a Taylor series expansion of the MISE and minimize the asymptotic MISE (AMISE):

AMISE(p, ph) =
1

nh
R(K) +

1

4
h4µ2(K)2R(p′′),

where

R(K) =

∫
K(x)2 dx,

µ2(K) =

∫
x2K(x) dx, and

R(p′′) =

∫
p′′(x)2 dx.

For example values of these variables under specific kernels, see (Wand and Jones, 1994, Appx. B). Under (A4), it can be
shown that

MISE(p, ph) = AMISE(p, ph) + o
(
(nh)−1 + h4

)
.

Thus if (nh)−1 → 0 and h→ 0 as n→∞, the asymptotic approximation is exact and E[ε22]→ 0.

These results, combined with the proof of Thm. 1 (see Appx. A.1), establish that errors of coverage, density, and convergence
all vanish in the limit. Thus E[ε2j]→ 0 for j ∈ {1, 2, 3}, and the proof is complete.

Watson, Blesch, Kapar, & Wright

B EXPERIMENTS

Our experiments do not include any personal data, as defined in Article 4(1) of the European Union’s General Data Protection
Regulation. All data are either simulated or from publicly available resources. We performed all experiments on a dedicated
64-bit Linux platform running Ubuntu 20.04 with an AMD Ryzen Threadripper 3960X (24 cores, 48 threads) CPU, 256
gigabyte RAM and two NVIDIA Titan RTX GPUs. We used R version 4.1.2 and Python version 3.7.12. Further details on
the environment setup are provided in the supplemental code.

B.1 Simulations

The cassini, shapes, and smiley simulations are all available in the mlbench R package; the twomoons problem
is available in the fdm2id R package. Default parameters were used throughout, with fixed sample size n = 2000.

B.2 Twenty Datasets

The Twenty Datasets benchmark was originally proposed by Van Haaren and Davis (2012). A conventional train-
ing/validation/test split is widely used in the PC literature. Because our method does not include any hyperparam-
eter search, we combine training and validation sets into a single training set. We downloaded the data from https:
//github.com/joshuacnf/Probabilistic-Generating-Circuits/tree/main/data and include the
directory in our project GitHub repository for completeness. All datasets are Boolean, with sample size and dimensionality
given in Table 3.

Table 3: Summary of datasets included in the Twenty Datasets benchmark.
Dataset Train Validation Test Dimensions

nltcs 16181 2157 3236 16
msnbc 291326 38843 58265 17
kdd 180092 19907 34955 64
plants 17412 2321 3482 69
audio 15000 2000 3000 100
jester 9000 1000 4116 100
netflix 15000 2000 3000 100
accidents 12758 1700 2551 111
retail 22041 2938 4408 135
pumsb 12262 1635 2452 163
dna 1600 400 1186 180
kosarek 33375 4450 6675 190
msweb 29441 3270 5000 294
book 8700 1159 1739 500
movie 4524 1002 591 500
webkb 2803 558 838 839
reuters 6532 1028 1540 889
20ng 11293 3764 3764 910
bbc 1670 225 330 1058
ad 2461 327 491 1556

Results for competitors are reported in the cited papers:

• Einsum networks (Peharz et al., 2020a)
• Random sum-product networks (Peharz et al., 2020b)
• Probabilistic generating circuits (Zhang et al., 2021)
• Strudel (Dang et al., 2022)
• Continuous mixtures of Chow-Liu trees (Correia et al., 2023).

B.3 Tabular GANs

For benchmarking generative models on real-world data, we use the benchmarking pipeline proposed by Xu et al. (2019). In
detail, the workflow is as follows:

1. Load classification datasets used in Xu et al. (2019), namely adult, census, credit, covertype,
intrusion, mnist12, and mnist28. Note that the type of prediction task does not affect the process of
synthetic data generation, so we omit the single regression example (news) for greater consistency.

https://github.com/joshuacnf/Probabilistic-Generating-Circuits/tree/main/data
https://github.com/joshuacnf/Probabilistic-Generating-Circuits/tree/main/data

Adversarial Random Forests

2. Split the data into training and test sets (see Table 4 for details).

3. Train the generative models FORGE (number of trees = 10, minimum node size = 5), CTGAN6 (batch size = 500,
epochs = 300), TVAE7 (batch size = 500, epochs = 300), CTAB-GAN+8 (batch size = 500, epochs = 150), IT-GAN9

(batch size = 2000, epochs = 300) and RCC-GAN10 (batch size = 500, epochs = 300).

4. Generate a synthetic dataset of the same size as the training set using each of the generative models trained in step
(3), measuring the wall time needed to execute this task.

5. Train a set of supervised learning algorithms (see Table 4 for details): (a) on the real training data set (i.e., the
Oracle); and (b) on the synthetic training datasets generated by FORGE, CTGAN, TVAE, CTAB-GAN+ and RCC-GAN.

6. Evaluate the performance of the learning algorithms from step (5) on the test set.

7. For each dataset, average performance metrics (accuracy, F1-scores) across learners. We report F1-scores for the
positive class, e.g. ‘>50k’ for adult, ‘+50000’ for census and ‘1’ for credit.

Table 4: Benchmark Setup. Supervised learning algorithms for prediction: (A) Adaboost, estimators = 50 , (B) Decision
Tree, tree depth for binary/multiclass target = 15/30, (C) Logistic Regression, (D) MLP, hidden layers for binary/multiclass
target = 50/100

Dataset Train/Test Learner Link to dataset

adult (Dua and Graff, 2019) 23k/10k A,B,C,D http://archive.ics.uci.edu/ml/datasets/adult
census (Dua and Graff, 2019) 200k/100k A,B,D https://archive.ics.uci.edu/ml/datasets/census+income
covertype (Blackard, 1998) 481k/100k A,D https://archive.ics.uci.edu/ml/datasets/covertype
credit (Worldline and the ML Group of ULB, 2013) 264k/20k A,B,D https://www.kaggle.com/mlg-ulb/creditcardfraud
intrusion (Dua and Graff, 2019) 394k/100k A,D http://archive.ics.uci.edu/ml/datasets/kdd+cup+1999+data
mnist12 (LeCun et al., 1998) 60k/10k A,D http://yann.lecun.com/exdb/mnist/index.html
mnist28 (LeCun et al., 1998) 60k/10k A,D http://yann.lecun.com/exdb/mnist/index.html

B.4 Run Time

In order to evaluate the run time efficiency of FORGE, we chose to focus on the smallest dataset of the benchmark study
in Sect. 5.2, namely adult. We (A) drew stratified subsamples and (B) drew covariate subsets. For step (B), the target
variable is always included. We select an equal number of continuous/categorical covariates when possible and use all
n = 32, 561 instances. Results in terms of processing time are visualized in Fig. 4.

B.5 Image Data

We include results on the mnist12 and mnist28 datasets here, both included in the original Xu et al. (2019) pipeline.
Benchmarking against CTGAN and TVAE (other methods proved too slow to test), we find that FORGE outperforms both
competitors in accuracy, F1-score, and speed (see Table 5).

However, since MNIST is not a tabular data problem, perhaps a more relevant comparison would be against convolutional
networks specifically designed for image data. We train a conditional GAN with convolutional layers (Mirza and Osindero,
2014) and find that the resulting cGAN clearly outperforms FORGE (see Fig. 5). This result is expected, given that our
method is not optimized for image data. It also illustrates a limitation of our approach, which excels in speed and flexibility
but is no match for deep learning methods on structured datasets.

6https://sdv.dev/SDV/api_reference/tabular/ctgan.html. MIT License.
7https://sdv.dev/SDV/api_reference/tabular/tvae.html. MIT License.
8https://github.com/Team-TUD/CTAB-GAN-Plus
9https://github.com/leejaehoon2016/ITGAN. Samsung SDS Public License V1.0.

10https://github.com/EsmaeilpourMohammad/RccGAN

http://archive.ics.uci.edu/ml/datasets/adult
https://archive.ics.uci.edu/ml/datasets/census+income
https://archive.ics.uci.edu/ml/datasets/covertype
https://www.kaggle.com/mlg-ulb/creditcardfraud
http://archive.ics.uci.edu/ml/datasets/kdd+cup+1999+data
http://yann.lecun.com/exdb/mnist/index.html
http://yann.lecun.com/exdb/mnist/index.html
https://sdv.dev/SDV/api_reference/tabular/ctgan.html
https://sdv.dev/SDV/api_reference/tabular/tvae.html
https://github.com/Team-TUD/CTAB-GAN-Plus
https://github.com/leejaehoon2016/ITGAN
https://github.com/EsmaeilpourMohammad/RccGAN

Watson, Blesch, Kapar, & Wright

1e+01

1e+03

1e+05

1000 3000 10000 30000
Sample size

P
ro

ce
ss

 ti
m

e
(s

ec
)

TrainingA

0

1

10

100

1000 3000 10000 30000
Sample size

SamplingB

1e+01

1e+03

1e+05

4 8 12
Dimensionality

P
ro

ce
ss

 ti
m

e
(s

ec
)

TrainingC

1

10

100

4 8 12
Dimensionality

SamplingD

Method
CTABGAN (CPU)

CTABGAN (GPU)

CTGAN (CPU)

CTGAN (GPU)

TVAE (CPU)

TVAE (GPU)

FORGE (CPU)

Figure 4: Complexity curves. (A): Processing time as a function of sample size, using stratified subsamples of the adult
dataset. (B): Processing time as a function of dimensionality, using random features from the adult dataset.

Table 5: Performance on mnist datasets from the Xu et al. (2019) benchmark for CTGAN and TVAE vs. FORGE We report
average results across five replicates ± the associated standard error. Winning results in bold.

Dataset Model Accuracy± SE F1± SE Time (sec)

mnist12 Oracle 0.892± 0.003 0.891± 0.003
classes = 10 FORGE 0.799± 0.007 0.795± 0.007 32.3
n = 70,000 CTGAN 0.172± 0.032 0.138± 0.032 2737.4
d = 144 TVAE 0.763± 0.002 0.761± 0.002 1143.8

mnist28 Oracle 0.918± 0.002 0.917± 0.002
classes = 10 FORGE 0.729± 0.008 0.723± 0.008 169.5
n = 70,000 CTGAN 0.197± 0.051 0.167± 0.051 14415.4
d = 784 TVAE 0.698± 0.016 0.697± 0.016 5056.0

Figure 5: Results from mnist28 experiment. (A): Original samples. (B): Samples generated by cGAN. (C): Samples
generated by FORGE.

	INTRODUCTION
	RELATED WORK
	BACKGROUND
	ADVERSARIAL RANDOM FORESTS
	Density Estimation and Data Synthesis

	EXPERIMENTS
	Simulation
	Real Data
	Runtime

	DISCUSSION
	CONCLUSION
	PROOFS
	Proof of Thm. 1
	Proof of Lemma 1
	Proof of Theorem 2

	EXPERIMENTS
	Simulations
	Twenty Datasets
	Tabular GANs
	Run Time
	Image Data

