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Abstract

The softmax function is a ubiquitous component
at the output of neural networks and increasingly
in intermediate layers as well. This paper pro-
vides convex lower bounds and concave upper
bounds on the softmax function, which are com-
patible with convex optimization formulations
for characterizing neural networks and other ML
models. We derive bounds using both a natu-
ral exponential-reciprocal decomposition of the
softmax as well as an alternative decomposition
in terms of the log-sum-exp function. The new
bounds are provably and/or numerically tighter
than linear bounds obtained in previous work on
robustness verification of transformers. As illus-
trations of the utility of the bounds, we apply
them to verification of transformers as well as of
the robustness of predictive uncertainty estimates
of deep ensembles.

1 INTRODUCTION

The softmax function is an indispensable component of
multiclass classifiers ranging from multinomial logistic re-
gression models to deep neural networks (NNs). It is
most often deployed at the output of a classifier to con-
vert K real-valued scores corresponding to K classes into
a probability distribution over the classes. More recently,
the softmax is playing an increasing role in intermedi-
ate layers as well with the popularization of Transform-
ers (Vaswani et al., 2017), whose quintessential compo-
nent, the (self-)attention mechanism (Luong et al., 2015;
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Gehring et al., 2017), utilizes softmax to compute attention
scores.

Our main contribution in this paper is to provide convex
bounds on the softmax function. More precisely, we derive
lower bounds on the outputs of the softmax that are convex
functions of the inputs, and upper bounds on the outputs
that are concave functions of the inputs (see (4) later). This
enables the formulation of convex optimization problems
for characterizing ML models with softmax components,
particularly in intermediate layers.

We apply our bounds to verification of the robustness of
NNs against adversarial input perturbations. We consider
in particular the quantification of predictive uncertainty for
multiclass classifiers, which is typically assessed in terms
of accurate estimation of the conditional probability distri-
bution. We are not aware of prior work that directly ad-
dresses the robustness of uncertainty estimation metrics,
especially for deep ensembles (Lakshminarayanan et al.,
2017; Rahaman and Thiery, 2021), although the works of
Bitterwolf et al. (2020); Berrada et al. (2021) are related.

Our results are summarized as follows. In Section 3, we
first consider an exponential-reciprocal decomposition of
the softmax function, used by Shi et al. (2020); Bonaert
et al. (2021) in robustness verification of transformers.
While Shi et al. (2020); Bonaert et al. (2021) limited them-
selves to linear bounds, we instead derive nonlinear con-
vex bounds (which we refer to as “ER”) and show that
these are tighter than the previous linear bounds (“lin”).
We then consider in Section 4 an alternative decomposition
in terms of the log-sum-exp (LSE) function, a well-known
convex function (Boyd et al., 2004), and obtain correspond-
ing bounds. We prove that the LSE upper bound is always
tighter than the ER upper bound, and that the LSE lower
bound is tighter than the ER lower bound for the case of
K = 2 inputs. These analytical results are summarized
by the following inequalities, where L(x) and U(x) denote
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lower and upper bounds that are functions of the input x:

Llin(x) ≤ LER(x) ≤︸︷︷︸
K=2

LLSE(x) ≤ softmax(x)

≤ ULSE(x) ≤ UER(x) ≤ U lin(x). (1)

For K > 2 inputs, while there are instances where
LER(x) > LLSE(x), our numerical experiment in Sec-
tion 6 suggests that this does not occur often and that in
some regimes, LLSE is tighter by factors of 3 or more in
terms of the mean gap with respect to softmax(x). For the
upper bounds, we find that UER(x) improves considerably
upon U lin(x), which can be rather loose, and ULSE(x) con-
sistently improves upon UER(x) by a further factor of 2. In
Section 7, we describe experiments on robustness verifica-
tion of transformers and of uncertainty estimation by deep
ensembles. The results provide further evidence of the hier-
archy in (1) and of the potential usefulness of the bounds.

1.1 Related Work

Deterministic robustness certification has gained increasing
interest in the past few years (Katz et al., 2017; Gehr et al.,
2018). Most of the work has focused on verifying prop-
erties of the pre-softmax output (e.g., Katz et al. (2017);
Gehr et al. (2018)) for piecewise-linear NNs, while formal
reasoning about the softmax outputs themselves has been
under-explored. Katz et al. (2017) showed that even the
pre-softmax verification problem is computationally inef-
ficient (NP-complete), but a number of approaches based
on (linear) abstraction (Singh et al., 2019c; Weng et al.,
2018b; Zhang et al., 2018; Gowal et al., 2019) and con-
vex optimization (Wong and Kolter, 2018; Dvijotham et al.,
2018) have been proposed to strike a good balance between
scalability and precision. We review existing work on NN
verification more thoroughly in App. A.

As mentioned, the softmax function appears in intermedi-
ate layers of transformers, and previous works on robust-
ness verification of transformers (Shi et al., 2020; Bonaert
et al., 2021) have developed linear lower and upper bounds
to approximate the softmax. We review the bounds of Shi
et al. (2020); Bonaert et al. (2021) in Section 3.1 as a pre-
lude to deriving provably tighter bounds.

Some works have addressed robustness verification of
specifications that involve softmax outputs (probabilities)
and not just softmax inputs. Bitterwolf et al. (2020) ob-
tained an upper bound on the maximal probability (i.e.,
confidence) to verify the robustness of out-of-distribution
detectors and train detectors with such guarantees. Their
bound coincides with one of our constant bounds in Sec-
tion 2.1. Berrada et al. (2021) proposed a general frame-
work for probabilistic specifications on the softmax output,
where the NN can be stochastic and inputs can have uncer-
tainty. While the uncertainty quantification metrics that we
consider fall under their framework, Berrada et al. (2021)

do not give explicit formulations for them, let alone imple-
mented algorithms.

Bounds on the softmax and log-sum-exp functions have
been used in other contexts. For example, Titsias (2016)
derived lower bounds on softmax motivated by large-scale
classification, Bouchard (2007) investigated three upper
bounds on log-sum-exp for approximate Bayesian infer-
ence, and Nielsen and Sun (2016) used bounds on log-sum-
exp to bound information-theoretic measures of mixture
models. These bounds, however, do not have the convex-
ity/concavity that we require in the different cases.

2 PRELIMINARIES

For an input x ∈ RK , the output p of the softmax function
is given by

pj =
exj∑K

j′=1 e
xj′

=
1

1 +
∑

j′ ̸=j e
xj′−xj

, j = 1, . . . ,K.

(2)
We work with the second form above, which is preferred
in general for numerical stability and also by Bonaert
et al. (2021) for facilitating their approximations (see their
Sec. 5.2). To ease notation, we will focus on the first output
p1, without loss of generality because of symmetry. Table 6
summarizes the notation used in the paper. Based on the
second form in (2), we accordingly define x̃j := xj − x1,
j = 1, . . . ,K. In the simplest case of K = 2, the softmax
reduces to the logistic sigmoid:

p1 =
1

1 + ex̃2
= 1− p2. (3)

We assume that the set of inputs is contained in the hyper-
rectangle defined by lj ≤ xj ≤ uj , j = 1, . . . ,K, which
we write as l ≤ x ≤ u. Our goal is to obtain lower
bounds L(x) on p1 that are convex functions of x, and up-
per bounds U(x) that are concave functions of x,

L(x) ≤ p1 ≤ U(x). (4)

Constraints of the form in (4) are desirable in general be-
cause they define convex sets of (x, p1) and can be incor-
porated into convex optimization problems.

2.1 Basic Bounds and Constraints

It can be seen from (2) that p1 is strictly decreasing in x̃j =

xj − x1 for j ̸= 1. We assume that we have bounds l̃ ≤
x̃ ≤ ũ on these differences and also define l̃1 = ũ1 := 0
for the trivial case x̃1 = 0. Given l ≤ x ≤ u, l̃j = lj − u1

and ũj = uj − l1 are always valid bounds on x̃j for j ̸= 1,
but we may have tighter bounds as well. The constraints
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l̃ ≤ x̃ ≤ ũ lead to lower and upper bounds on p1:

p
1
=

1

1 +
∑K

j=2 e
ũj

=
1

SE(ũ)
, (5a)

p1 =
1

1 +
∑K

j=2 e
l̃j

=
1

SE(l̃)
, (5b)

where we have defined the sum-of-exponentials function
SE(x) :=

∑K
j=1 e

xj . These are constant bounds in the
sense that they are not functions of x. The upper bound
(5b) coincides with the bound of Bitterwolf et al. (2020,
eq. (6)) given the input bounds l̃.

We also have the property that p is non-negative and sums
to 1:

K∑
j=1

pj = 1, pj ≥ 0 ∀j, (6)

which are linear constraints on p. Bonaert et al. (2021)
recognized the benefit of explicitly enforcing (6) while Shi
et al. (2020) did not use such a constraint.

3 BOUNDS FROM EXPONENTIAL
-RECIPROCAL DECOMPOSITION

Previous work (Bonaert et al., 2021) took the natural ap-
proach of decomposing the softmax function (2) as the
composition of a sum of exponentials, q1 = SE(x̃), and
the reciprocal function p1 = 1/q1.1 They as well as Shi
et al. (2020) derive lower and upper bounds on SE(x̃) and
1/q1 that are affine in x and q1 respectively, and compose
these bounds to obtain bounds on the softmax. We review
the bounds of Shi et al. (2020); Bonaert et al. (2021) in
Section 3.1, combining their respective advantages, before
starting to improve upon them in Section 3.2.

3.1 Existing Linear Bounds

Sum of Exponentials For the sum of exponentials
SE(x̃), each exponential ex̃j is a function of a scalar x̃j ∈
[l̃j , ũj ]. By virtue of convexity and following Shi et al.
(2020), each exponential can be bounded from above by
the chord between the endpoints (l̃j , el̃j ) and (ũj , e

ũj ), and
from below by a tangent line passing through (tj , e

tj ). The
resulting bounds can be written as

SE(x̃) ≥ 1 +

K∑
j=2

etj (x̃j − tj + 1), (7a)

SE(x̃) ≤ SE(x̃; l̃, ũ), (7b)

where

tj = min

{
log

eũj − el̃j

ũj − l̃j
, l̃j + 1

}
(8)

1Bonaert et al. (2021)’s use of the second form in (2) avoids a
multiplication needed by Shi et al. (2020).

and we have defined the chordal upper bound on SE(x),

SE(x; l, u) =

K∑
j=1

(
uj − xj

uj − lj
elj +

xj − lj
uj − lj

euj

)
. (9)

In (8), the first choice of tj makes the slope etj in the
lower bound (7a) equal to the corresponding slope in the
upper bound (7b), thus minimizing the area between them
(Bonaert et al., 2021). The second term in (8) ensures that
the lower bound (7a) is non-negative for all x̃j ∈ [l̃j , ũj ].2

In (9), we adopt the convention that if lj = xj = uj = 0

(as is true for l̃1, x̃1, ũ1), then the jth term in the sum is 1.

Reciprocal The same approach is applied to the recipro-
cal 1/q1, which is also a convex function of a scalar. First
we need lower and upper bounds on the input q1 to the
reciprocal. These are obtained by minimizing the lower
bound (7a) and maximizing the upper bound (7b) over
x̃ ∈ [l̃, ũ], resulting in

qlin
1

= 1 +

K∑
j=2

etj (l̃j − tj + 1), (10a)

qlin1 = SE(ũ) =
1

p
1

. (10b)

Then we have the following bounds on the reciprocal:

1

tq1

(
2− q1

tq1

)
≤ 1

q1
≤ 1

qlin
1

+ p
1
−

p
1
q1

qlin
1

, (11)

where tq1 = max{
√
qlin
1
qlin1 , qlin1 /2} is the q1 value of the

tangent point.

Softmax Overall bounds on the softmax output p1 are ob-
tained by composing bounds (7) and (11) with q1 = SE(x̃)
and p1 = 1/q1. Specifically, upper bound (7b) is com-
posed with the lower bound in (11) to yield the overall
lower bound

Llin(x̃) =
1

tq1

(
2− SE(x̃; l̃, ũ)

tq1

)
. (12a)

Similarly, the combination of (7a) and the upper bound in
(11) yield

U lin(x̃) =
1

qlin
1

+ p
1
−

p
1

qlin
1

1 +

K∑
j=2

etj (x̃j − tj + 1)

 .

(12b)

2In this second case, we allow the slopes in (7a), (7b) to be
different, like Shi et al. (2020) and unlike Bonaert et al. (2021).
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3.2 New Nonlinear Bounds

We now depart from Shi et al. (2020); Bonaert et al. (2021)
and derive nonlinear bounds on the softmax function us-
ing the same exponential-reciprocal decomposition. This
is done by further exploiting the convexity of the functions
SE(x̃) and 1/q1.

Sum of Exponentials We now regard q1 as an interme-
diate variable corresponding to the sum of exponentials
SE(x̃) but no longer bound by the strict equality q1 =
SE(x̃). For a lower bound on q1, we use SE(x̃) itself, i.e.,
we relax q1 = SE(x̃) to

q1 ≥ SE(x̃). (13)

Since SE(x̃) is convex, the above constraint is in the de-
sired form as in (4): it specifies a convex set of (x, q1) and
is compatible with convex optimization. On the other hand,
for an upper bound on q1, we require a concave function of
x. We thus reuse the upper bound (7b), which is linear (and
hence concave) in x.

Reciprocal Similarly for the reciprocal where the exact
relation is p1 = 1/q1, we use 1/q1 itself as the lower bound
on p1 and reuse the upper bound in (11). For the latter
however, it is possible to substitute a tighter lower bound
on q1 than qlin

1
in (10a). The reason is that we can now

minimize the lower bound in (13) over x̃ ∈ [l̃, ũ] instead of
the one in (7a), resulting in

qER
1

= SE(l̃) =
1

p1
. (14)

The upper bound on q1 is still qlin1 (10b). We therefore have

1

q1
≤ p1 ≤ p1 + p

1
− p1p1q1. (15)

Softmax Overall bounds on the softmax are obtained
by composing (13), (7b) with (15), specifically the lower
bound with the upper bound and vice versa. The results are

LER(x̃) =
1

SE(x̃; l̃, ũ)
, (16a)

UER(x̃) = p1 + p
1
− p1p1 SE(x̃). (16b)

The lower bound LER(x̃) is a composition of SE(x̃; l̃, ũ),
an affine function of x, with the reciprocal function. It is
thus convex by the composition properties of convex func-
tions (Boyd et al., 2004, Sec. 3.2.2). The upper bound
UER(x̃) has a sum of exponentials with a negative mul-
tiplier in front and is hence concave, as desired.
Theorem 1. The nonlinear bounds LER(x̃), UER(x̃) are
tighter than the linear bounds Llin(x̃), U lin(x̃):

Llin(x̃) ≤ LER(x̃) ≤ p1 ≤ UER(x̃) ≤ U lin(x̃) ∀x̃ ∈ [l̃, ũ].

We defer all proofs to Appendix C.

4 BOUNDS FROM LOG-SUM-EXP
DECOMPOSITION

In this section, we depart from the exponential-reciprocal
decomposition altogether and consider an alternative de-
composition, obtained by taking the logarithm of the soft-
max (2), r1 = −LSE(x̃), and then exponentiating, p1 =

er1 . Here LSE(x) = log
(∑K

j=1 e
xj

)
is the “log-sum-

exp” (LSE) function, a well-known convex function. Its
negative −LSE(x̃) is therefore concave in x.

We follow the same approach as in Section 3.2, bounding
the exponential and LSE functions and then composing the
bounds.

Exponential For the exponential function p1 = er1 ,
which is again a convex function of a scalar, we use
er1 itself as the lower bound on p1 and a chord of the
function as the upper bound. Noting that LSE(x̃) is in-
creasing in all inputs x̃j , r1 is bounded within the in-
terval [−LSE(ũ),−LSE(l̃)], and we may thus use the
chord connecting the points (−LSE(ũ), e−LSE(ũ)) and
(−LSE(l̃), e−LSE(l̃)). Using (5) to rewrite −LSE(ũ),
−LSE(l̃) as log(p

1
), log(p1), the bounds on p1 in terms

of r1 are

er1 ≤ p1 ≤ log(p1)− r1
log(p1)− log(p

1
)
p
1
+

r1 − log(p
1
)

log(p1)− log(p
1
)
p1.

(17)

Log-Sum-Exp For the log-sum-exp function −LSE(x̃),
since it is concave in x, we may use it as the upper bound
on its output r1:

r1 ≤ −LSE(x̃). (18)

It remains to find a lower bound on −LSE(x̃) that is con-
vex in x. In the case K = 2, −LSE(x̃) = − log(1 + ex̃2)
is a concave function of a scalar x̃2 ∈ [l̃2, ũ2] and we may
bound it as before using the chord between endpoints,

− log
(
1 + ex̃2

)
≥ − ũ2 − x̃2

ũ2 − l̃2
log
(
1 + el̃2

)
− x̃2 − l̃2

ũ2 − l̃2
log
(
1 + eũ2

)
. (19)

This is linear and hence convex in x.

For K > 2, the challenge is that −LSE(x̃) is a multivari-
ate function. Here we provide two bounds with different
strengths and weaknesses. In Appendix D, we describe a
third bound that more directly extends the K = 2 case (19)
but turns out not to be as tight. For the first bound, we
rewrite −LSE(x̃) as −LSE(x̃) = x1 − LSE(x) so that
−LSE(x) is the non-convex part to be bounded. For this,
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we use chordal bounds on the exponentials similar to (7b):

LSE(x) ≤ log
(
SE(x; l, u)

)
. (20)

Hence

− LSE(x̃) ≥ x1 − log
(
SE(x; l, u)

)
. (21)

For the second bound, let j∗ = argmaxj(lj + uj) be the
index of the largest input in terms of the midpoints mj =
(lj + uj)/2. Define the vector of differences ẋ, ẋj = xj −
xj∗ , j = 1, . . . ,K, with corresponding lower and upper
bounds l̇j , u̇j . We then use the relation x̃ = ẋ − ẋ1 and
the translation property of LSE to write −LSE(x̃) = ẋ1 −
LSE(ẋ). By bounding LSE(ẋ) using chordal bounds on
exponentials as in (20), we obtain

− LSE(x̃) ≥ ẋ1 − log
(
SE(ẋ; l̇, u̇)

)
. (22)

In both (21) and (22), since the term after x1 or ẋ1 is the
composition of an affine function of x with − log, the right-
hand sides of (21), (22) are convex functions of x as de-
sired. The advantage of (22) is that the inputs ẋj to LSE(ẋ)
tend to be negative, thus placing them in the flatter parts of
the exponentials eẋj and leading to less loss when these
exponentials are bounded by chords. The disadvantage of
(22) is that the chords are over intervals [l̇j , u̇j ] that tend to
be wider than the intervals [lj , uj ] used in (21).

Softmax Overall bounds on the softmax are obtained by
composing (18) and (21) or (22) with (17), this time match-
ing lower bound with lower bound and upper with upper:

LLSE(x) =
ex1

SE(x; l, u)
, (23a)

LLSE ∗(x) =
eẋ1

SE(ẋ; l̇, u̇)
, (23b)

ULSE(x) =
p
1
log(p1)− p1 log(p1)− (p1 − p

1
) LSE(x̃)

log(p1)− log(p
1
)

.

(23c)

We use the lower bounds in (23a), (23b) for K > 2 and
the upper bound (23c) for all K. Bound (23b) is in fact
a generalization of the ER lower bound (16a) and coin-
cides with (16a) when j∗ = 1. The lower bounds (23a),
(23b) are the compositions of the right sides of (21), (22),
previously argued to be convex in x, with the exponential
function, which is convex and increasing. Hence LLSE(x),
LLSE ∗(x) are convex by the composition properties of con-
vex functions (Boyd et al., 2004, Sec. 3.2.4). The upper
bound ULSE(x) is concave in x as it has LSE(x̃) with a
negative multiplier.

For an overall lower bound in the case K = 2, we take
lower bound (19) instead of (21) or (22) and exponentiate.

After simplifying, this yields

LLSE2(x) =
(
p
1

)(x̃2−l̃2)/(ũ2−l̃2) (
p1

)(ũ2−x̃2)/(ũ2−l̃2)

,

(24)
which is an exponential function of x̃2 and hence convex
(LSE2 indicates that this bound is only for K = 2).
Theorem 2. The log-sum-exp upper bound ULSE(x) is
tighter than the nonlinear exponential-reciprocal upper
bound UER(x),

p1 ≤ ULSE(x) ≤ UER(x) ∀x ∈ [l, u],

for all K ≥ 2. The log-sum-exp lower bound LLSE2(x)
is tighter than the nonlinear exponential-reciprocal lower
bound LER(x),

LER(x) ≤ LLSE2(x) ≤ p1 ∀x ∈ [l, u],

for K = 2.

For K = 2 inputs, the softmax function (3) and all bounds
(linear, ER, LSE) can be plotted as functions of the scalar
x̃2. We do so in Figure 1 for the input interval [l̃2, ũ2] =
[−2, 2]. In addition to confirming Theorems 1 and 2, the
figure shows that the gap between the ER lower bound LER

and softmax is about twice as large as for the LSE lower
bound LLSE2 , and similarly for the upper bounds. While
Llin is tangent to LER, U lin exhibits a larger gap. These
observations continue to hold for K > 2 in Section 6.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
input ̃x2

0.0

0.2

0.4

0.6

0.8

1.0 U lin

UER

ULSE

softmax
LLSE2

LER

L lin

Figure 1: Linear (lin), exponential-reciprocal (ER), and
log-sum-exp (LSE) lower and upper bounds on logistic sig-
moid function (softmax for K = 2 inputs).

5 LINEARIZED BOUNDS

Any tangent plane to a convex lower bound is also a sound
lower bound; and any tangent plane to a concave upper
bound is also a sound upper bound. A plane tangent to a
function f : RK 7→ R at point c can be described by:

fc(x) =

K∑
j=1

(
∂f(c)

∂xj
(xj − cj)

)
+ f(c). (25)
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The coefficient of each addend (xj − cj) is the partial
derivative of f(x) with respect to xj evaluated at c. As

an example, ∂LER(x)
∂xj

can be computed with the chain rule
and the results are:

∂LER(x)

∂x1
= LER(x)2 ·

K∑
j=2

(
eũj − el̃j

ũj − l̃j

)
(26a)

∂LER(x)

∂xj
= −LER(x)2 · e

ũj − el̃j

ũj − l̃j
for j ̸= 1. (26b)

Note that while the above linearized bounds derived from
LER and the existing linear bound described in Eq. (12a)
are both based on the exponential-reciprocal decomposi-
tion, there is a key difference: (12a) is obtained by com-
posing the linear over-approximations for each decompo-
sition step, while our approach only linearizes once after
composing the non-linear bounds.

Linearized bounds for the other nonlinear bounds in Sec-
tions 3.2 and 4 can be found in App. E.

While the tangent planes as bounds are strictly less tight
than their nonlinear counterparts, these linearized bounds
can be useful because they can be integrated in existing
bound-propagation frameworks (Singh et al., 2019b; Zhang
et al., 2018) for NNs, which are designed to efficiently
bound the outputs of NNs given a set of inputs. We use
them to verify self-attention mechanisms in Section 7.2

6 SYNTHETIC DATA EVALUATION

We conduct an experiment using synthetic data to compare
the tightness of the bounds in Sections 3 and 4. For this
experiment, we first sample softmax outputs from a K-
dimensional Dirichlet distribution. To simulate outputs that
have varying amounts of probability concentrated on one
component, we choose one component of the mean, µjmax ,
to be larger than the others, µjmax = µmax, and vary µmax.
More details are in App. F. We continue to focus on the
first softmax output p1 and consider two cases: jmax = 1
(p1 has the largest mean) and jmax ̸= 1 (p1 is among those
with small mean). After sampling a softmax output p, we
convert it to an input m (i.e., logits). Bounds on the input
region are then set as lj = mj − ϵ, uj = mj + ϵ for all j,
where the width ϵ is varied. Inputs x are sampled from the
uniform distribution over the hypercube [l, u]. One hun-
dred (100) input regions are generated in this manner, and
from each region, 1000 inputs x are sampled.

For each input x, we evaluate p1 (2) and the following
lower and upper bounds: constant p

1
, p1 (5), linear (12),

ER (16), and LSE (23), (24). We leave the linearized
bounds of Section 5 to App. F. We compute the mean gap
p1 − L(x) between the softmax and each lower bound,
where the mean is taken over the uniform samples x, and
similarly the mean gap U(x)− p1 for each upper bound.

In Figure 2, we plot ratios of mean gaps to focus more on
the comparisons between the various bounds. Plots of the
mean gaps themselves are in App. F. In Figures 2a, 2e, for
each input region we divide the mean gap of each upper
bound by the mean gap of the constant bound (i.e., p1−p1).
We then plot as a function of µmax the mean ratios, taken
over the 100 input regions, as well as the standard errors
in the mean. Figures 2c, 2g are the same for the lower
bounds. In Figures 2b, 2f, we take the ratio of the mean
gap of UER to that of ULSE and show box plots over the
100 input regions (whiskers at the 5th and 95th percentiles)
for different values of K. Figures 2d, 2h are the same for
LER versus LLSE and LER versus LLSE ∗ respectively. The
top row of Figure 2 represents the case jmax = 1, where
p1 tends to be high, while the bottom row corresponds to
jmax ̸= 1 and low p1. App. F contains plots for values of
K and ϵ other than those indicated in Figure 2.

We first discuss the upper bounds (left two columns of Fig-
ure 2). The linear ER bound U lin can be quite loose, as
previously suggested by Figure 1 (see App. F for a possible
explanation). In Figure 2e, U lin is worse than the constant
bound p1 by at least an order of magnitude. Thus, mov-
ing to the novel nonlinear bound UER can already make a
big difference. The bound ULSE provides further improve-
ment, as guaranteed by Theorem 2, and the improvement
factor of around 2 is remarkably consistent as a function of
µmax and K. This is particularly evidenced by the narrow
distributions of ratios in Figures 2b, 2f.

Turning now to the lower bounds, Llin is stronger than its
counterpart U lin in the sense that it improves upon the con-
stant bound p

1
. The improvement from Llin to the novel

nonlinear bound LER is more marginal. The two LSE
bounds LLSE (23a) and LLSE ∗ (23b) are indeed seen to be
complementary as discussed in Section 4. For µmax ≲ 0.8,
the largest softmax output does not tend to be that much
larger than the others and LLSE is better, whereas for
µmax ≳ 0.9, the largest component dominates and LLSE ∗

is better. In the case jmax ̸= 1 in Figure 2g, the com-
bination of LLSE and LLSE ∗ offer an improvement over
LER by a factor ranging from 2.5–3 to much higher. How-
ever for jmax = 1 and µmax ≳ 0.9 in Figure 2c, LLSE ∗

coincides with LER and there is no improvement. In Fig-
ures 2d, 2h, for K = 2 (leftmost box plot), we use (24) as
the LSE lower bound and the box plots confirm the inequal-
ity LER(x) ≤ LLSE2(x) from Theorem 2. For K > 2, the
median ratio of mean gaps (orange lines) remains approx-
imately constant, although a minority of instances have a
ratio less than 1 in Figure 2d.

7 APPLICATIONS TO ROBUSTNESS
VERIFICATION

We present experiments on two robustness verification
problems. Our focus remains on showing that the new
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Figure 2: Mean gaps of upper bounds (left two columns) and lower bounds (right two columns) on softmax output p1 for
synthetically generated input regions of width ϵ = 1. In the top/bottom row, the mean µ1 of p1 is high/low.

bounds in Sections 3 and 4 provide benefits for these tasks,
in addition to their theoretical and numerical advantages.

7.1 Predictive Uncertainty Estimation

Accurately quantifying uncertainty in predictions is impor-
tant for calibrating users and for identifying highly uncer-
tain and out-of-distribution examples. Many solutions have
been proposed for predictive uncertainty estimation with
NNs. Here we focus on the popular technique of using
a deep ensemble of NNs (Lakshminarayanan et al., 2017;
Rahaman and Thiery, 2021). Verification of the robustness
of deep ensembles has not been studied to our knowledge.

To measure the quality of uncertainty estimates, we con-
sider two proper scoring rules (Gneiting and Raftery,
2007), negative log-likelihood (NLL) and Brier score.
Given an instance (x∗, y∗) with true label y∗ (x now refers
to the overall NN input) and predicted probabilities pk for
each class k = 1, . . . ,K, the scoring rule assigns a score
S(p, y∗). To verify the robustness of uncertainty estimates
p, we bound the worst score that can be attained within an
ℓp ball Bp(x

∗, ϵ) of radius ϵ around x∗. Using the conven-
tion that lower scores are better, we thus wish to solve

max
x∈Bp(x∗,ϵ)

S(p, y∗). (27)

We formulate (27) as a concave maximization problem for
tractability. Part of this involves expressing S(p, y∗) as, or

bounding it from above by, a concave function of p. This
also suffices for a deep ensemble, where p is the average of
probabilities p(m) from the models in the ensemble, since
S(p, y∗) or its upper bound will also be concave in p(m).

Negative Log-Likelihood In the case of NLL, the scor-
ing rule is S(p, y∗) = − log py∗ . While this is not concave
in p, we can equivalently maximize the linear function

S(p, y∗) = −py∗ . (28)

Brier Score Here the scoring rule is

S(p, y∗) =

K∑
k=1

(pk − δk=y∗)
2
= (1− py∗)2 +

∑
k ̸=y∗

p2k,

(29)

which is a convex sum-of-squares function of p. For
tractable optimization, we instead maximize an affine up-
per bound on the Brier score. For each softmax output pk,
we have constant bounds p

k
≤ pk ≤ pk from (5) (general-

ized to all k, and averaged over models for a deep ensem-
ble). We can then bound the convex univariate functions
(1−py∗)2 and p2k by the chords connecting their endpoints,
as done throughout Sections 3 and 4. The resulting bound
can be written as the following affine function of p:

S(p, y∗) ≤ −2py∗ +

K∑
k=1

(p
k
+pk)pk−

K∑
k=1

p
k
pk+1. (30)
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Given one of the concave scoring objectives in (28) or (30),
we relate p to the logits predicted by the network(s) using
the lower and upper bounds in Sections 3 and 4. The logits
play the role of x in these bounds. We then encode the re-
mainder of the NN(s), from input to the logits, using exist-
ing convex relaxations, and specifically the triangular linear
relaxation (Ehlers, 2017) in our experiment. For complete-
ness, the full formulation of (27) as a concave maximiza-
tion problem is provided in Appendix G.

For our experiment, we train two deep ensembles with 5
NNs each on the MNIST dataset using the Uncertainty
Baselines3 package in Python. The architecture of the
deep ensemble is given in App. H. We consider ℓ∞-ball
(B∞(x∗, ϵ)) perturbations in (27). Input values to the NNs
are normalized to between [0, 1]. On this scale, we use
perturbation bounds ϵ = 0.008, 0.012, 0.016, which corre-
spond to roughly 2, 3, and 4 pixel values. For each of the
first 100 test images, (27) is solved to bound the score, ei-
ther NLL or Brier, using different bounds on the softmax.
We use CVXPY (Diamond and Boyd, 2016) and its in-
cluded off-the-shelf solver SCS (O’Donoghue et al., 2021)
to solve these concave problems. We then average over the
test images to bound the expected score.

Table 1 shows the resulting bounds on the expected score.
The “clean” values are those without perturbation, i.e.,
ϵ = 0. Recall that the nonlinear bounds denoted ER and
LSE (the two rightmost columns in Table 1) are both our
contributions. While we wished to pair LER with UER, us-
ing the latter caused the SCS solver to not converge, so we
substituted instead the stronger bound ULSE. For the LSE
pair, we used LLSE ∗ since it suits typical softmax outputs.
The results indicate that our new nonlinear bounds result
in more precise verification of uncertainty quantification
than existing linear bounds (represented by lin). In Ap-
pendix I.1, we complement these results with lower bounds
on worst-case uncertainty estimation scores obtained by us-
ing a PGD attack, while in Appendix I.2, we show results
for an ensemble of larger networks.

Table 1: Upper Bounds on Uncertainty Estimation Scores
Using Different Softmax Bounds for the MNIST Classifier

Score (Clean) ϵ Llin, U lin LER, ULSE LLSE ∗, ULSE

NLL (0.105) 2/256 0.265 0.261 0.251
3/256 0.442 0.433 0.420
4/256 0.726 0.697 0.690

Brier (0.048) 2/256 0.138 0.134 0.131
3/256 0.244 0.235 0.234
4/256 0.417 0.403 0.403

We then repeat the same experiment on an ensemble model
trained on the CIFAR-10 dataset (architectures can be
found in App. H). Results are shown in Table 2. The results

3Available from GitHub repository https://github.
com/google/uncertainty-baselines

again support the greater strength of the nonlinear bounds
over the linear bounds, across ϵ values and scoring rules.
Interestingly, in this case, the ER lower bound is superior
to the LSE ∗ lower bound, suggesting that in practice, ER
and LSE bounds can be complementary.

Table 2: Upper Bounds on Uncertainty Estimation Scores
Using Different Softmax Bounds for the CIFAR-10 Classi-
fier

Score (Clean) ϵ Llin, U lin LER, ULSE LLSE ∗, ULSE

NLL (1.538) 2/256 2.118 2.014 2.028
3/256 2.569 2.433 2.474
4/256 3.087 2.940 3.013

Brier (0.690) 2/256 0.971 0.917 0.920
3/256 1.170 1.114 1.120
4/256 1.367 1.324 1.329

Timing Results The average analysis times in seconds
per instance using different bounds are shown in Table 3.
The experiments are performed on a cluster equipped with
Intel Xeon E5-2637 v4 CPUs. Each job is given one CPU.

Table 3: Average Runtime in Seconds using Different
Bounds

Dataset Llin, U lin LER, ULSE LLSE ∗, ULSE

MNIST 10.9 91.6 92.4
CIFAR-10 19.5 95.3 95.5

It must be noted that for this experiment, we are using
CVXPY and its off-the-shelf solver SCS, which take time
to convert the problems into standard forms and are not cus-
tomized for them. Hence the runtime results should be in-
terpreted only as confirmation that the convex problems are
indeed tractable to solve. In Appendix I.3, we show results
from a further over-approximation in which each network
in the ensemble is considered separately, which improves
computational efficiency.

7.2 Self-Attention Mechanisms

In addition, we consider verifying canonical adversarial ro-
bustness properties on neural networks with self-attention
mechanisms (Vaswani et al., 2017). Self-attention layers
involve not only the softmax function, but also bilinear
transformations, which are non-trivial to encode as con-
vex optimization problems. Therefore, in this task we
instead leverage existing bound-propagation-based meth-
ods (Singh et al., 2019b; Zhang et al., 2018; Shi et al.,
2020), which already handle bilinear constraints. In par-
ticular, we use the CROWN/DeepPoly framework (Singh
et al., 2019b; Zhang et al., 2018), a popular bound-
propagation method, which requires that each neuron is
over-approximated with one linear upper bound and one

https://github.com/google/uncertainty-baselines
https://github.com/google/uncertainty-baselines
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linear lower bound. Tight convex bounds for bilinear trans-
formation are left as future work.

MNIST We train three NNs (named A small, A med,
and A big) with self-attention mechanisms on the MNIST
dataset and consider verifying their adversarial robustness
against l∞-norm bounded perturbations. The networks are
all PGD-trained and vary in size due to different hyper-
parameters in the self-attention layers. Details can be found
in App. H. We evaluate on the first 500 test images of the
dataset. Inputs to the NNs are again normalized to [0, 1],
and we use perturbation bounds 0.016, 0.02, and 0.024,
which correspond to roughly 4, 5, and 6 pixel values.

We consider 4 different linear over-approximations, includ-
ing the existing linear bounds described in Sec. 3.1 (lin)
and tangent planes to the non-linear bounds as discussed in
Sec. 5. We consider 3 pairs of tangent planes correspond-
ing to the different nonlinear bounds proposed in this work:
ER is derived from LER and UER; LSE is derived from
LLSE and ULSE; LSE ∗ is derived from LLSE ∗ and ULSE.
In all cases we take the tangent plane passing through the
midpoint of the softmax input range ( l+u

2 ).

Table 4: % of Instances Certified by Different Softmax
Bounds for MNIST classifiers

Net. (Acc.) Pert. lin ER LSE LSE ∗
A small (89.2) 4/256 74.0 83.6 79.4 84.0

5/256 67.8 79.2 73.8 81.2
6/256 61.2 74.6 68.6 76.4

A med (98.2) 4/256 60.0 81.2 84.4 84.6
5/256 30.0 62.4 69.2 71.6
6/256 11.0 34.2 39.4 46.0

A big (99) 4/256 42.0 65.0 68.6 70.8
5/256 13.0 29.4 29.6 41.2
6/256 1.6 6.2 3.6 11.6

The percentages of verified instances (out of the 500 test
images) using different linear bounds are shown in Table 4.
Overall, the new linearized bounds (last 3 columns) result
in significantly higher verification precision than lin does.
We believe this is because lin is obtained by linearization
at each step of the decomposition, which results in higher
accumulation of approximation errors. Among the new lin-
earized bounds, while LSE ∗ consistently certifies more in-
stances than ER, LSE and ER are evenly matched with
head-to-head wins for both. Upon further examination, we
discover that while LSE is less precise overall, it certifies
9 instances that LSE ∗ is unable to solve and 77 instances
that ER is unable to solve. Overall, the 4 methods com-
bined certify 2628 of the 4500 instances, in contrast to 2572
instances certified by LSE ∗ alone. This suggests the ben-
efit of a portfolio approach. Rules for deciding which lin-
earized bounds to use are also an interesting future direc-
tion.

SST In addition, we perform the same robustness veri-
fication task on an NLP transformer model trained on the
SST-2 dataset (Socher et al., 2013). SST-2 is a sentiment
analysis dataset consisting of movie reviews, where each
review is labeled as either positive or negative. In this set-
ting, perturbation is performed on the embedding of the in-
put sentence. The trained transformer obtains 74% natu-
ral accuracy and the robust accuracies verified by differ-
ent configurations are shown in Table 5. The results fur-
ther confirm the benefit of the newly proposed linearized
bounds (last three columns) over the existing linear bounds
(lin). They also highlight the complementary nature of the
proposed bounds as unlike in Table 4, LSE is superior to
LSE ∗.

Table 5: % of Instances Certified by Different Softmax
Bounds for the SST-2 transformer

Pert. (ℓ∞) lin ER LSE LSE ∗
0.02 68.8 68.8 68.8 68.8
0.04 63.2 63.2 63.2 63.2
0.06 56.6 56.8 57.6 57.4
0.08 51.4 52.0 52.4 52.4
0.1 45.0 46.2 47.2 46.8
0.12 39.0 39.8 40.6 40.6
0.14 31.8 33.0 34.0 33.6
0.16 26.4 26.8 28.2 27.2

8 CONCLUSION

We have provided convex bounds on the softmax func-
tion satisfying the hierarchy in (1), both theoretically and
numerically, and used them in certifying the robustness
of uncertainty estimators and transformers. Future work
could consider the development of more customized algo-
rithms for solving the resulting convex optimization prob-
lems, and/or further exploitation of the linearized bounds
in Section 5 to facilitate scaling to larger networks. We
also hope for an even better lower bound from the LSE ap-
proach, one that might be provably stronger than LER for
K > 2 or more smoothly integrate the two bounds LLSE,
LLSE ∗.

Artifact

Scripts to reproduce the experiments in Sec-
tions 6 and 7 can be found at https://
github.com/NeuralNetworkVerification/
bounding-softmax/tree/aistats.
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Parno, and Corina Păsăreanu. Fast geometric projec-
tions for local robustness certification. arXiv preprint
arXiv:2002.04742, 2020.

Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen,
Petar Tsankov, Swarat Chaudhuri, and Martin T. Vechev.
AI2: safety and robustness certification of neural net-
works with abstract interpretation. In 2018 IEEE Sym-
posium on Security and Privacy, SP 2018, Proceed-
ings, 21-23 May 2018, San Francisco, California, USA,
pages 3–18, 2018. doi: 10.1109/SP.2018.00058. URL
https://doi.org/10.1109/SP.2018.00058.

Jonas Gehring, Michael Auli, David Grangier, Denis
Yarats, and Yann N Dauphin. Convolutional sequence
to sequence learning. In Proceedings of the 34th Inter-
national Conference on Machine Learning-Volume 70,
pages 1243–1252, 2017.

Tilmann Gneiting and Adrian E Raftery. Strictly proper
scoring rules, prediction, and estimation. Journal
of the American Statistical Association, 102(477):359–
378, 2007. URL https://doi.org/10.1198/
016214506000001437.

Sven Gowal, Krishnamurthy Dj Dvijotham, Robert Stan-
forth, Rudy Bunel, Chongli Qin, Jonathan Uesato, Relja
Arandjelovic, Timothy Mann, and Pushmeet Kohli.
Scalable verified training for provably robust image

https://proceedings.neurips.cc/paper/2021/file/5c5bc7df3d37b2a7ea29e1b47b2bd4ab-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/5c5bc7df3d37b2a7ea29e1b47b2bd4ab-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/5c5bc7df3d37b2a7ea29e1b47b2bd4ab-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/5c5bc7df3d37b2a7ea29e1b47b2bd4ab-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/b90c46963248e6d7aab1e0f429743ca0-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/b90c46963248e6d7aab1e0f429743ca0-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/b90c46963248e6d7aab1e0f429743ca0-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/b90c46963248e6d7aab1e0f429743ca0-Paper.pdf
https://doi.org/10.1145/3453483.3454056
https://doi.org/10.1145/3453483.3454056
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.331.8075&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.331.8075&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.331.8075&rep=rep1&type=pdf
https://doi.org/10.1109/SP.2018.00058
https://doi.org/10.1198/016214506000001437
https://doi.org/10.1198/016214506000001437


Dennis Wei, Haoze Wu, Min Wu, Pin-Yu Chen, Clark Barrett, Eitan Farchi

classification. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pages 4842–
4851, 2019.

Patrick Henriksen and Alessio Lomuscio. Deepsplit: An
efficient splitting method for neural network verification
via indirect effect analysis. In Proceedings of the 30th
international joint conference on artificial intelligence
(IJCAI21). To Appear. ijcai. org, 2021.

Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min
Wu. Safety verification of deep neural networks. In CAV,
2017.

Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and
Mykel J Kochenderfer. Reluplex: An efficient smt solver
for verifying deep neural networks. In International
Conference on Computer Aided Verification, pages 97–
117. Springer, 2017.

Guy Katz, Derek A Huang, Duligur Ibeling, Kyle Julian,
Christopher Lazarus, Rachel Lim, Parth Shah, Shan-
tanu Thakoor, Haoze Wu, Aleksandar Zeljić, et al. The
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A RELATED WORK ON NEURAL NETWORK VERIFICATION

Researchers have proposed several techniques for verifying properties of neural networks (Katz et al., 2017; Singh et al.,
2019b; Ehlers, 2017; Gehr et al., 2018; Tjeng et al., 2019; Bunel et al., 2020; Wang et al., 2018). To overcome the
inherent scalability limitations, state-of-the-art verifiers seek a good balance between scalability and precision, by designing
customized abstractions Tran et al. (2020); Ehlers (2017); Huang et al. (2017); Wu et al. (2020); Singh et al. (2019b,a);
Xiang et al. (2018); Gehr et al. (2018), bound-propagation passes Zelazny et al. (2022); Zhang et al. (2018); Dutta et al.
(2018); Tjeng et al. (2019); Weng et al. (2018a); Singh et al. (2018a), or convex optimization procedures Salman et al.
(2019); Tjandraatmadja et al. (2020); Raghunathan et al. (2018); Wang et al. (2021); Singh et al. (2019c); Boopathy et al.
(2019); Wu et al. (2022). These abstraction-based methods have been integrated into case-analysis-based search shell to
ensure completeness (Katz et al., 2017, 2019; Ehlers, 2017; Bak et al., 2020; Tran et al., 2020; Vincent and Schwager,
2020; Henriksen and Lomuscio, 2021; Fromherz et al., 2020; Anderson et al., 2019; Tjeng et al., 2019; Bunel et al., 2020;
Khedr et al., 2020; Botoeva et al., 2020; Xu et al., 2020; Wu et al., 2022). Our convex optimization procedure could be
integrated in a search shell to obtain more precise over-approximation of the output sets. The linear bounds that we propose
can also be integrated into sub-polyhedral abstraction domains (Singh et al., 2018b) other than DeepPoly/CROWN.

B NOTATION

Table 6 summarizes the more important symbols used in the main paper.

C PROOFS

C.1 Proof of Theorem 1

Proof. The inequality Llin(x̃) ≤ LER(x̃) is a consequence of applying the first inequality in (11) to (12a) (with q1 =
SE(x̃; l̃, ũ)) to yield (16a).

To establish the inequality UER(x̃) ≤ U lin(x̃), we first recognize that

qlin
1

= 1 +

K∑
j=2

etj (l̃j − tj + 1) ≤ SE(l̃) =
1

p1

using (7a). Hence

UER(x̃) = p1

(
1− p

1
SE(x̃)

)
︸ ︷︷ ︸

≥0 for x̃∈[l̃,ũ]

+p
1

≤ 1

qlin
1

(
1− p

1
SE(x̃)

)
+ p

1

≤ 1

qlin
1

1− p
1

1 +

K∑
j=2

etj (x̃j − tj + 1)

+ p
1

= U lin(x̃),

where the second inequality is again due to (7a).

C.2 Proof of Theorem 2

Proof. To prove the inequality for the upper bounds, we rewrite UER(x) and ULSE(x) as convex combinations of the
constant bounds p

1
and p1. We then compare the coefficients in the two convex combinations.

We rewrite UER(x) (16b) as a convex combination as follows, making use of the identities p
1
SE(ũ) = p1 SE(l̃) = 1 from
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Table 6: Summary of Notation

symbol description

xj jth input to softmax or network
pj jth output of softmax (probability)
K number of softmax inputs/outputs
x̃j difference xj − x1

ẋj difference xj − xj∗ , where j∗ = argmaxj(lj + uj) (defined below)

lj , uj lower and upper bounds on xj

mj midpoint (lj + uj)/2 of range of xj

ϵj half-width (uj − lj)/2 of range of xj (same for all j if subscript j omitted)
l̃j , ũj lower and upper bounds on x̃j

l̇j , u̇j lower and upper bounds on ẋj

p
1
, p1 constant lower and upper bounds on pj (5)

Lj(x), Uj(x) lower and upper bounds on pj (p1 if subscript j omitted) as functions of x
Llin(x), U lin(x) linear lower and upper bounds on p1 (12) combining Shi et al. (2020); Bonaert et al. (2021)
LER(x), UER(x) new nonlinear lower and upper bounds on p1 (16) from exponential-reciprocal (ER) decomposition

LLSE(x) first nonlinear lower bound on p1 (23a) from log-sum-exp (LSE) decomposition
LLSE ∗(x) second nonlinear lower bound on p1 (23b) from log-sum-exp (LSE) decomposition
LLSE2(x) nonlinear lower bound on p1 for K = 2 (24) from log-sum-exp (LSE) decomposition
ULSE(x) nonlinear upper bound on p1 (23c) from log-sum-exp (LSE) decomposition

SE(x) sum-of-exponentials functions
∑K

j=1 e
xj

SE(x; l, u) chordal upper bound on SE(x) (9) parametrized by l, u

LSE(x) log-sum-exp function log
(∑K

j=1 e
xj

)
q1 intermediate variable in ER decomposition of p1

q
1
, q1 constant lower and upper bounds on q1 (10)

tj , tq1 tangent points used in the linear bounds Llin(x), U lin(x)
r1 intermediate variable in LSE decomposition of p1

x∗ clean input
y∗ ground truth label

S(p, y∗) scoring rule for evaluating p
superscript m index of model in deep ensemble

(5) in the second and fourth lines below:

UER(x) = p1 + p
1
− p1p1 SE(x̃)

SE(ũ)− SE(l̃)

SE(ũ)− SE(l̃)

= p1

(
1− SE(x̃)

SE(ũ)− SE(l̃)

)
+ p

1

(
1 +

SE(x̃)

SE(ũ)− SE(l̃)

)
= p1

SE(ũ)− SE(l̃)− SE(x̃)

SE(ũ)− SE(l̃)
+ p

1

SE(ũ)− SE(l̃) + SE(x̃)

SE(ũ)− SE(l̃)

= p1
SE(ũ)− SE(x̃)

SE(ũ)− SE(l̃)
− 1

SE(ũ)− SE(l̃)
+ p

1

SE(x̃)− SE(l̃)

SE(ũ)− SE(l̃)
+

1

SE(ũ)− SE(l̃)

= p1
SE(ũ)− SE(x̃)

SE(ũ)− SE(l̃)
+ p

1

SE(x̃)− SE(l̃)

SE(ũ)− SE(l̃)
. (31)

The two fractions above are non-negative and sum to 1, so this is indeed a convex combination.

For ULSE(x) (23c), we use the fact that − log(p
1
) = LSE(ũ) and − log(p1) = LSE(l̃) to bring it closer to the expression
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in (31):

ULSE(x) = p1
− log(p

1
)− LSE(x̃)

log(p1)− log(p
1
)

+ p
1

LSE(x̃) + log(p1)

log(p1)− log(p
1
)

= p1
LSE(ũ)− LSE(x̃)

LSE(ũ)− LSE(l̃)
+ p

1

LSE(x̃)− LSE(l̃)

LSE(ũ)− LSE(l̃)
. (32)

Again the two fractions above are non-negative and sum to 1.

To show that ULSE(x) ≤ UER(x), it now suffices to show that the coefficient of p1 in (31) is greater than or equal to the
coefficient of p1 in (32) (equivalently, one could compare the p

1
coefficients). This can be done using the concavity of the

logarithm function as follows:

LSE(x̃) = log(SE(x̃))

≥ SE(ũ)− SE(x̃)

SE(ũ)− SE(l̃)
log(SE(l̃)) +

SE(x̃)− SE(l̃)

SE(ũ)− SE(l̃)
log(SE(ũ))

=
SE(ũ)− SE(x̃)

SE(ũ)− SE(l̃)
LSE(l̃) +

(
1− SE(ũ)− SE(x̃)

SE(ũ)− SE(l̃)

)
LSE(ũ).

The above can be rearranged to yield

SE(ũ)− SE(x̃)

SE(ũ)− SE(l̃)
≥ LSE(ũ)− LSE(x̃)

LSE(ũ)− LSE(l̃)
,

thus completing the proof for the upper bounds.

To prove the inequality for the lower bounds in the case K = 2, we rewrite LER(x) (16a) as

LER(x) =

(
1 +

ũ2 − x̃2

ũ2 − l̃2
el̃2 +

x̃2 − l̃2

ũ2 − l̃2
eũ2

)−1

=

(
ũ2 − x̃2

ũ2 − l̃2

(
1 + el̃2

)
+

x̃2 − l̃2

ũ2 − l̃2

(
1 + eũ2

))−1

=

(
ũ2 − x̃2

ũ2 − l̃2

(
p1

)−1

+
x̃2 − l̃2

ũ2 − l̃2

(
p
1

)−1
)−1

,

using (5) to obtain the last line. This last line can be recognized as a weighted harmonic mean of the constant bounds
p1 and p

1
, with weights (ũ2 − x̃2)/(ũ2 − l̃2) and (x̃2 − l̃2)/(ũ2 − l̃2). On the other hand, for K = 2, LLSE2(x) (24)

is a weighted geometric mean of the same quantities with the same weights. It follows from the inequality of (weighted)
harmonic and geometric means4 that LER(x) ≥ LLSE2(x).

D ALTERNATIVE LOG-SUM-EXP LOWER BOUND FOR K > 2

This appendix describes a third lower bound arising from the log-sum-exp decomposition of Section 4, as an alternative to
(21), (22).

Our motivation is to generalize inequality (19), which applies when K = 2 and leads to a provably tighter overall bound
(24) than LER(x) (16a) (Theorem 2). We start by rewriting −LSE(x̃) as

− LSE(x̃) = − log

1 + e−x1

K∑
j=2

exj

 = − log
(
1 + eLSE(xK

2 )−x1

)
, (33)

4This can be proven as a corollary of the arithmetic mean-geometric mean inequality, among other ways.
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where xK
2 = (x2, . . . , xK). We then apply inequality (19) to (33) with LSE(xK

2 )− x1 in place of x̃2. To do this, we also
have to replace l̃2, ũ2 with lower and upper bounds on LSE(xK

2 ) − x1. Given the monotonicity of LSE(xK
2 ), we use the

bounds

v1 = LSE
(
lK2
)
− u1, (34a)

v1 = LSE
(
uK
2

)
− l1. (34b)

Then the application of (19) to (33) yields

− LSE(x̃) ≥ −
log(p1)− log(p

1
)

v1 − v1︸ ︷︷ ︸
≤0

(
LSE

(
xK
2

)
− x1

)
+

v1 log(p1)− v1 log(p1)

v1 − v1
, (35)

where (5) has been used to identify − log(1 + ev1) = log(p1) and − log(1 + ev1) = log(p
1
).

For K = 2, the lower bound in (35) is affine in x and hence convex, but for K > 2, it is concave because of the negative
multiplier in front. To address the non-convexity, we further bound LSE(xK

2 ) using chordal bounds similar to (7b):

LSE
(
xK
2

)
= log

 K∑
j=2

exj

 ≤ log

 K∑
j=2

(
uj − xj

uj − lj
elj +

xj − lj
uj − lj

euj

) . (36)

Substituting (36) into (35) gives

−LSE(x̃) ≥
v1 log(p1)− v1 log(p1)

v1 − v1
+

log(p1)− log(p
1
)

v1 − v1

x1 − log

 K∑
j=2

(
uj − xj

uj − lj
elj +

xj − lj
uj − lj

euj

) . (37)

Since the term after x1 is the composition of an affine function of xK
2 with − log, the right-hand side of (37) is now a

convex function of x.

An overall lower bound on the softmax function is obtained by exponentiating (37):

LLSE′
(x) = exp

v1 log(p1)− v1 log(p1)

v1 − v1
+

log(p1)− log(p
1
)

v1 − v1

x1 − log

 K∑
j=2

(
uj − xj

uj − lj
elj +

xj − lj
uj − lj

euj

) .

(38)

In the additional synthetic experiment results reported in Appendix F, we do not see a regime in which LLSE′
is better than

the larger of LLSE, LLSE ∗, i.e., no regime in which LLSE′
is the uniquely best lower bound. We did not include LLSE′

in
the main paper for this reason.

E LINEARIZED BOUNDS

We here present the partial derivatives of the non-linear lower- and upper- bounds presented in the paper, in addition to
those of LER.
∂LLSE(x)

∂xi
can be computed by applying the product rule and the chain rule. The results are:

∂LLSE(x)

∂x1
= LLSE(x)− ex1s(x)2

(
eui − eli

ui − li

)
(39)

∂LLSE(x)

∂xi
= −ex1s(x)2

(
eui − eli

ui − li

)
for i ̸= 1 (40)

where s(x) = 1/SE(x; l, u) from (23a).
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∂LLSE ∗(x)
∂xi

is slightly more complicated. When j∗ = 1, ∂LLSE ∗(x)
∂xi

is the same as ∂LER(x)
∂xi

. In the case where j∗ ̸= 1,
∂LLSE ∗(x)

∂xi
can be again computed with applications of chain rules. The results are:

∂LLSE ∗(x)

∂x1
= LLSE ∗(x)− eẋ1

SE(ẋ, l̇, u̇)2
eu̇1 − el̇1

u̇1 − l̇1
(41)

∂LLSE ∗(x)

∂xj∗
= −LLSE ∗(x) +

eẋ1

SE(ẋ, l̇, u̇)2
·

K∑
i ̸=j∗

(
eu̇i − el̇i

u̇i − l̇i

)
(42)

∂LLSE ∗(x)

∂xi
= − eẋ1

SE(ẋ, l̇, u̇)2
eu̇i − el̇i

u̇i − l̇i
for i ̸∈ {1, j∗} (43)

∂UER(x)
∂xi

can be computed with the chain rule. The results are:

∂UER(x)

∂x1
= p1p1 (SE(x̃)− 1) (44)

∂UER(x)

∂xi
= −p1p1e

x̃i for i ̸= 1 (45)

The partial derivative ∂ULSE(x)
∂xi

can be computed by rewriting LSE(x̃) as LSE(x) − x1, and applying the chain rule and

the fact that ∂ LSE(x)
∂xi

= exi

SE(x) . The results are:

∂ULSE(x)

∂x1
= −

p1 − p
1

log(p1)− log(p
1
)

(
ex1

SE(x)
− 1

)
(46)

∂ULSE(x)

∂xi
= −

p1 − p
1

log(p1)− log(p
1
)
· exi

SE(x)
for i ̸= 1 (47)

F SYNTHETIC DATA EVALUATION: DETAILS AND VARIATIONS

This appendix contains additional material on the synthetic experiment in Section 6: details on data generation, variations
of Figure 2 in the main paper, and an explanation of the looseness of the U lin bound.

F.1 Data Generation Details

Recall that we sample softmax outputs from a Dirichlet distribution and choose one component of the Dirichlet mean,
µjmax

, to be larger than the others, µjmax
= µmax ≥ µj for j ̸= jmax. This is done by setting the Dirichlet concentration

parameters to be αjmax
= αmax ≥ 1 and αj = 1 for j ̸= jmax. Then the largest mean component is given by

µmax =
αmax∑K
j=1 αj

=
αmax

αmax +K − 1
.

After sampling a softmax output p, we convert it to an input m (i.e., logits) by taking mj = log(pj/p1) and then centering
m by subtracting the mean of the mj’s.

F.2 Variations on Figure 2

Linearized Bounds In Figure 3, we add the linearized bounds of Section 5 to Figures 2a, 2c, 2e, 2g. The linearized
bounds are plotted using dashed lines of the same color as their non-linearized counterparts. In Figures 3b, 3c (lower
bounds on a probability with high mean and upper bounds on a low probability), the losses in strength due to linearization
are modest. However in Figures 3a, 3d, the mean gap ratios of the linearized bounds (relative to the respective constant
bound) appear to be limited to no lower than 0.3, whereas the mean gap ratios of UER, ULSE, and LLSE ∗ decrease to much
smaller values. Thus the gain due to nonlinearity appears to be substantial in these two scenarios (upper bound on high
probability and lower bound on low probability).
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Figure 3: Mean gaps of upper bounds (left column) and lower bounds (right column) on softmax output p1, now including
linearized bounds (dashed lines), for synthetically generated input regions of width ϵ = 1. In the top/bottom row, the mean
µ1 of p1 is high/low.
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Figure 4: Mean gaps of upper bounds (left column) and lower bounds (right column) on softmax output p1 for synthetically
generated input regions of width ϵ = 1. Unlike in Figure 2, no ratios of mean gaps are taken. In the top/bottom row, the
mean µ1 of p1 is high/low.

Mean Gaps Without Taking Ratios Figure 4 is another version of Figures 2a, 2c, 2e, 2g in which the mean gaps
themselves are plotted, without dividing by the mean gap of the constant bound which is now plotted separately. The
general pattern is that the mean gaps decrease as µmax → 1 (µ1 → 1 in the top row of Figure 4, µ1 → 0 in the bottom
row). In Figures 4a, 4b, the mean gaps also tend to decrease as µmax → 0. The two exceptions are U lin in Figure 4c,
which is uniformly poor across the µmax range, and LLSE in Figure 4b, which is the best lower bound for smaller µmax

but deterioriates at higher µmax. These are the same behaviors seen in Figures 2c, 2e.

Different Values of K Figure 5 shows versions of Figures 2a, 2c, 2e, 2g with dimensions K = 2 and K = 128 instead
of K = 16. In Figure 5f, U lin is worse than the constant bound p1 by more than a factor of 100 (the upper limit of the plot
is kept at 100 for consistency). For K = 2 in Figures 5c, 5g, LLSE2 refers to bound (24), which is provably tighter than
LER. Figures 5c, 5g show that LLSE2 is superior to LLSE, LLSE ∗ as well over the entire range of µmax. For K = 128
in Figures 5d, 5h, LLSE′

is the bound (38) derived in Appendix D. As claimed earlier, LLSE′
does not improve upon the

better of LLSE, LLSE ∗ (in Figure 5h, the curve for LLSE largely coincides with that for LLSE′
but the former is slightly

lower as µmax → 0). Aside from the additions of LLSE2 and LLSE′
, the patterns for the other bounds are similar to those

in Figure 2.
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Figure 5: Mean gaps of upper bounds (left two columns) and lower bounds (right two columns) on softmax output p1 for
synthetically generated input regions of width ϵ = 1 and dimensions K = 2 and K = 128. In the top/bottom row, the
mean µ1 of p1 is high/low. For K = 2 in Figures 5c, 5g, we use (24) for the LLSE curve.

Different Values of ϵ Figures 6 and 7 are versions of Figure 2 with input region width ϵ = 0.2 and ϵ = 2 respectively
instead of ϵ = 1. The most notable difference is that for ϵ = 0.2 in Figure 6, the problem of bounding softmax is easier and
the mean gap ratios are generally lower (i.e., improvement over the constant bounds is greater). In particular in Figures 6a,
6e, U lin is not excessively loose and does improve upon the constant bound p1.
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Figure 6: Mean gaps of upper bounds (left two columns) and lower bounds (right two columns) on softmax output p1 for
synthetically generated input regions of width ϵ = 0.2. In the top/bottom row, the mean µ1 of p1 is high/low.
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Figure 7: Mean gaps of upper bounds (left two columns) and lower bounds (right two columns) on softmax output p1 for
synthetically generated input regions of width ϵ = 2. In the top/bottom row, the mean µ1 of p1 is high/low.
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F.3 Looseness of U lin

We provide an explanation of the looseness of the linear ER bound U lin(x) (12b) (perhaps not the only explanation).

Recall that the quantity tj appearing in (12b) is the tangent point (8) chosen to bound the exponential ex̃j from below by
a tangent line. The second term in (8) ensures that the tangent line is non-negative for x̃j ∈ [l̃j , ũj ]. Since ex̃j is a highly
nonlinear function, for large enough intervals [l̃j , ũj ] it is likely that we need to set tj = l̃j +1 for non-negativity. Suppose
then that tj = l̃j + 1 for all j = 2, . . . ,K. Then substitution into (10a) yields qlin

1
= 1, and substitution into (12b) gives

U lin(x̃) = 1− p
1

K∑
j=2

el̃j+1(x̃j − l̃j). (48)

When x̃ = l̃, (48) implies U lin(x̃) = 1, which is a trivial upper bound. We can also ask when (48) is better (i.e., smaller)
than the constant bound p1. This occurs when

K∑
j=2

el̃j+1(x̃j − l̃j) ≥
1− p1
p
1

, (49)

i.e., when x̃ is large enough compared to l̃ for the above inequality to hold.

The above explanation is consistent with numerical results in Figures 2a, 2e, 6a, 6e, 7a, 7e. When ϵ = 0.2 in Figures 6a,
6e, the intervals [l̃j , ũj ] are smaller and U lin is not as poor as when ϵ and [l̃j , ũj ] are larger and the situation above occurs
more frequently. In addition, U lin is worse compared to p1 in the low µ1 setting of Figures 2e, 6e, 7e than in the high µ1

setting. In this case, both p
1

and p1 tend to be small, the right-hand side of (49) is large, and (49) may not hold for any
x̃ ∈ [l̃, ũ].

G FULL FORMULATION OF UNCERTAINTY ESTIMATION SCORE MAXIMIZATION

We consider an ensemble of M feedforward NNs, each consisting of L hidden layers with ReLU activations. Let xℓ,m

denote the neurons in layer ℓ of network m, ℓ = 0, . . . , L, m = 1, . . . ,M , before affine transformation is applied. The input
to the ensemble corresponds to ℓ = 0 and is the same for all networks: x0,m = x0. Let W ℓ,m and bℓ,m be the weights and
biases of the affine transformation in layer ℓ of network m, and zℓ,m be the output of the affine transformation. zL,m is the
set of logits from network m and is the input to a softmax function with probabilities pm as output. The output probabilities
of the ensemble are the averages of the network probabilities, p = (1/M)

∑
m pm. We assume that we have lower and

upper bounds lℓ,m, uℓ,m on each zℓ,m. In our experiment, these are obtained using the CROWN/DeepPoly (Zhang et al.,
2018; Singh et al., 2019b) abstract interpretation.

Below we give the full set of constraints in the score maximization problem (27) for verification of uncertainty estimation.

Input We consider ℓ∞ perturbations up to radius ϵ of the given input x∗ (i.e., B∞(x∗, ϵ) in (27)). This can be expressed
as the following linear constraints on x0:

x∗ − ϵ ≤ x0 ≤ x∗ + ϵ. (50)

Hidden Layers Given bounds lℓ,m, uℓ,m on the pre-activation neurons zℓ,m for layers l = 0, . . . , L− 1, we can partition
the post-activation neurons xℓ+1,m into three sets I,A,U (we may regard all components of x0 as belonging to A):

1. Inactive, I = {j : uℓ,m
j ≤ 0}: In this case, xℓ+1,m

j = 0 and can be dropped as an input to the next affine transforma-
tion.

2. Active, A = {j : lℓ,mj ≥ 0}: This implies that xℓ+1,m
j = zℓ,mj and xℓ+1,m

j is an affine function of xℓ,m. With xℓ+1,m
A

denoting the subvector of xℓ+1,m indexed by A and using similar notation for other vectors and matrices, these affine
functions can be written as

xℓ+1,m
A = W ℓ,m

A,A∪Ux
ℓ,m
A∪U + bℓ,mA , ℓ = 0, . . . , L− 1, m = 1, . . . ,M. (51)
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3. Unstable, U = {j : lℓ,mj < 0 < uℓ,m
j }: Here the ReLU function remains nonlinear and we approximate it using the

triangular linear relaxation of Ehlers (2017). This gives us the following constraints:

zℓ,mU = W ℓ,m
U,A∪Ux

ℓ,m
A∪U + bℓ,mU , (52)

xℓ+1,m
U ≥ zℓ,mU , xℓ+1,m

U ≥ 0, (53)

xℓ+1,m
j ≤

uℓ,m
j

uℓ,m
j − lℓ,mj

(
zℓ,mj − lℓ,mj

)
, j ∈ U , ℓ = 0, . . . , L− 1, m = 1, . . . ,M. (54)

Logits These are given by affine transformation of the last hidden layer:

zL,m = WL,m
·,A∪Ux

L,m
A∪U + bL,m. (55)

Probabilities We impose the simplex constraint in (6) on the probabilities from each network:

K∑
k=1

pmk = 1, pmk ≥ 0, k = 1, . . . ,K, m = 1, . . . ,M. (56)

Objective Function Equation (28) is used for the NLL scoring rule and (30) for Brier score, with p = (1/M)
∑M

m=1 p
m

in both cases. The fact that (30) is an upper bound on the Brier score can be seen from the chordal upper bound on the
function p2k over the interval [p

k
, pk]. This chordal upper bound can be simplified to

p2k ≤ (p
k
+ pk)pk − p

k
pk.

Softmax We use the bounds developed in this work to relate logits to probabilities:

pmk ≥ Lk

(
zL,m

)
, (57a)

pmk ≤ Uk

(
zL,m

)
, (57b)

where the subscript k in Lk, Uk refers to the bound for the kth softmax output (all the bounds presented in the paper were
for k = 1). In our experiments, Lk ∈ {Llin, LER, LLSE ∗} and Uk ∈ {U lin, ULSE} as discussed in Section 7.1. However,
because of the form of the objective functions (28), (30), only one of (57a), (57b) is needed for each k. Specifically, for
k = y∗, the probability py∗ is minimized in both objective functions5, whereas for k ̸= y∗, pk is maximized6. Therefore
only (57a) is used for k = y∗ and (57b) for k ̸= y∗.

In addition, we also impose the constant bounds

pmk ≥ pm
k
, (58a)

pmk ≤ pmk , (58b)

where again only (58a) is used for k = y∗ and (58b) for k ̸= y∗. In the case of the linear pair (Llin, U lin), constraints
(58) help considerably because U lin in particular is sometimes not better than pmk (recall for example Figure 2e). For the
nonlinear pairs (LER, ULSE), (LLSE ∗, ULSE), (58) can be helpful in improving the numerical precision of the optimal
objective value.

Summary In summary, problem (27) is subject to constraints (50)–(58), where (57a), (58a) are used for k = y∗ and
(57b), (58b) for k ̸= y∗.

H DETAILS ON MODEL ARCHITECTURES AND TRAINING

We describe the details of the deep ensembles deployed in predictive uncertainty estimation of Section 7.1 as well as the
self-attention models used in Section 7.2.

5In the case of Brier score (30), the coefficient of py∗ is (−2 + p
k
+ pk) ≤ 0 and hence py∗ is minimized as in (28).

6In the case of NLL, the maximization is implicit because py∗ is minimized and (56) couples py∗ to the other pk’s.
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H.1 Deep Ensembles

We follow the layer structures of the deep ensemble models for the MNIST dataset as in Section 3.4 of Lakshminarayanan
et al. (2017). While the authors did not opensource the accompanying implementation codes for this paper, we are advised
that the uncertainty-baselines7 Python package can be utilised to construct the training pipeline. In particular, we look
into the ./baselines/mnist/ directory and train the following MNIST deep ensemble models in Table 7. Specifically,
we have two ensembles, MNIST and MNIST-large, each containing 5 networks with identical layer structure yet different
weights and biases after the training process. Overall, networks of the MNIST ensemble reach ∼ 94.5% test accuracy, while
the MNIST-large ensemble networks achieve ∼ 97.95%. Table 1 in Section 7.1 shows verification results for MNIST,
while results for MNIST-large are in Table 12 in Appendix I.2. We mention that, as recommended by Lakshminarayanan
et al. (2017), the MNIST-large models are adversarially trained using the Projected Gradient Descent (Madry et al., 2018)
attacking method from the Adversarial Robustness Toolbox8 Python library. Similarly, we adversarially train an ensemble
comprising 5 networks on the CIFAR-10 dataset, and report their verification results in Table 2 of Section 7.1. The structure
of these CIFAR-10 models is in Table 8, and their test accuracy varies from 28.49% to 42.71%.

Table 7: Architecture for the MNIST (left) and MNIST-large (right) deep ensemble models.

Layer Type Parameter Activation

Input 28× 28× 1 –

Flatten 784 –

Fully Connected 784× 10 ReLU

Fully Connected 10× 10 ReLU

Fully Connected 10× 10 Softmax

Layer Type Parameter Activation

Input 28× 28× 1 –

Flatten 784 –

Fully Connected 784× 100 ReLU

Fully Connected 100× 100 ReLU

Fully Connected 100× 100 ReLU

Fully Connected 100× 10 Softmax

Table 8: Architecture for the CIFAR-10 deep ensemble model.

Layer Type Parameter Activation

Input 32× 32× 3 –

Flatten 3072 –

Fully Connected 3072× 20 ReLU

Fully Connected 20× 20 ReLU

Fully Connected 20× 20 ReLU

Fully Connected 20× 10 Softmax

H.2 Self-Attention Models

We adapt the self-attention mechanism proposed in Vaswani et al. (2017), where essentially encoders and decoders com-
prising attention blocks are used in processing sentences, into classifying the MNIST and SST-2 datasets. The layer
structure of our MNIST self-attention model is outlined in Table 9. Specifically, we train 3 models with increasing dimen-
sions of the self-attention block in terms of the number of attention heads and the size of each head: A small, A med,
A big with test accuracy 90.25%, 97.41%, and 98.28%, respectively. Similarly, we deploy adversarial training by using
the Projected Gradient Descent (Madry et al., 2018) attacking method from the Adversarial Robustness Toolbox Python
library. As for the SST-2 sentiment analysis dataset, we adversarially train the self-attention model in Table 10. While the
self-attention block is the same as A small for MNIST, it has the embedding layer to accommodate text inputs and the
sigmoid function of the last layer to produce sentiment, i.e., either positive or negative. The test accuracy of this model
is 75.34%.

7Access via GitHub repository https://github.com/google/uncertainty-baselines
8Access via GitHub repository https://github.com/Trusted-AI/adversarial-robustness-toolbox

https://github.com/google/uncertainty-baselines
https://github.com/Trusted-AI/adversarial-robustness-toolbox
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Table 9: Architecture for the MNIST self-attention models: A small (90.25%), A med (97.41%), and A big (98.28%).

Layer Type Parameter Size Activation

Input 28× 28× 1 –

Flatten – –

Fully Connected A small: 16; A med: 144; A big: 256 ReLU

Reshape A small: (2, 8); A med: (4, 36); A big: (4, 64) –

MultiHeadAttention
A small: num heads=2, key dim=4

A med: num heads=3, key dim=12 –

A big: num heads=4, key dim=16

Flatten – –

Fully Connected 10 Softmax

Table 10: Architecture for the SST-2 self-attention model (75.34%).

Layer Type Parameter Size Activation

Input 50 –

Embedding vocab size=4000, embedding dim=16, input length=50 –

Flatten – –

Fully Connected 16 ReLU

Reshape (2, 8) –

MultiHeadAttention num heads=2, key dim=4 –

Flatten – –

Fully Connected 1 Sigmoid

I ADDITIONAL UNCERTAINTY ESTIMATION RESULTS

I.1 Lower Bound on UQ Scores Computed by PGD Attack

We perform projected gradient descent (PGD) attack to obtain a lower bound of the UQ scores within the given perturbation
bound. The results are shown in Table 11.

Table 11: Upper Bounds on Uncertainty Estimation Scores Using Different Softmax Bounds

Score (Clean) ϵ PGD Llin, U lin LER, ULSE LLSE ∗, ULSE

NLL (0.105) 2/256 0.202 0.265 0.261 0.251
3/256 0.285 0.442 0.433 0.420
4/256 0.407 0.726 0.697 0.690

Brier (0.048) 2/256 0.061 0.138 0.134 0.131
3/256 0.073 0.244 0.235 0.234
4/256 0.104 0.417 0.403 0.403

I.2 Verification of a Larger Deep Ensemble

Table 12 shows upper bounds on expected uncertainty estimation scores for the MNIST-large ensemble in the same manner
as Table 1 for MNIST in Section 7.1. The table also includes results for two larger perturbation radii, 5/256 and 6/256
(0.020 and 0.024 in [0, 1]-normalized units). In the case of MNIST-large, the lower bound LLSE ∗ appears to coincide with
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LER for all 100 test instances, and thus the two rightmost columns in Table 12 are identical. Nevertheless, there is still
consistent improvement in going from linear to nonlinear bounds.

Table 12: Upper Bounds on Uncertainty Estimation Scores for a Larger Deep Ensemble Using Different Softmax Bounds

Score (Clean) ϵ PGD Llin, U lin LER, ULSE LLSE ∗, ULSE

NLL (0.0150) 2/256 0.0196 0.0212 0.0210 0.0210
3/256 0.0222 0.0263 0.0257 0.0257
4/256 0.0252 0.0339 0.0326 0.0326
5/256 0.0286 0.0449 0.0430 0.0430
6/256 0.0325 0.0611 0.0585 0.0585

Brier (0.00373) 2/256 0.00584 0.00677 0.00659 0.00659
3/256 0.00707 0.00961 0.00921 0.00921
4/256 0.00847 0.01418 0.01350 0.01350
5/256 0.00976 0.02161 0.02065 0.02065
6/256 0.01125 0.03336 0.03206 0.03206

I.3 UQ Scores Computed by Considering Each Network Separately

Since the output of the ensemble models we study are average of the outputs of the individual models, another way to
compute the UQ scores for an ensemble models is to computing the scores for each individual model and take the average.
Note that this is not equivalent to analyzing the ensemble model as a whole, because the constraint that each model always
take the same input is relaxed and the resulting average score is an over-approximation. One benefit though is that analyzing
each individual model is computationally more efficient than analyzing the ensemble model as a whole.

Table 13: Upper Bounds on Uncertainty Estimation Scores Using Different Softmax Bounds

Score (Clean) ϵ Llin, U lin LER, ULSE LLSE ∗, ULSE

NLL (0.105) 2/256 0.270 0.263 0.263
3/256 0.448 0.435 0.436
4/256 0.732 0.712 0.712

Brier (0.048) 2/256 0.139 0.136 0.136
3/256 0.245 0.240 0.240
4/256 0.418 0.412 0.412

Table 14: Average runtime in seconds

Dataset Llin, U lin LER, ULSE LLSE ∗, ULSE

Combined 10.9 91.6 92.4
Separate 3.36 43.22 42.49
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