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Abstract

In this paper, we study the memorization and
generalization behaviour of deep neural networks
(DNNs) using sliced mutual information (SMI),
which is the average of the mutual information
(MI) between one-dimensional random projec-
tions. We argue that the SMI between fea-
tures in a DNN (T ) and ground truth labels (Y ),
SI(T ;Y ), can be seen as a form of usable infor-
mation that the features contain about the labels.
We show theoretically that SI(T ;Y ) can encode
geometric properties of the feature distribution,
such as its spherical soft-margin and intrinsic di-
mensionality, in a way that MI cannot. Addition-
ally, we present empirical evidence showing how
SI(T ;Y ) can capture memorization and gener-
alization in DNNs. In particular, we find that,
in the presence of label noise, all layers start to
memorize but the earlier layers stabilize more
quickly than the deeper layers. Finally, we point
out that, in the context of Bayesian Neural Net-
works, the SMI between the penultimate layer
and the output represents the worst case uncer-
tainty of the network’s output.

1 INTRODUCTION

Over the last decade, there has been a proliferation of deep
neural network (DNN) architectures, some of which are
known to be capable of generalizing across various do-
mains and tasks (Tay et al., 2020). Despite the signifi-
cant progress made in the field, a comprehensive theoret-
ical understanding of DNNs remains elusive. The primary
focus of our paper is to investigate two key behaviours of
DNNs, namely, memorization and generalization, by em-
ploying a scalable information measure called the Sliced
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Mutual Information (SMI), originally introduced in Gold-
feld and Greenewald (2021). SMI is defined as the av-
erage of the mutual information (MI) measures between
one-dimensional random projections of the random vari-
ables (RVs). An interesting property of SMI is that it can
increase with deterministic transformations of the origi-
nal RVs (Goldfeld and Greenewald, 2021), which does not
hold for MI due to the data processing inequality (DPI).
This property aligns well with the characteristic of DNNs
which learn a hierarchy of processed feature representa-
tions of the input that are increasingly more useful for pre-
dicting the labels.

A new notion of informativeness. As observed in Xu et al.
(2020), the MI between two RVs X and Y assumes that
the means to predict Y from X (or X from Y ) are com-
putationally unbounded. Xu et al. (2020) proposed a new
measure called predictive V-information, which considers
a predictive family and looks at the change in predictabil-
ity of Y when given a side information X . This measure
limits the set of possible predictive models under computa-
tional or statistical constraints. Similar to SMI, predictive
V-information can also increase with more computation of
the RVs. This suggests that there is a growing field of re-
search that considers new notions of informativeness which
can increase with processing for compatibility with DNNs.

On memorization. In this paper, we adopt the same op-
erational definition of memorization as (Arpit et al., 2017)
which is the behaviour of DNNs trained on noisy labels.
DNNs are capable of fitting random labels in the training
data, resulting in poor test data generalization (Zhang et al.,
2017). Standard explicit regularization measures such as
dropout and weight decay cannot prevent memorization
(Song et al., 2020). In addition, (Arpit et al., 2017) shows
that DNNs tend to prioritize learning simple generalizable
features first before memorizing. Furthermore, (Stephen-
son et al., 2021) shows that memorization mainly occurs
in deeper layers while earlier layers are not affected as
much. In Ghosh and Motani (2021), overall memorization
in DNNs was captured via Kolmogorov Growth, a function
complexity measure. Here, we show that SMI is able to
capture memorization in different DNN layers trained with
different degrees of label noise.
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On generalization. Despite ongoing research aimed at un-
derstanding why overparameterized DNNs can generalize
well (Kawaguchi et al., 2017), no definitive conclusion has
been reached (Zhang et al., 2021). While numerous prac-
tical complexity measures have been developed to predict
generalization, they still fall short in accurately evaluating
a wide range of networks and datasets, and often lack the-
oretical foundations that justify their suitability in predict-
ing generalization (Jiang et al., 2020). In this paper, we
demonstrate empirically that the SMI between the features
and the labels correlates well with the generalization gap,
particularly in the deeper layers. Furthermore, we present a
theoretical rationale for why SMI may serve as a predictor
of the generalization gap by examining its relationship to
margin and intrinsic dimensionality.

Related work. Information-theoretic techniques have
been proposed for investigating memorization (Achille and
Soatto, 2019) and generalization (Shwartz-Ziv and Tishby,
2017) in DNNs, often employing MI as a key tool. How-
ever, current MI estimation methods (Kraskov et al., 2004;
Belghazi et al., 2018) are still unable to reliably and effi-
ciently estimate MI for high-dimensional variables (Song
and Ermon, 2020; Poole et al., 2019; McAllester and
Stratos, 2020) due to the curse of dimensionality. For
example, information bottleneck has been suggested as a
way to understand how DNNs operate (Shwartz-Ziv and
Tishby, 2017; Saxe et al., 2018), yet empirical investiga-
tion of this theory has yielded inconsistent results (Geiger,
2020). Similar argument holds for approaches that bound
generalization error using MI and its variants (Xu and Ra-
ginsky, 2017). In a similar line of work, Wongso et al.
(2022) shows that SMI between the features of the hid-
den layer and the labels encodes information about the net-
work’s ability to predict labels correctly. Our paper extends
the work to various benchmark architectures and datasets as
well as the relation to memorization and generalization.

Contributions. Our contributions are as follows.

1. We propose the use of SMI to study the memorization
and generalization behavior in DNNs.

2. We provide theoretical lower bounds on SMI based on
margin and intrinsic dimensionality, using them to jus-
tify SMI as a metric to study memorization and gener-
alization in DNNs.

3. We empirically show that, in the presence of label noise,
the SMI between features and noisy labels of all layers
decreases, with earlier layers stabilizing more quickly
than the deeper layers.

4. We also observe that SMI between the penultimate fea-
tures and labels correlates with the generalization gap,
i.e., difference between test and training accuracies.

5. We argue for the significance of SMI as an averaging-
based information measures in the context of Bayesian
Neural Networks by showing that it represents the
worst-case uncertainty of the weights.

2 SMI IN DEEP NEURAL NETWORKS

Overview. In this section, we first provide a formal def-
inition and properties of SMI, followed by the motivation
of using this metric in studying DNNs as well as its esti-
mation method. Then, we show empirically that SMI can
increase with more processing of the input features in vari-
ous benchmark DNN models and datasets.

Preliminaries. The Shannon mutual information between
two random variables X and Y is defined as I(X;Y ) =
EPXY

[log PXY

PXPY
] (Cover and Thomas, 2001). In this pa-

per, all information-theoretic quantities are measured in
bits. The d-dimensional unit sphere is Sd−1 and its sur-
face area is Sd−1 = 2πd/2/Γ(d/2). In DNNs with l layers,
we denote X as the input features, Y as the ground truth la-
bels, Ŷ as the predicted labels and Tj as the output of each
layer where j = 0, . . . , l. Specifically, T0 is the input layer,
T1,...,l−1 are the hidden layers, and Tl is the output layer.

2.1 Definition and Properties of SMI

Sliced mutual information (SMI) is proposed by Goldfeld
and Greenewald (2021) as an alternative measure of infor-
mativeness that is scalable to high dimensions. The SMI
between two random variables, X and Y , is formally de-
fined as (Goldfeld and Greenewald, 2021, Definition 1):
Definition 1. Fix (X,Y ) ∼ PX,Y ∈ P(Rdx × Rdy ). Let
Θ ∼ Unif(Sdx−1) and Φ ∼ Unif(Sdy−1) are independent
of each other and of (X,Y ). The SMI is given by:

SI(X;Y ) := I(ΘTX; ΦTY |Θ,Φ)

=
1

Sdx−1Sdy−1

∮
Sdx−1

∮
Sdy−1

I(θTX;ϕTY )dθdϕ (1)

Remark 1. Similarly, we can define sliced entropy of X
as sh(X) = h(ΘTX|Θ) where h(.) represents differential
entropy. The conditional sliced entropy of X given Y is
given by sh(X|Y ) = h(ΘTX|Θ,Φ,ΦTY ).

While it is not a proxy for MI itself, SMI shares sev-
eral basic properties of MI (Goldfeld and Greenewald,
2021, Proposition 1), thus preserving some of the desir-
able information-theoretic properties. We list several of the
useful properties:

1. Non-negativity and independence: SI(X;Y ) ≥ 0
with equality iff X and Y are independent.

2. Bound: SI(X;Y ) ≤ I(X;Y )
3. Entropy decomposition: SI(X;Y ) = sh(X) +

sh(Y ) − sh(X,Y ) = sh(X) − sh(X|Y ) = sh(Y ) −
sh(Y |X).

4. Chain rule: SI(X,Y ;Z) = SI(X;Z) + SI(Y ;Z|X)

Similar to MI, SMI can also be written in terms of relative
entropy (Goldfeld and Greenewald, 2021, Proposition 1,
Property 3) and has corresponding variational forms (Gold-
feld and Greenewald, 2021, Proposition 3). Moreover, SMI
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can be further extended to k-SMI which considers projec-
tions to k-dimensional subspaces Goldfeld et al. (2022).
However, it is to be noted that unlike MI, SMI can grow
with deterministic processing of the original RVs. The im-
plications of this in the context of DNNs will be discussed
further in Section 2.2 and Section 2.4.

Remark 2. It is worth mentioning that although MI might
be infinite in certain scenarios (an example is provided by
Goldfeld and Greenewald (2021)), SMI can still have a
finite value. This is especially relevant when measuring
the quantity between the input features X and the features
of hidden layers T in DNNs. As T is often a continu-
ous deterministic function of X , the MI I(X;T ) is infi-
nite (Saxe et al., 2018), and any finite value of I(X;T ) de-
pends strongly on the MI estimators (Geiger, 2020). Con-
sequently, no definitive conclusion can be drawn from the
inconsistent empirical analysis of I(X;T ). Instead, future
studies may consider investigating SI(X;T ) which is more
likely to be finite.

2.2 Motivation for using SMI

Goldfeld and Greenewald (2021) and Goldfeld et al. (2022)
demonstrate how SMI can be applied to modern machine
learning tasks such as feature extraction and disentangle-
ment of latent factors (using InfoGAN). In this work, we
showcase how SMI can also be used to analyze the be-
haviours of DNNs. Below, we provide concrete arguments
which motivate the study of SMI in this context.

1. Scalability to high dimensions: Features of hidden
layers in DNNs can be very high-dimensional, which can
lead to inaccurate estimation of conventional measures of
information, such as MI. Let n be the number of given i.i.d
samples of PX,Y ∈ P(Rd × R) and m be the number of
projections used in the estimation of SMI. For standard MI,
error rates scale as n−1/d for large d, whereas for SMI,
the error scales as m−1/2 + n−1/2 (Goldfeld and Gree-
newald, 2021). Therefore, SMI is better suited to study
high-dimensional variables in DNNs compared to MI.

2. A form of usable information: Classic MI I(X;Y ) as-
sumes that one can employ arbitrarily complex models to
predict Y from X . However, computational complexity is
bounded in DNNs, and every layer essentially represents a
linear map of the input, followed by some continuous non-
linear activation. As SMI processes the RVs through linear
projections, it also represents a form of usable information
that is directly relevant in DNNs. Furthermore, unlike V-
information (Xu et al., 2020) which estimates the largest
usable information between X and Y , SMI captures the
notion of average usable information as it averages the MI
for all random projections. We hypothesize that this prop-
erty enables SMI to encode properties such as margin and
intrinsic dimensionality of feature representations.

3. Data Processing Inequality and DNNs: Consider a
Markov chain, X → T → Y , the data processing in-
equality (DPI) states that I(X;Y ) ≥ I(T ;Y ). However,
the incompatibility between DPI and DNNs has been high-
lighted previously in Xu et al. (2020) and Goldfeld and
Greenewald (2021). In DNNs, we process the input fea-
tures through the layers to extract feature representations
that are increasingly useful for predicting the label. Thus,
ideally, a desirable measure of information in the context
of DNNs should be indicative of how useful or usable a
feature representation for inferring the label, and therefore
can grow from processing. SMI, similar to V-information,
possesses this property (Goldfeld and Greenewald, 2021;
Wongso et al., 2022), which further supports its suitability
for studying DNNs.

2.3 SMI Estimation

Throughout our experiments, we focus on investigating the
SMI between the features X and the labels Y in the training
dataset. Since the labels Y is discrete, we only project the
features X . SMI can be estimated from high-dimensional
samples by combining a scalar MI estimator and a Monte
Carlo (MC) integrator. The pseudocode for the SMI esti-
mator is given in Appendix B.1. The estimated SMI can be
written as

ŜI
m,n

:=
1

m

m∑
j=1

Î
((

ΘT
j X

)n
; (Y )

n
)
, (2)

where m represents the number of projections and n repre-
sents the number of samples.

We adopt the KSG estimator (Kraskov et al., 2004) im-
plemented using Non-parametric Entropy Estimation Tool-
box (NPEET) (Krizhevsky, 2000) for the MI computa-
tion in (2). As noted in Goldfeld et al. (2022), the esti-
mation error of SMI from the MC sampling is bounded
by the variance of the MI projections which scales as
O
(√

(1/dx + 1/dy)/m
)

. We study how the SMI esti-
mates change with m and n, the results for which are shown
in Appendix B.2. We find that m = 1000 and n = 10000
generally yield stable SMI estimates in our experiments.

2.4 SMI Behaviour in DNNs

We study how the SMI between features T of any layer
within a neural network and the labels Y , changes dur-
ing training. Wongso et al. (2022) provides evidence that
SI(T ;Y ) can encode the information shared between fea-
tures and labels for simple networks and datasets. In this
paper, we extend it to more complex architectures and
datasets. Similar to Wongso et al. (2022), we observe
that a trained DNN shows an overall increasing trend of
SI(T ;Y ) with depth, indicating that the deeper layers
learn to become better feature extractors during training.
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(a) MLP, MNIST (b) CNN, CIFAR10 (c) VGG16, CIFAR100

Figure 1: The SI(T ;Y ) of different layers at different epochs for: (a) MLP trained with MNIST, (b) CNN trained with
CIFAR10, and (c) VGG16 trained with CIFAR100. SI(T ;Y ) generally increases with depth T during training.

Experiment: We train a 5-layer multi-layer perceptron
(MLP) on MNIST (LeCun et al., 2010), a 6-layer convo-
lutional neural network (CNN) on CIFAR10 Krizhevsky
(2009), and VGG16 Simonyan and Zisserman (2015) on
CIFAR100 Krizhevsky (2009) for 50 epochs. The SMI of
the different layers is computed and the results are shown
in Fig. 1. For convolutional layers, T represents the output
of the flattened feature maps. We provide more details of
the experiments in Appendix C.1.

Before training: At epoch 0, SI(T ;Y ) may increase or
decrease slightly with depth. This is because the network
is initialized with random weights and none of the layers
have learnt any useful information for inferring the labels.
Therefore, there is very little discrepancy in the amount
of usable information present in the various layers, and
SI(T ;Y ) remains close to zero for all T .

During and after training: At epoch 5 and epoch 50,
SI(T ;Y ) generally increases with depth. From this ob-
servation, we can imply that the deeper layers of a trained
network are better feature extractors compared to earlier
layers. Our results support the findings presented in Zeiler
and Fergus (2014) which indicate that the deeper layers
produce more discriminative features that result in better
prediction of the labels. In all the three scenarios, the in-
crease in SI(T ;Y ) from epoch 0 to epoch 5 is significantly
greater compared to that from epoch 5 to epoch 50, partic-
ularly for the deeper layers. This might suggest that the
network rapidly learns most of the useful features during
the initial phase of training, while the increase in useful in-
formation learnt becomes progressively smaller as training
continues, eventually risking overfitting.

We discuss the major differences in the behaviour of
SI(T ;Y ) in MLP and CNN:

1. MLP architecture: In Fig. 1a, the SI(T ;Y ) values
for all layers are higher at epoch 5 and epoch 50 than at
epoch 0, indicating that the layers become more effective
at predicting labels as they are trained. Moreover, there is a

clear upward trend in SI(T ;Y ) as we move deeper into the
layers, suggesting that the amount of usable information
progressively grows with depth.

2. CNN-like architecture: In both Fig. 1b and Fig. 1c,
the SI(T ;Y ) of earlier layers changes minimally in con-
trast to the deeper layers. This observation points to the
difference in the behaviour of training MLPs and CNNs.
Unlike in MLPs, where the amount of usable information
tends to steadily increase with depth, we observe that the
usable information progressively grows only in the deeper
layers in CNNs. This observation suggests that the major-
ity of usable information may be concentrated in the deeper
layers of CNNs.

Another interesting observation is that in the 6-layer CNN
case (Fig. 1b), the SI(T ;Y ) of earlier layers drop slightly
while the SI(T ;Y ) of deeper layers is maintained at high
values during training. This might suggest that for this par-
ticular architecture, the earlier layers may slightly lose their
effectiveness as feature extractors, as the deeper layers con-
tinue to improve in their ability to extract useful features.

3 CONNECTION TO MARGIN AND ID

Overview. In this section, we show how SMI, unlike MI,
can be related to various geometric properties of the fea-
ture distribution in DNNs, namely the spherical-soft mar-
gin and the intrinsic dimensionality (ID). Note that in this
section, we mainly interpret X as the feature output of any
layer in a DNN. We prove that SI(X;Y ) can be lower
bounded by a function that depends on the margin and ID.
From this bound, we find that SI(X;Y ) is likely increases
with increasing margin and decreasing ID, and vice-versa.
We then provide a rationale for why SMI is a well-suited
metric for investigating memorization and generalization
in DNNs, through its connection to margin and ID.
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3.1 SMI and Margin

We start by asking: what geometrical properties can SMI
encode about a distribution P (X) in the context of binary
classification, where X has an underlying ground truth la-
bel Y ∈ {0, 1}? In the context of DNNs, X can be con-
sidered to be the output of a specific hidden layer within
a DNN, and Y can be considered as the output label. To
answer the question, we demonstrate how SMI can be re-
lated to the soft margin of the distribution. To that end, we
first define the notion of spherical gap and subsequently the
spherical soft-margin separation criterion.
Definition 2. Spherical gap: Given two non-overlapping
spheres of radii R1 and R2 in Rk for some k, with their
centre points C1 and C2, the spherical gap mg is defined
such that mg = d(C1, C2)− (R1 +R2), where d(C1, C2)
is the Euclidean distance between C1 and C2.
Definition 3. Spherical soft-margin separation (SSM-
separation): Let X ∈ Rdx be the features and Y ∈ {0, 1}
be the labels in a binary classification task. Given this,
X and Y are said to be (R1, R2,mg, ϵ)-SSM-separated, if
there exists two spheres S1 and S2 of radii R1 and R2, re-
spectively, in Rd, having a spherical gap of mg ≥ 0, and it
holds that

P (X ∈ S1|Y = 0) = P (X ∈ S2|Y = 1) = 1− ϵ.

The quantity ϵ controls the amount of overlap between the
features of the two classes in each sphere, i.e., between
P (X ∈ S1|Y = 0) and P (X ∈ S1|Y = 1), and between
P (X ∈ S2|Y = 0) and P (X ∈ S2|Y = 1). Note that
in what follows, if RVs X and Y are (R1, R2,mg, ϵ)-SSM-
separated, we refer to mg as the spherical soft-margin.
Remark 3. (On the SSM-Separation) Note that given the
distributions P (X|Y = 0) and P (X|Y = 1), we can find
more than one set of (R1, R2,mg, ϵ) such that X and Y
are (R1, R2,mg, ϵ)-SSM-separated. That is because as we
increase the radii of the spheres S1 and S2, the overlap
between P (X ∈ S1|Y = 0) and P (X ∈ S1|Y = 1),
and between P (X ∈ S2|Y = 0) and P (X ∈ S2|Y = 1),
can likely increase, which would yield a larger ϵ. Also, note
that when R1, R2 →∞, then the spherical soft-margin mg

becomes the conventional soft-margin used in the context of
Support Vector Machines (Hearst et al., 1998).

With this, we now relate SMI to the spherical soft-margin
in the context of binary classification, in the following the-
orem (refer to Appendix A.1 for the proof).
Theorem 1. (Margin-based lower bound) We are given
RVs X ∈ Rdx and Y ∈ {0, 1}. Assume P (Y = 0) =
P (Y = 1) = 0.5 and that X,Y are (R1, R2,mg, ϵ)-SSM-
separated. Given this, we then have

(1−H (ϵ, 1− ϵ))Bγ(mg,R1,R2)

(
dx − 1

2
,
1

2

)
≤ SI(X;Y ) ≤ 1, (3)

where γ(mg, R1, R2) =
mg

mg+R1+R2

(
2− mg

mg+R1+R2

)
,

Bx(a, b) is the regularized incomplete beta function (Old-
ham et al., 2008), and H(p1, p2) = −p1 log p1 − p2 log p2
is the entropy function.

Remark 4. (SMI and Margin) The main implication of
Theorem 1 is that SMI can be related to the spherical
soft-margin between the distributions P (X|Y = 0) and
P (X|Y = 1) which in some sense, quantify a degree of
overlap between the two classes in the feature space. More
precisely, we show in Appendix A.2 that the regularized in-
complete beta function in the lower bound increases with
increasing margin mg , when everything else is fixed. Thus,
Theorem 1 implies that a larger value of the soft margin
will likely yield a larger value of SMI SI(X;Y ). Note that
when ϵ = 0, this bound reduces to the result in Wongso
et al. (2022) where R1 = R2 was imposed. Furthermore,
our result can also be applied in the scenario where there
are more than two labels, by considering a one-vs-all bina-
rization of the problem and class-wise margins instead.

Remark 5. (MI and Margin) We also note that unlike SMI,
MI is not sensitive to margin. Consider the case where the
distributions P (X|Y = 0) and P (X|Y = 1) have no over-
lap (ϵ = 0). In that case, we would then have that MI
I(X;Y ) = H(Y ) = 1 where H(Y ) represent the discrete
entropy operator for Y . This is due to our assumption that
P (Y = 0) = P (Y = 1) = 0.5 and X will provide com-
plete knowledge of Y . This also implies that when the dis-
tributions are (R1, R2,mg, 0) SSM-separated, MI does not
change with the margin mg , as I(X;Y ) = 1 in this case.
We perform proof-of-concept experiments to illustrate this
point in Appendix A.3. Therefore, SMI may prove to be a
more desirable metric when the margin of the feature dis-
tributions can change.

SMI, Margin and Memorization: As mentioned previ-
ously, memorization in the context of DNNs is most of-
ten studied in the context of label noise. With larger label
noise, one expects the decision boundary to get more com-
plex (Garcia et al., 2015), and yield smaller margins in the
feature space (Lin and Bradic, 2021). This property has
also been used to actively filter out the data with noisy la-
bels, by identifying the data samples for which the margin
is smaller (Lin and Bradic, 2021). As Theorem 1 shows
that SMI and margin are related, this points to a potential
connection between SMI and memorization as well. In the
context of Theorem 1, as the margin between P (X|Y = 0)
and P (X|Y = 1) reduces with larger label noise, this
should also lead to a reduction of SMI between the features
and the noisy labels. To verify whether SMI can indeed
capture memorization, we study the impact of label-noise
on SMI in our experiments in Section 4.1.

SMI, Margin and Generalization: There exists many
works in literature (Koltchinskii and Panchenko, 2002;
Bartlett and Shawe-Taylor, 1999; Montanari et al., 2019)
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which find that the soft-margin of a classifier can relate
to its ability to generalize. Margin-based generalization
bounds have been proposed over the last two decades, and
many of them find that a larger margin can be associated
with a potentially smaller generalization gap and vice-versa
Bartlett et al. (2017); Neyshabur et al. (2018); Jiang et al.
(2019). As Theorem 1 connects SMI to a variant of soft-
margin and finds that SMI will likely increase as the soft-
margin grows, we hypothesize that SMI should therefore
also increase when generalization gap decreases. We per-
form experiments to test our hypothesis in Section 4.2.

3.2 SMI and Intrinsic Dimensionality

The intrinsic dimensionality (ID) of X is defined as the
minimum number of variables required to represent X . We
find that SMI can encode the ID of the distribution of X ,
when we consider ID as the dimensionality of the smallest
linear subspace W that contains X . We provide theoretical
results below (refer to Appendix A.4 and Appendix A.5
for the proofs). For what follows, recall Definition 2 and
Definition 3.

Theorem 2. Assume that the support of P (X) lies within a
linear subspace W of K dimensions. Let W be represented
by the orthonormal basis set {ui}Ki=1, and the center of W
be at a distance of µ from the origin. Let U be a matrix
with columns {ui}Ki=1. Then, we have

SI(X;Y ) = SI
(
UT (X − µ) ;Y

)
. (4)

Corollary 2.1. (Margin- and ID-based lower bound) As-
sume we are given RVs X ∈ Rdx and Y ∈ {0, 1}, such that
P (Y = 0) = P (Y = 1) = 0.5. Assume that K is the di-
mensionality of the smallest subspace W that contains the
support of P (X) (K ≤ dx). Furthermore, consider X and
Y that are (R1, R2,mg, ϵ)-SSM-separated, via spheres of
radius R1 and R2, whose centers lie in W . We then have,

(1−H (ϵ, 1− ϵ))Bγ(mg,R1,R2)

(
K − 1

2
,
1

2

)
≤ SI(X;Y ) ≤ 1, (5)

where γ(mg, R1, R2) is as defined in Theorem 1.

Remark 6. (SMI and ID) Corollary 2.1 is a consequence
of Theorem 2, and it states that the SMI between X and Y
is lower-bounded by the regularized incomplete beta func-
tion that depends not only on the margin, but also the ID
(represented by K). More precisely, this result implies that
SMI can potentially decrease in response to increasing K
(refer to the Appendix A.2 for the dependence between the
regularized incomplete beta function and its parameters).

Remark 7. (MI and ID) We also note that unlike SMI
and similar to the margin case, MI is not sensitive to
changes in the ID. Consider the case where the distribu-
tions P (X|Y = 0) and P (X|Y = 1) have no over-
lap (ϵ = 0). In that case, we would then have that MI

I(X;Y ) = H(Y ) = 1. We perform a proof-of-concept ex-
periment in Appendix A.6 to show that MI does not change
with ID while SMI decreases with increasing ID as ex-
pected. Therefore, SMI may prove to be a more desirable
metric when the ID of the feature distributions is not fixed.

SMI, ID and Memorization: It has been shown in the lit-
erature that in the presence of label noise, DNNs undergo
dimensionality compression (measured using local ID) in
the early stage of training, followed by dimensionality ex-
pansion as they overfit to the noisy labels (Ma et al., 2018).
They show that by implementing dimensionality-driven
learning strategy that avoids the dimensionality expansion
stage, the networks can generalize better. As Corollary 2.1
shows that SMI and ID are related, this points to a potential
connection between SMI and memorization as well. As the
ID increases with larger label noise, this should also lead
to a reduction of SMI between the features and the noisy
labels, and vice-versa. This will be verified in the experi-
ments in Section 4.1.

SMI, ID and Generalization: Recent works have shown
that larger ID of the features can adversely impact general-
ization (Ansuini et al., 2019; Nakada and Imaizumi, 2020).
As Corollary 2.1 finds that SMI will likely increase with
decreasing ID, we hypothesize that SMI should therefore
also increase when generalization gap decreases, and vice-
versa. This is verified in the experiments in Section 4.2.

4 EXPERIMENTS

Overview. In the previous section, we discuss briefly how
SMI can be indicative of memorization and generalization
through the connection to margin and ID. In this section,
we perform experiments to show how SMI relates to mem-
orization (Section 4.1) and generalization (Section 4.2) in
DNNs to confirm our hypothesis. In Section 4.1, we find
that SI(T ;Y ) decreases for all hidden layers when the net-
works are trained with higher label noise. In Section 4.2,
we find that the SMI for penultimate layer, SI(Tl−1;Y ),
increases with decreasing generalization gap, vice-versa.
Both sets of findings support our argument that SMI can
indeed encode geometric properties of feature distribution
such as the margin and the ID.

4.1 Memorization

Our goal is to investigate how SMI relates to memorization
for different layers in DNNs by training them with differ-
ent degrees of label noise. The label noise is induced by
randomly changing the training labels for a fraction ϵ (re-
ferred to as the label noise ratio) of the dataset. Note that
here we only apply Symmetric Label Noise (Van Rooyen
et al. (2015)). We provide more details on the experiment
in Appendix C.2. We estimate the SI(T ;Y ) of each hidden
layer during training, with Y representing the corrupted la-
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(a) label noise ratio = 0 (b) label noise ratio = 0.2 (c) label noise ratio = 0.4

Figure 2: The SI(T ;Y ) in 5-layer MLP trained with MNIST of different label noise ratio for 50 epochs. The SI(T ;Y )
decreases with more label noise and it decreases faster for deeper layers.

(a) label noise ratio = 0 (b) label noise ratio = 0.2 (c) label noise ratio = 0.4

Figure 3: The SI(T ;Y ) in 5-convolutional layer CNN trained with Fashion MNIST of different label noise ratio for 50
epochs. The SI(T ;Y ) decreases with more label noise and it decreases faster for deeper layers.

bels. Across varying degrees of label noise, we present the
results for a 5-layer MLP trained on MNIST in Fig. 2 and a
5-layer CNN trained on Fashion MNIST (Xiao et al., 2017)
in Fig. 3.

As the degree of label noise increases, the amount of us-
able information in all hidden layers decreases. In the
presence of label noise, neural networks are prone to mem-
orizing the noisy labels and consequently fail to generalize
to test data with clean labels. In our experiments, we ob-
serve that SI(T ;Y ) of all the hidden layers decreases with
more label noise, as reflected in both Fig. 2 and Fig. 3.
These findings confirm our hypothesis in Section 3 as more
label noise leads to decreasing margin (Lin and Bradic,
2021) and increasing ID (Ma et al., 2018). As margin and
ID are related to SMI through the lower bound shown in
Theorem 1 and Corollary 2.1, SMI is expected to decrease
as well with higher label noise.

Below, we provide a detailed discussion of the differences
in SMI behavior observed between the MLP and CNN:

1. MLP, MNIST: In the presence of label noise (Fig. 2b
and Fig. 2c), all the hidden layers experience an increase
in SI(T ;Y ) first before decreasing. This may indicate that
the networks learn relevant and generalizable features first

before proceeding to memorize. This observation agrees
with the results from Arpit et al. (2017) and Stephenson
et al. (2021). Furthermore, we observe that the SI(T ;Y )
of deeper layers drop more compared to the earlier layers
when the network is memorizing. Nevertheless, the SMI of
deeper layers remain higher than that of earlier layers.
2. CNN, Fashion MNIST: In the absence of label noise
(Fig. 3a), we observe that SI(T ;Y ) of all hidden layers
eventually decrease during training due to overfitting. Only
in the last hidden layer, the SI(T ;Y ) increases first before
decreasing. The trends are maintained even in the pres-
ence of label noise (Fig. 3b and Fig. 3c). We also observe
that the SI(T ;Y ) of deeper layers drop more compared
to the earlier layers (mainly layer 1) when the network is
memorizing. Unlike the MLP case, the SMI of layer 4 is
eventually lower than that of layer 1 during training.

These results support the argument in Stephenson et al.
(2021) which states that memorization predominately oc-
curs in deeper layers. We see that in both cases presented
here, the earlier layers (e.g., layer 1) are less affected com-
pared to the deeper layers (e.g., layer 4) by the presence of
label noise. In Appendix C.2, we show results with MLP
trained on Fashion MNIST, where we find that our current
observations still hold. We also include the performance of
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(a) MLP, MNIST (b) CNN, Fashion MNIST (c) VGG16, CIFAR10

(d) MLP, Fashion MNIST (e) CNN, CIFAR10 (f) ResNet50, CIFAR100

Figure 4: The generalization gap vs SI(Tl−1;Y ) where Tl−1 is the penultimate layer for various combinations of archi-
tectures and datasets. In general, SI(Tl−1;Y ) increases with decreasing generalization gap, and vice versa.

the networks during training in the same Appendix. Our
empirical analysis also suggests that the deeper layers con-
tinue to memorize until the training accuracy reaches 100%
while the earlier layers stop memorizing at an earlier stage
in the training process.

4.2 Generalization

Our goal is to investigate how the SMI between features
of the hidden layer and the labels relates to generalization
gap. The generalization gap of a model is computed by
taking the difference between training accuracy and test ac-
curacy. SMI for different networks and datasets can have
very different scales and thus cannot be compared directly.
Instead, to obtain different values of generalization gap for
the same architecture and dataset, we vary the dropout rate
(between 0.1 and 0.5), the amount of label noise (between
0.005 and 1), and the use of batch normalization. In gen-
eral, we have observed that the SMI of the deeper layers
tends to be more correlated to generalization gap compared
to that of the earlier layers. We present our results for the
penultimate layer Tl−1 in Fig. 4 for various combinations
of networks (MLP, CNN, VGG16, and ResNet50 (He et al.,
2016)) and datasets (MNIST, Fashion MNIST, CIFAR10,
and CIFAR100). More details on the experiment can be
found in Appendix C.3.

In general, we observe that the SI(Tl−1;Y ) has an inverse

relationship with generalization gap i.e., SI(Tl−1;Y ) in-
creases with decreasing generalization gap and vice versa.
As the generalization gap decreases, the margin is likely
to increase Bartlett et al. (2017); Neyshabur et al. (2018);
Jiang et al. (2019) and the ID is likely to decrease (Nakada
and Imaizumi, 2020) and thus SMI will likely increase as
well (by Theorem 1 and Corollary 2.1). Since our results
show that the SMI behaves as expected with generalization
gap, it points to the possibility of refining the metric fur-
ther (which will be discussed in Section 5. We hope that it
would enable the metric to accurately predict the general-
ization gap and facilitate comparisons across various mod-
els and datasets.

5 REFLECTIONS

Summary of Contributions: As hypothesized in the mo-
tivation in Section 2.2, we indeed see across our experi-
ments in Section 4 that SMI is an interesting and useful tool
to analyze DNNs, and can capture both memorization and
generalization. We argue that this is possible because SMI
can encode geometric properties of feature distributions as
discussed in Section 3. One interesting observation from
our experiment in Section 4.1 is that in the presence of la-
bel noise, the earlier layers tends to stop memorizing at an
earlier stage while the deeper layers continue to memorize
until 100% training accuracy is achieved.
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At its core, the SMI SI(X;Y ), like the MI I(X;Y ), is
a measure of shared information between X and Y , and
they share common properties (Goldfeld and Greenewald,
2021). However, as we see in Section 2.4, unlike MI, SMI
can increase with more processing of the features as por-
trayed by the increase in SMI with depth in a trained DNN.
This characteristic is consistent with observations made us-
ing visualization methods on the hidden layers Zeiler and
Fergus (2014), which reveal that deeper layers generate
more discriminative features that lead to better prediction
of the labels.

SMI and V-Information: As described in Section 2.2,
SMI can be categorized as a measure of average usable
information in the presence of computational constraints,
similar to V-information proposed in Xu et al. (2020),
which looks at the largest usable information instead. We
hypothesize that this property of SMI allows it to encode
more geometrical aspects of the distribution of the features
X , such as the spherical soft-margin (Theorem 1) and its
ID (Corollary 2.1). It is important to note that, as experi-
ments in Appendix A.3 and Appendix A.6 show, MI does
not encode these properties and stays fixed in response to
any changes in margin and ID. While estimating margin
and ID directly is challenging in high dimensions, SMI is
a measure that is scalable to high dimensions and thus we
argue that it is more suitable for the analysis of DNNs.

Furthermore, as SI(X;Y ) computes the average SMI
across all linear projections of X and Y , it is fundamentally
different from V-information, which encodes the largest
MI among all projections. Note that this also prevents
V-information from encoding properties such as the clas-
sifier’s hard-margin and its intrinsic dimensionality, when
P (X|Y = 0) and P (X|Y = 1) can be separated via a hy-
perplane. As SMI considers the average usable information
instead of the largest, we see that it can additionally encode
such geometrical properties of the feature distribution.

SMI and Bayesian DNNs: In addition to the prior dis-
cussed motivation for SMI, we find that there lies a deeper
and more general significance to averaging the MI of pro-
jections, in the context of Bayesian Deep Learning (Goan
and Fookes, 2020). There, the weights W of a neural net-
work are modelled as a random variable with a posterior
distribution W ∼ P (W |D), where D is the training dataset
{(X1, Y1), (X2, Y2), ..., (Xm, Ym)}, where X ∈ Rd and
Y ∈ {0, 1}. Here, we find that the following result holds.

Proposition 1. We consider a Bayesian Neural Network
(BNN) which can be represented as the feedforward graph
X → T → ŷ, where X is the input data, T is the
penultimate layer of the network, and ŷ ∈ R is the one-
dimensional network output logit. Let Wopt ∈ Rdim(W )

represent the fixed trained weights for the penultimate
layer. Let us assume that the posterior P (W |D) ∼
N (Wopt, diag(σ)), for some σ ∈ Rdim(W ) and diag(.)

is the diagonal matrix operator. Then, we have that

I(ŷ;Y ) ≥ SI(T ;Y ). (6)

The above result shows us that a larger SMI between the
penultimate layer and the last layer of a neural network can
potentially lead to a larger I(Ŷ ;Y ), which points to bet-
ter generalization. This is indeed observed across our ex-
periments, as larger SMI usually accompanies better gen-
eralization performance and vice-versa (see Section 4.2).
Intuitively, this follows from the fact that SMI averages
the MI for all projections (see (1)). As the uniform dis-
tribution over the projections is equivalent to the uniform
distribution over the penultimate layer weights W , SMI in-
directly connects to BNNs by considering the worst-case
uncertainty over the weights.

SMI with non-linear functions: Note that without the av-
eraging over the uniform distribution, (6) will not hold.
This shows the significance of averaging over all projec-
tions, which represents a linear function class. Naturally,
an extension of this approach is to consider more com-
plex, non-linear function classes. An interesting general-
ization of SMI between X and discrete Y is thus estimating
Ef∈F [I(f(X);Y )] for F which can represent non-linear
function classes. Using appropriate F that better emulates
the network function structure between the input and the
output, these SMI variants will more readily relate to label
uncertainty (see Proposition 1). The theoretical and empir-
ical observations in this work indicate that averaging-based
MI measures like SMI, and its generalizations, represents a
promising approach to studying DNNs.

Dimensionality-reduced SMI variants: A potential av-
enue of future research lies in exploring variants of SMI
for convolutional layers, as flattened convolutional layers
usually are of very high dimensionality, which biases the
SMI to have lower values. One way to alleviate this issue
is to reduce the dimensionality of the layers before com-
puting the SMI, e.g., one such example is pooling. This
leads to a plethora of possible approaches for defining SMI
for convolutional layers and other equivariant CNN layers
(e.g., scale and rotation equivariant CNNs), which can be
explored in future work.

SMI and Network Regularization: Finally, throughout
our experiments in Section 4, we see that the SMI between
the network layers (T ) and the outputs (Y ) can be indica-
tive of the generalization performance. These observations
overall point to a potential actionable manner in which we
can regularize neural networks, by forcing their layers to
have larger SI(T ;Y ). Therefore, a possible extension of
this work is to actively regularize the network layers dur-
ing training, to prevent their SI(T ;Y ) from decreasing.
The results in our work motivate the investigation of novel
methods for regularizing networks as a promising avenue
for further research.
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SUPPLEMENTARY MATERIAL

To allow ease of access and improve readability, we present a short summary of our supplementary materials. All citations
in this appendix are to the reference list in the main paper. The supplementary materials include:

A. On the Theory:

A.1. Proof of Theorem 1
A.2. On the Regularized Incomplete Beta Function
A.3. Empirical Results for SMI and Margin
A.4. Proof of Theorem 2
A.5. Proof of Corollary 2.1
A.6. Empirical Results for SMI and Intrinsic Dimensionality
A.7. Proof of Proposition 1

B. On SMI Estimation:

B.1. Pseudocode of the SMI Estimator
B.2. Convergence Behaviour of SMI Estimator

C. Experiment Details:

C.1. SMI Behaviour in DNNs
C.2. Memorization
C.3. Generalization

A ON THE THEORY

A.1 Proof of Theorem 1

Theorem 1. (Margin-based lower bound) We are given RVs X ∈ Rdx and Y ∈ {0, 1}. Assume P (Y = 0) = P (Y =
1) = 0.5 and that X,Y are (R1, R2,mg, ϵ)-SSM-separated. Given this, we then have

(1−H (ϵ, 1− ϵ))Bγ(mg,R1,R2)

(
dx − 1

2
,
1

2

)
≤ SI(X;Y ) ≤ 1, (7)

where γ(mg, R1, R2) =
mg

mg+R1+R2

(
2− mg

mg+R1+R2

)
, Bx(a, b) is the regularized incomplete beta function (Oldham

et al., 2008), and H(p1, p2) = −p1 log p1 − p2 log p2 is the entropy function.

Proof. Let us denote the encapsulating spheres via S1 and S2, as per the SSM-separation definition. Consider the line
segment connecting the center of S1 denoted by C1 to the center of S2 denoted by C2. Translation invariance of SMI
follows from the fact that MI I(x; y) itself is shift invariant when y is discrete. We additionally apply the rotation invariant
property of SMI (Goldfeld and Greenewald, 2021) to re-position the origin at C, such that ||C − C1|| = R1 +mg/2 and
||C − C2|| = R2 +mg/2.

Now, with the origin at C, let us denote the vector representation of C1 by−(R1+mg/2)u1, which implies that the vector
representation of C2 would be (R2 +mg/2)u1. Here u1 represents a unit vector. Next, consider any point P1 inside S1,
which has a vector representation of

P1 = −(R1 +mg/2)u1 + τu′
1, (8)

where 0 ≤ τ ≤ R1, and u′
1 represents any unit vector. Similarly, we consider any point P2 inside S2, which has a vector

representation of
P2 = (R2 +mg/2)u1 + τu′

2, (9)

where 0 ≤ τ ≤ R2, and u′
2 represents any unit vector. Now, as SMI projects the points onto a unit vector sampled from

the dx dimensional sphere Sdx−1 (as per convention in Goldfeld and Greenewald (2021)), let us represent this unit vector
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random variable via uw. Given uw, we estimate the maximum value of the projection of P1 onto uw, represented by γ1,
when iterating through all points within S1, as follows

γ1 = max
u′

1,τ
−(R1 +mg/2)u

T
1 uw + τu

′T
1 uw (10)

= max
τ
−(R1 +mg/2)u

T
1 uw + τ (11)

= −(R1 +mg/2)u
T
1 uw +R1. (12)

Similarly, we estimate the minimum value of the projection of P2 onto uw, represented by γ2, when iterating through all
points within S2, as follows

γ2 = min
u′

2,τ
(R2 +mg/2)u

T
1 uw + τu

′T
2 uw (13)

= min
τ

(R2 +mg/2)u
T
1 uw − τ (14)

= (R2 +mg/2)u
T
1 uw −R2. (15)

Now, if γ1 ≤ γ2, there is no overlap between the projections of the sphere S1 and S2, when projected using the unit vector
uw. This yields the constraint,

−(R1 +mg/2)u
T
1 uw +R1 ≤ (R2 +mg/2)u

T
1 uw −R2 (16)

(R1 +R2 +mg)u
T
1 uw ≥ R1 +R2 (17)

uT
1 uw ≥

R1 +R2

R1 +R2 +mg
. (18)

Thus, as both u1 and uw are unit vectors, we can substitute cos θw = uT
1 uw, which, combined with (18), yields

θw ≤ cos−1

(
R1 +R2

R1 +R2 +mg

)
. (19)

Thus, when θw ≤ cos−1
(

R1+R2

R1+R2+mg

)
, there would not be any overlap between the projections of the points in S1 and

S2. As uw is sampled uniformly in estimating the SMI, probability that the projections of S1 and S2 do not overlap, is
the same as ratio the surface area of a hyperspherical cap (Wikipedia contributors, 2022) of radius R1, and a height of
h = R1 − R1 cos θw = R1

(
1− R1+R2

R1+R2+mg

)
to half the area of S1. Let us then denote this probability via P (ST

1 uw ∩
ST
2 uw = ∅). Using the expression of the area of the hyperspherical cap (Wikipedia contributors, 2022), we have that

P (ST
1 uw ∩ ST

2 uw = ∅) = B 2R1h−h2

R2
1

(
dx − 1

2
,
1

2

)
, (20)

and substituting for h = R1

(
1− R1+R2

R1+R2+mg

)
, we ultimately have

P (ST
1 uw ∩ ST

2 uw = ∅) = Bγ(mg,R1,R2)

(
dx − 1

2
,
1

2

)
, (21)

where γ(mg, R1, R2) =
mg

mg+R1+R2

(
2− mg

mg+R1+R2

)
. Next, we can re-write the SMI SI(X;Y ) as,

SI(X;Y ) = SI(X;Y |ST
1 uw ∩ ST

2 uw = ∅)P (ST
1 uw ∩ ST

2 uw = ∅) (22)

+ SI(X;Y |ST
1 uw ∩ ST

2 uw ̸= ∅)P (ST
1 uw ∩ ST

2 uw ̸= ∅) (23)

≥ SI(X;Y |ST
1 uw ∩ ST

2 uw = ∅)Bγ(mg,R1,R2)

(
dx − 1

2
,
1

2

)
+ 0 (24)

Next, we use the constraints imposed by the SSM-separation criterion, which states that P (X ∈ S1|Y = 0) = P (X ∈
S2|Y = 1) = 1 − ϵ. Let us consider any uw such that ST

1 uw ∩ ST
2 uw = ∅. Note that, this implies that the maximum
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of S1’s projection (γ1) is less than the minimum of S2’s projection. This implies that we can separate the distribution of
their projections w.r.t a point pc ∈ R in the real line, such that all of S1’s projections are to the left of Pc and all of S2’s
projections are to the right.

Let us denote the random variable which is the projection of X onto uw, by xw. Next, we define another random variable
ρ as follows:

ρ =

{
0 if XTuw < pc

1 if XTuw ≥ pc

Given the definition of SSM-separation, note that P (ρ = 0) = P (ρ = 1) = 0.5. Furthermore, note that h(Y |ρ) =
H(ϵ, 1 − ϵ), where H(ϵ, 1 − ϵ) has the same definition as given in the Theorem. Now, we denote the mutual information
between XTuw and Y , by I(XTuw;Y ). Let us denote h as the entropy operator. We can write

h(XTuw|Y, ρ) + h(Y |ρ) = h(Y |XTuw, ρ) + h(XTuw|ρ) (25)

Note that h(Y |XTuw, ρ) = h(Y |XTuw)), and thus we can write,

h(Y )− h(Y |X) = h(Y ) + h(XTuw|ρ)− h(XTuw|Y, ρ)− h(Y |ρ) (26)

I(XTuw;Y ) = h(Y )− h(Y |ρ) + I(XTuw;Y |ρ) (27)

I(XTuw;Y ) ≥ h(Y )− h(Y |ρ) = 1−H(ϵ, 1− ϵ) (28)

Thus, for all uw such that ST
1 uw ∩ ST

2 uw = ∅, we have that I(XTuw;Y ) ≥ 1 − H(ϵ, 1 − ϵ). As SMI represents the
average of I(XTuw;Y ) over uw, using the result in (24), we can finally write

SI(X;Y ) ≥ SI(X;Y |ST
1 uw ∩ ST

2 uw = ∅)Bγ(mg,R1,R2)

(
dx − 1

2
,
1

2

)
(29)

= Euw

[
I(XTuw;Y )|ST

1 uw ∩ ST
2 uw = ∅

]
Bγ(mg,R1,R2)

(
dx − 1

2
,
1

2

)
(30)

≥ (1−H(ϵ, 1− ϵ))Bγ(mg,R1,R2)

(
dx − 1

2
,
1

2

)
. (31)

Furthermore, for any uw, we have that I(XTuw;Y ) = h(Y )−h(Y |XTuw) ≤ h(Y ) = 1, and thus SI(X;Y ) ≤ 1. This
yields the result.

A.2 On the Regularized Incomplete Beta Function

In Fig. 5, we show the dependence between the regularized incomplete beta function Bx(a, b) in Theorem 1 and its
parameters. In Fig. 5a, we fix the margin mg = 3 and data dimensionality dx = 2 and assume that the radii of two
hyperspheres are the same i.e., R1 = R2 = R. We show that Bx(a, b) decreases with increasing R. In Fig. 5b, we fix the
radii of the hyperspheres R1 = R2 = 1 and data dimensionality dx = 2. We show that Bx(a, b) increases with increasing
margin mg . In Fig. 5c, we fix the radii of the hyperspheres R1 = R2 = 1 and margin mg = 3. We show that Bx(a, b)
decreases with increasing data dimensionality dx.
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(a) vary radius of hypersphere (b) vary margin (c) vary data dimensionality

Figure 5: Plots to show how the regularized incomplete beta function in Theorem 1 vary with its parameters. It increases
with decreasing radius of the hypersphere, increasing margin and decreasing data dimensionality.

A.3 Empirical Results for SMI and Margin

We conduct an experiment to show how MI, SMI, and the margin-based lower bound (in Theorem 1) vary with margin mg

and degree of overlap ϵ. We generate 100,000 data samples X from truncated 2D Gaussian variables, and assign labels Y
of 0 or 1 to them. We assume P (Y = 0) = P (Y = 1) = 0.5 as before. We illustrate the 1D version of the data distribution
in Fig. 6 (top) for different ϵ values. In this case, X and Y are (1, 1,mg, ϵ)-SSM-separated. We then compute the MI
I(X;Y ), the SMI SI(X;Y ) and the lower bound in Theorem 1. In Fig. 6a, there is no overlap in the feature distribution
of the two classes (ϵ = 0) while in Fig. 6b and Fig. 6c, we allow some overlap in the feature distribution of the two classes
(ϵ = 0.1 and ϵ = 0.3 respectively). We present the results for the 3 cases in Fig. 6 (bottom). In all the cases, I(X;Y ) stays
about the same but SI(X;Y ) and the lower bound clearly increases with margin. This empirically proves our argument
that SMI is sensitive to margin while MI is not.

(a) 0 overlap (b) 0.1 overlap (c) 0.3 overlap

Figure 6: (Top) Illustrations of feature distributions of 1D truncated gaussian variables with different degrees of overlap
between the feature distributions of the two different classes. (Bottom) For the different degrees of overlap, MI I(X;Y )
stays constant while both the SMI SI(X;Y ) and the margin-based lower bound increase with margin.
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A.4 Proof of Theorem 2

Theorem 2. Assume that the support of P (X) lies within a linear subspace W of K dimensions. Let W be represented
by the orthonormal basis set {ui}Ki=1, and the center of W be at a distance of µ from the origin. Let U be a matrix with
columns {ui}Ki=1. Then, we have

SI(X;Y ) = SI
(
UT (X − µ) ;Y

)
. (32)

Proof. Let Uϕ ∈ Rd × Rd−K be the null space matrix of the linear subspace W , which is represented by U ∈ Rd ×
RK . Then, the concatenated matrix Uc = [U ,Uϕ] ∈ Rd × Rd represents a rotation of the axes in Rd. Next, we note
that, as shown in Goldfeld and Greenewald (2021), SI(X;Y ) is invariant to rotations to the co-ordinate axes w.r.t X .
Furthermore, in what follows we also make use of the property that SI(αX;Y ) = SI(X;Y ), when Y is discrete Goldfeld
and Greenewald (2021). We have,

SI(X;Y ) = SI
(
UT

c (X − µ) ;Y
)

(33)

= SI
([
UT (X − µ) ,0(1×d−K)

]
;Y

)
, (34)

where [0]1×d−K represents the null matrix of size (1×d−K). Note that the above follows from the fact that Uϕ represents
the null space of W , and X lies within W .

Next, we re-iterate the definition of SI(X;Y ) as follows. Let us define independent RVs Θ ∼ Unif(Sdx−1) and Φ ∼
Unif(Sdy−1). Note that in this context, dx = d and dy = 1. Also, in what follows, we use the convention EA∈B [.] to
represent EA∼Unif(B)[.], where Unif(B) represents the uniform distribution over the set B. The SMI between X and Y ,
for discrete Y then can be expressed as:

SI(X;Y ) = Eθ∈Sdx−1,ϕ∈Sdy−1

[
I(θTX;ϕTY )

]
(35)

= Eθ∈Sdx−1,ϕ∈Sdy−1

[
I(θTX;Y )

]
= Eθ∈Sdx−1

[
I(θTX;Y )

]
(36)

(37)

For what follows, let us represent the set of all points in Rd which have a distance of R to the origin, via the set Sd−1(R).
Also, in what follows, we make use of the fact that I(αX;Y ) = I(X;Y ), for discrete Y , as MI is scale invariant w.r.t X
when Y is discrete. Note that Sdx−1 = Sdx−1(1). Now, using (34), we have

SI(X;Y ) = SI
([
UT (X − µ) ,0(1×d−K)

]
;Y

)
(38)

= Eθ∈Sdx−1

[
I(θT

[
UT (X − µ) ,0(1×dx−K)

]
;Y )

]
(39)

= Eθ∈Sdx−1

[
I(θTtruncU

T (X − µ) ;Y )
]

(40)

= EREθtrunc∈Sdx−K−1(R)

[
I(θTtruncU

T (X − µ) ;Y )
]

(41)

= EREθ′
trunc∈Sdx−K−1(1)

[
I(R(θ′trunc)

TUT (X − µ) ;Y )
]

(42)

= EREθ′
trunc∈Sdx−K−1(1)

[
I((θ′trunc)

TUT (X − µ) ;Y )
]

(43)

= Eθ′
trunc∈Sdx−K−1

[
I((θ′trunc)

TUT (X − µ) ;Y )
]
= SI

(
UT (X − µ) ;Y

)
(44)

(45)

This completes the proof.

A.5 Proof of Corollary 2.1

Corollary 2.1. (Margin- and ID-based lower bound) We consider the same setting as in Theorem 1. However, we
additionally assume that the support of P (X) lies within a linear subspace W of K dimensions (K ≤ dx). Furthermore,
consider X and Y that are (R1, R2,mg, ϵ) SSM-separated, via spheres of radius R1 and R2, whose centers lie in W . We
then have,

(1−H (ϵ, 1− ϵ))Bγ(mg,R1,R2)

(
K − 1

2
,
1

2

)
≤ SI(X;Y ) ≤ 1, (46)
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Proof. The result directly follows from Theorem 2, noting that when the center spheres of radii R1 and R2 lie on the linear
subspace W , their projection on W have the same radii of R1 and R2 respectively. Next, we apply Theorem 2, which
essentially states that SMI for the dimensionality-reduced data within the subspace W is the same as the original SMI. As
the dimensionality of W is K instead of dx, this implies that Theorem 1’s result directly holds for dx = K instead, giving
us:

(1−H (ϵ, 1− ϵ))Bγ(mg,R1,R2)

(
K − 1

2
,
1

2

)
≤ SI(X;Y ) ≤ 1. (47)

This completes the proof.

A.6 Empirical results for SMI and Intrinsic Dimensionality

We conduct an experiment to show how MI, SMI, and the lower bound (in Corollary 2.1) vary with intrinsic dimensionality
(ID) K. We generate 100,000 data samples X from 10-dimensional gaussian mixtures, and assign labels Y of 0 or 1 to
them. These gaussian mixtures are obtained from 10-dimensional gaussian variables with mean and variance only along
the first dimension. The intrinsic dimensionality K is then varied by adding gaussian noise to the first K dimensions. We
vary K from 2 to 10. We assume P (Y = 0) = P (Y = 1) = 0.5 as before and 0 overlap (can be extended to overlapping
cases too). Note that X and Y are (2.5, 2.5, 5, 0)-SSM-separated in this case. We then compute the MI I(X;Y ), the SMI
SI(X;Y ) and the lower bound in Corollary 2.1. We present the results in Fig. 7. We observe that I(X;Y ) stays constant
at 1 while SI(X;Y ) and the lower bound decreases with increasing ID. This empirically proves our argument that SMI is
sensitive to changes in ID while MI is not.

Figure 7: MI I(X;Y ) stays constant while both the SMI SI(X;Y ) and the lower bound in Corollary 2.1 decrease with
increasing ID K.

A.7 Proof of Proposition 1

Proposition 1 We consider a Bayesian Neural Network (BNN) which can be represented as the feedforward graph X →
T → ŷ, where X is the input data, T is the penultimate layer of the network, and ŷ ∈ R is the one-dimensional network
output logit. Let Wopt ∈ Rdim(W ) represent the fixed trained weights for the penultimate layer. Let us assume that the
posterior P (W |D) ∼ N (Wopt, diag(σ)), for some σ ∈ Rdim(W ) and diag(.) is the diagonal matrix operator. Then, we
have that

I(ŷ;Y ) ≥ SI(T ;Y ). (48)

Proof. We note that for a single logit network with output ŷ = WTT , the with the posterior P (W |D), we will have that

I(ŷ;Y ) = EW∼P (W |D)

[
I(WTT ;Y )

]
(49)

Next, we note that as the uncertainty in W increases to the limiting case when σ → {∞,∞, ...,∞}, this would provide
a lower bound for I(ŷ;Y ). Furthermore, in the limiting case when σ → {∞,∞, ...,∞}, we note that as P (W |D)
converges to the uniform distribution, it is independent of the center of the Gaussian P (W |D) ∼ N (Wopt, diag(σ)).
Thus, as σ → {∞,∞, ...,∞}, we can express P (W |D) ∼ N (0, diag(σ)).
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For what follows, let us represent the set of all points in Rd which have a distance of τ to the origin, via the set Sd−1(τ).
Also, we will make use of the fact that I(αX;Y ) = I(X;Y ), for discrete Y , as MI is scale invariant w.r.t X when Y
is discrete. Lastly, we use the convention EA∈B [.] to represent EA∼Unif(B)[.], where Unif(B) represents the uniform
distribution over B. The observations from the previous paragraph then yield:

EW∼P (W |D)

[
I(WTT ;Y )

]
≥ lim

σ→{∞,∞,...,∞}
EW∼P (W |D)

[
I(WTT ;Y )

]
(50)

= lim
σ→{∞,∞,...,∞}

EW∼N (0,diag(σ))

[
I(WTT ;Y )

]
(51)

= lim
σ→∞

EW∼N(0,σ×diag(Idim(W )))
[
I(WTT ;Y )

]
(52)

where dim(W ) is the dimensionality of W and Ik represents the identity vector of dimensionality k. Note that dim(T ) =
dim(W ). The above can be subsequently represented as

EW∼P (W |D)

[
I(WTT ;Y )

]
≥ EτEW∈Sdim(T )−1(τ)

[
I(WTT ;Y )

]
(53)

= EτEW ′∈Sdim(T )−1(1)

[
I(τ(W ′)TT ;Y )

]
= Eτ [SI(T ;Y )] = SI(T ;Y ). (54)

This completes the proof.

B ON SMI ESTIMATION

B.1 Psuedocode of the SMI Estimator

Algorithm 1 shows the pseudocode of our SMI estimator. Since in all our experiments Y is the discrete labels, we do
not project the Y and only project X into one-dimensional variables. We adopt the KSG estimator (Kraskov et al., 2004)
implemented using Non-parametric Entropy Estimation Toolbox (NPEET) with k = 3 (Krizhevsky, 2000) for the MI
computation of SMI. The complexity of our SMI estimator, ŜI(X,Y ), is of the form O(mn(dx + log n)) where m is the
number of slices, n is the number of samples, and dx is the dimensions of X . For all our experiments, the SMI is computed
using the training dataset.

Algorithm 1 SMI Estimator (Goldfeld and Greenewald, 2021, Appendix B)

Require: n (pairs of) samples (Xn, Y n) i.i.d. according to PX,Y ∈ P(Rdx × R), a scalar MI estimator Î(·; ·), and a
chosen number of slices m.
for i = 1 : m do

Sample Θi uniform on the sphere Sdx−11

Compute the MI estimate: Si ← Î
((
ΘT

i X
)n

; (Y )
n)

end for
ŜIn,m ← 1

m

∑m
i=1 Si

B.2 Convergence Behaviour of SMI Estimator

We study how our SMI estimator behaves with different number of slices m and different number of samples n used to
estimate it. We compute the SMI between the inputs and the true labels for Fashion MNIST training dataset. For the SMI
computation, we vary m and n. We show in Fig. 8, that the SI(X;Y ) converges as m and n increase (as expected). We
also show that the compute time increases linearly with increasing m and n. In Fig. 8a, we observe that for m larger than
1000, the SMI estimation is stable and has converged. In Fig. 8b, we show that for n larger than 10000, the SMI estimation
is relatively stable and has converged. For all of our experiments, we use m = 1000 and n = 10000.

1A uniform sample from Sd−1 can be found by sampling a vector Z from a d-dimensional isotropic Gaussian and forming Z/||Z||2.
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(a) varying m (b) varying n

Figure 8: The convergence behaviour of SI(X;Y ) where X and Y are the input features and labels of the Fashion MNIST
training dataset respectively. The number of slices m and the number of samples n used to estimate the SMI are varied.
The time spent to compute the SMI in each case is also plotted to show that it behaves linearly with m and n.

C EXPERIMENT DETAILS

C.1 SMI Behaviour in DNNs

Here, we provide the training details and for Section 2.4 in the main paper.

Experiment Details: We consider three different types of networks: 5-layer MLP (architecture is shown in Table 1), 6-
convolutional layer CNN (architecture is shown in Table 2), and pre-trained VGG16 (architecture is shown in Table 3).
For VGG16, all the weights are trained during training and the units of the last layer depends on the number of classes
in the dataset. We consider 3 different datasets: MNIST, CIFAR10 and CIFAR100. The network is trained for 50 epochs
using SGD optimizer with 0.01 learning rate and 0.9 momentum. The batch size is set to 32. The SMI is computed with
m = 500 and n = 10000 on the training dataset.

Table 1: The architecture of the 5-layer MLP.

Layer Type Parameters
Fully-Connected 1024 units, ReLU
Fully-Connected 1024 units, ReLU
Fully-Connected 1024 units, ReLU
Fully-Connected 1024 units, ReLU
Fully-Connected 10 units, Linear

Table 2: The architecture of the 6-convolutional layer CNN.

Layer Type Parameters
Convolutional 32 filters, 3 × 3 kernels, strides=2, ReLU
Convolutional 32 filters, 3 × 3 kernels, strides=1, ReLU
Convolutional 32 filters, 3 × 3 kernels, strides=2, ReLU
Convolutional 32 filters, 3 × 3 kernels, strides=1, ReLU
Convolutional 32 filters, 3 × 3 kernels, strides=2, ReLU
Convolutional 10 filters, 1 × 1 kernels
Global Average Pooling -
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Table 3: The architecture of VGG16 for experiments in Section 2.4.

Layer Type Parameters
VGG16 base network Pre-trained on ImageNet
Fully-Connected 4096 units, ReLU
Fully-Connected 4096 units, ReLU
Fully-Connected 100 units, Linear

C.2 Memorization

Here, we provide the training details and additional results for Section 4.1 in the main paper.

Experiment Details: We consider two different types of networks: 5-layer MLP (architecture is shown in Table 1) and 5-
convolutional layer CNN (architecture is shown in Table 4). We consider 2 different datasets: MNIST and Fashion MNIST.
The network is trained for 50 epochs (100 epochs for MLP, Fashion MNIST experiment) using SGD optimizer with 0.01
learning rate and 0.9 momentum. The learning rate decays by a factor of 0.9 when the training accuracy does not improve
for the next 10 epochs. The batch size is set to 32. The label noise is induced by randomly changing the training labels for
a fraction ϵ (referred to as the label noise ratio) of the dataset. The SMI is computed with m = 500 and n = 10000 on the
training dataset (with corrupted labels).

Table 4: The architecture of the 5-convolutional layer CNN.

Layer Type Parameters
Convolutional 512 filters, 3 × 3 kernels, strides=2, batch normalization, ReLU
Convolutional 512 filters, 3 × 3 kernels, strides=1, batch normalization, ReLU
Convolutional 512 filters, 3 × 3 kernels, strides=2, batch normalization, ReLU
Convolutional 512 filters, 3 × 3 kernels, strides=1, batch normalization, ReLU
Convolutional 10 filters, 1 × 1 kernels
Global Average Pooling -

In Fig. 9, we consider MLP model with MNIST and show the SI(T ;Y ) for all the layers as well as the model performance
during training for different degrees of label noise. In Figure 10, we consider CNN model with Fashion MNIST and show
the SI(T ;Y ) for all the layers as well as the model performance during training for different degrees of label noise. These
are the experiments considered in Section 4.1 in the main paper. Please refer to Section 4.1 for discussion of results.
Additionally, we consider another case: MLP trained with Fashion MNIST (Fig. 11). We arrive at the same conclusions as
the ones discussed in the main paper.
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(a) label noise ratio = 0 (b) label noise ratio = 0.2 (c) label noise ratio = 0.4

(d) label noise ratio = 0 (e) label noise ratio = 0.2 (f) label noise ratio = 0.4

Figure 9: The SI(T ;Y ) and model performance in 5-layer MLP trained with MNIST of different label noise ratio for 50
epochs.

(a) label noise ratio = 0 (b) label noise ratio = 0.2 (c) label noise ratio = 0.4

(d) label noise ratio = 0 (e) label noise ratio = 0.2 (f) label noise ratio = 0.4

Figure 10: The SI(T ;Y ) and model performance in 5-convolutional layer CNN trained with Fashion MNIST of different
label noise ratio for 50 epochs.
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(a) label noise ratio = 0 (b) label noise ratio = 0.2 (c) label noise ratio = 0.4

(d) label noise ratio = 0 (e) label noise ratio = 0.2 (f) label noise ratio = 0.4

Figure 11: The SI(T ;Y ) and model performance in 5-layer MLP trained with Fashion MNIST of different label noise
ratio for 100 epochs.

C.3 Generalization

Here, we provide the training details and additional results for Section 4.2 in the main paper.

Experiment Details: We consider four different types of networks: 5-layer MLP (architecture is shown in Table 1),
5-convolutional layer CNN (architecture is shown in Table 4), pre-trained VGG16 and pre-trained ResNet50 (both pre-
trained architectures are shown in Table 5). For VGG16 and ResNet50, all the weights are trained during training. We
consider 4 different datasets: MNIST, Fashion MNIST, CIFAR10 and CIFAR100. For MLP and CNN, the network is
trained with batch size 32 using SGD optimizer with 0.01 learning rate and 0.9 momentum. For VGG16 and ResNet50,
the network is trained with batch size 256 using SGD optimizer with 0.001 learning rate and 0.9 momentum. The SMI
is computed with m = 1000 and n = 10000 on the training dataset. The stopping criterion is when the training accu-
racy does not improve in the next 20 epochs. For all the experiments here, the training accuracy is close to 100%. To
obtain different generalization gap, we train the network with dropout of varying probability and different degrees of label
noise. For the MLP setting, we consider dropout probability in the range [0.1, 0.2, 0.3, 0.4, 0.5] and label noise ratio in the
range [0.005, 0.01, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0]. For the CNN setting, we consider the dropout probability in the range
[0.1, 0.2, 0.3, 0.4, 0.5] and label noise ratio in the range [0.2, 0.4, 0.6, 0.8, 1.0] as well as with and without batch normaliza-
tion. For the VGG16 and ResNet50 cases, we consider dropout probability in the range [0.1, 0.2, 0.3, 0.4] and label noise
ratio in the range [0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0]. For MLP and CNN, the dropout is applied for each hidden layer while
for VGG16 and ResNet50, the dropout is only applied at the last two fully-connected hidden layers.

Table 5: The architecture of pre-trained VGG16/ResNet50.

Layer Type Parameters
VGG16/ResNet50 base network Pre-trained on ImageNet
Fully-Connected 4096 units, ReLU
Fully-Connected 4096 units, ReLU
Fully-Connected 10 or 100 units, Linear
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