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Abstract

Graphons are general and powerful models for
generating graphs of varying size. In this pa-
per, we propose to directly model graphons us-
ing neural networks, obtaining Implicit Graphon
Neural Representation (IGNR). Existing work in
modeling and reconstructing graphons often ap-
proximates a target graphon by a fixed resolution
piece-wise constant representation. Our IGNR
has the benefit that it can represent graphons up
to arbitrary resolutions, and enables natural and
efficient generation of arbitrary sized graphs with
desired structure once the model is learned. Fur-
thermore, we allow the input graph data to be un-
aligned and have different sizes by leveraging the
Gromov-Wasserstein distance. We first demon-
strate the effectiveness of our model by showing
its superior performance on a graphon learning
task. We then propose an extension of IGNR that
can be incorporated into an auto-encoder frame-
work, and demonstrate its good performance un-
der a more general setting of graphon learning.
We also show that our model is suitable for graph
representation learning and graph generation.

1 INTRODUCTION

Graphs are ubiquitous in real life, from physical and
chemical interactions to brain and social networks.
Learning on graph data and developing statistical mod-
els for graphs have been of long-standing interest
[Goldenberg et al., 2010, Newman, 2018]. Classi-
cal statistical models for graph data mostly belong
to parametric families, such as the stochastic block
model [Nowicki and Snijders, 2001], the exponential
random graph model [Hunter and Handcock, 2006],
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the mixed membership model [Airoldi et al., 2008]
and many others [Erdős et al., 1960, Hoff et al., 2002,
Soufiani and Airoldi, 2012]. However, because these
models are designed to characterize a very particular type
of graphs, their modeling capacity becomes limited when
dealing with more complex and diverse graphs.

The graphon [Lovász, 2012, Diaconis and Janson, 2007]
has emerged as a non-parametric, statistical model for
graphs, and its modeling capacity greatly exceeds the
aforementioned parametric graph models. Graphons have
recently garnered increasing interest in statistical and
machine learning [Eldridge et al., 2016, Ruiz et al., 2020,
Ruiz et al., 2021] with their two-fold theoretical interpre-
tations. A graphon can either be interpreted as the limit
object of a convergent sequence of graphs, or, pertinent to
our present work, as a very general model for generating
unweighted graphs. To be formally introduced in Section
2, any graphon can be represented as a symmetric, measur-
able 2D function W : [0, 1]2 → [0, 1]. Adopting the func-
tion representation of graphons, one interesting question
that arises is how to model graphons and learn graphons
from graph data.

Prior work has developed methods for learning graphons
from data, e.g. matrix completion [Keshavan et al., 2010],
stochastic block approximation [Airoldi et al., 2013],
sorting-and-smoothing [Chan and Airoldi, 2014], univer-
sal singular value thresholding [Chatterjee, 2015], and
Gromov-Wasserstein barycenters [Xu et al., 2019b]. How-
ever these methods suffer from two common limitations.
The first limitation is that these methods model the target
graphon as a “discrete” 2D step function of fixed resolution
(i.e. a matrix), which substantially reduces the variety
of graphon functions that can be nicely characterized.
The second limitation is that these methods are designed
to learn a single graphon from observed graphs. Real
networks, however, may vary with time, space, or other
general higher dimensional latent parameters. The existing
methods are not applicable to the more complex and
dynamic settings of graphon learning.

Present work. In this paper, we address the above limita-
tions and present Implicit Graphon Neural Representation
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(IGNR), a graphon learning framework that can represent
graphons up to arbitrary resolutions, and is applicable to
the more general settings of graphon learning. IGNR uti-
lize a powerful and flexible tool, implicit neural represen-
tation [Sitzmann et al., 2020], to construct a novel model
for graphons. Implicit neural representation refers to using
neural networks to represent implicitly defined signals. It
arises as an attractive paradigm because of its potential to
model various complex signals, and its ability to re-sample
the signal at arbitrary resolutions. Drawing inspiration
from such a paradigm, we observe that we can treat graph
data as signals sampled at different resolutions (giving rise
to graphs of different sizes) from some graphons. In other
words, we can consider graphons as functions defined im-
plicitly through graph data, and thus model graphons with
implicit neural representation. Such a neural representation
for graphons resolves the first limitation mentioned previ-
ously, because a neural network can characterize a much
broader family of functions than that of a fixed-resolution
step function. The second limitation of learning graphons
in more general settings can also be readily solved because
given the graphon modeled as a neural network, we can
easily incorporate a latent space into the model through an
auto-encoder framework, and utilize the latent space to cap-
ture latent parameters that govern the changing graphons.
To summarize, our contribution is two-fold:

• We propose IGNR, a novel framework for model-
ing and learning graphons that enables resolution-free
representation of graphons. Extending IGNR, we fur-
ther propose conditional-IGNR (c-IGNR), which can
be incorporated into an auto-encoder to solve more
general graphon learning tasks.

• We validate the effectiveness of our framework by
showing that it excels in both classical and more gen-
eral settings of graphon learning. We also show that
our framework produces meaningful graph embed-
dings and offers a convenient model for generating ar-
bitrary sized graphs.

Related Work

Graphon Learning. Classical graphon learning meth-
ods [Airoldi et al., 2013, Chan and Airoldi, 2014,
Keshavan et al., 2010, Chatterjee, 2015] often make
an important assumption on the input graphs—these
graphs need to be “well-aligned”, which means the
correspondence between nodes should be given so that
all input graphs can first be arranged into some common
node ordering. If the node arrangements are not given,
heuristics will be deployed, for example, by sorting the
nodes with empirical degrees [Chan and Airoldi, 2014].
Such a pre-processing step may induce unwanted error
due to undesired matching, for example, when the graph
nodes cannot be arranged in some common ordering.

The work of [Xu et al., 2021a] bypasses the problem of
node arrangements by employing the Gromov-Wasserstein
(GW) distance, which is permutation invariant to the node
orderings of graphs. They use the GW barycenter of the
input graphs as the estimate of the target graphon, but
they still rely on a piece-wise constant approximation
for the target graphon. The resolution of the barycenter
is a parameter that needs to be manually set. Our work
also leverages the GW distance by incorporating it as a
reconstruction loss to train IGNR. Also relevant to our
work is GNAE [Xu et al., 2021b], which uses a linear
factorization model to represent a graphon, with the linear
coefficients obtained from a graph neural network encoder.
The graphon factors of GNAE are piece-wise-constant
functions (matrices) at fixed resolutions; in contrast,
IGNR learns a single, resolution-free representation of the
graphon.

Gromov-Wasserstein (GW) Distance. Optimal Transport
(OT) has been used by the machine learning commu-
nity under various scenarios, including unsupervised learn-
ing [Arjovsky et al., 2017, Schmitz et al., 2018], classifi-
cation [Frogner et al., 2015], natural language processing
[Kusner et al., 2015], and many others. Traditional OT
loss, however, suffers from the limitation that it is not
invariant to important families of invariance, such as re-
scaling, translation, or rotations [Peyré et al., 2019], and
thus is not directly applicable to shape matching or com-
paring structured data like graphs. The GW distance pro-
posed by [Mémoli, 2011] extends the original OT formu-
lation and enables comparing distributions defined on dif-
ferent spaces without requiring the definition of a fam-
ily of invariances. In particular, the comparison of the
structural information between the different spaces is en-
coded in the OT problem. The GW distance has thus
been leveraged in a sequence of following works as a
distance between graphs with applications to comput-
ing graph barycenters [Peyré et al., 2016, Xu et al., 2021a],
graph node embedding [Xu et al., 2019b], graph partition-
ing [Xu et al., 2019a], linear and non-linear graph dictio-
nary learning [Vincent-Cuaz et al., 2021, Xu, 2020], and
supervised graph prediction [Brogat-Motte et al., 2022].
The works of [Vincent-Cuaz et al., 2021, Xu, 2020] are
most relevant to us in the sense that they also utilize the
GW distance as a reconstruction loss. However, they dif-
fer from our approach as their goal is to learn factorization
models, whereas our goal is to learn a neural graphon repre-
sentation. We note that in general, computing the GW dis-
tance is hard (in the discrete setting it is often modeled as
a quadratic assignment problem). However, we will lever-
age recent advances in computational optimal transport and
use fast iterative algorithms such as the conditional gradient
algorithm [Vayer et al., 2019], and proximal gradient algo-
rithm [Xu et al., 2019b] to efficiently compute a good solu-
tion.
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Deep Generative Models for graphs. Variational autoen-
coders (VAE) [Kingma and Welling, 2013], generative
adversarial networks (GAN) [Goodfellow et al., 2014],
and deep autoregressive models have been applied
in the past for graph generation tasks. VAE node-
based approaches (and more generally latent po-
sition models [Smith et al., 2019]) such as VGAE
[Kipf and Welling, 2016] learn latent node embeddings to
generate edge probabilities. This approach is limited to
learning from a single fixed-sized graph and hence can
only generate new graphs of the same size. Graph-level
VAE (GraphVAE [Simonovsky and Komodakis, 2018])
incorporates pooling to instead generate a graph-level
embedding, and maps the graph embedding directly to
an edge probability matrix by a decoder. However, it
also cannot naturally deal with varying graph sizes and
has to specify a maximum graph size for the decoder and
use masking. This issue is common for most follow-up
work in this direction. Efficient graph matching without
knowing node correspondence (which is needed in recon-
struction loss) is also a challenge. In comparison, our
(c-)IGNR when applied for graph generation, does not
use node-level embeddings; it naturally solves the graph
size generalizability issue through learning a graphon
neural representation; and uses the Gromov-Wasserstein
loss as an alternative to mitigate the graph matching. The
GAN approach to graph generation avoids graph matching
by using a permutation invariant discriminator, but the
difficulty in minimax optimization remains its major
limitation. Autoregressive approaches such as GraphRNN
[You et al., 2018] and GRAN [Liao et al., 2019] solve the
graph size issue by learning complex recurrent models to
iteratively generate new nodes and edges. Permutation
invariance remains a challenge for such approaches, and
they choose to specify certain orderings over the graph
nodes for training. In contrast, our IGNR enjoys the merit
of conceptual and modeling simplicity (using a simple
MLP to learn a graphon vs. hierarchical RNNs to learn
graph generation steps).

2 BACKGROUND

Graphon. A graphon is a bounded, symmetric, and
Lebesgue measurable function, denoted as W : Ω2 →
[0, 1], where Ω is a probability space, equipped with prob-
ability measure µ. We follow the convention and set Ω =
[0, 1], and µ as the uniform distribution on Ω. Intuitively,
we can consider points on the unit line vi, vj ∈ [0, 1] as
nodes, and W (vi, vj) as the edge weight connecting vi
and vj . Given a graphon W , we can generate unweighted
graphs of arbitrary sizes either in a stochastic or determin-
istic fashion. In the stochastic setting, we generate from
W a graph of size N (represented by the adjacency ma-
trix A = [aij ] ∈ {0, 1}N×N ) by following the sampling

process:

vi ∼ Uniform([0, 1]),∀i = 1, ..., N,

aij ∼ Bernoulli(W (vi, vj)),∀i, j = 1, ..., N.
(1)

For the deterministic setting, we simply replace the ran-
dom sampling of nodes vi with fixed grid (i.e. vi = i−1

N ).
The graphon thus serves as a general and useful model to
characterize and generate varying sized graphs. Moreover,
the distribution on graphs defined by a graphon W is un-
changed by relabeling of W ’s nodes.

Implicit Neural Representation. Implicit neural
representations (INRs) have gained recent attention
in the computer vision community for their con-
ceptually simple formulation and powerful ability to
represent complex signals such as images, shapes,
and videos [Chen and Zhang, 2019, Sitzmann et al., 2020,
Genova et al., 2020, Park et al., 2019, Groueix et al., 2018,
Mildenhall et al., 2021]. In the common INR setting, the
observed data oi ∈ Rp are considered as discrete realisa-
tions oi = f(xi) of some unknown signal f : X → O
(with X ⊆ Rd and O ⊆ Rp) sampled at coordinates
xi ∈ X for i = 1, ..., n. In the example of an image, oi

represents the 3-dimensional RGB value at a single pixel
coordinate xi = (xi, yi). As such, the unknown function f
is implicitly defined through xi’s and oi’s. In this case INR
can be a neural network fθ : X → O, typically a multi-
layer perceptron (MLP) parameterized by θ, trained on the
pairs (xi, f(xi)) to approximate f . Because fθ is trained
on the full continuous domain of X , it is resolution free —
at inference time, we can evaluate fθ at arbitrary points in
X to approximate the signal value.

Gromov-Wasserstein Distance for graphs. Based on the
concepts of optimal transport, [Mémoli, 2011] proposed
the Gromov-Wasserstein (GW) distance for object match-
ing. The GW distance operates on metric measure spaces
and has the important property that it is invariant to isome-
tries of the spaces that it compares. Therefore when apply-
ing the GW distance to graphs, it is permutation invariant
to the node orderings of the graphs. Formally, consider two
graphs G1 = (A1, h1) with N1 nodes and G2 = (A2, h2)
with N2 nodes, where Ai ∈ RNi×Ni is the (potentially
weighted) adjacency matrix, and hi ∈ ΣNi := {h ∈
R+

Ni
|
∑

j h[j] = 1} is a histogram (i.e. probability distribu-
tion) on the Ni nodes signifying their relative importance
(without prior knowledge, the uniform weight hi =

1
Ni
1Ni

is taken). The 2-order squared GW distance GW2(G1, G2)
between G1 and G2 is defined as:

min
T∈C(h1,h2)

N1∑
i,k=1

N2∑
j,l=1

(A1[i, k]−A2[j, l])
2T [i, j]T [k, l]

(2)

where C(h1, h2) := {T ∈ RN1×N2 , T1N2 =
h1, T

⊤1N1
= h2} is the set of couplings between the two
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histograms. In the following, we assume the weights h1

and h2 are uniform in GW2(G1, G2). Note that in addition
to the nice property of being permutation invariant, GW2

is well defined to compare graphs with different number of
nodes, and thus it is a natural and suitable loss for graph
matching.

3 Implicit Graphon Neural Representation
(IGNR) and conditional-IGNR for
graphon learning

In this paper, we propose to leverage implicit neural repre-
sentations to learn and model graphons, which we will re-
fer to as Implicit Graphon Neural Representation (IGNR).
We first introduce the motivation for such a representation.
In Section 3.2, we describe the detail of IGNR for learn-
ing a single graphon from graph data. Next in Section 3.3,
we further propose a conditional-IGNR (c-IGNR) model to
learn a parameterized family of graphons. We show how
this allows us to develop an auto-encoder framework that
can be potentially used for graph generative modeling and
representation learning. Finally, we discuss how to train an
IGNR with the GW loss.

3.1 Motivation

One of our main motivations to model graphons with INRs
is to obtain resolution-free representations for graphons.
All existing methods for graphon learning boil down to us-
ing a two-dimensional step function (a matrix with fixed
K × K resolution) to represent the graphon. Such step
function representations of graphons are based on the weak
regularity lemma of graphon [Frieze and Kannan, 1999].
To state the lemma, we first introduce the cut norm.
Denote the space of all bounded symmetric measurable
functions W̃ : [0, 1]2 → R by W̃ , and the space of
graphon by W . For W̃ ∈ W̃ , the cut norm is defined
as ||W̃ ||□ = supS,T⊆[0,1] |

∫
S×T

W̃ (x, y)dxdy|, where
the supremum is taken over all measurable subsets S and
T of [0, 1]. Let P = (P1, ...,PK) be a partition of
[0, 1] into |P| = K measurable subsets. We denote a
step function WP : [0, 1]2 → [0, 1] as WP(x, y) =∑K

k,k′=1 wkk′1Pk×Pk′ (x, y), where wkk′ ∈ [0, 1], and
1Pk×Pk′ is the indicator function that equals 1 if (x, y) ∈
Pk × Pk′ and equals 0 otherwise. The weak regularity
lemma for graphons states that every graphon can be ap-
proximated in the cut norm by a step function up to the
resolution of the step function.

Theorem 1 (Weak Regularity Lemma of graphon (Lovász,
2012)). For every graphon W ∈ W and K ≥ 1, there is a
step function WP with resolution |P| = K such that

||W −WP ||□ ≤ 2√
logK

(3)

From the theorem, we can see that when using step func-
tions to approximate graphons, the error in cut norm is in-
versely related to the resolution K, which in practice can be
a small (∼15) user defined value, as in [Xu et al., 2021a].
Our motivation is that we want to avoid the resolu-
tion problem by using a neural network (INR), which
is resolution-free, to model the graphon, instead of us-
ing matrices to model the step function approximation of
the graphon. Thanks to the universal approximation the-
ory [Hornik et al., 1989, Hornik, 1991], IGNR can approx-
imate any graphon function with arbitrary precision, but
without dependence on resolution parameters of any sort.
To the best of our knowledge, we are the first to directly
use neural networks to model graphons.
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Figure 1: An illustration of the (a) IGNR and (b) c-IGNR
within an AE framework for graphon learning (c) left: inner
architecture of IGNR, right: inner architecture of c-IGNR.

3.2 IGNR: learning single graphons

For the single graphon learning problem, we consider an
unknown graphon W ∈ W . Let {Gi}Mi=1 be a set of graphs
generated from W using the stochastic setting. We pro-
pose to learn W based on {Gi}Mi=1 using a neural network
parameterized by θ:

fθ : R2 → [0, 1], (4)
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where fθ defines a continuous function from [0, 1]2 to
its output domain encoding edge probability. Note that
although fθ is defined on all of R2, our domain of in-
terest for it is on [0, 1]2. We model fθ using SIREN
[Sitzmann et al., 2020], which is a MLP using sine activa-
tion and has shown good performance on image data. Con-
cretely, fθ is a composition of L hidden layers followed by
an output layer with sigmoid activation:

hi = sin(Wihi−1 + bi), for i = 1, ..., L (5)
hL+1 = Sigmoid(WL+1hL + bL+1) (6)

with learnable weights θ = {Wi ∈ Rli×li−1 ,bi ∈ Rli}.
We set h0 = x ∈ [0, 1]2 as the input coordinates in [0, 1]2.

Given an input graph Gi with Ni number of nodes, we
can optimize θ by minimizing the reconstruction loss
L(fθ(x(Ni)), Gi), which is chosen as the squared GW dis-
tance (GW2). By abuse of notation, here we treat x as a co-
ordinate sampling function that samples a grid of Ni by Ni

coordinates in [0, 1]2 given Gi. In other words, fθ(x(Ni))
is a Ni by Ni weighted adjacency matrix, whose elements
represent edge connection probabilities, and we want it to
be close to the input graph. As a result, the squared GW
distance GW2(fθ(x(Ni)), Gi) can be evaluated between
the edge probability matrix (learned and sampled by IGNR)
and the input graph Gi (represented by its adjacency matrix
Ai for computation). The final graphon learning problem
for IGNR given a dataset of M graphs can be expressed as:

min
θ

1

M

M∑
i=1

GW2(fθ(x(Ni)), Gi) (7)

An illustration of the graphon learning framework is shown
in Figure 1(a), (c). Note that for simplicity, we select the
coordinate sampling function such that x(Ni) samples a set
of Ni × Ni regular-spaced coordinates in [0, 1]2, namely,
x(Ni) = {xp,q = (xp, yq)|xp = p−1

Ni
, yq = q−1

Ni
, p =

1, ..., Ni, q = 1, ..., Ni}. We leave the selection of more
complex sampling functions x(·) for future work.

3.3 Conditional-IGNR (c-IGNR): learning
parameterized family of graphons

Instead of learning a single unknown graphon, we now
consider the more general setting of learning a family of
unknown graphons {Wα}α ⊂ W that are parameterized
by some unknown parameter α. For example, when α ∈
[0,∞), we can think of it as a time parameter, and Wα rep-
resents a generic dynamic graphon model. Let {Gi}Mi=1 be
a set of graphs generated from {Wα}α for different values
of α. We hope to learn for each input graph its latent repre-
sentation and IGNR such that the latent space captures in-
formation of α, and the trained IGNR can generate graphs
of different sizes with similar structure to the input graph.
To this end, we propose to learn a c-IGNR (Figure 1(b),

(c)), which defines a conditional mapping that outputs dif-
ferent IGNRs (R2 → [0, 1]) conditioned on different latent
vectors (z ∈ Rd). Formally, c-IGNR defines the continuous
mapping:

fθ : Rd × R2 → [0, 1] (8)

Again, fθ is a neural network parameterized by θ, and d
is the dimension of the latent space. Given the latent code
zi ∈ Rd for Gi, fθ(zi, ·) approximates a graphon that can
generate Gi. There are several options to model c-IGNR,
and we adopt the dual network architecture proposed by
[Mehta et al., 2021], which was shown to be more suitable
than conditioning-by-concatenation [Park et al., 2019] for
sine activation, and more efficient than conditional hyper-
networks [Ha et al., 2017, Sitzmann et al., 2020].

Concretely, c-IGNR is composed of a synthesis network
and a modulation network. The synthesis network is like
the ordinary IGNR, but with an additional modulation vari-
able acting element-wise on each layer’s sine activation
output. It is a composition of L hidden layers followed
by an output layer with sigmoid activation:

hi = ai ⊙ sin(Wihi−1 + bi), for i = 1, ..., L (9)
hL+1 = Sigmoid(WL+1hL + bL+1) (10)

We set h0 = x ∈ [0, 1]2 as the input coordinates in [0, 1]2

as before. Wi ∈ Rli×li−1 and bi ∈ Rli are learnable
weights, and ⊙ represents element-wise product. ai ∈ Rli

is the modulation variable, exerting the influence of the la-
tent code on IGNR.

The modulation variable ai is the output of from the mod-
ulation network, which is a second MLP using ReLU ac-
tivation. The modulation network takes the input graph’s
latent code z and generates the modulation variable ai (for
i = 1, ..., L) at each layer for the synthesis network:

a1 := h′
1 = ReLU(W′

0z+ b′
0) (11)

ai := h′
i = ReLU(W′

i[hi−1 z]T + b′
i), for i = 2, ..., L

(12)

where W′
0 ∈ Rl1×d, b′

i ∈ Rli (for i = 1, ..., L), and W′
i ∈

Rli×(d+li−1) (for i = 2, ..., L) are learnable weights.

Now, given the latent code zi of an input graph Gi with size
Ni, and any integer K > 0, fθ(zi,x(K)) is the K × K
weighted adjacency matrix whose elements represent edge
connection probabilities, and can be intuitively considered
as Gi’s reconstructed graph of size K from its latent code
zi. Here we treat x(·) as the coordinate sampling func-
tion defined previously. To learn fθ(·, ·), we can treat it as
a graphon decoder and incorporate it into an autoencoder
(AE) framework. fθ(·, ·) constitutes a decoder because
conditioning on the latent code zi, it outputs a graphon
fθ(zi, ·) (represented as IGNR), from which we can sample
reconstructed graph of any size K using coordinates x(K).
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We complete the AE framework by adding an encoder
module. We propose to use a graph neural network (GNN)
parameterized by ϕ as an encoder (GNNϕ), which maps
each input graph to its graph level embedding, and we treat
the embedding as the latent code z of the graph. Based on
M training graphs, the learning problem for c-IGNR in an
AE framework can be expressed as:

min
ϕ,θ

1

M

M∑
i=1

GW2(fθ(GNNϕ(Gi),x(Ni)), Gi) (13)

It is worth noticing that we adopt the AE framework to train
c-IGNR and learn latent representations for graph data.
However, once the training is done, we can separate c-
IGNR from the AE and use it independently as a graph gen-
eration model that can easily generate varying sized graphs
with structures similar to that of the training graph data.

3.4 Training IGNR with GW loss

We optimize the model parameters (θ,ϕ in (7) and (13))
with respect to the GW2 reconstruction loss by alternately
updating the optimal transport coupling matrix (Ti) and the
model parameters. Note that given fixed optimal trans-
port matrix Ti, the gradient w.r.t the sampled reconstructed
graph (fθ(GNNϕ(Gi),x(Ni)), or fθ(x(Ni))) can be eas-
ily computed, and hence we can apply back-propagation
to update the network parameters (θ, ϕ). Given fixed net-
work parameters, the problem of solving for the optimal
transport matrix is a non-convex quadratic program, which
is hard to compute. However, we can leverage recent ad-
vances in computational optimal transport and use fast it-
erative algorithms such as the conditional gradient algo-
rithm [Vayer et al., 2019], and proximal gradient algorithm
[Xu et al., 2019b] to efficiently compute the approximate
solution.

4 EXPERIMENTS

In Section 4.1, we first demonstrate the effectiveness of
IGNR on the task of learning a single graphon. Motivated
by the superior performance of IGNR for learning individ-
ual graphons, we introduce the more challenging datasets
for c-IGNR to learn a parameterized family of graphons. In
Section 4.2, we demonstrate the strength of IGNR by show-
ing that c-IGNR as a decoder achieves better performance
than a piecewise constant baseline and state-of-the-art GW
method. Finally, in Section 4.3 we show that the embed-
dings learned by c-IGNR achieves competitive graph clas-
sification result on real datasets even though the model was
not designed for this purpose.

4.1 IGNR on learning individual graphons

Experiments setup. We select a set of 13 different
graphons (indexed by 0-12), which are considered in
[Chan and Airoldi, 2014, Xu et al., 2021a]. The definitions
of these graphons are given in the supplementary ma-
terial. Graphons 0-8 generate graphs that are easy to
align by sorting their node degrees in strictly increas-
ing order. Graphs generated by graphons 9-12 admit
no single way to align as their degrees can be constant
or non-monotonic. We test two versions of our IGNR,
IGNR-cg and IGNR-pg, which solve the optimal trans-
port matrix using the conditional gradient algorithm and
the proximal gradient algorithm respectively. We com-
pare our method with the sorting-and-smoothing (SAS)
[Chan and Airoldi, 2014] and the Gromov-Wasserstein
Barycenter (GWB) [Xu et al., 2021a] methods. Compar-
isons to other classical graphon learning methods can be
found in the supplement.

We set the resolution of the ground truth graphons to
be 1000 × 1000. For each graphon, we generate 10
graphs using the stochastic setting. To increase the diffi-
culty of learning, these 10 graphs are of different sizes in
{50, 77, 105, 133, 161, 188, 216, 244, 272, 300}. For eval-
uation, we use the 2-order GW distance between the
ground-truth graphon and the estimated graphon as an es-
timation of error (mean squared error could be used to es-
timate errors for easy-to-align graphons, see supplement).
Because our IGNR can approximate graphons up to arbi-
trary resolution, at evaluation time, we sample it at resolu-
tion 1000 as the estimated graphon. The other baselines,
however, only output piecewise constant graphon estima-
tion at a fixed resolution K < 1000. To evaluate, we fol-
low the procedure in [Xu et al., 2021a], which up-samples
the graphon estimation to resolution 1000 via linear inter-
polation as the final graphon estimation. For each graphon,
we repeat the experiment in 10 trials (in each trial, we gen-
erate 10 graphs from the graphon using a different random
seed and estimate the graphon by different methods), and
report the mean and standard deviation of the estimation
errors in Table 1.

Results. From the table, we can see that both versions
of our IGNR outperform the baselines across all graphons.
SAS has the worst errors because it first zero-pads the in-
put graphs to enforce them to have the same size before
estimating the graphon. The padding confuses the graph
alignment step, which is an important step for SAS and
other classical graphon learning methods. GWB performs
better than SAS because due to the usage of GW distance
it neither requires padding, nor requires the input graphs to
be aligned. It uses the GW barycenter of the input graphs
to estimate the graphon, but has to specify the resolution
K for the estimate. We follow the original paper, and set
K = ⌊ Nmax

logNmax
⌋, where Nmax is the size of the largest
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SAS GWB IGNR-cg IGNR-pg

0 0.173±0.005 0.049±0.008 0.034±0.005 0.026±0.003
1 0.197±0.002 0.047±0.001 0.035±0.002 0.020±0.002
2 0.303±0.003 0.044±0.004 0.028±0.003 0.023±0.003
3 0.305±0.003 0.042±0.004 0.028±0.004 0.023±0.004
4 0.468±0.002 0.029±0.002 0.023±0.003 0.019±0.001
5 0.393±0.001 0.044±0.001 0.025±0.002 0.018±0.001
6 0.293±0.001 0.049±0.002 0.035±0.002 0.027±0.001
7 0.275±0.002 0.052±0.001 0.033±0.002 0.019±0.001
8 0.182±0.001 0.052±0.001 0.040±0.001 0.021±0.002
9 0.294±0.001 0.060±0.007 0.043±0.004 0.039±0.007
10 0.448±0.001 0.064±0.009 0.045±0.007 0.047±0.006
11 0.401±0.013 0.246±0.032 0.169±0.011 0.210±0.026
12 0.448±0.022 0.247±0.032 0.171±0.014 0.193±0.005

Table 1: Errors of learning single graphons (each index cor-
responds to a different graphon)

graph among the input. One may suspect that increasing K
can lower the error for GWB, but we show in the supple-
ment that increasing K beyond the suggested value actu-
ally increases the error. Our IGNR allows the input graphs
to be un-aligned, does not require padding, and does not
have any resolution parameter. The resolution-free repre-
sentation of graphon helps IGNR to achieve the best per-
formance. Among the two versions of IGNR, IGNR-pg
performs better than IGNR-cg for the easy-to-align cases
(Graphons 0-8); whereas IGNR-cg shows advantage over
IGNR-pg for the cases (Graphons 10-12) where the degree
of the ground truth graphon (d(u) =

∫ 1

0
W (u, v)dv) does

not admit any strictly increasing ordering.

4.2 c-IGNR on learning parameterized graphons

Experiments setup. Motivated by IGNR’s superior per-
formance on learning single graphons, we move to the
more challenging task of learning a family of graphons pa-
rameterized by α. We consider two synthetic datasets of
graphs generated by parameterized graphons. In the first
scenario (S1), we consider graphons with the shape of a
stochastic block model composed of two-block, and the
governing parameter α determines the size ratio between
the two blocks (see Figure 2(a) top). Formally, we let

Wα(x, y) = 0.81[0,α]2(x, y) + 0.81[1−α,1]2(x, y)

+0.11[0,1]2(x, y)
(14)

and we choose α to be in the range α ∈ [0.1, 0.5].
We generate 600 graphs from Wα(x, y) under the de-
terministic setting, with α randomly sampled from
Uniform([0.1, 0.5]), and graph sizes randomly sampled
from {50, 51, ..., 79} with equal probability. In the second
scenario (S2), we consider graphons that generate noisy
ring graphs, and the parameter α determines the thickness
(“noisiness”) of the ring (see Figure 2(b) top). Formally,

we let

Wα(x, y) = 0.9 exp ((−y2 − (x− 1)2)/α2)+

0.9 exp ((−(y − 1)2 − x2)/α2)+

0.9 exp (−((sin

(
3

4
π

)
x+ cos

(
3

4
π

)
y)/α)2)

(15)

and we choose α to be in the range α ∈ [0.05, 0.15].
100 graphs are generated from Wα(x, y) under the
deterministic setting, with α randomly sampled from
Uniform([0.05, 0.15]), and graph sizes randomly sampled
from {50, 51, ..., 59} with equal probability. In both set-
tings, we assume no self-loops and generate undirected
graph from the graphon by only sampling the upper-
triangular part of the graphon. We use the adjacency ma-
trix of the graph to represent its structure and consider a
uniform measure/histogram on the nodes.

… …

… …

(b)

𝛼 = 0.05 𝛼 = 0.15𝛼 = 0.1

… …

… …

(a)

𝛼 = 0.1 𝛼 = 0.5𝛼 = 0.3

Figure 2: Illustration of synthetic parameterized graphons
(top) and corresponding graphs (bottom) generated from
the graphons for S1 in (a), and S2 in (b).

Qualitative result. We first train our c-IGNR (within the
AE framework) using data from S1. To visually verify that
c-IGNR is able to capture the ratio parameter α, we train
our model with latent dimension d = 2, and visualize the
latent codes in 2D colored by the value of α in Figure 3(a).
We can see that the latent codes nicely capture the changing
α in a 1D manifold.

Interestingly, once the AE is trained, we can treat the
learned decoder itself, i.e. our c-IGNR, as a separate model
that can generate graphs of arbitrary sizes, including sizes
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not included in the training data, and of similar structure to
the training graphs. This is because by feeding c-IGNR
with a latent code, we obtain a graphon represented by
IGNR, and can thus generate arbitrary sized graphs from
the IGNR. We illustrate this in Figure 3(a), where we select
a latent code (the gray star) in the low (high) α region from
the latent space, and use this latent code to generate two
graphs of sizes not observed in the training data. The newly
generated graphs also exhibit a two-blocks structure, with
the ratio between block sizes similar to that of the selected
latent code. We repeat the same analysis with data from S2

and present the result in Figure 3(b). The latent codes again
capture the changing parameter α, and new graphs of novel
sizes can be generated from the c-IGNR.

(b)

1

2
1:

2:

1:

2:

1

2

(a) α

α

𝑁 = 100𝑁 = 30

𝑁 = 80𝑁 = 30

Figure 3: Left: 2-dimensional latent code learned by c-
IGNR. Right: Using the latent codes represented by the
gray stars in the left embedding plot, we can generate new
graphs of sizes not included in the training data from c-
IGNR. (a)S1, (b)S2.

Quantitative result. To quantitatively evaluate the per-
formance of our model on learning parameterized
graphons, we split the data into a training set and a hold-out
testing set. After the model is trained on the training set,
we estimate the graphon for each graph in the testing set,
and report the mean squared GW distance between each
estimated graphon and the ground-truth graphon (at resolu-
tion 1000× 1000) that generated the corresponding testing
graph.

To demonstrate the merit of c-IGNR as an efficient (in
terms of the number of parameters) and resolution-free de-
coder, we compare it to a discrete baseline which uses the
same encoder, but the decoder is replaced by an MLP that
maps the latent code to a fixed K ×K matrix with values
in [0, 1]. In other words, the discrete baseline’s output ma-

trix at resolution K is treated as the piece-wise constant ap-
proximation to the ground-truth graphon, and K is a resolu-
tion parameter. In general, the performance of the discrete
baseline improves with larger K, but its number of param-
eters grows quickly with K (O(K2)); the discrete base-
line’s error is still larger than the error of c-IGNR, when
its number of parameters far exceeds that of c-IGNR (see
supplemental material).

We also compare our method with state-of-the-
art GW method, Graph Dictionary Learning
(GDL) [Vincent-Cuaz et al., 2021]. We train GDL on
the same training set to obtain the dictionary atoms, and
use the learned dictionary atoms to reconstruct each testing
set graph. The reconstructed graphs, which are weighted
adjacency matrices taking value in [0, 1], are treated as
piece-wise approximation to the ground-truth graphon.
We sweep the number of atoms and size of the atoms (see
supplemental material) and report the lowest test error
for GDL across parameter configurations. We run each
experiment five times and report the mean and standard
deviation of error on the test set. The result is summarized
in Table 2. Our c-IGNR outperforms both the discrete
baseline and GDL.

c-IGNR Discrete GDL

S1 0.022±0.001 0.038±0.001 0.052±0.002
S2 0.024±0.004 0.037±0.005 0.029±0.003

Table 2: Errors of learning parameterized graphons

4.3 c-IGNR on real data for classification

Finally, we show that on real datasets, the latent codes
learned by our c-IGNR (within the AE framework) can also
be useful for a graph classification task. To this end, we
consider the two well-known benchmark datasets IMDB-B
and IMDB-M [Yanardag and Vishwanathan, 2015], which
contain social network graphs without node attributes.
We compare our methods with two GW baselines,
GDL [Vincent-Cuaz et al., 2021] and GWF [Xu, 2020].
For GDL, the weights that correspond to the linear fac-
torization of the graph w.r.t the dictionaries give the graph
embedding vector that can be used for classification. For
GWF, the weights that correspond to the barycenter repre-
sentation of the graph serve as the embedding vector for
classification. Both our methods and the GW baselines are
first trained in an unsupervised manner to obtain the graph
embedding/latent vectors, and then an SVM classifier on
those vectors are trained. We report the 10-fold cross val-
idation classification accuracy. The C parameter for the
SVM are cross validated within C ∈ {10−4, ..., 104}. The
result is summarized in Table 3. We can see that our c-
IGNR can achieve meaningful latent representations for
graph classification.
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c-IGNR GWF GDL

IMDB-B 72.00±0.42 61.00±2.43 70.11±3.13
IMDB-M 48.48±0.56 40.35±0.79 49.01±3.66

Table 3: Classification accuracy (%)

5 CONCLUSION

In this paper, we proposed IGNR, a novel framework to
model and learn graphons leveraging implicit neural rep-
resentations and the Gromov-Wasserstein distance. We
demonstrated that our IGNR excels in both classical and
more complex settings of graphon learning. It would be in-
teresting to provide precise theoretical statements regard-
ing how implicit neural representations can approximate
graphons (or families of well-behaved graphons), which we
aim to do in the future.

One limitation of the present work is that graphs sampled
from graphons are usually dense. It will be interesting to
explore how to allow the generation of sparser graphs. One
possibility is to output a certain “sparsification” factor to-
gether with the generated graphon.
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A Implementation Details of IGNR and c-IGNR

Our code is available at: https://github.com/Mishne-Lab/IGNR

We detail the parameter setting for IGNR and c-IGNR in this section. The IGNR for learning a single graphon is an MLP
with 3 hidden layers. Each hidden layer contains 20 hidden units. Sine activation is used for each hidden layer, and the
output layer uses sigmoid activation. The IGNR takes 2-dimensional coordinate input and outputs 1-dimensional edge
probability (also see Figure 1 (c) left in the main text). For the c-IGNR, its synthesis network is an MLP with 3 hidden
layers, and each hidden layers contain 48, 36, 24 hidden units respectively. Sine activation is used for each hidden layer,
and the output layer uses sigmoid activation. The synthesis network of c-IGNR takes 2-dimensional coordinate input and
outputs 1-dimensional edge probability. The modulation network of c-IGNR is also an MLP with 3 hidden layers, and each
hidden layers contain 48, 36, 24 hidden units respectively. ReLU activation is used for each hidden layer. The modulation
network takes the latent code (dimension depending on experiments, tested in {2, 3, 16, 32, 64}) as input, and does not have
further output layer (also see Figure 1 (c) right in the main text). To train the c-IGNR within an auto-encoder framework,
we have to specify the encoder module. We use a 3-layer GIN [Xu et al., 2019c] as our encoder, and apply global average
pooling to obtain the graph embedding that is used as the latent code for the input graph.

We implement our model in Python using the POT library (Python Optimal Transport) [Flamary et al., 2021] and Pytorch
library [Paszke et al., 2019]. We optimize the parameters of our model using Adam Optimizer. Computation of the OT
coupling matrices (Ti) are based on POT. Note that for the single graphon learning task, because the number of input graphs
is small, we test two versions of our IGNR that use the conditional gradient (CG) algorithm and the proximal gradient (PG)
algorithm to solve for the OT matrices, respectively. For c-IGNR, we compute OT matrices only using the CG algorithm,
because a) in the more general and realistic settings, it is unlikely that the input graphs can admit strictly increasing node
degree ordering (which is where PG showing slight advantage over CG); and b) when the input number of graphs is much
larger than that of the simple setting, it becomes more computationally expensive to use PG, because it has to keep a current
estimation of the OT coupling matrix for each training graph at each iteration.

The current computational bottleneck for (c-)IGNR is the GW loss computation with the POT package (complexity is up
to O(N2M) where N is the largest graph size in the dataset and M ≤ N is the graph reconstruction size). Learning
IGNR (Sec 4.1) on a single core of a CPU(Intel Xeon Gold 6230@2.10GHz) takes an average of 16.8s; learning c-IGNR
on IMDB-B on a single Nvidia Quadro RTX 8000 GPU takes an average of 121.9s. Our future work aims to improve this.

B Additional Experimental Information for learning single graphons

B.1 Functions used for the single graphon learning task

Table 4 below shows the definitions of the 13 ground truth graphons used in the single graphon learning task (see section
4.1 of the main text).

B.2 Effect of IGNR architecture

In Figure 4, we show the result for one trial of the single graphon learning experiment where we compare IGNR with differ-
ent numbers of hidden units (labeled by the legend) with the strongest baseline GWB. We can see that the performance of
IGNR is not very sensitive to the choice of specific configurations, in the sense that all different configurations outperform
GWB. Note that in the extreme case of learning the graphon from only one graph input, IGNR has the risk of “overfitting”
to the particular entries of the input graph adjacency matrix, especially when the network size is large (smaller and simpler
networks would impose implicit regularization and mitigate the ”overfitting” effect). However, since in our experiments
we are learning the graphon from multiple graphs, IGNR would learn the average edge probability among the graphs and
thus avoid the problem of “overfitting” to a specific input graph. Consequently, we observe in Figure 4 that IGNR performs
well across networks sizes.

B.3 Additional evaluation metric

In Table 1, we used the 2-order GW distance between the ground-truth graphon and the estimated graphon as an evaluation
metric because the GW distance is permutation invariant and does not require the two graphons under comparison to be
aligned. Graphons 0-8, however, can be easily identified/aligned by sorting the node degrees (their degree function can be
ordered in strictly increasing order). Therefore, we can use an additional metric, the mean squared error (MSE), to evaluate
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W (x, y)

0 xy

1 exp(−(x0.7 + y0.7))

2 1
4
(x2 + y2 +

√
x+

√
y)

3 1
2
(x+ y)

4 (1 + exp(−2(x2 + y2)))−1

5 (1 + exp(−max{x, y}2 −min{x, y}4))−1

6 exp(−max{x, y}0.75)
7 exp(− 1

2
(min{x, y}+

√
x+

√
y))

8 log(1 + max{x, y})
9 |x− y|
10 1− |x− y|
11 0.8I2 ⊗ 1[0, 1

2
]2

12 0.8(1− I2)⊗ 1[0, 1
2
]2

Table 4: Ground truth graphons corresponding to each index in Table 1 of the main text.

Graphon index

𝑒𝑟
𝑟𝑜
𝑟

Figure 4: Effects of IGNR architectures (labelled by the legend on the right) on the single graphon learning task. x-axis
corresponds to the indices of different graphons, and y-axis indicates the error.

the graphon reconstruction for these easy to align graphons (evaluate the MSE after sorting the degrees of the two graphons
under comparison). Table 5 summarize the MSE for Graphons 0-8 to accompany the results in Table 1. We can see that
IGNR outperforms the strongest baseline under this additional metric.

B.4 Comparison with additional classical graphon learning methods

In Table 6, we extend the results in Table 1 of the main text and show the errors of single graphon learning
with additional classical baselines — stochastic block approximation (SBA) [Airoldi et al., 2013], largest gap (LG)
[Channarond et al., 2012], matrix completion (MC) [Keshavan et al., 2010], and universal singular value thresholding
(USVT) [Chatterjee, 2015]. We can see that similar to SAS, those classical methods suffer from aligning and zero-padding,
and cannot outperform our method and GWB.

B.5 GWB and resolution parameter

For GWB, the GW barycenter of the input graphs is used as the piece-wise constant approximation of the ground-truth
graphon. According to [Xu et al., 2021a], the resolution of the GW barycenter is set as K = ⌊ Nmax

logNmax
⌋, where Nmax is the
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IGNR-pg IGNR-cg GWB

0 25.410±3.544 31.800±4.478 47.137±6.344
1 19.543±2.475 34.639±2.254 47.150±1.390
2 21.712±2.577 27.039±2.969 42.294±3.686
3 21.537±3.239 26.116±3.515 39.866±4.458
4 18.906±1.586 21.598±2.935 27.764±2.102
5 17.222±1.371 24.280±2.349 45.058±2.019
6 26.656±1.371 34.484±2.292 50.064±1.374
7 19.390±1.409 33.868±1.449 51.519±1.257
8 21.823±1.869 41.281±2.022 52.609±1.576

Table 5: MSE of learning single graphons (0-8)

SBA LG MC USVT SAS GWB IGNR-cg IGNR-pg

0 0.265±0.002 0.178±0.004 0.108±0.004 0.18±0.004 0.173±0.005 0.049±0.008 0.034±0.005 0.026±0.003
1 0.235±0.002 0.200±0.002 0.204±0.002 0.205±0.002 0.197±0.002 0.047±0.001 0.035±0.002 0.020±0.002
2 0.348±0.003 0.307±0.003 0.310±0.003 0.311±0.003 0.303±0.003 0.044±0.004 0.028±0.003 0.023±0.003
3 0.359±0.003 0.309±0.003 0.312±0.003 0.312±0.003 0.305±0.003 0.042±0.004 0.028±0.004 0.023±0.004
4 0.468±0.002 0.473±0.002 0.475±0.002 0.475±0.002 0.468±0.002 0.029±0.002 0.023±0.003 0.019±0.001
5 0.383±0.001 0.397±0.001 0.400±0.001 0.401±0.001 0.393±0.001 0.044±0.001 0.025±0.002 0.018±0.001
6 0.312±0.002 0.296±0.001 0.300±0.001 0.301±0.001 0.293±0.001 0.049±0.002 0.035±0.002 0.027±0.001
7 0.294±0.002 0.278±0.002 0.282±0.001 0.283±0.001 0.275±0.002 0.052±0.001 0.033±0.002 0.019±0.001
8 0.191±0.001 0.184±0.001 0.189±0.001 0.189±0.001 0.182±0.001 0.052±0.001 0.040±0.001 0.021±0.002
9 0.308±0.001 0.296±0.001 0.293±0.001 0.294±0.001 0.294±0.001 0.060±0.007 0.043±0.004 0.039±0.007
10 0.458±0.001 0.452±0.001 0.450±0.001 0.451±0.001 0.448±0.001 0.064±0.009 0.045±0.007 0.047±0.006
11 0.464±0.001 0.403±0.013 0.403±0.012 0.403±0.012 0.401±0.013 0.246±0.032 0.169±0.011 0.210±0.026
12 0.465±0.001 0.443±0.015 0.437±0.008 0.445±0.02 0.448±0.022 0.247±0.032 0.171±0.014 0.193±0.005

Table 6: Errors of learning single graphons (each index corresponds to a different graphon)

size of the largest graph among the input graphs. One may suspect that one can always increase the resolution K to achieve
better performance of GWB. In Figure 5 below, we can see that increasing the resolution K beyond the recommended
value (K = 36) does not improve GWB’s performance. In contrast, our IGNR does not rely on any resolution parameter.

C Additional Experimental Information for learning parameterized family of graphons

C.1 Parameter comparison with discrete baseline

To demonstrate that within an auto-encoder framework, c-IGNR is not only an effective graphon decoder, but is also
efficient in terms of its parameter usage, we construct a discrete baseline decoder (D). Concretely, the decoder D is an MLP
that takes the latent graph embedding as the input and outputs a fixed K×K symmetric matrix with values in [0, 1], which
is treated as the piece-wise constant approximation of the ground truth graphon at resolution K. The same encoder module
is used for both c-IGNR and the discrete baseline D. Table 7 and 8 below demonstrate the number of parameters in D and
c-IGNR under different configurations and their respective test set error for learning parameterized graphons under S1 and
S2. The format for displaying configuration is [model]-[latent code dimension]-[dimension of hidden layers in MLP]. We
can see that as a general trend, the error for D decreases as the resolution parameter K increases. However, because the
configure of D depends on K, the number of parameters in D increases quickly (O(K2)) and far exceed the number of
parameters in c-IGNR when its error is still much larger than that of c-IGNR. In contrast, the number of parameters in
c-IGNR does not depend on the output resolution due to its resolution-free representation.
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Figure 5: Effects of the resolution parameter K for GWB. x-axis indicates resolution, and y-axis indicates the mean error.
Indices in the legend correspond to the graphons in Table 1.

Models resolution K

18 24 36 48

D-16-[32,64,128] 30336 46080 91392 155136
D-16-[32,64] 12352 20224 42880 74752
D-16-[16,16] 2960 4928 10592 18560
D-2-[32,64,128] 29888 45632 90944 154688
D-2-[32,64] 11904 11976 42432 74304
D-2-[16,16] 2736 4047 10368 18336

c-IGNR-16-[48,36.24] 7032
c-IGNR-2-[48,36,24] 5520

Models resolution K

18 24 36 48

D-16-[32,64,128] 0.067 0.055 0.044 0.040
D-16-[32,64] 0.072 0.056 0.044 0.038
D-16-[16,16] 0.067 0.056 0.045 0.039
D-2-[32,64,128] 0.081 0.059 0.052 0.069
D-2-[32,64] 0.071 0.062 0.048 0.058
D-2-[16,16] 0.077 0.062 0.047 0.051

c-IGNR-16-[48,36.24] 0.022
c-IGNR-2-[48,36,24] 0.025

Table 7: Comparing number of parameters (left) and mean errors (right) for learning parameterized graphons between
c-IGNR and the discrete baseline decoder (D) for dataset in S1.

C.2 Comparison with GDL

The GWB method for learning single graphons is not applicable for learning parameterized family of graphons. There-
fore to compare with existing GW methods under this more general setting (of learning parameterized graphons), we
choose to compare with GDL [Vincent-Cuaz et al., 2021]. In particular, we learn the dictionary graphs at resolution K
from the training set, and then use this learned set of dictionaries to reconstruct each graph in the testing set. The recon-
structed graphs, represented as K × K weighted adjacency matrices taking values in [0, 1] are treated as the piecewise
constant approximations of the ground-truth graphons at resolution K. Note that compared with our c-IGNR, GDL is not
“inductive”—when computing reconstructed graphs (and corresponding weights for each dictionary) in the testing set, one
has to independently solve an unmixing problem for each graph in the testing set, which significantly increases evaluation
time, especially when the testing set is large. Our c-IGNR is “inductive” in the sense that, once the model is trained from
the training set, we can directly apply it to new graph data (without solving any new optimization problems), and obtain
new graph embeddings and graphon reconstructions (at arbitrary resolutions). For GDL, we use its implementation in the
POT python library. The number of dictionary atoms is tested among {2, 16, 32}, and the dictionary size is tested among
{10, 20, 30, 40, 50, 60, 70, 80, 90, 100}. The best error achieved for GDL across parameters is reported in the main text.
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Models resolution K

40 50 60

D-32-[32,64] 52992 81472 116352
D-32-[32,32] 27008 41248 58688
D-2-[32,64] 52032 80512 115392
D-2-[32,32] 26048 40288 57728

c-IGNR-32-[48,36.24] 8760
c-IGNR-2-[48,36,24] 5520

Models resolution K

40 50 60

D-32-[32,64] 0.073 0.042 0.037
D-32-[32,32] 0.072 0.042 0.038
D-2-[32,64] 0.073 0.039 0.040
D-2-[32,32] 0.073 0.046 0.040

c-IGNR-32-[48,36.24] 0.024
c-IGNR-2-[48,36,24] 0.026

Table 8: Comparing number of parameters (left) and mean errors (right) for learning parameterized graphons between
c-IGNR and the discrete baseline decoder (D) for dataset in S2.


