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Abstract

The strong Lottery Ticket Hypothesis (LTH) (Ra-
manujan et al., 2019; Zhou et al., 2019) claims
the existence of a subnetwork in a sufficiently
large, randomly initialized neural network that
approximates some target neural network with-
out the need of training. We extend the the-
oretical guarantee of the strong LTH literature
to a scenario more similar to the original LTH,
by generalizing the weight change in the pre-
training step to some perturbation around initial-
ization. In particular, we focus on the following
open questions: By allowing an ε-scale pertur-
bation on the random initial weights, can we re-
duce the over-parameterization requirement for
the candidate network in the strong LTH? Fur-
thermore, does the weight change by SGD coin-
cide with a good set of such perturbation?

We answer the first question by first extending
the theoretical result on the subset sum prob-
lem (Lueker, 1998) to allow perturbation on the
candidates. Applying this result to the neu-
ral network setting, we show that by allowing
ε-scale perturbation, we can reduce the over-
parameterization requirement of the strong LTH
by a factor of O(1/(1 + ε)). To answer the sec-
ond question, we show via experiments that the
perturbed weight achieved by the projected SGD
shows better performance under the strong LTH
pruning.

1 Introduction

Pruning techniques for over-parameterized neural networks
have drawn growing attention in recent years (Han et al.,
2015; Li et al., 2016; Wen et al., 2016; He et al., 2017;
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Zhu and Gupta, 2017; Blalock et al., 2020; Wang et al.,
2019; Lee et al., 2018; Wang et al., 2020). Amongst them,
the Lottery Ticket Hypothesis (LTH) (Frankle and Carbin,
2019; Frankle et al., 2019) claims the existence of a small
(sparse) subnetwork within a large (dense) neural network
such that, when trained in isolation, achieves comparable
or even better performance than the original dense net-
work. Such subnetworks can be identified by pre-training
the dense network and pruning it based on the magnitude of
the learned weights (Frankle and Carbin, 2019). Currently,
to the best of our knowledge, the LTH lacks of any rigor-
ous theoretical guarantees that justify superior performance
of the subnetwork, especially under the pretraining-based
pruning; yet, it has been proven to be effective in practice.

The Strong Lottery Ticket Hypothesis (Ramanujan et al.,
2019; Zhou et al., 2019) leverages a different pruning
scheme: given a target dense neural network, and a
randomly initialized, sufficiently over-parameterized can-
didate network, there exists a subnetwork in the latter
that approximates the former arbitrarily well without the
need of training. While we usually require a significant
over-parameterization in the randomly initialized network,
the strong LTH enjoys extensive theoretical guarantees
(Malach et al., 2020; Pensia et al., 2020; Orseau et al.,
2020). Yet, the same theory hardly applies to the origi-
nal LTH, as strong LTH assumes that the candidate weights
pruned are fixed at initialization. The fact that LTH prun-
ing is based on weights modified by pre-training motivates
us to analyze the approximation behavior that emerges be-
yond the randomness in the candidate weights.

Further study on the pre-training process of the LTH shows
that the winnning lottery ticket emerges in the early stage
of training (You et al., 2019), when the loss have not con-
verge to a desirably small value. This implies that con-
verging to small training loss is not necessarily the intent
of the pre-training steo in the LTH procedure; in other
words, achieving small loss does not necessarily explain
how and why pre-training helps pruning in LTH. Instead,
one could hypothesize that the pre-training –based on loss
minimization– guide the weight perturbation to a direction
that facilitate the pruning process.

*Equal Contribution
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Based on this hypothesis, our work extends the theoretical
guarantee of strong LTH to a scenario more similar to the
original LTH, by generalizing the weight change achieved
in the pre-training step to some perturbation around the ini-
tialization. Our central question is as follows:

“By allowing an ε-scale perturbation on the ran-
dom initial weights, can we reduce the over-
parameterization requirement for the candidate
network in the strong LTH? Furthermore, does the
weight change by SGD coincide with a good set of
such perturbation?”

To be more specific, let fθ be a neural network with pa-
rameters θ ∈ Rd. Formally, an ε-perturbation is a mapping
P : Rd → Rd such that the maximum entrywise perturba-
tion is bounded in absolute value by ε, i.e., ∥P(θ)−θ∥∞ ≤
ε. We point out that this definition of perturbation gen-
eralizes to two existing scenarios: when ε = 0 –i.e., we
allow no weight perturbation– the question above reduces
to the original strong LTH. When ε = ∞ –i.e., we allow
arbitrarily large weight perturbation– the required over-
parameterization for the candidate network is at most the
size of the target network. In this case, we often use gradi-
ent based optimizers such as SGD to find such weight per-
turbation, but often without the need of pruning. Yet, both
cases cover only one aspect in pruning and perturbation.

In this paper, we study the inter-dependence of the two as-
pects above by treating ε as a variable. In particular, we
show that a larger perturbation scale ε, which corresponds
to a larger amount of training, would alleviate the over-
parameterization requirement, while keeping the accuracy
of the pruned neural network the same. Our contributions
can be summarized as below:

• We consider a generalized version of the subset sum
problem where each candidate in the summation is al-
lowed perturbation bounded by a fixed scale ε. We ex-
tend the analysis of the subset sum (Lueker, 1998) to our
generalized version, and show that when a larger pertur-
bation is allowed, the required size of the candidate set
can be reduced. We empirically validate our theoretical
result on the perturbed subset sum problem.

• Applying the theoretical result above to neural net-
works, we prove that, when an ε-scale perturbation is
allowed, the strong LTH on randomly initialized neural
network requires less over-parameterization to achieve
a specific approximation error. In particular, the over-
parameterization decreases as ε increases.

• On neural networks, we empirically show that i) the
perturbation that alleviates the overparameterization re-
quirement of the strong LTH can be obtained by pro-
jected SGD on the initialized weights; and, ii) under
fixed overparameterization, neural networks with a larger
freedom over the level of perturbation achieves a higher

accuracy after pruning. This result establish the connec-
tion between the amount of pre-training and the accuracy
of the pruned network.

2 Related Works

Lotter Ticket Hypothesis. The Lottery Ticket Hypothe-
sis is first proposed by (Frankle and Carbin, 2019). Later
works investigate this hypothesis under different scenarios
and from different perspectives. To name a few, (Yu et al.,
2019) studies the LTH in the reinforcement learning set-
ting. (Sabatelli et al., 2020) investigates the performance
of lottery tickets in the setting of transfer learning. (You
et al., 2019) find that the lottery tickets can be observed
in the early phase of training. Moreover, a line of work
(Lee et al., 2018; Wang et al., 2020; Tanaka et al., 2020;
Patil and Dovrolis, 2020) propose pruning techniques with-
out the need of pre-training. (Diffenderfer and Kailkhura,
2021) studies the LTH in binary networks. Noticeably,
(Tanaka et al., 2020) and (Patil and Dovrolis, 2020) even
require no training data. For a comprehensive survey on the
LTH, we refer the readers to (Lange, 2020) and (da Cunha
et al., 2022b).

Several works attempt to explain the LTH. (Evci et al.,
2022) empirically study the behavior of gradient flow in
the pruned network. (Zhang et al., 2021) assumes that the
optimal mask is given, and proves that the pruned network
achieves faster convergence and better generalization when
trained from initialization. (Wolfe et al., 2021) provides a
theoretical guarantee for a pruning-after-training fashion.
However, these works differ from ours in the following:
i) they usually consider neuron pruning on small neural
network archictures (e.g., (Wolfe et al., 2021) focuses on
a two-layer MLP with smooth activations), while our work
considers weight pruning of a deep ReLU neural network;
ii) they consider minimizing the loss on a specific dataset,
and require an over-parameterization that scales quadrati-
cally with the number of samples, while we approximate
a target network with a fixed architecture in terms of the
function norm, and require an over-parameterization that
scales with the width of the target network.

Strong Lottery Ticket Hypothesis. The strong LTH orig-
inates from the empirical observation that, by fixing the
weights at initialization and learning the mask over the
weights, one can identify subnetworks that achieve com-
parable accuracy to the dense one with learned weights
(Zhou et al., 2019). (Ramanujan et al., 2019) made this
idea more concrete by proposing the edge-popup algo-
rithm to efficiently learn the mask. (Malach et al., 2020)
first proved such hypothesis under the assumption that the
dense network’s size scales polynomially with the target
network’s width and depth. Leveraging the advantage of
weight decomposition and theoretical results on the sub-
set sum problem (Lueker, 1998), (Orseau et al., 2020) and
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(Pensia et al., 2020) improved the over-parameterization
requirement to a logarithm factor times the size of the tar-
get network. Later work explores different variations of
the strong LTH: (da Cunha et al., 2022b) and (Burkholz,
2022) show that the strong LTH holds in the case of convo-
lutional neural networks. (Sreenivasan et al., 2022) shows
the strong LTH for binary networks and (Burkholz et al.,
2022) extends the strong LTH proof to a universial fam-
ily of functions. (Chijiwa et al., 2021) further reduces the
over-parameterization requirement by employing the itera-
tive randomization. Finally, (Ferbach et al., 2023) general-
izes the strong LTH to equivariant networks.

3 Notations and Setup

Notation. We use standard lower case letters (e.g. a) to
denote scalars, bold lower-case letters (e.g. a) to denote
vectors, and bold upper-case letters (e.g. A) to denote ma-
trices. For a vector a, we use ∥a∥2 to denote its ℓ2 (Eu-
clidean) norm, and ∥a∥∞ to denote its ℓ∞ norm. For a ma-
trix A, we use ∥A∥max = maxij |Aij | to denote its max
norm. We use P (·) to denote the probability of an event,
and E [·] to denote the expectation of a random variable.
Moreover, Unif (I) denotes the uniform distribution on
the interval I , Geom (·) denotes the geometric distribution,
and Bin (·, ·) denotes the binomial distribution. Lastly, we
use σ (a) = max{0, a} to denote the ReLU activation.

Setup. Similar to (Pensia et al., 2020), our focus is to
approximate an L-layer, ReLU activated target multi-layer
perceptron (MLP) f(x) by pruning a 2L-layer, ReLU acti-
vated candidate MLP g(x). For some input vector x ∈ Rd0 ,
we assume f(x) = fL(x) has a fixed set of parameters
{Wℓ}Lℓ=1, represented by:

f ℓ(x) =


WLfL−1(x), if ℓ = L,

σ
(
Wℓf ℓ−1(x)

)
, if ℓ ∈ [L− 1],

x, if ℓ = 0,

where Wℓ ∈ Rdℓ×dℓ−1 . Similarly, let g(x) = g2L(x) with
parameters {Uℓ}2Lℓ=1, represented by:

gℓ(x) =


U2Lg2L−1(x), if ℓ = 2L,

σ
(
Uℓgℓ−1(x)

)
, if ℓ ∈ [2L− 1],

x, if ℓ = 0,

where Uℓ ∈ Rd̂ℓ×d̂ℓ−1 . In particular, g is a neural network
with twice the depth of f . We consider the pruning and
ε-perturbation of g(x) with a set of masks for the weights
S = {Sℓ}2Lℓ=1 and perturbation matrices Y = {Yℓ}Li=ℓ,
denoted as gS,Y(x) = g2LS,Y(x):

gℓS,Y(x)=


(Sℓ ⊙ (Uℓ +Yℓ))gℓ−1

S,Y (x), if ℓ = 2L,

σ
(
(Sℓ ⊙ (Uℓ +Yℓ))gℓ−1

S,Y (x)
)
, if ℓ ∈ [L− 1],

x, if ℓ = 0.

Intuitively, gS,Y is constructed such that, in each layer of
gS,Y , the weight matrix Uℓ is first applied with a perturba-
tion matrix Yℓ and then pruned by applying the mask Sℓ

Let FY denote the feasible set of the perturbation Y . We
make the following assumption:

Assumption 1. We assume the following condition for f, g
and FY :

(a) For all ℓ ∈ {0} ∪ [L], the weight matrix Wℓ of the
target neural network f satisfies

∥∥Wℓ
∥∥ ≤ 1 and∥∥Wℓ

∥∥
max
≤ 1

2 .

(b) The initialization of g satisfies U2ℓ
ij ∼ Unif[−1, 1],

and U2ℓ−1
ij = 1 if i ≤ d̂2(ℓ−1)/2 and U2ℓ−1

ij = −1 if
i > d̂2(ℓ−1)/2 for all ℓ ∈ [L] and j ∈ [d̂2ℓ−3].

(c) The feasible set of Y is defined as:

FY =
{
Y : ∀ℓ ∈ [L],

∥∥Y2ℓ−1
∥∥
max

= 0 ∧
∥∥Y2ℓ

∥∥
max
≤ ε
}
.

Remark 1. Assumption 3(a) is similar to (Pensia et al.,
2020). In particular, the also assume that

∥∥Wℓ
∥∥ ≤ 1 for

all ℓ. We additional assume that
∥∥Wℓ

∥∥
max
≤ 1

2 to facil-
itate the application of our subset sum result in Theorem
(3). This condition can be easily satisfied by most initial-
ization methods. Assumption 3(b) states the initialization
scheme for the candidate MLP g. Intuitively, for weights
in layers with odd indices, we initialize the top half to 1
and the lower half to −1, and for weights in layers with
even indices, we initialize entries uniformly at random from
[−1, 1]. Although different from (Pensia et al., 2020), we
show in later section that this initialization does not affect
the difficulty of the approximation, and is only for the con-
venience of analysis. Assumption 3(c) defines the feasible
set. In our setting, we only allow weights in layers with
even indices to be perturbed. We show in later section that
this feasible set is sufficient to establish the dependence of
the over-parameterization on the perturbation scale ε.

To represent the functional approximation of f using gS,Y ,
we focus on the approximation error defined as:

min
Y∈FY ,S

sup
x:∥x∥≤1

∥f(x)− gS,Y (x)∥ . (1)

4 Subset Sum with ε-Perturbation

For each layer in the target network, (Pensia et al., 2020)
constructed a two-layer subnetwork with block structure,
such that each block approximates a single entry in the
weight matrix of the target network. In particular, they
obtain a logarithmic-scale over-parameterization by formu-
lating the approximation as a subset sum problem (Lueker,
1998; da Cunha et al., 2022a) Given a candidate set of val-
ues {xi}ni=1 of size n and a target value z, the solution to
the subset sum problem finds the best approximation of z
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using the sum of a subset of {xi}ni=1. From an optimiza-
tion perspective, the optimal approximation error η⋆ is the
solution to the following problem:

η⋆ = min
δ∈{0,1}n

∣∣∣∣∣
n∑

i=1

δixi − z

∣∣∣∣∣ , (2)

where δi ∈ {0, 1} is the indicator variable on whether xi is
selected in the sum to approximate z.

From the perspective of strong LTH, we can treat z as the
weight entry in the target network that we wish to approxi-
mate, and {xi}ni=1 as the weights in the candidate network
we will prune. Here, δi = 1 means that the i-th weight is
kept, while δi = 0 means that the i-th weight is pruned.
(Lueker, 1998) shows that, with high probability over the
randomness of xi ∼ Unif ([−1, 1]), a candidate set with
size of the order n = Ω

(
log η−1

)
is enough to guarantee

that η∗ ≤ η for all z ∈ [−1/2, 1/2].

As an extension to the strong LTH, our setup incorporates
an ε-perturbation on the weights of the random neural net-
work. This calls for the attention of extending the ran-
dom subset sum problem in Equation 2 to a version with
ε-perturbation added.

In particular, we consider the following joint minimization
problem:

η⋆ = min
δ∈{0,1}n,y∈[−ε,ε]n

∣∣∣∣∣
n∑

i=1

δi (xi + yi)− z

∣∣∣∣∣ . (3)

We denote the values that lead to the optimal approxima-
tion error as δ⋆ and y⋆, respectively. In words, the above
problem aims to select values from the set {xi}ni=1 such
that, after potential entrywise perturbation by some tunable
yi ∈ [−ε, ε], the summation of the selected and perturbed∑n

i=1 δi (xi + yi) will approximate z.

A central technical difficulty in our work is to extend the
result of (Lueker, 1998) to incorporate such ε-perturbation.
Intuitively, as the perturbation scale ε becomes larger, each
candidate is susceptible to a larger change in order to better
approximate the objective z. This implies that we should
only require a smaller size for the candidate size. This is
indeed the case, as we show in the theorem below.

Theorem 1. For all K ≥ 0, with probability at least
1−exp

(
− (n−K)(1+ε)2

8(3−ε)

)
−exp(−K), every z ∈ [−1/2, 1/2]

has an 2η approximation as long as the number of candi-
dates n satisfies

n = O

(
log η−1

1 + ε
+K

)
.

Sketch of proof: The proof of Theorem (3) is provided in
Appendix (1). Compared with the proof of (Lueker, 1998),

we included the ε-perturbation when constructing the re-
currence of the size of the target range that can be approx-
imated. After introducing this ε-perturbation, we cannot
directly apply the techniques in (Lueker, 1998). We sketch
the proof below while omitting details and the handling of
edge cases of different ε:

1. We start by defining an indicator function fk,η(z) cor-
responding to the event that z has an η-approximation
by the first k candidates. We show that this indicator
function can be recursively defined: fk+1,η(z) can be
written as a function of fk,η(z) and fk,η+ε(z). How-
ever, this sequence is hard to control as it involves the
fk,η+ε(z). We further study the behavior of the set
where fk,η+ε(z) = 1, and, by introducing the notion of
ε-extension, we construct another sequence of indicator
functions {f̂k}nk=1 that lower bound fk,η yet shows the
advantage of large ε.

2. As in (Lueker, 1998), we define pk to be the fraction
of z on the interval [−1/2, 1/2] such that f̂k = 1. Differ-
ently, we show that the expectation of pk+1−pk is lower
bounded by 1/2(1− pk)(pk + ε). This demonstrates the
expected growth pk+1 enjoys from pk. Noticeably, this
growth is larger when ε is larger. Note that this property
implies a lower bound on the expectation of pn. Next,
we apply several techniques to remove the expectation.

3. We first show the lower bound on n such that pn ≥
1 − ε with a high probability. We do this by lower-
bounding the summation of Zk+1 = pk+1−pk

pk(1−pk)
using

Azuma’s inequality. To relate the summation of Zk+1

to the growth of pk, we define a function ψ(p) such that
ψ(pk+1) − ψ(pk) ≥ Zk+1. In this way, we arrive at
a lower bound on ψ(pn) − ψ(p0). Enforcing a lower
bound on pn gives a lower bound on n.

4. Starting from pk ≥ 1− ε, we show that a constant num-
ber of additional candidates suffice to grow pk to 1− η.
We apply the result in the previous step to show, by
adding these additional candidates, we can approximate
z − x̂ with error 1− ε− η for some x̂ in the additional
candidate set. We then utilize the perturbation of x̂ to
achieve an 1− η approximation of z.

Remark 2. Notice that the lower bound on the candidate
set n contains two terms, where the second term only con-
trols the success probability. The first term scales inversely
with 1 + ε. This implies that n decreases monotonically as
ε increases. We will utilize this result to analyze the ap-
proximation error defined in Equation 5.

5 Strong Lottery Ticket Hypothesis with ε
Perturbation

The theoretical result above provides the “skeleton” of
techniques on how to incorporate perturbation into the ap-
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Figure 1: Diagram showing the effect of perturbation on the pruning scheme of strong LTH (Pensia et al., 2020).

proximation process for the subset sum problem. In what
follows, we demonstrate how to apply this “skeleton” into
the approximation of a target neural network. As in (Pensia
et al., 2020), we start with approximating a single weight
entry using a two-layer ReLU neural network.

We highlight the differences between our setting and the
setting in (Pensia et al., 2020) in Figure 1. Let the target
weight be denoted by w. For each input value x, passing
through this weight entry gives an output w · x.

The scheme considered by (Pensia et al., 2020) is repre-
sented in the upper half of the figure, denoted by “Strong
LTH”. In particular, they start with a random two-layer
ReLU activated neural network, and performs pruning by
applying mask s to the first layer1 weight u and arrives at
s⊙u. By choosing an optimal mask s, for any input x, they
consider the output of the pruned network v⊤σ (s⊙ ux) as
an approximation of w · x.

Our scheme is described in the lower half of the figure, de-
noted by “Strong LTH with Perturbation”. Different from
“Strong LTH”, we also apply changes to the second layer
weight v by adding a perturbation vector y ∈ [−ε, ε]n to it
while performing the pruning. With an optimal mask s and
perturbation vector y, we consider (v + y)

⊤
σ (s⊙ ux)

as an approximation of w · x. As a result of this dif-
ference, our scheme potentially requires a smaller over-
parameterization. In the lemma below, we show that the
over-parameterization in our setting enjoys a monotonic
decrease, as we increase ε.
Lemma 1. Let g : R → R be a randomly initialized net-
work of the form g(x) = v⊤σ(ux), where v,u ∈ R2n, and

1Applying mask to the second layer weights achieves the same
effect.

n satisfies

n ≥ Cd1

 log
(

d1d2

η

)
1 + ε

+K

 ,

where C is some constant, K ≥ 0, ui = 1 for i ≤ n, ui =
−1 for i ≥ n + 1, and v′is are drawn from Unif[−1, 1].
Then there exist s ∈ {0, 1}2n,y ∈ [−ε,+ε]2n such that

sup
x:|x|≤1

∣∣wx− (v + y)⊤σ((u⊙ s)x)
∣∣ < η,

with probability at least 1− δ for all w ∈ [− 1
2 ,

1
2 ], with

δ = exp
(
− (n−K)(1+ε)2

8(3−ε)2

)
+ exp (−K) .

Sketch of the Proof. We defer the detailed proof to the ap-
pendix and sketch the proof here. Similar to (Pensia et al.,
2020), we decompose wx into wx = σ(wx) − σ(−wx).
By our construction, the first half of the entries in u are
1 and the second half are −1. Therefore, we decompose
u,v,y, s by

u =

(
u1

u2

)
,v =

(
v1

v2

)
, s =

(
s1
s2

)
,y =

(
y1

y2

)
,

where u1 = 1n,u2 = −1n,v1,v2 ∈ Rn, s1, s2 ∈
{0, 1}n, and y1,y2 ∈ [−ε, ε]n. This gives:

(v + y)⊤σ((u⊙ s)x) = (v1 + y1)
⊤σ((u1 ⊙ s1)x)︸ ︷︷ ︸

τ1

+

(v2 + y2)
⊤σ((u2 ⊙ s2)x)︸ ︷︷ ︸

τ2

.
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We then apply Theorem (3) twice: we first approximate
σ(wx) using τ1 and then approximate −σ(−wx) using τ2.
Lastly, we combine the two approximations and apply a
union bound to complete the proof.

Remark 3. Notice that the required number of hidden neu-
rons (over-parameterization) in Lemma (6) scales inversely
with 1 + ε. Therefore, n decrease monotonically as ε in-
creases. In particular, when ε = O(η−1), n reduce to a
constant term. This implies that as long as the perturbation
scale ε is large enough, a constant over-parameterization
is able to approximate any target weight arbitrarily well.

Remark 4. Another difference between Lemma (6) and
Lemma 1 in (Pensia et al., 2020) is that the latter assumes
both u and v to be randomly initialized, while we initial-
ize u deterministically with half 1s and half −1s, and keep
v to be randomly initialized. Our initialization is only for
the convenience of applying Theorem (3). Our initializa-
tion is agnostic of the target weight w, so it does not al-
leviate the difficulty of the approximation. Neither does it
raise the difficulty, since we can observe that, by setting ε
to zero, the requirement on the over-parameterization re-
duces to n = O

(
log η−1

)
. This is the same as Lemma 1 in

(Pensia et al., 2020).

Lemma 6 highlights the idea of approximating a single
weight entry by pruning and perturbing a randomly initial-
ized two-layer ReLU neural network. Next, we extend this
idea to the approximation of a deep neural network. The
idea is to approximate each layer in the target network us-
ing a two-layer ReLU MLP . Each entry in the weight ma-
trix of the target network is approximated by a subnetwork
of the MLP as in Lemma (6). Therefore, a concatenation of
these MLPs gives an approximation of the target network.

Theorem 2. Consider approximating f with g as defined
above. Assume that assumption (3) holds. Also, assume
that for 1 ≤ ℓ ≤ L, for some constant C and for all K ≥ 0

n = Cdℓ−1

 log
(

dℓ−1dℓL
η

)
1 + ε

+K


dim(U2ℓ) = dℓ × n;
dim(U2ℓ−1) = n× dℓ−1.

Then with probability at least 1− 2d1d2Lδ,

min
S,Y

sup
x:∥x∥∞≤1

∥f(x)− gS,Y (x) ∥ < η,

where gS,Y is a pruning & ε-perturbation of g, and

δ = exp
(
− (n−K)(1+ε)2

8(3−ε)2

)
+ exp (−K) .

Sketch of Proof. We defer the detailed proof to the ap-
pendix and sketch the proof here. The idea is the same

as (Pensia et al., 2020): we approximate every entry in the
weight matrix in each layer of f by applying lemma (6) up
to some error. We then notice that, given the assumption
that

∥∥Wℓ
∥∥ ≤ 1, each layer in f is 1-Lipschitz. Therefore,

the corresponding approximation in gS,Y is also about 1-
Lipschitz. We use this Lipschitzness to control the error
during the forward propagation, and arrives at a bound on
the error in equation (5)

Remark 5. Theorem (2) shows similar behavior with
Lemma (6). The overparameterization requirement n
decreases monotonically to a constant multiplying the
original width as ε increases. As long as ε =
O
(
maxℓ∈[L] log (dℓ−1dℓL/η)

)
, we only require the size of

g to be a constant times the size of f to arrive at an η-
approximation of f . Moreover, when ε = 0, the required
over-parameterization reduces to the same form as in The-
orem 1 of (Pensia et al., 2020).

6 Experiments

6.1 Approximating Neural Nets with SubsetSum and
ε Perturbation

We would like to see how the amount of weight perturba-
tion affects the required overparametrization. To explore
this relationship, we approximate a two-layer, 500 hidden
node target network g by (Pensia et al., 2020). Each weight
was approximated using a subset sum of n randomly ini-
tialized candidates where each candidate was allowed to
perturbed by at most ε. In particular, for some given (ε, η)
and seed s, we say n ∈ N satisfies the overparametrization
requirement if:

∀w ∈ g, ∃δ ∈ {0, 1}n,y ∈ [−ε, ε]n such that:∣∣∣∣∣w −
n∑

i=1

δi(xi + yi)

∣∣∣∣∣ ≤ η,
xi ∼ Unif ([l, u])∀i = 1, ..., n,

where l and u are the bounds of weights w in the target net-
work, xi’s are generated randomly using seed s, and every
set of xi’s are unique to w.

We randomly generate 10 sets of xi’s and record the mini-
mum n such that 8 of such sets leads to the required ap-
proximation error. We vary η from 10−2 to 10−4 and
choose ε such that ε/η varies between 0 and 10. Intuitively,
ε/η gives the relative effectiveness of ε. With a fixed ε, a
smaller η results in a larger ε/η, and in the meantime makes
the approximation easier. We are interested how such n
changes as η and ε/η change. As ε/η increase, we should
expect a smaller size of the candidate set n.

This is indeed the case, since from Figure 2, we can ob-
serve that for fixed η, n decreases as ε/η increases. More
specifically, as ε increases, more changes in ε are required
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Figure 2: Change of the required size of the candidate set
(n) v.s. relative perturbation scale (ε⁄η).

to make a decrease in the minimum over-parameterization
requirement n, which coincides with Theorem 3.

6.2 Perturbation Using Projected Gradient Descent

We would like to explore the relationship between the
weight perturbation achieved by (stochastic) gradient de-
scent ((S)GD) and the desirable weight perturbation for
reducing the over-parameterization in the strong LTH ap-
proximation. In particular, we hypothesize that

SGD can wisely find a good perturbation for strong LTH
pruning.

We propose a two-stage algorithm to validate this hypothe-
sis. With a given perturbation scale ε, we start with training
an over-parameterized neural network using projected gra-
dient descent (PGD) to convergence. Note that, by apply-
ing PGD, we guarantee that each value of the neural net-
work weight stays in an ε-neighborhood of initialization.
This is reflected in lines 3-5 in Algorithm 1: per iteration,
we first complete a regular (S)GD step (line 3), but we then
truncate the updated value so that every updated vaule lines
in the interval [−ε, ε] (line 4). We then apply the resulting
update in line 5.

We run edge-popup (Ramanujan et al., 2019) for a range
of pruning (sparsity) levels (line 9 in Algorithm 1). This
step is interpreted as applying a standard pruning tech-
nique –initially designed to start from random initializa-
tion, like edge-popup– but now on the perturbed ini-
tialization based on PGD. We consider the best accuracy
amongst all pruning levels (percentage of weights pruned)
to be the optimal approximation. We refer the readers to
Algorithm 1 for more detail. Here, min{·} refers to the en-
trywise minimum and abs(·) refers to the entrywise abso-
lute value. Note that, by applying the projection operation

in line 4, we guarantee that ∥Wt −W0∥max ≤ ε for all
t ∈ [T ].

Algorithm 1 PGD+StrongLTH
Input: Perturbation scale ε, neural network loss L, initial
weight W0, learning rate {αt}T−1

t=0

1: ∆W← 0
2: for t ∈ {0, . . . , T − 1} do
3: Ŵ← ∆W − αt∇L(Wt)
4: ∆W← sign(Ŵ) ·min{abs(Ŵ), ε}
5: Wt+1 ←W0 +∆W
6: end for
7: ℓ∗ ←∞ ,M∗ ← None
8: for pruning level s ∈ {0.1, 0.2, . . . , 0.9} do
9: ℓ,M← Edge-Popup(L,WT , s)

10: if ℓ ≤ ℓ∗ then
11: ℓ∗ ← ℓ ,M∗ ←M
12: end if
13: end for
14: return Optimal loss ℓ∗, mask M∗ and sparsity s

We train a four-layer multi-layer perceptron (MLP) on the
MNIST dataset, with each layer having 500 hidden nodes.
We use Algorithm 1 to train the network: we use a learning
rate of 0.03 for PGD and train the network for 100 epochs;
for pruning we use edge-popup with a learning rate of
0.1 and train the network for 50 epochs with cosine an-
nealing. All weights in the network are initialized from
Unif ([−1/2, 1/2]), and ε ranges from 0 to 0.3. The results
are shown in Table 1 and Figure 3.

(a) (b)

Figure 3: Relationship between perturbation scale ε, op-
timal sparsity s⋆ and the final accuracy. (a): best pruned
accuracy across different pruning level on the pruned net-
work versus the perturbation scale. (b): optimal sparsity in
pruning versus the perturbation scale.

Figure 3 plots the relationship between the best accuracy
among all sparsity (pruning) levels and the perturbation
scale Figure 3a, as well as the sparsity (pruning) level that
achieves the best accuracy versus the perturbation scale
Figure 3b. First, in Figure 3a, one could see that as the
perturbation scale increases–where SGD has a larger free-
dom to find optimize the parameters–the pruned accuracy
increases. This observation corroborates our hypothesis
that SGD finds a good weight perturbation that facilitate
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Sparsity s
Perturbation Scale ε

0 10−3 5 · 10−3 10−2 2 · 10−2 3 · 10−2 4 · 10−2 5 · 10−2 10−1 2 · 10−1 3 · 10−1

0 0.12 0.14 0.25 0.42 0.68 0.84 0.90 0.93 0.96 0.97 0.98
0.1 0.49 0.48 0.65 0.70 0.78 0.82 0.87 0.87 0.94 0.97 0.98
0.2 0.75 0.76 0.77 0.79 0.84 0.86 0.88 0.87 0.93 0.96 0.97
0.3 0.83 0.82 0.82 0.82 0.88 0.88 0.86 0.90 0.92 0.94 0.93
0.4 0.82 0.86 0.88 0.89 0.90 0.89 0.90 0.90 0.88 0.91 0.86
0.5 0.85 0.88 0.86 0.89 0.87 0.88 0.89 0.89 0.90 0.89 0.76
0.6 0.83 0.87 0.87 0.83 0.86 0.88 0.87 0.88 0.87 0.85 0.54
0.7 0.81 0.85 0.84 0.83 0.86 0.82 0.81 0.81 0.79 0.74 0.29
0.8 0.73 0.71 0.71 0.75 0.77 0.75 0.73 0.68 0.77 0.55 0.17

Table 1: Test accuracy for different pruning level s and perturbation scale ε. For each different perturbation scale (each
column), the highest accuracy is marked bold.

the pruning process. Figure 3b provides more insight into
this behavior: as the perturbation scale increases, the spar-
sity level that achieves the best accuracy decreases, mean-
ing that the best pruning will prune a smaller number of
weights. This is because as the perturbation scales in-
creases, weights learned by SGD are introduced with a
dependence on each other. Such dependence becomes
stronger as the perturbation scale increases, and will be in-
terrupted by pruning a large number of weights.

Table 1 gives a more detailed description of the results. In
particular, the best accuracy across all sparsity (pruning)
levels for each perturbation scale ε is marked bold. In ad-
dition, we use different colors to mark different behaviors
our experiment demonstrate when varying s and ε. To be
more specific, the region marked red represents the be-
havior studied by the original strong LTH (Pensia et al.,
2020), where no perturbation is allowed (ε = 0). In this
case, the optimal accuracy is achieved at a non-trival prun-
ing level (∼0.5). The region marked purple represents
standard training of neural network with different extent of
training. As ε increases (more training allowed), the accu-
racy also increases (higher ε values allowed).

The orange region marks the scenario where the behavior
is dominated by SGD. In this region, the large perturbation
scale allows SGD to establish a strong dependence between
the weight entries, such that any pruning will break this
dependence and result in a decrease in the accuracy. In
particular, the lowest accuracy (marked by dark orange)
appears when we allow largest extend of training, while
enforcing the largest pruning level.

Moreover, to further test whether SGD finds good perturba-
tion for strong LTH pruning, we run the same experiment as
above but replace the SGD perturbation with random per-
turbation. In particular, for perturbation level ε and for an
initial weight x0, we perturb x0 by resampling it uniformly
from [x0 − ε, x0 + ε]. The results shown in Table 2 sug-
gests that SGD does find better perturbation than random
perturbation (through resampling).

In addition, we also run the experiment by reversing the two
stages in Algorithm 1 so that we first prune the network us-
ing edge-popup and then perturb the network by PGD.
This procedure of pruning followed by perturbation corre-
sponds to the large body of work that seeks lottery tickets
without pretraining, which can also be considered as a re-
laxed version of our theoretical framework. The results in
Table 3 shows that SGD does help improving the accuracy.

7 Concluding Remarks

Our work serves as a further step into understanding how
the pre-training process affects the accuracy of neural net-
work pruning. We generalized the weight change in the
training process to some ε-perturbation around the initial-
ization, and provide theoretical guarantee to a more general
version of the strong Lottery Ticket Hypothesis (Ramanu-
jan et al., 2019; Pensia et al., 2020; Malach et al., 2020) by
introducing the freedom of ε-perturbation into the pruning
process. We establish the relationship between the pertur-
bation scale ε and the over-parameterization requirement of
the candidate network. As an intermediate step of our anal-
ysis, we also provide the theoretical guarantee of a gener-
alized version of the subset sum problem (Lueker, 1998).

Moreover, we explored through experiments whether SGD
could find a good perturbation. By testing the a combina-
tion of the ε-bounded projected gradient descent and the
edge-popup algorithm, we give a positive answer to the
question above. We also observed that, as the perturbation
scale increases, the optimal accuracy of the pruned network
appears at a lower pruning level.

As a next step of our work, one could be interested in
exploring the theoretical guarantee for SGD’s property of
finding a good perturbation. An interesting starting point is
the approximation of a weight vector w: given a set of in-
put data points {xi}mi=1, whether solving the optimization
problem of minU

∑m
i=1

∥∥1⊤Uxi −w⊤xi

∥∥2
2

using gradi-



Zheyang Xiong∗, Fangshuo Liao∗, Anastasios Kyrillidis

ent descent

Ut+1 = Ut − α
∂

∂U

m∑
i=1

∥∥1⊤Utxi −w⊤xi

∥∥2
2

will satisfy the descending property∥∥∥w − (Ut+1 ⊙ St+1)
⊤
1
∥∥∥
2
<
∥∥∥w − (Ut ⊙ St)

⊤
1
∥∥∥
2
,

where St is the optimal mask in iteration t

St = argminS
∥∥∥w − (Ut ⊙ S)

⊤
1
∥∥∥
2
.

A theoretical analysis on this problem will derive a further
connection between the pre-training and the pruning pro-
cess, and will potentially be an important step in under-
standing the mystery of the Lottery Ticket Hypothesis.
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A Proof of Theorem 1

The subset sum problem considers finding s ∈ {0, 1}n that minimizes ℓ(z, s) = |z −
∑n

i=1 sixi| for a given z and given
xi’s. Previous work finds that, with n = Ω(log 1/η), it holds with high probability that there exists s ∈ {0, 1}n such that
ℓ(z, s) ≤ η. Alternatively, this problem can be started as finding the smallest n such that η∗ ≤ η with

η∗ = min
s∈{0,1}n

ℓ(z, s).

In our case, we would like to give the freedom of each xi to be perturbed for a small degree ε. In particular, we extend the
definition of ℓ to

ℓ(z, s,y) =

∣∣∣∣∣z −
n∑

i=1

si(xi + yi)

∣∣∣∣∣ .
and seeks condition of n such that η∗ ≤ η with

η∗ = min
s∈{0,1}n,y∈[−ε,ε]n

ℓ(z, s,y). (4)

If this condition is met for a fixed z, we say that such z has an η approximation.

Assumption 2. Let the candidate values xi ∼ Unif ([−1, 1]) for all i ∈ [n], and the target value z ∈ [−1/2, 1/2]. Let
0 ≤ ε ≤ η ≤ 1 be given.

Notice that if ε > 1, then by Hoeffding’s inequality,

P

(∣∣∣∣∣
n∑

i=1

xi

∣∣∣∣∣ ≥ nε

2

)
≤ exp

(
−nε

2

2

)
.

When |
∑n

i=1 xi| ≤
nε
2 holds, we have that |

∑n
i=1(xi + yi)| can be anything in [−nε/2, nε/2] by varing yi. Therefore, as

long as n = 1
ε2 log s

−1, it holds with probability at least 1− s that η∗ = 0 for all z ∈ [−1/2, 1/2]. Thus, our focus is on the
case of ε ≤ 1. Under this assumption, we attempts to prove the following theorem

Theorem 3. For all K ≥ 0, with probability at least 1− exp
(
− (n−K)(1+ε)2

8(3−ε)

)
− exp(−K), every z ∈ [−1/2, 1/2] has an

2η approximation as long as the number of candidates n satisfies

n = O

(
log η−1

1 + ε
+K

)
.

We define the indicator function for the existence of η̂-approximation within the first k candidate.

fk,η̂(z) = I

{
∃s ∈ {0, 1}k, y ∈ [−ε, ε]k s.t.

∣∣∣∣∣
k∑

i=1

si(xi + yi)− z

∣∣∣∣∣ ≤ η̂
}
.

This indicator function has the following recurrence

f0,η = I {|z| ≤ η} ; fk+1,η = fk,η(z) + (1− fk,η(z)) fk,η+ε(z − xk+1).

Define the following random variable (depending on {xk}ki=1)

pk =

∫ 1/2

−1/2

fk,η(z)dz.

This random variable denotes the portion of z ∈ [−1/2, 1/2] that can be approximated within η error.

Definition 1. For a candidate set {xi}ni=1, and some k ∈ {0} ∪ [n], define its (k, η)-feasible set as

Fk,η =

{
z ∈ [−1/2, 1/2] : ∃s ∈ {0, 1}k s.t.

∣∣∣∣∣
k∑

i=1

sixi − z

∣∣∣∣∣ ≤ η̂
}
.
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By definition, Fk,η is the union of finitely many mutually disjoint closed intervals on [−1/2, 1/2]. Let µ denote the Lebesgue
measure on R. Consider the following definition of ε-extension of a set

Definition 2. Let I ⊂ [−1/2, 1/2] be a closed interval. A set S is called an ε-extension of I, denoted S ∈ Ξε(I) if

1. S ⊆ [−1/2, 1/2] \ I ,

2. for all s ∈ S, we have that mina∈I |s− a| ≤ ε,

3. µ(S) = min {ε, 1− µ(I)}.

By definition, for each I ⊂ [−1/2, 1/2], there is at least one ε-extension of I , since we can choose

S =

{
[−1/2, inf I) ∪ (sup I, sup I − inf I + ε− 1/2] if inf I ≤ ε− 1

2 ,

[inf I − ε, inf I) otherwise.

Let F = ∪mj=1Ij be a finite union of closed intervals. A set S is called an ε-extension of F , denoted by S ∈ Ξε(F) if

1. S ⊆
(
∪mj=1 ∪ξj∈Ξε(Ij) ξj

)
\ F ,

2. µ(S) = min{ε, 1− µ(F)}.

By lemma 2, there is at least one ε-extension of F .

Lemma 2. There is at least one ε-extension for each F of the form F = ∪mj=1Ij .

Proof. Suppose there is no ε-extension of some F = ∪mj=1Ij . Consider two cases:

Case 1: µ (F) ≥ 1−ε. SinceF has no ε-extension, there must be a subsetA of [−1/2, 1/2] with nonzero Lebesgue measure
such that every element in A is at least ε away from F . This is, however, a contradiction, since by µ(F) ≥ 1 − ε, every
point in [−1/2, 1/2] must be within ε distance of F .

Case 2: µ (F) ≤ 1− ε. Let S = ∪mj=1 ∪ξj∈Ξε(Ij) ξj . Since F has no ε-extension, we must have µ(S) < 1. This implies
that there exist a ∈ [−1/2, 1/2] such that a /∈ S. Thus infa′∈F |a− a′| ≥ f . Let such a′ be given, then if a > a′, (a′, a′ + ε]
is an ε-extension, and if a < a′, [a′ − ε, a′) is an ε-extension. This is a contradiction.

Let {Sk}nk=0 be given such that Sk ∈ Ξε (Fk,η). Moreover, let gk(z) = I {z ∈ Sk}. We define another recurrence of
indicator function

f̂k+1(z) = f̂k(z) +
(
1− f̂k(z)

)(
f̂k(z − xk+1) + gk(z − xk+1)

)
; f̂0(z) = f0,η(z).

Lemma 3. The sequence
{
f̂k

}n

k=0
satisfies f̂k(z) ≤ fk,η(z) for all z ∈ [−1/2, 1/2].

Proof. We show this by induction. For k = 0, we have f̂0(z) = f0,η(z) by definition. Assume f̂k(z) ≤ fk,η(z), we would
like to show f̂k+1(z) ≤ fk+1,η(z). To do this, we first notice that, by definition of gk,

fk,η+ε (z) = fk,η (z) + (1− fk,η (z))I
{
z ∈ ∪ξk∈Ξε(Fk,η)ξk

}
≥ fk,η (z) + (1− fk,η (z))gk(z).

Moreover, if gk(z) = 1, we must have fk,η(z) = 0. Therefore (1− fk,η (z))gk(z) = gk(z). This implies that

1 ≥ fk,η+ε (z) ≥ fk,η (z) + gk(z) ≥ f̂k(z) + gk(z).
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Using this, we have

fk+1,η(z) = fk,η(z) + (1− fk,η(z))fk,η+ε(z − xk+1)

≥ fk,η(z) + (1− fk,η(z))
(
f̂k(z − xk+1) + gk(z − xk+1)

)
=
(
f̂k(z − xk+1) + gk(z − xk+1)

)
+
(
1− f̂k(z − xk+1)− gk(z − xk+1)

)
fk,η(z)

≥
(
f̂k(z − xk+1) + gk(z − xk+1)

)
+
(
1− f̂k(z − xk+1)− gk(z − xk+1)

)
f̂k(z)

= f̂k(z) +
(
1− f̂k(z)

)(
f̂k(z − xk+1) + gk(z − xk+1)

)
= f̂k+1(z).

This completes the proof.

Based on the definition of
{
f̂k

}n

k=0
, we define {p̃k}nk=0 as

p̃k =

∫ 1/2

−1/2

f̂k(z)dz.

Then by definition we have p̃k ≤ pk, with p̃0 = p0. Moreover, we have

p̃k+1 =

∫ 1/2

−1/2

(
f̂k(z) +

(
1− f̂k(z)

)(
f̂k(z − xk+1) + gk(z − xk+1)

))
dz

≤ p̃k +

∫ 1/2

−1/2

(
f̂k(z − xk+1) + gk(z − xk+1)

)
dz

≤ p̃k +

∫ 1/2

−1/2

(
f̂k(u) + gk(u)

)
du

= 2p̃k + µ(Sk)

≤ 2p̃k + ε.

Furthermore, by definition of p̃k+1, we have p̃k+1 ≤ 1. For p̃k, we can compute its expectation with respect to xk+1 as

E [p̃k+1] = p̃k +
1

2

∫ 1

−1

∫ 1/2

−1/2

(
1− f̂k(z)

)(
f̂k(z − x) + gk(z − x)

)
dzdx

= p̃k +
1

2

∫ 1/2

−1/2

(
1− f̂k(z)

)
dz

∫ 1

−1

(
f̂k(u) + gk(u)

)
du

= p̃k +
1

2
(1− p̃k)(p̃k + µ(Sk))

= p̃k +
1

2
(1− p̃k)min {1, p̃k + ε} .

A.1 Tracking the Growth up to 1− ε

When p̃k ≤ 1− ε, the recurrence above boils down to

E [p̃k+1] ≥ p̃k +
1

2
(1− p̃k)(p̃k + ε).

We define

Zk+1 =
p̃k+1 − p̃k

(1− p̃k)(p̃k + ε)
.

Then we have E[Zk+1] ≥ 1/2. Let Yk = −k/2 +
∑k

i=1 Zi, then Yk is a submartingale. We bound Zk+1 as follows
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Lemma 4.

0 ≤ Zk+1 ≤
2

1 + ε
.

Proof. We notice that p̃k ≤ p̃k+1 ≤ min {2p̃k + ε, 1}. Consider two cases of pk:

Case 1: p̃k ≤ 1−ε
2 . In this case, we have 1− p̃k ≥ 1+ε

2 , so

Zk+1 ≤
2p̃k + ε− p̃k

(1− p̃k)(p̃k + ε)
=

1

1− p̃k
≤ 2

1 + ε
.

Case 2: p̃k ≥ 1−ε
2 . In this case, we use p̃k+1 ≤ 1. Moreover, we have p̃k + ε ≥ 1+ε

2 :

Zk+1 ≤
1− p̃k

(p̃k + ε)(1− p̃k)
=

1

p̃k + ε
≤ 2

1 + ε
.

Thus,

|Yk+1 − Yk| =
∣∣∣∣−1

2
+ Zk+1

∣∣∣∣ ≤ |3− ε|2 + 2ε
.

Therefore, we can apply Azuma’s inequality to get that

P

(
n∑

i=1

Zi ≥
n

2
− t

)
= P

(
−n
2
+

n∑
i=1

Zi ≥ −t

)
= P (Yn − Y0 ≥ −t)

≥ 1− exp

(
−2 (1 + ε) t2

n (3− ε)2

)
.

Let t = n
4 gives that

P

(
n∑

i=1

Zi ≥
n

4

)
≥ 1− exp

(
−n(1 + ε)2

8(3− ε)2

)
.

We use the following function to track the growth of pk

ψ(p) =
1

1 + ε

(
lg (p+ ε)− log(1− p) + p

2

)
.

Lemma 5. For all pk ≤ 1− ε, we have that

ψ(p̃k+1) ≥ ψ(p̃k) + Zk+1.

Proof. We first notice that

ψ(p̃k+1)− ψ(p̃k) =
∫ p̃k+1

p̃k

ψ′(p)dp ≥ min
p∈[p̃k,p̃k+1]

ψ′(p)(p̃k+1 − p̃k).

It suffice to show that

min
p∈[p̃k,p̃k+1]

ψ′(p) ≥ 1

(p̃k + ε)(1− p̃k)
.
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Of course a quantity of interest is qk = 1
(p̃k+ε)(1−p̃k)

. Let C = (lg e)
1
2 . The first- and second-order derivative of ψ are

ψ′(p) =
1

1 + ε

(
C2

p+ ε
+

1

1− p
+

1

2

)
,

ψ′′(p) =
1

1 + ε

(
C2

(1− p)2
− 1

(p+ ε)
2

)
.

Therefore, ψ′ attains its minimum at p∗ = C−ε
C+1 , and ψ′ decreases monotonically on [0, p∗] and increases monotonically

on [p∗, 1]. Notice that qk also decreases monotonically when p̃k ∈ [0, p∗] and increases monotonically when p̃k ∈ [p∗, 1].
We consider three cases of pk:

Case 1: p̃k ∈
[
0,max

{
p∗−ε

2 , 0
}]

. In this case, we have that p̃k+1 ≤ 2p̃k + ε ≤ p∗. Moreover, since p̃k+1 ≤ 2p̃k + ε, we

have that Zk+1 ≤ 1
1−p̃k

. We would like to show that

1 ≤ ψ(p̃k+1)− ψ(p̃k)
Zk+1

=
ψ(p̃k + Zk+1(p̃k + ε)(1− p̃k))− ψ(p̃k)

Zk+1
.

By Observation A.1 in (Lueker, 1998), we have

ψ(p̃k + Zk+1(p̃k + ε)(1− p̃k))− ψ(p̃k)
Zk+1

≥ (1− p̃k) (ψ(2p̃k + ε)− ψ(p̃k))

=
1− p̃k
1 + ε

(
1 + log

1− p̃k
1− 2p̃k − ε

+
p̃k + ε

2

)
≥ 1− p̃k

1 + ε

(
1 +

p̃k + ε

1− p̃k

)
= 1.

Case 2: p̃k ∈
[
max

{
p∗−ε

2 , 0
}
, p∗
]
. In this range qk decreases monotonically. Thus it achieves its maximum at p̃k =

max
{

p∗−ε
2 , 0

}
, which implies that its maximum is upper bounded by taking p̃k = p∗−ε

2 . Thus qk ≤ 4(C+1)2

C(C+2)(ε+1)2 . Since
0 ≤ p ≤ 1, we have

min
p∈[pk,pk+1]

ψ′(p) ≥ ψ′(p∗) ≥ (C + 1)2

(ε+ 1)2
+

1

2ε+ 1
≥ 1

(ε+ 1)2

(
(C + 1)2 +

1

2

)
.

With the value C = (lg e)
1
2 we have that

(C + 1)2 +
1

2
≥ 4(C + 1)2

C(C + 2)
.

Thus

min
p∈[pk,pk+1]

ψ′(p) ≥ 1

(p̃k + ε)(1− p̃k)
.

Case 3: p̃k ∈ (p∗, 1]. Notice that ψ increases monotonically on (p∗, 1]. Thus

min
p∈[pk,pk+1]

ψ′(p) = ψ′(pk) ≥
1

1 + ε

(
1

pk + ε
+

1

1− pk

)
=

1

(pk + ε) (1− pk)
.

Therefore, we have

ψ(p̃n) ≥ ψ(p̃0) +
n∑

i=1

Zi.
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Plugging in the value of ψ(p̃n) and ψ(p̃0), p̃0 = 2η, and notice that ψ increases monotonically with p

− log(1− p̃n)
1 + ε

= ψ(p̃n)−
log p̃n
1 + ε

− p̃n
2(1 + ε)

≥ ψ(p̃0) +
n∑

i=K1+1

Zi −
1

2(1 + ε)

≥ lg(2η + ε)

1 + ε
− log 1− 2η

1 + ε
+

η

1 + ε
+

n∑
i=1

Zi −
1

2(1 + ε)

≥ lg(2η)

1 + ε
+

n∑
i=1

Zi − 1.

Since
∑n

i=1 Zi ≥ n
4 with probability at least 1 − exp

(
−n(1+ε)2

8(3−ε)2

)
, as long as n ≥ (1+C) log η−1

1+ε + 1 = O( log η−1

1+ε ), we

have that with high probability
∑n

i=1 Zi ≥ (1+C) log η−1

1+ε + 1, which implies that

− log(1− p̃n) ≥ logmax {ε, η}−1
= − log(max {η, ε}),

which implies that p̃n ≥ 1 − max {η, ε}. This shows that, with high probability, n = O( log η−1

1+ε ) candidates guarantess
that each point z ∈ [−1/2, 1/2] either has an η approximation or is max{η, ε} away from an η approximation. In the case of
η ≥ ε, we have that each z has a 2η approximation. Otherwise, if ε > η, we need an additional set of candidates to grown
from 1− ε to 1− η.

A.2 Growth from 1− ε to 1− η

We consider two additional sets of n′ candidates {x̂i}n1
i=1 and {x̃i}n2

i=1. Since each x̂i ∼ Unif[−1, 1], we have that with
probability 1− O (e−n1), there exists an i ∈ [n1] such that |x̂i| ≤ 1

4 . By the subset sum result, as long as n2 = O(log 4),
it holds that for all z ∈ [−1/2, 1/2], we have

min
δ̃

∣∣∣∣∣z −
n2∑
i=1

x̃iδ̃i

∣∣∣∣∣ ≤ 1

4
.

Thus, we have

min
δ̃,δ̂:

∑n1
i=1 δ̂i≥1

∣∣∣∣∣z −
n1∑
i=1

x̂iδ̂i −
n2∑
i=1

x̃iδ̃i

∣∣∣∣∣ ≤ 1

2
.

We define

(δ̃∗, δ̂∗) = arg min
δ̃,δ̂:

∑n1
i=1 δ̂i≥1

∣∣∣∣∣z −
n1∑
i=1

x̂iδ̂i −
n2∑
i=1

x̃iδ̃i

∣∣∣∣∣ .
Then z −

∑n1

i=1 x̂iδ̂
∗
i −

∑n2

i=1 x̃iδ̃
∗
i ∈ [−1/2, 1/2], thus has an η + ε approximation by {xi}ni=1 from previous section. This

implies that ∣∣∣∣∣z −
n1∑
i=1

x̂iδ̂
∗
i −

n2∑
i=1

x̃iδ̃
∗
i −

n∑
i=1

(xi + yi)δi

∣∣∣∣∣ ≤ η + ε.

Notice that
∑n1

i=1 δ̂
∗
i ≥ 1, this means that we can get a perturbation of

∑n1

i=1 x̂iδ̂
∗
i by at least one of ε. This means that

there exists {ŷi}n1
i=1 such that ∣∣∣∣∣z −

n1∑
i=1

(x̂i + yi)δ̂
∗
i −

n2∑
i=1

x̃iδ̃
∗
i −

n∑
i=1

(xi + yi)δi

∣∣∣∣∣ ≤ η.
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Therefore, every z ∈ [−1/2, 1/2] can be approximated by the perturbed subset sum of the candidate set {xi}ni=1∪{x̂i}
n1
i=1∪

{x̃i}n2
i=1 with high probability. Here we let K = n1 which controls only the success probability. Notice that n2 is

of constant scale. Therefore, for all K ≥ 0, with probability at least 1 − exp
(
− (n−K)(1+ε)2

8(3−ε)

)
− exp(−K), every

z ∈ [−1/2, 1/2] has an 2η approximation as long as

n = O

(
log η−1

1 + ε
+K

)
.
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B Proof of Theorem 2

Lemma 6. Let g : R → R be a randomly initialized network of the form g(x) = v⊤σ(ux), where v,u ∈ R2n and n
satisfies

n ≥ C
(
log η−1

1 + ε
+K

)
,

where C is some constant, K ≥ 0, ui = 1 for i ≤ n, ui = −1 for i ≥ n+ 1, and v′is are drawn from Unif[−1, 1]. Then,
with probability at least 1− δ, there exist s ∈ {0, 1}2n,y ∈ [−ε,+ε]2n such that

sup
x:|x|≤1

∣∣wx− (v + y)⊤σ((u⊙ s)x)
∣∣ < η,

for all w ∈ [− 1
2 ,

1
2 ] with

δ = exp
(
− (n−K)(1+ε)2

8(3−ε)2

)
+ exp (−K)

Proof. Note that wx = σ(wx) − σ(−wx) and without loss of generality we assume w ≥ 0. The case of w < 0 can be
handled by changing x to −x. Furthermore, we decompose u,v,y, s by

u =

(
u1

u2

)
,v =

(
v1

v2

)
, s =

(
s1
s2

)
,y =

(
y1

y2

)
,

where u1 = 1n,u2 = −1n,v1,v2 ∈ Rn, s1, s2 ∈ {0, 1}n, and y1,y2 ∈ [−ε, ε]n. Then we have

(v + y)⊤σ((u⊙ s)x) = (v1 + y1)
⊤σ((u1 ⊙ s1)x) + (v2 + y2)

⊤σ((u2 ⊙ s2)x)

We use the first half of the RHS to approximate σ(wx) and use the second half of the RHS to approximate −σ(−wx).

Approximating σ(wx). Note that since w ≥ 0, then for x ≤ 0, (v1+y1)
⊤σ((u1⊙ s1)x) = σ(wx) = 0. Consider x > 0.

By definition of u1, we have

v⊤
1 σ (u1x) = v⊤

1 x =

(
n∑

i=1

v1,i

)
x.

Now consider (
∑n

i=1 v1,i), Theorem 3 states that with probability at least 1− δ
4 ,

∀w ∈
[
0,

1

2

]
,∃s1 ∈ {0, 1}n,y1 ∈ [−ε, ε]n s.t.

∣∣∣∣∣w −
n∑

i=1

s1,i(v1,i + y1,i)

∣∣∣∣∣ < η

2
.

Since

(v1 + y1)
⊤(s1 ⊙ u1) =

n∑
i=1

s1,i(v1,i + y1,i),

with probability at least 1− δ
4 , we have

∀w ∈
[
0,

1

2

]
,∃s1 ∈ {0, 1}n,y1 ∈ [−ε, ε]n s.t.

∣∣w − (v1 + y1)
⊤(s1 ⊙ u1)

∣∣ < η

2
.

Since |x| ≤ 1, with probability at least 1− δ
4 , we have

∀w ∈
[
0,

1

2

]
,∃s1 ∈ {0, 1}n,y1 ∈ [−ε, ε]n s.t.

∣∣wx− (v1 + y1)
⊤(s1 ⊙ u1)x

∣∣ < η

2
.
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Recall that (v1 + y1)
⊤σ((u1 ⊙ s1)x) = σ(wx) = 0 for x ≤ 0. Also, for x > 0, σ(wx) = wx and (v1 + y1)

⊤σ((u1 ⊙
s1)x) = (v1 + y1)

⊤(s1 ⊙ u1)x. Therefore, with probability at least 1− δ
4 , we have

∀w ∈
[
0,

1

2

]
,∃s1 ∈ {0, 1}n,y1 ∈ [−ε, ε]n s.t.

∣∣σ(wx)− (v1 + y1)
⊤σ((u1 ⊙ s1)x)

∣∣ < η

2
.

Approximating −σ(−wx). For x ≥ 0, (v2 +y2)
⊤σ((u2⊙ s2)x) = −σ(−wx) = 0. Now, consider x < 0. By definition

of u2, it holds that

v⊤
2 σ(u2x) =

(
n∑

i=1

v2,i

)
x.

Therefore, similarly we have that with probability at least 1− δ
4 ,

∀w ∈
[
0,

1

2

]
,∃s2 ∈ {0, 1}n,y2 ∈ [−ε, ε]n :

∣∣−σ(−wx)− (v2 + y2)
⊤σ((u2 ⊙ s2)x)

∣∣ < η

2
.

Hence by a union bound, with probability at least 1− δ
2 ,

min
s,y

sup
x:|x|≤1

∣∣wx− (v + y)⊤σ((u⊙ s)x)
∣∣

= min
s1,y1,s2,y2

sup
x:|x|≤1

∣∣wx− ((v1 + y1)
⊤σ((u1 ⊙ s1)x) + (v2 + y2)

⊤σ((u2 ⊙ s2)x)
)∣∣

= min
s1,y1,s2,y2

sup
x:|x|≤1

∣∣(σ(wx)− σ(−wx))− ((v1 + y1)
⊤σ((u1 ⊙ s1)x) + (v2 + y2)

⊤σ((u2 ⊙ s2)x)
)∣∣

≤ min
s1,y1

sup
x:|x|≤1

∣∣σ(wx)− (v1 + y1)
⊤σ((u1 ⊙ s1)x)

∣∣+ min
s2,y2

sup
x:|x|≤1

∣∣−σ(−wx)− (v2 + y2)
⊤σ((u2 ⊙ s2)x)

∣∣
<η.

Note that for the case w ≤ 0, the result has the same probability and the approximation error, so by a union bound, the
lemma hold with probability at least 1− δ.

Lemma 7. Let g : Rd1 → Rd2 be a randomly initialized network of the form g(x) = Vσ(Ux), where V ∈ Rd2×2n,U ∈
R2n×d1 , and n satisfies

n ≥ Cd1

 log
(

d1d2

η

)
1 + ε

+K

 ,

where C is some constant, K ≥ 0, weights in V are drawn i.i.d. from Unif[−1, 1], U =

(
U+

U−

)
, with U+ being a matrix

of all 1s and U− being a matrix of all −1s . Let ĝ(x) = (S⊙ (V +Y))σ((B⊙U)x) be the pruned network for masks
S ∈ {0, 1}d2×2n, B ∈ {0, 1}2n×d1 and perturbation matrix Y ∈ [−ε, ε]2n×d1 . Let the target network be fW(x) = Wx,

then with probability at least 1− d1d2
(
exp

(
− (n−K)(1+ε)2

8(3−ε)2

)
− exp (−K)

)
, there exist S,B,Y such that

sup
x:∥x∥∞≤1

∥fW(x)− ĝ(x)∥ < η,

for all W such that ∥W∥∞ ≤ 1
2 .

Proof. Since U can be written as
(
U+

U−

)
, with U+ being a matrix of all 1s and U− being a matrix of all −1s, we choose



Zheyang Xiong∗, Fangshuo Liao∗, Anastasios Kyrillidis

B̂ such that B̂⊙U is of the form

B̂⊙U =



u+
1 0 . . . 0
0 u+

2 . . . 0
...

...
. . .

...
0 0 . . . u+

d1

u−
1 0 . . . 0
0 u−

2 . . . 0
...

...
. . .

...
0 0 . . . u−

d1


,

where u+
j = 1 and u−

j = −1. Moreover, we decompose S⊙ (V +Y) as

S =

s+⊤
1,1 · · · s+⊤

1,d1
s−⊤
1,1 · · · s−⊤

1,d1

...
...

...
...

s+⊤
d2,1

· · · s+⊤
d2,d1

s−⊤
d2,1

· · · s−⊤
d2,d1

 ,

V =

v+⊤
1,1 · · · v+⊤

1,d1
v−⊤
1,1 · · · v−⊤

1,d1

...
...

...
...

v+⊤
d2,1

· · · v+⊤
d2,d1

v−⊤
d2,1

· · · v−⊤
d2,d1

 ,

Y =

y+⊤
1,1 · · · y+⊤

1,d1
y−⊤
1,1 · · · y−⊤

1,d1

...
...

...
...

y+⊤
d2,1

· · · y+⊤
d2,d1

y−⊤
d2,1

· · · y−⊤
d2,d1

 ,

where each s±i,j ,v
±
i,j ,y

±
i,j ∈ Rn/d1 . Then we have

[
(S⊙ (V +Y))σ((B̂⊙U)x)

]
i
=

d1∑
j=1

((v+
i,j + y+

i,j)⊙ s+i,j)
⊤σ(u+

j xj)+

d1∑
j=1

((v−
i,j + y+

i,j)⊙ s+i,j)
⊤σ(u−

j xj).

Letting vij =

(
v+
ij

v−
ij

)
, sij =

(
s+ij
s−ij

)
,yij =

(
y+
ij

y−
ij

)
and yij =

(
y+
ij

y−
ij

)
, we then have

[
(S⊙ (V +Y))σ((B̂⊙U)x)

]
i
=

d1∑
j=1

((vi,j + yi,j)⊙ si,j)
⊤σ(ujxj).

Now define the event

Fi,j,η :=

 sup
w:|w|≤ 1

2

inf
si∈{0,1}2n/d1 ,

yi,j∈[−ε,ε]2n/d1

sup
x:|x|≤1

∣∣wx− ((vi,j + yi,j)⊙ si,j)
⊤σ(ujx)

∣∣ < η

 .

Define Fη :=
⋂d2

i=1

⋂d1

j=1 Fi,j,η , then

P
(
F η

d1d2

)
≥ 1− d1d2

(
exp

(
− (n−K)(1 + ε)2

8(3− ε)2

)
− exp (−K)

)
.
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On event F η
d1d2

, we have

sup
∥W∥∞≤ 1

2

inf
S,B,Y

sup
∥x∥∞≤1

∥Wx− (S⊙ (V +Y))σ((B⊙U)x)∥

≤ sup
∥W∥∞≤ 1

2

inf
S,Y

sup
∥x∥∞≤1

∥∥∥Wx− (S⊙ (V +Y))σ((B̂⊙U)x)
∥∥∥

≤ sup
∥W∥∞≤ 1

2

inf
S,Y

sup
∥x∥∞≤1

d2∑
i=1

∣∣∣∣∣∣
d1∑
j=1

wi,jxj −
d1∑
j=1

((vi,j + yi,j)⊙ si,j)
⊤σ(ujxj)

∣∣∣∣∣∣
≤ sup

∥W∥∞≤ 1
2

inf
S,Y

sup
∥x∥∞≤1

d2∑
i=1

d1∑
j=1

∣∣wi,jxj − ((vi,j + yi,j)⊙ si,j)
⊤σ(ujxj)

∣∣
<d1d2

η

d1d2
=η.

With the help of this lemma, we are ready to prove theorem 2. Recall that our goal is to approximate an L-layer, ReLU
activated target multi-layer perceptron (MLP) f(x) by pruning a 2L-layer, ReLU activated candidate MLP g(x). For some
input vector x ∈ Rd0 , we assume f(x) = fL(x) has a fixed set of parameters {Wℓ}Lℓ=1, represented by:

f ℓ(x) =


WLfL−1(x), if ℓ = L,

σ
(
Wℓf ℓ−1(x)

)
, if ℓ ∈ [L− 1],

x, if ℓ = 0,

where Wℓ ∈ Rdℓ×dℓ−1 . Similarly, let g(x) = g2L(x) with parameters {Uℓ}2Lℓ=1, represented by:

gℓ(x) =


U2Lg2L−1(x), if ℓ = 2L,

σ
(
Uℓgℓ−1(x)

)
, if ℓ ∈ [2L− 1],

x, if ℓ = 0,

where Uℓ ∈ Rd̂ℓ×d̂ℓ−1 . In particular, g is a neural network with twice the depth of f . We consider the pruning and ε-
perturbation of g(x) with a set of masks for the weights S = {Sℓ}2Lℓ=1 and perturbation matrices Y = {Yi}Li=1, denoted
as gS,Y(x) = g2LS,Y(x):

gℓS,Y(x) =


(S2L ⊙ (U2L +Y2L))g2L−1

S,Y (x), if ℓ = 2L,

σ
(
(Sℓ ⊙ (Uℓ +Yℓ))gℓ−1

S,Y (x)
)
, if i ∈ [L− 1],

x, if ℓ = 0.

Let FY denote the feasible set of the perturbation Y . Also recall our assumptions for the setup
Assumption 3. We assume the following condition for f, g and FY :

(a) For all ℓ ∈ {0} ∪ [L], the weight matrix Wℓ of the target neural network f satisfies ∥Wℓ∥ ≤ 1 and
∥∥Wℓ

∥∥
∞ ≤

1
2 .

(b) The initialization of g satisfies U2ℓ
ij ∼ Unif[−1, 1], and U2ℓ−1

ij = 1 if i ≤ d̂2(ℓ−1)/2 and U2ℓ−1
ij = −1 if i > d̂2(ℓ−1)/2

for all ℓ ∈ [L] and j ∈ [d̂2ℓ−3].

(c) The feasible set of Y is defined as

FY =
{
Y : ∀ℓ ∈ [L],

∥∥Y2ℓ−1
∥∥
max

= 0 and
∥∥Y2ℓ

∥∥
max
≤ ε
}
.

We focus on the approximation error defined as:

min
Y∈FY ,S

sup
x:∥x∥≤1

∥f(x)− gS,Y (x)∥ . (5)

We state the theorem here for convenience.
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Theorem 4. Consider approximating f with g as defined above. Assume that assumption (3) holds. Also, assume that for
1 ≤ ℓ ≤ L, and for some constant C and K ≥ 0

n = Cdℓ−1

 log
(

dℓ−1dℓL
η

)
1 + ε

+K

 ; dim(U2ℓ) = dℓ × n; dim(U2ℓ−1) = n× dℓ−1.

Then with probability at least 1− 2d1d2L
(
exp

(
− (n−K)(1+ε)2

8(3−ε)2

)
− exp (−K)

)
,

min
S,Y

sup
x:∥x∥∞≤1

∥f(x)− gS,Y (x) ∥ < η,

where gS,Y is a pruning & ε-perturbation of g.

Proof. By Lemma 7, for ℓ-th layer, with probability 1− 2d1d2

(
exp

(
− (n−K)(1+ε)2

8(3−ε)2

)
− exp (−K)

)
, we have

sup
Wℓ∈Rdℓ×dℓ−1 :∥Wℓ∥≤1,∥Wℓ∥∞≤ 1

2

min
S2ℓ,S2ℓ−1,Yℓ

sup
x:∥x∥≤1

∥Wℓx− (S2ℓ ⊙U2ℓ)σ((S2ℓ−1 ⊙ (U2ℓ−1 +Yℓ))x)∥ < η

2L
. (6)

Since ReLU is 1-Lipschitz, with same probability, we have

sup
Wℓ∈Rdℓ×dℓ−1 :∥Wℓ∥≤1,∥Wℓ∥∞≤ 1

2

min
S2ℓ,S2ℓ−1,Yℓ

sup
x:∥x∥≤1

∥σ(Wℓx)− σ((S2ℓ⊙U2ℓ)σ((S2ℓ−1⊙ (U2ℓ−1 +Yℓ))x))∥ < η

2L
.

(7)
Then with probability at least 1−2d1d2L

(
exp

(
− (n−K)(1+ε)2

8(3−ε)2

)
− exp (−K)

)
, (6) and (7) hold simultaneously for every

layer 1 ≤ ℓ ≤ L. Equation (7) implies for 1 ≤ ℓ ≤ L− 1,∥∥∥σ (Wℓ+1g2ℓS,Y(x)
)
− g2(ℓ+1)

S,Y (x)
∥∥∥ ≤ η

2L

∥∥g2ℓS,Y(x)
∥∥ .

Since
∥∥Wℓ

∥∥ ≤ 1 for all ℓ ∈ [L], we have that∥∥∥g2(ℓ+1)
S,Y (x)

∥∥∥ ≤ η

2L

∥∥g2ℓS,Y(x)
∥∥+ ∥∥σ (Wℓ+1g2ℓS,Y(x)

)∥∥ ≤ (1 + η

2L

)∥∥g2ℓS,Y(x)
∥∥ .

This implies that, for all x such that ∥x∥ ≤ 1,∥∥g2ℓS,Y(x)
∥∥ ≤ (1 + η

2L

)ℓ−1

∥x∥ ≤
(
1 +

η

2L

)ℓ−1

.

Thus, we have that for all x such that ∥x∥ ≤ 1∥∥∥f ℓ+1(x)− g2(ℓ+1)
S,Y (x)

∥∥∥ =
∥∥∥σ (Wℓ+1f ℓ(x)

)
− g2(ℓ+1)

S,Y (x)
∥∥∥

≤
∥∥σ (Wℓ+1f ℓ(x)

)
− σ

(
Wℓ+1g2ℓS,Y(x)

)∥∥+ ∥∥∥σ (Wℓ+1g2ℓS,Y(x)
)
− g2(ℓ+1)

S,Y (x)
∥∥∥

≤
∥∥f ℓ(x)− g2ℓS,Y(x)

∥∥+ η

2L

∥∥g2ℓS,Y(x)
∥∥

≤
∥∥f ℓ(x)− g2ℓS,Y(x)

∥∥+ (1 + η

2L

)ℓ−1 η

2L
.

Solving the recurrence thus gives

∥f(x)− gS,Y(x)∥ =
∥∥fL(x)− g2LS,Y(x)

∥∥
≤

L−1∑
i=1

(
1 +

η

2L

)i−1 η

2L

=
η

2L

2L

η

((
1 +

η

2L

)L
− 1

)
< eη/2 − 1

< η.
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C Additional Experimental Results

Sparsity s
Perturbation Scale ε

0 10−3 5 · 10−3 10−2 2 · 10−2 3 · 10−2 4 · 10−2 5 · 10−2 10−1 2 · 10−1 4 · 10−1

0 0.12 0.12 0.12 0.12 0.11 0.11 0.11 0.11 0.10 0.09 0.10
0.1 0.49 0.47 0.47 0.45 0.66 0.58 0.66 0.71 0.67 0.36 0.10
0.2 0.75 0.77 0.75 0.72 0.74 0.74 0.80 0.82 0.78 0.58 0.10
0.3 0.83 0.80 0.79 0.80 0.85 0.84 0.82 0.83 0.81 0.72 0.10
0.4 0.82 0.82 0.85 0.86 0.85 0.87 0.88 0.81 0.83 0.76 0.23
0.5 0.85 0.87 0.86 0.87 0.86 0.86 0.86 0.86 0.86 0.83 0.22
0.6 0.83 0.85 0.86 0.84 0.85 0.86 0.85 0.85 0.82 0.75 0.47
0.7 0.81 0.82 0.81 0.81 0.80 0.84 0.84 0.81 0.82 0.78 0.51
0.8 0.73 0.79 0.71 0.74 0.72 0.74 0.76 0.78 0.79 0.74 0.54

Table 2: Test accuracy for different pruning level s and perturbation scale ε. For each different perturbation scale (each
column), the highest accuracy is marked bold.

Sparsity s
Perturbation Scale ε

0 10−3 5 · 10−3 10−2 2 · 10−2 3 · 10−2 4 · 10−2 5 · 10−2 10−1 2 · 10−1 4 · 10−1

0 0.12 0.14 0.25 0.42 0.68 0.84 0.90 0.93 0.96 0.97 0.98
0.1 0.49 0.53 0.66 0.76 0.86 0.90 0.93 0.94 0.96 0.98 0.98
0.2 0.73 0.76 0.78 0.84 0.89 0.91 0.92 0.93 0.96 0.98 0.98
0.3 0.83 0.84 0.86 0.88 0.90 0.91 0.92 0.93 0.96 0.97 0.98
0.4 0.82 0.84 0.87 0.89 0.91 0.92 0.93 0.93 0.96 0.97 0.98
0.5 0.85 0.84 0.87 0.89 0.91 0.92 0.93 0.94 0.96 0.97 0.98
0.6 0.83 0.85 0.87 0.89 0.90 0.92 0.92 0.93 0.95 0.97 0.98
0.7 0.81 0.82 0.84 0.86 0.89 0.91 0.92 0.93 0.95 0.97 0.98
0.8 0.73 0.74 0.76 0.79 0.84 0.87 0.89 0.91 0.94 0.96 0.98

Table 3: Test accuracy for different pruning level s and perturbation scale ε.
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