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Abstract

Recent theoretical analyses of the convergence of
gradient descent (GD) to a global minimum for
over-parametrized neural networks make strong
assumptions on the step size (infinitesimal), the
hidden-layer width (infinite), or the initialization
(spectral, balanced). In this work, we relax these
assumptions and derive a linear convergence rate
for two-layer linear networks trained using GD
on the squared loss in the case of finite step
size, finite width and general initialization. De-
spite the generality of our analysis, our rate esti-
mates are significantly tighter than those of prior
work. Moreover, we provide a time-varying step
size rule that monotonically improves the conver-
gence rate as the loss function decreases to zero.
Numerical experiments validate our findings.

1 INTRODUCTION

The empirical success of neural networks on a wide va-
riety of applications, such as natural language process-
ing Vaswani et al. [2017, 2018], computer vision He et al.
[2015]; Minaee et al. [2021] and decision making Silver
et al. [2016]; Vo et al. [2019], has motivated significant re-
search on understanding theoretically why neural networks
work so well in practice. One interesting and puzzling phe-
nomenon is that over-parametrized neural networks trained
with gradient descent (GD) enjoy fast convergence even
if their loss landscape is non-convex. Much of the recent
work in this area has focused on deriving convergence rates
for over-parametrized networks. However, existing results
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Table 1: Summary of prior work and our contributions.

step size width initialization
Jacot et al. [2018];
Du et al. [2018b]; Lee
et al. [2019]; Liu et al.
[2022]; Oymak and
Soltanolkotabi [2020]

finite very
large

sufficiently
large

Mei et al. [2018]; Chizat
and Bach [2018]; Ding
et al. [2022]; Sirignano
and Spiliopoulos [2020]

infinite-
simal infinite general

Saxe et al. [2013]; Gidel
et al. [2019]; Tarmoun
et al. [2021]

infinite-
simal finite spectral

Tarmoun et al. [2021];
Min et al. [2022]

infinite-
simal finite general

Arora et al. [2018]; Du
et al. [2018a]; Nguegnang
et al. [2021]

finite finite
large margin
and small
imbalance

This work finite finite general

require stringent assumptions on the step size (infinitesi-
mally small), the hidden-layer width (infinitely large), or
the initialization (spectral, balanced).

Prior work. One line of work Jacot et al. [2018]; Du
et al. [2018b]; Lee et al. [2019]; Liu et al. [2022] studies
the convergence of GD when the scale of the initialization
and the network width are sufficiently large. Under these
assumptions, the network weights remain close to their ini-
tialization during training, and one can show that GD con-
verges linearly to a global minimum. However, Chizat et al.
[2019]; Chen et al. [2022] show that this “lazy training”
regime is unrealistic in practice as it limits feature learning.
A convergence analysis beyond the so-called lazy regime
can be undertaken in the (mean-field) limit of infinitely
wide networks Mei et al. [2018]; Rotskoff and Vanden-
Eijnden [2018b,a]; Chizat and Bach [2018]; Sirignano and
Spiliopoulos [2020]; Ding et al. [2022], where suitable as-
sumptions on the initialization and step size make GD be-
come a Wasserstein flow; a partial differential equation
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commonly appearing in optimal transport theory. How-
ever, while such analysis can guarantee convergence to the
global optimum for a wider range of initializations, it still
imposes strong assumptions on the network width (infinite)
and step size (infinitesimal).

Another line of work studies the convergence of gradient-
based algorithms for over-parametrized networks with fi-
nite width. In this finite-width setting, the vast majority
of existing results considers linear networks trained using
gradient flow (GF). GF can be seen as GD with infinitesi-
mal step size, but its dynamics in this setting are generally
easier to analyze. For example, Saxe et al. [2013]; Gidel
et al. [2019]; Tarmoun et al. [2021] show that under spec-
tral initialization the dynamics of GF decouple into sev-
eral scalar dynamics, which allows them to derive a linear
convergence rate. For non-spectral initialization, Tarmoun
et al. [2021]; Min et al. [2022] show that a large imbal-
ance or large margin of the initialization can lead to faster
convergence of GF, significantly extending the range of ini-
tializations from which linear convergence of GF is guaran-
teed. However, such results require infinitesimal step size.
For finite step size, Arora et al. [2018]; Du et al. [2018a];
Nguegnang et al. [2021] prove linear convergence of GD
when there is sufficient margin at initialization and the im-
balance is small. However, such assumptions rarely hold in
practice since commonly used random initializations have
a large imbalance.

Paper contributions. In this work, we derive a linear
convergence rate for GD in the case of over-parametrized,
finite-width, two-layer linear networks with general initial-
ization. Our analysis can be seen as a natural extension of
recent results for GF, which cover finite width and imbal-
anced initializations. However, a key challenge in the case
of GD is that quantities such as imbalance, which are pre-
served by GF, are no longer preserved by GD. To address
this challenge, we derive quantities that effectively bound
the deviation of the discrete dynamics from the continuous
dynamics as a function of the step size, thus ensuring suf-
ficient control (via upper and lower bounds) of the level of
imbalance throughout training. This leads to a convergence
rate that naturally depends on the step size, as well as other
quantities, such as the current loss value. Moreover, the de-
pendency of the rate on the step size is a low-degree poly-
nomial, which allows us to easily compute an optimal step
size at each iteration of training. Furthermore, we prove
that the resulting time-varying step size is lower-bounded
by the optimal rate of GD for the non-overparametrized
problem. Finally, our numerical results show that, de-
spite the generality of our analysis, the step size we de-
rive leads to faster convergence and our Theorem in §3 ad-
mits a wider range of step sizes than in Du et al. [2018a];
Arora et al. [2018]. We provide the code to reproduce the
simulations at https://github.com/simonxu97/
aistats2023_overparametrization.

Notation. We use lower case letters a to denote a scalar,
and capital letters A and A⊤ to denote a matrix and
its transpose. We use λmax(A) and λmin(A) to denote
the largest and smallest eigenvalues of A, σmax(A) and
σmin(A) to denote its largest and smallest singular values,
∥A∥F and ∥A∥2 to denote its Frobenius and spectral norms,
and A[i, j] to denote its (i, j)-th element. Given two matri-
ces A ∈ Rn×m and B ∈ Rk×l, it will be convenient to use

either
(
A
B

)
or (A,B) to represent an element in the prod-

uct space Rn×m × Rk×l, irrespectively of the dimensions.
For a function f(Z), we use ∇f(Z) := ∂

∂Z f(Z) to denote
its gradient, and whenever Z depends on an independent
variable t, we use f(t) := f(Z(t)) and Ż(t) = d

dtZ(t),
dropping the dependence on t when it is implicit from the
context, e.g., Ż = d

dtZ. Finally, we useN (µ, σ2) to denote
a normal distribution with mean µ and variance σ2.

2 CONVERGENCE OF GRADIENT
FLOW FOR TWO-LAYER LINEAR
NETWORKS

In this section, we first consider a linear regression prob-
lem and its over-parametrized version, which is equivalent
to training a two-layer linear neural network. We then sum-
marize the convergence results for GF in Min et al. [2022],
which constitute the starting point of our work. Throughout
this section, we thus consider a continuous time t ∈ R.

Given N training samples (xi, yi)
N
i=1, where xi ∈ Rn, yi ∈

Rm, we consider the following linear regression problem

min
W

ℓ(W ) =
1

2
∥Y −XW∥2F , (1)

where W ∈ Rn×m, X = [x1, · · · , xN ]⊤ ∈ RN×n and
Y = [y1, · · · , yN ]⊤ ∈ RN×m. We are interested in solv-
ing the optimization problem in equation 1 by solving the
following over-parametrized problem

min
W1,W2

L(W1,W2) =
1

2
∥Y −XW1W2∥2F , (2)

where W1 ∈ Rn×h, W2 ∈ Rh×m. This over-parametrized
problem corresponds to training a two-layer linear neural
network with n inputs, h hidden neurons, m outputs, and
weight matrices W1 and W2.

To simplify the exposition, we consider the above problems
in the under-determined case, i.e., N ≤ n. We assume that
the input data matrix X is full rank, i.e., rank(X) = N .1

We also assume that h ≥ min{n,m}. These assump-
tions imply that the minimum of both problems is zero, i.e.,
minW ℓ(W ) = 0 and L∗ := minW1,W2 L(W1,W2) = 0.

1When X is rank deficient, one can reformulate the problem
into one with full-rank input data matrix (see Appendix A for de-
tails).

https://github.com/simonxu97/aistats2023_overparametrization
https://github.com/simonxu97/aistats2023_overparametrization
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We note, however, that our results generalize the case
N > n, by properly accounting for a non-zero L∗.

Convergence under GF. Let us consider solving equa-
tion 2 via GF(

Ẇ1

Ẇ2

)
= −∇L(W1,W2) = −

(
∇ℓ(W )W⊤

2

W⊤
1 ∇ℓ(W )

)
, (3)

where ∇ℓ(W ) = X⊤(Y −XW ). Notice that there exists
a linear operator γ(·;W1,W2) : Rn×m → Rn×h ×Rh×m,

γ(∇ℓ(W );W1,W2) :=

(
∇ℓ(W )W⊤

2

W⊤
1 ∇ℓ(W )

)
, (4)

which depends on W1,W2, that maps the gradient of
the loss ∇ℓ(W ) ∈ Rn×m to the gradient of the over-
parametrized loss∇L(W1,W2) ∈ Rn×h × Rh×m.

Then, one can show that the evolution of L under GF is

L̇(W1,W2)

=

〈
∂L

∂W1
(W1,W2), Ẇ1

〉
+

〈
∂L

∂W2
(W1,W2), Ẇ2

〉
= − ⟨γ(∇ℓ(W );W1,W2), γ(∇ℓ(W );W1,W2)⟩
= −⟨∇ℓ(W ), γ∗ ◦ γ(∇ℓ(W );W1,W2)⟩ ,

(5)

where γ∗(·;W1,W2) is the adjoint of γ(·;W1,W2). There-
fore, the dynamics of L are defined by the following posi-
tive semi-definite Hermitian linear operator on∇ℓ(W ):

τ(∇ℓ(W );W1,W2) := γ∗ ◦ γ(∇ℓ(W );W1,W2) (6)

=∇ℓ(W )W⊤
2 W2 +W1W

⊤
1 ∇ℓ(W ).

Then, from equation 5 and the min-max principle of Her-
mitian operators, we have

L̇(t) = −⟨∇ℓ(t), τt(∇ℓ(t))⟩ ≤−λmin(τt)∥∇ℓ(t)∥2F , (7)

where for simplicity we use ℓ(t), L(t) and τt(∇ℓ(t)),
resp., as a shorthand for ℓ(W (t)), L(W1(t),W2(t)) and
τ(∇ℓ(W (t));W1(t),W2(t)). Similarly, we use λmin(τt)
and λmax(τt) as a shorthand for λmin(τ( · ;W1(t),W2(t)))
and λmax(τ( · ;W1(t),W2(t))), respectively.

The core contribution of Min et al. [2022] is to provide a
lower bound on λmin(τt) using two quantities: imbalance

D(t) = W⊤
1 (t)W1(t)−W2(t)W2(t)

⊤ , (8)

and product W (t) = W1(t)W2(t). Specifically, they show
there exists an non-negative function α(D,σmin(W )) that
depends on imbalance and product, such that for all t ≥ 0,

λmin(τt) ≥ α(D(t), σmin(W (t))). (9)

To find a uniform lower bound on α(D(t), σmin(W (t)))
for all t ≥ 0, they exploit the fact that the imbalance matrix

remains constant along the trajectories of GF Arora et al.
[2018]; Du et al. [2018a], i.e., Ḋ ≡ 0 so that D(t) = D(0).
As for the product, Min et al. [2022] show (from the fact
that the loss L(t) is non-increasing) that

σmin(W (t)) ≥ p1(:= margin) , (10)

where p1 is defined in Table 2.

Therefore, we can replace the imbalance D(t) in equation 9
by its initial value D(0). Moreover, it can be shown that
α(D,σ) is a non-decreasing function of the second argu-
ment σ, allowing us to use equations 9 and 10 to show that

λmin(τt) ≥ α(D(t), p1) = α(D(0), p1) :=α0, (11)

where the expression for α0 is shown in Table 2. Observe
that equation 11 yields a uniform lower bound on λmin(τt).
Combining equation 11 with the fact that ℓ(t) satisfies the
PL condition 1

2∥∇ℓ(t)∥
2
F ≥ µℓ(t) with µ = σ2

min(X) > 0,
we show that equation 7 can be further upper-bounded by:

L̇(t) ≤ −λmin(τt)∥∇ℓ(t)∥2F ≤ −α0∥∇ℓ(t)∥2F
≤ −2µα0ℓ(t) = −2µα0L(t),

(12)

where the third inequality follows from the PL condition.
Moreover, if α0 > 0, it follows from Grönwall’s inequal-
ity that L(t) ≤ exp(−2µα0t)L(0), showing that GF con-
verges exponentially with a rate 2µα0.

As discussed in the introduction, the imbalance matrix
D(t) measures the difference of the weights in the two
layers, while the margin p1 depends on the initial error
∥Y − XW1(0)W2(0)∥F (the smaller the error, the larger
the margin). Min et al. [2022] show that α0 > 0 when
there is either 1) sufficient imbalance ∆ > 0 or 2) sufficient
margin p1 > 0, where ∆ is defined in Table 2. Moreover,
a larger imbalance (as measured by ∆) or a larger margin
p1 improves the rate of convergence α0. In summary, the
convergence of GF is completely determined by the ini-
tialization W1(0),W2(0), and convergence is guaranteed
when the initialization satisfies α0 > 0, which is achieved
by either being imbalanced or having sufficient margin.

3 CONVERGENCE OF GRADIENT
DESCENT FOR TWO-LAYER LINEAR
NETWORKS

In this section, we analyze the convergence of GD for over-
parametrized two-layer linear networks. We start in §3.1 by
highlighting the challenges of analyzing over-parametrized
GD when compared to (1) the standard GD algorithm
applied to ℓ(W ) and (2) the GF algorithm applied to
L(W1,W2) described in the previous section. Alongside,
we provide a high-level overview of the overall strategy we
use to overcome these challenges. Based on these strategy,
we derive in §3.2 a rigorous convergence rate that depends
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on not only the imbalance and margin at the initialization
but also the step size and condition number of the data. Fi-
nally, in §3.3 we propose an adaptive step size scheme that
accelerates convergence. Due to the discrete nature of our
updates, we thus consider t to be discrete, i.e., t ∈ N.

3.1 Challenges in the Analysis of Over-parametrized
Gradient Descent

Standard GD. We start by deriving the convergence rate
of the non-overparametrized regime described in equa-
tion 1. Notice that ℓ(t) is K-smooth and satisfies the µ-
PL condition, where K = σ2

max(X) and µ = σ2
min(X).

Then, the following smoothness inequality holds for any
W (t),W (t+ 1):

ℓ(t+1) ≤ ℓ(t)+⟨∇ℓ(t),W (t+1)−W (t)⟩

+
K

2
∥W (t+1)−W (t)∥2F .

(13)

After substituting the GD update with fixed step size η

W (t+1) = W (t)− η∇ℓ(t) (14)

into the smoothness inequality in equation 13 we obtain

ℓ(t+1) ≤ ℓ(t)− η∥∇ℓ(t)∥2F +
K

2
η2∥∇ℓ(t)∥2F

= ℓ(t)− η
(
1−K

η

2

)
∥∇ℓ(t)∥2F .

(15)

Then, if the step size satisfies η < 2
K , then the loss is

non-increasing. Moreover, if we apply the PL condition
1
2∥∇ℓ(t)∥

2
F ≥ µℓ(t) to equation 15, we obtain

ℓ(t+1) ≤ (1− 2ηµ+Kµη2)ℓ(t), (16)

which suffices to show the linear convergence of GD, for
properly chosen η.

Over-parametrized GD. In the over-parametrized case,
we use the chain rule to write the gradient of L with respect
to W1,W2 in terms of ∇ℓ(W ),W1,W2. The update of
weights in GD is(

W1(t+1)
W2(t+1)

)
=

(
W1(t)
W2(t)

)
− ηγt(∇ℓ(t)). (17)

Thus, the update of the product is

W (t+ 1) = W1(t+ 1)W2(t+ 1)

=
(
W1(t)− η∇ℓ(t)W2(t)

⊤)(W2(t)− ηW1(t)
⊤∇ℓ(t)

)
= W (t)− ητt(∇ℓ(t)) + η2∇ℓ(t)W (t)⊤∇ℓ(t). (18)

In other words, the update of the product is a polynomial
of degree two on the step size η, unlike the update in equa-
tion 14, which is a polynomial of degree one. Substitut-
ing equation 18 into the smoothness inequality 13, and us-
ing the PL condition, we can connect the loss at iteration

t + 1 with the loss at iteration t. The following lemma
characterizes this property.

Lemma 3.1. If at the t-th iteration of GD applied to the
over-parametrized loss L, the step size η satisfies

λmin(τt)− η∥∇ℓ(t)∥Fσmax(W (t))

− Kη

2

[
λmax(τt) + η∥∇ℓ(t)∥Fσmax(W (t))

]2≥ 0 ,
(19)

then the following inequality holds

L(t+1) ≤ ρ(η, t)L(t) , (20)

where

ρ(η, t) = 1− 2ηµλmin(τt) +Kµη2λ2
max(τt)

+ 2η2µσmax(W (t))∥∇ℓ(t)∥F
+ 2η3µKλmax(τt)σmax(W (t))∥∇ℓ(t)∥F
+ η4µKσ2

max(W (t))∥∇ℓ(t)∥2F . (21)

The proof of the above lemma can be found in Appendix B.

Comparison with non-overparametrized GD. The dif-
ference between the inequality we derive in Lemma 3.1
and the one in equation 16 is twofold. Firstly, ρ(η, t) in
equation 21 includes a quadratic polynomial of η:

1− 2ηµλmin(τt) +Kµη2λ2
max(τt) (22)

that resembles the one in equation 16. The only difference
is that the second coefficient is now scaled by λmin(τt)
and the third coefficient by λ2

max(τt). Equation 22 comes
from the term ητt(∇ℓ(t)) in the product update in equa-
tion 18, which corresponds to moving the weight W (t)
along the “skewed gradient direction” τt(∇ℓ(t)) instead
of ∇ℓ(t). Secondly, equation 21 has extra second- and
higher-order terms in η which come from the other term
η2∇ℓ(t)W⊤(t)∇ℓ(t) in equation 18. Overall, compared
to equation 16, the over-parametrized GD introduces a
more complicated update on the product W (t), leading to
the inequality in equation 20 that not only is a polyno-
mial of degree four in η, but also depends on the weights
W1(t),W2(t) at the current iteration. These differences
pose additional challenges in deriving a linear convergence
rate for over-parametrized GD.

Towards linear convergence. Lemma 3.1 provides an
upper bound on L(t + 1), ρ(η, t)L(t), which implicitly
depends on W1(t) and W2(t) via λmin(τt), σmax(W (t)),
ℓ(t) and λmax(τt). However, it is unclear whether one can
find some step size η that can simultaneously satisfy equa-
tion 19 and uniformly bound ρ(η, t) ≤ ρ̄ < 1, for all t.
Only under such conditions Lemma 3.1 would lead to

L(t+ 1) < ρ̄L(t) < (ρ̄)t+1L(0). (23)

We approach this challenge in a similar spirit as it was done
in GF Min et al. [2022].
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Step 1. Spectral bounds for τt and W (t): First, we seek to
find bounds for λmin(τt) and λmax(τt) based on the imbal-
ance D(t) and the singular values of the product, i.e.,

α(D(t), σmin(W (t))) ≤ λmin(τt)

λmax(τt) ≤ β(D(t), σmax(W (t))),
(24)

where both functions α(D,σ) and β(D,σ) are increasing
on the second argument, σ. As a result, if one is able to
control D(t) and the singular values of W (t), one can at-
tempt to upper-bound ρ(η, t) in equation 21.

For the case of σmin(W (t)) and σmax(W (t)), a similar
monotonicity argument as in GF can be done to obtain

p1 ≤ σmin(W (t)) ≤ σmax(W (t)) ≤ p2 , (25)

where p2 is defined in Table 2.

The additional, non-trivial challenge present in GD is
the fact that the imbalance D(t) is no longer preserved,
i.e., D(t) ̸= D(0), which makes it still difficult control
λmin(τt), λmax(τt) by equation 24. Nevertheless, we show
in Theorem 3.1 that if η is sufficiently small, but not in-
finitesimal, it is possible to control how much the imbal-
ance changes by bounding ∥D(t)−D(0)∥ for all t, which
leads to a uniform bound of the form

α0c1 ≤ λmin(τt) ≤ λmax(τt) ≤ β0c2 , (26)

where β0 := β(D(0), p1), and the parameters 0 < c1 < 1,
c2 > 1 represent an additional level of conservativeness
in the bound that is necessary to accommodate the time
varying nature of D(t) in GD; see discussion after Theorem
3.1 for more details.

Stage 2. Uniform upper-bound on rate ρ(η, t): Once
bounds for the spectrum of W (t) and τt have been es-
tablished, one can then proceed to bound ρ(η, t) in equa-
tion 21. In particular, we will show that ρ(η, t) ≤ f(η, t),
where

f(η, t) := 1− a1η + a2(t)η
2 + a3(t)η

3 + a4(t)η
4 , (27)

and the dependency on time is only through L(t), i.e.,

a1 = 2(c1α0)σ
2
min(X),

a2(t) = 2
√
2κL(t)σ6

min(X)p2 + κσ4
min(X)(c2β0)

2,

a3(t) = 2
√
2κ3L(t)σ10

min(X)c2β0p2,

a4(t) = 2κ2σ6
min(X)p22L(t). (28)

The above bound for ρ(η, t) in equation 27, whose deriva-
tion is provided in Theorem 3.2, can be then leveraged in
multiple ways.

• Uniform linear rate. Under mild conditions on the step
size, here exists η independent of t such that f(η, t) ≤
f(η, 0) (also in Theorem 3.2), leading to

L(t) ≤ Πt
k=0f(η, k)L(0) ≤ (f(η, 0))tL(0). (29)

• Time-varying step size. A natural consequence of equa-
tions 27 and 29 is the possibility to adaptively choose ηt,
using only knowledge of the current loss L(t), so as to
improve the convergence rate. This is explored in §3.3;
see Algorithm 1.

3.2 General bound on linear convergence rate

In this subsection, we derive conditions under which
Lemma 3.1 is a descent lemma. Based on this result, we
can prove that GD converges linearly to a global minimum
of equation 2. We refer the reader to Table 2 for the defini-
tion of various quantities appearing in this section.

Before stating our main result, we note that prior
work Arora et al. [2018]; Du et al. [2018a] studied opti-
mizing equation 2 via GD, but their results require the ini-
tial imbalance to have small Frobenius norm and the initial
margin to be sufficiently large. The NTK initialization Du
and Hu [2019] does not require small imbalance, but it does
require a large hidden-layer width h, and the weights needs
to be randomly initialized. To the best of our knowledge,
Theorem 3.2 is the first convergence result for GD which
provides an explicit convergence rate without making the
assumption that the initial imbalance is small or that the
width of the network is large.

Table 2: Table of Notation

SYMBOL DEFINITION
ℓ(t) ℓ(W (t))
L(t) L(W1(t),W2(t))
τt(∇ℓ(t)) τ(∇ℓ(W (t));W1(t),W2(t))
λmin(τt) λmin(τ(·;W1(t),W2(t)))
λmax(τt) λmax(τ(·;W1(t),W2(t)))
D(t) W⊤

1 (t)W1(t)−W2(t)W2(t)
⊤

W (t) W1(t)W2(t)
E(t) Y −XW1(t)W2(t)

κ
σ2
max(X)

σ2
min(X)

p1
max{σmin(Y )−∥E(0)∥F ,0}

σmax(X)

p2
∥Y ∥F+∥E(0)∥F

σmin(X)

∆+ max(λmax(D(0)), 0)−max(λn(D(0)), 0)
∆− max(λmax(−D(0), 0))−max(λm(−D(0)), 0)
∆ max(λn(D(0)), 0) + max(λm(−D(0)), 0)
λ+ max(λmax(D(0)), 0)
λ− max(λmax(−D(0)), 0)

α0
−∆++

√
(∆++∆)2+4p21

2
+

−∆−+
√

(∆−+∆)2+4p21
2

β0

λ++
√

λ2
++4p22

2
+

λ−+
√

λ2
−+4p22

2

Theorem 3.1 (Uniform bounds on eigenvalues of τt and
singular values of W (t)). Assume α0 > 0, and choose 0 <
c1 < 1, and c2 > 1. Let ηmax

1 and ηmax
2 be, respectively,

the unique positive roots of the following two polynomials
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in η

a4(0)η
3+a3(0)η

2+
(
a2(0)+

4c2L(0)σ
2
max(X)

c2 − 1

)
η=a1,

a4(0)η
3+a3(0)η

2+
(
a2(0)+

8c2β0L(0)σ
2
max(X)

(1− c1)α0

)
η = a1.

(30)

Then, for any 0 < η ≤ ηmax := min{ηmax
1 , ηmax

2 }, the
following holds for all t = 0, 1, . . .

c1α0 ≤ λmin(τt) ≤ λmax(τt) ≤ c2β0

p1 ≤ σmin(W (t)) ≤ σmax(W (t)) ≤ p2.
(31)

The above theorem says that when the step size is small,
we can bound the eigenvalues of τt and the singular val-
ues of W (t) using the initial imbalance and margin. When
α0 > 0, we have a1 > 0, and the LHS of equation 30 is a
monotonically increasing function of η, when η > 0, and
is equal to zero, when η = 0. Therefore, each polynomial
has a unique positive root. The condition η ≤ ηmax is used
to control ∥D(t)−D(0)∥F . We use λmin(τt) as an exam-
ple to illustrate why we need to control ∥D(t) − D(0)∥F .
In GD, equation 9 still holds. However, since the imbal-
ance is no longer constant, i.e. since D(t) ̸= D(0), we
no longer have α(D(t), p1) = α(D(0), p1). Nonetheless,
after careful analysis, we observe that the change of imbal-
ance at each iteration is of order η2. Moreover, as long as
the loss decreases linearly and η is small (see equation 30),
we can prove that ∥D(t)−D(0)∥F ≤ O(η). Thus, we first
introduce c1 to control the change of the eigenvalues of the
imbalance matrix. Then, if the step size is bounded, i.e.
η ≤ ηmax, we can show that α(D(t), p1) ≥ c1α(D(0), p1).
A similar analysis yields the upper bound for λmax(τt).
When c1, c2 are chosen to be close to one, the change in
eigenvalues of imbalance is guaranteed to be small, but it
requires a smaller step as ηmax is small.

Then, based on Theorem 3.1, we can prove the linear con-
vergence of GD.

Theorem 3.2 (Convergence rate of gradient descent on
two-layer linear networks). Under the assumptions in The-
orem 3.1, for any 0 < η ≤ ηmax := min{ηmax

1 , ηmax
2 }, the

loss function under GD satisfies

L(t+1) ≤ f(η, t)L(t), (32)

for f(η, t) as defined in equation 27, and with

0 < f(η, t) ≤ f(η, 0) < 1, ∀t ≥ 0. (33)

Thus, the loss converges linearly, i.e.,

L(t) ≤ Πt
k=0f(η, k)L(0) ≤ f(η, 0)tL(0). (34)

with rate given by f(η, 0).

In f(η, t), −a1η is an important term that facilitates con-
vergence because it is the only term that is associated with
a negative coefficient. Notice that a1 depends on p1, D(0)
via α0, and when α0 > 0, i.e., there is either sufficient mar-
gin or imbalance, we have a1 > 0. The proof Theorem 3.1
and Theorem 3.2 is presented in Appendix C.

Detailed comparison with SOTA. We compare our re-
sults with other works studying the same problem Du et al.
[2018a]; Arora et al. [2018]. In both works, the authors
make assumptions that the initial imbalance is small. In
our work, Theorem 3.2 holds if there is either a sufficient
imbalance or sufficient margin at initialization, which is
a more general setting. In Du et al. [2018a], they prove
the loss decreases, and the imbalance remains small during
training, but the paper does not provide an explicit con-
vergence rate. More importantly, a decay in step size is
needed to control the difference between D(t) and D(0).
In our work, we provide an explicit convergence rate with-
out the need to decrease step size. In Arora et al. [2018],
the authors provide an explicit convergence rate. However,
their result depends on the property that when step size is
small, ∥D(t)∥F ≤ 2∥D(0)∥F . We think the two used in
their proof is an artifact and improve it by introducing c1
and c2 and characterize the dependence between step size
and c1, c2, which is a more general case.

Comparison with non-overparametrized regime. In
the GF regime, Min et al. [2022]; Tarmoun et al. [2021]
show that if α0 is sufficiently large, the over-parametrized
model can have a faster convergence rate than the non-
overparametrized model. However, as shown in the next
proposition, such a result does not extend to the GD regime.
Proposition 3.1. If α0 > 0, for all 0 < η ≤ ηmax and for
all t = 0, 1, · · · , the following inequality holds

f(η, t) ≥ 1− 1

κ
, (35)

where κ = K
µ is the condition number of the non-

overparametrized Problem 1

In Proposition 3.1, 1 − 1
κ is the theoretical optimal con-

vergence rate of solving Problem 1 via GD (see §3.1 for a
derivation of it). As a result, Proposition 3.1 states that the
convergence rate derived in Theorem 3.2, i.e., f(η, t), for
solving the over-parametrized Problem 2 via GD, is always
larger. Nevertheless, we point out that Theorem 3.2 only
provides an upper bound on the rate, and further study is
needed to characterize its tightness.

3.3 Adaptive Step Size Scheme

Motivation. In Theorem 3.2, we used the bound in equa-
tion 32 to show that a fixed step size η ≤ ηmax guarantees
a linear rate of convergence for the loss L(t). It is thus nat-
ural to ask whether we can improve upon this rate by using
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a tighter bound and an adaptive step size ηt. Specifically, if
we can show that there exists a function h(η, t) ≥ 0 such
that for all t, h(η, t) ≤ f(η, t), L(t+1) ≤ h(η, t)L(t)
and minη h(η, t) < 1, then we can pick a step size ηt that
minimizes h(η, t), i.e.,

ηt = argmin
η

h(η, t) . (36)

Such a choice for the step size would theoretically achieve
the most decrease in the loss function L(t). As a result,
we would obtain the following theoretical upper bound on
L(t)

L(t) ≤
t−1∏
k=0

h(ηk, k)L(0) . (37)

Choices of h(η, t). We already know from equation 20
and equation 32 that h(η, t) = ρ(η, t) and h(η, t) =
f(η, t), respectively, are valid choices for h. Based on our
analysis in §3.1 and §3.2, in the following proposition we
present additional choices for h(η, t) and the conditions un-
der which minη h(η, t) < 1 holds for every t.

Proposition 3.2. Let h(η, t) be one of the following func-
tions ρ(η, t), ρ̂(η, t) or f(η, t), where

ρ̂(η, t) = 1− 2ηµαt +Kµη2β2
t + 2η2µp2

√
2KL(t)

+ 2η3µKβtp2
√

2KL(t) + 2η4µK2p22L(t). (38)

Then, under the assumptions of Theorem 3.1, whenever,
η ≤ ηmax, the following holds for all choices of h(η, t)
and every t = 0, 1, 2, . . .

L(t+1) ≤ h(η, t)L(t), (39)

with 0 ≤ ρ(η, t) ≤ ρ̂(η, t) ≤ f(η, t) < 1.

Proposition 3.2 shows that choosing 0 < η ≤ ηmax guar-
antees minη h(η, t) < 1 holds for every t. Moreover, since
one can view f(η, 0) as a special choice of h(η, t) where
the h(η, t) = f(η, 0) for every t, we can broaden the choice
of h(η, t), to compactly describe all rate bounds of our pa-
per, i.e.,

h(η, t) ∈ {ρ(η, t), ρ̂(η, t), f(η, t), f(η, 0)} . (40)

Algorithm description. As suggested by Proposi-
tion 3.2, given a choice of h(η, t), one can compute the
adaptive step size by solving the following optimization
problem

ηt = arg min
η≤ηmax

h(η, t) . (41)

Since all choices for h(η, t) are fourth-order polynomials,
solving equation 41 only requires finding the roots of a
third-order polynomial. More specifically, we have:

Claim 3.1. Suppose α0 > 0. Let η′t be the unique positive
root of the following equation

dh(η, t)

dη
= 0. (42)

Then the solution to Problem 41 is ηt = min(η′t, ηmax).

The proof is in Appendix E. This suggests that one can find
ηt very efficiently at each iteration. The resulting GD algo-
rithm with adaptive step size is summarized in Algorithm 1.

Algorithm 1: GD with Adaptive Step Size
Data: X,Y , and initial W1(0),W2(0)
Result: W ∗

1 ,W
∗
2 that minimize 1

2∥Y −XW1W2∥2F .
for t = 0, 1, 2 · · · do

/* adaptive step size */
ηt ← argminη≤ηmax

h(η, t)
/* GD update with ηt */(
W1(t+1)
W2(t+1)

)
=

(
W1(t)
W2(t)

)
− ηtγt(∇ℓ(t)).

end

Convergence rate under adaptive step size. Notice that
h(η, t) depends on the iteration t via the loss function L(t).
As the training proceeds, the adaptive step size scheme en-
sures h(η, t) < 1 such that the loss L(t) converges to zero.
This, in turn, affects the asymptotic expression for h(η, t).
Specifically, when t is sufficiently large (so that L(t) ≃ 0),
we have

f(η, t)≃1−2(c1α0)σ
2
min(X)η+κσ4

min(X)(c2β0)
2η2,

ρ̂(η, t)≃1−2αtσ
2
min(X)η+κσ4

min(X)β2
t η

2,

ρ(η, t)≃1−2λmin(τt)σ
2
min(X)η+κσ4

min(X)λmax(τt)
2η2.

Under a proper choice of c1, c2 such that

ηmax ≥
c1α0

c22β
2
0κσ

2
min(X)

:= η∗t (43)

the adaptive step size schedulers yield a rate

ρ(η∗t , t) ≤ ρ̂(η∗t , t) ≤ f(η∗t , t) ≃ 1− (c1α0)
2

(c2β0)2
1

κ
. (44)

For adaptive step size scheme in equation 36 under any one
of the choices of h(η, t) in Proposition 3.2, the asymptotic
convergence rate of GD with is upper bounded by a con-
stant depending on both α0

β0
and 1

κ . In Appendix E, we show
that there always exists a choice for c1, c2 such that equa-
tion 43 holds. Our numerical simulations show that GD
with all three adaptive step size strategies listed in Propo-
sition 3.2 achieve faster convergence than GD with a fixed
step size in Theorem 3.2. Please refer to Section 4.2 for
details.
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Figure 1: Evolution of the loss and of the step size for dif-
ferent choices of the step size schedule in the large margin
and balanced spectral initialization regime. We select the
two schedules in Arora et al. [2018]; Du et al. [2018a] as
well as four other schedules according to Algorithm 1 with
h(η, t) chosen from equation 40. We run the simulations
fifty times. On the top plot, the solid line is the log10 of the
mean reconstruction error L(t), and the vertical line is the
mean plus and minus one standard deviation.

4 SIMULATIONS

In this section, we first compare the convergence rate of
GD using the step sizes presented in §3.3 with those using
step size proposed in previous work Arora et al. [2018];
Du et al. [2018a], and our step sizes achieve considerably
faster convergence rate. We then present experiments under
much more general initializations than in prior work. Our
experiments show that that the bounds in equation 37 pro-
vide a good characterization of the actual convergence rate.
Throughout the experiments, we fix c1 = 0.5 and c2 = 1.5
in our choice of step sizes and the width of the two-layer

linear networks is 1,000. The details of the simulations are
presented in Appendix F.

4.1 Comparison between different learning rates
presented in previous work

In this section, we compare the step sizes proposed in The-
orem 2 of Arora et al. [2018] and Theorem 3.1 of Du et al.
[2018a] with the step sizes proposed in §3.3. We note
that the analyses in Arora et al. [2018]; Du et al. [2018a]
assume that the initialization is approximately balanced
(∥D(0)∥F is small). In addition, Arora et al. [2018] re-
quires the initialization to have sufficient margin (∥Y −
XW1(0)W2(0)∥F is small). Therefore, we compare our
results with Arora et al. [2018]; Du et al. [2018a] using the
following simulation setup that initializes the weight matri-
ces via (balanced) spectral initialization. Specifically,

X = I20, Y = XW (0) + 0.04ε ,

W (0) ∈ R20×1,W (0)[i, j] ∼ N (0, 1/4) ,

ε ∈ R20×1, ε[i, j] ∼ N (0, 1) ,

W1(0) = UΣV ⊤,W2(0) = Σ1/2V ⊤ .

(45)

where W (0) = UΣV ⊤ is the SVD of W (0). Such data
generation setup ensures that ∥Y −XW (0)∥F is small so
that there is a sufficiently large margin. The balanced spec-
tral initialization guarantees the initial imbalance is zero.
Recall that these conditions of zero balance and large mar-
gin are needed by Arora et al. [2018]; Du et al. [2018a] to
obtain their convergence results, but they are not needed for
our approach. Therefore, we work in this restrictive setting
only to facilitate comparison with prior work.

Figure 1 shows that the step size choices proposed in our
paper achieve the fastest convergence compared with other
SOTA methods Arora et al. [2018]; Du et al. [2018a] (top
plot). The bottom plot also shows that the step sizes
proposed in this work are larger than the ones proposed
in Arora et al. [2018]; Du et al. [2018a]. Moreover,
the adaptive step size schemes minimizing ρ̂(η, t), ρ(η, t)
have similar rates and are faster than the one minimiz-
ing f(η, t), f(η, 0). This is because ρ̂(η, t), ρ(η, t) use
W1(t),W2(t) to bound the eigenvalue of τt at each iter-
ation, which gives tighter bounds on the loss. On the other
hand, the coefficients of f(η, t) simply use c1α0, c2β0

which is conservative.

4.2 Evaluation of the tightness of the theoretical
bound on the convergence rate

In this section, we train a two-layer linear network using
GD on the squared loss in equation 2. We generate the
data matrix as follows: X ∈ R20×20, X[i, j] ∼ N (0, 1),
and Y = XΘ where Θ ∈ R20×20,Θ[i, j] ∼ N (0, 1).
The initial weight matrices are generated as W1(0) =
σU0,W2(0) = 1

σV0, where U0 ∈ R20×1000, V0 ∈
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Figure 2: Tightness of the theoretical upper bound in equation 37 with the choice of h(η, t) specified in equation 40 versus
reconstruction error L(t), shown in different colors. We run the simulations for three different initialization. For each
initialization and each choice of step size, we repeat the simulation fifty times. The triangle lines represent the theoretical
upper bound on the training loss in equation 37. The circle lines represent the log10 of the mean reconstruction error L(t).
The horizontal line is the mean plus and minus one standard deviation.

R1000×20 and have entry-wise i.i.d. samples drawn from
a standard Gaussian N (0, 1). We choose different values
of σ to test our convergence rate in different regimes.

Figure 2 compares the convergence rate predicted by equa-
tion 37 with the actual convergence rate of L(t), for differ-
ent values of σ and approximately similar values of α0

β0
. In

all scenarios, our theoretical bounds in equation 37 follow
the empirical results relatively well. Moreover, we see the
convergence rate of all methods vary with σ. This is be-
cause the rate depends on α0

β0
shown in equation 44. Thus,

the larger α0

β0
, the faster the convergence. Finally, in this

experiment, the initial margin is 0, and there is a large ini-
tial imbalance. Those initial conditions violate the assump-
tions in Arora et al. [2018]; Du et al. [2018a], but still enjoy
linear convergence. Thus, our theory applies beyond the
regime of Arora et al. [2018]; Du et al. [2018a].

5 CONCLUSIONS

This paper studied the convergence of GD for optimizing
two-layer linear networks. In particular, we derived a con-
vergence rate for networks of finite width that are initial-
ized in a non-NTK regime. Our results build upon recent
work for GF, which derived convergence rates that depend
on the imbalance and margin of the initialization. However,
a key challenge in the GD regime is that the imbalance of
the weights changes with the iterations of GD. In this pa-
per, we show that when the step size is small, the imbalance
at iteration t is close to its value at initialization. More-
over, we show that under this constraint on the step size,
the loss is decreasing. In addition, we derive an explicit
convergence rate that depends on the margin, imbalance,
and condition number of the data matrix. Finally, based on
the convergence rate, we propose three adaptive step size
schemes that accelerate convergence compared with a con-

stant step size. Empirically, we show the convergence rate
derived in our work is tighter than in previous work.
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A CASE WHEN DATA MATRIX IS RANK DEFICIENT

Here, we show for any data matrix X of arbitrary dimensions and rank, the over-parametrized problem

min
W1,W2

L(W1,W2) =
1

2
∥Y −XW1W2∥2F , (46)

can be reparametrized into the following problem

min
W̃1,W̃2

L(W̃1, W̃2) =
1

2
∥Ỹ − X̃W̃1W̃2∥2F , (47)

where X̃ is a square matrix of full rank.

Let singular value decomposition of X be

X = [U1, U2]

[
ΣX 0
0 0

] [
V ⊤
1

V ⊤
2

]
, (48)

where ΣX contains all non-zero singular values of X . Then, we have X = U1ΣXV ⊤
1 . The GD update of W1,W2 is

W1(t+1) = W1(t) + ηX⊤E(t)W⊤
2 (t) = W1(t) + ηV1ΣXU⊤

1 E(t)W⊤
2 (t),

W2(t+1) = W2(t) + ηW⊤
1 (t)X⊤E(t) = W2(t) + ηW⊤

1 (t)V1ΣXU⊤
1 E(t). (49)

We project W1 onto the space spanned by V1, V2,

W11 = V ⊤
1 W1,

W12 = V ⊤
2 W1. (50)

Furthermore, we define Ẽ(t) = U⊤
1 E(t). Based on above, one has

W11(t+1) = W11(t) + ηΣXẼ(t)W2(t),

W12(t+1) = W12(t),

W2(t+1) = W2(t) + ηW⊤
11(t)ΣXẼ(t). (51)

The update of W11,W2 is the same to the following problem

min
W11,W2

L(W11,W2) =
1

2
∥U⊤

1 Y − ΣXW11W2∥2F , (52)

where ΣX is a sqaure matrix of full rank. The above problem takes the same form as equation 47 where Ỹ = U⊤
1 Y, X̃ =

ΣX , W̃1 = W11, W̃2 = W2.

B PROOF OF LEMMA 3.1

In this section, we present detailed proof of Lemma 3.1.
Lemma 3.1. If at the t-th iteration of GD applied to the over-parametrized loss L, the step size η satisfies

λmin(τt)− η∥∇ℓ(t)∥Fσmax(W (t))

− Kη

2

[
λmax(τt) + η∥∇ℓ(t)∥Fσmax(W (t))

]2≥ 0 ,
(53)

then the following inequality holds
L(t+1) ≤ ρ(η, t)L(t) , (54)

where

ρ(η, t) = 1− 2ηµλmin(τt) +Kµη2λ2
max(τt)

+ 2η2µσmax(W (t))∥∇ℓ(t)∥F
+ 2η3µKλmax(τt)σmax(W (t))∥∇ℓ(t)∥F
+ η4µKσ2

max(W (t))∥∇ℓ(t)∥2F . (55)
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Proof. Applying smoothness equation 13to the update of the product in equation 18, we get

L(t+1) ≤ L(t)− η⟨∇ℓ(t), τt(∇ℓ(t))− η∇ℓ(t)W (t)⊤∇ℓ(t)⟩

+
K

2
η2∥τt(∇ℓ(t))− η∇ℓ(t)W (t)⊤∇ℓ(t)∥2F

= L(t)− η⟨∇ℓ(t), τt(∇ℓ(t))⟩
+ η2

(
⟨∇ℓ(t),∇ℓ(t)W (t)⊤∇ℓ(t)⟩+ K

2 ∥τt(∇ℓ(t))∥
2
F

)
− η3K⟨τt(∇ℓ(t)),∇ℓ(t)W (t)⊤∇ℓ(t)⟩

+
K

2
η4∥∇ℓ(t)W (t)⊤∇ℓ(t)∥2F

(56)

Then, we upper bound each term in the above inequality separately. First, since τt is a positive semi-definite operator, we
have

⟨∇ℓ(t), τt(∇ℓ(t))⟩ ≥ λmin(τt)∥∇ℓ(t)∥2F
∥τt(∇ℓ(t))∥2F ≤ λ2

max(τt)∥∇ℓ(t)∥2F (57)

Then, using the sub-multiplicative property of Frobenius norm and Cauchy Schwartz inequality, we can bound the rest
terms in equation 56

|⟨∇ℓ(t),∇ℓ(t)W (t)⊤∇ℓ(t)⟩| ≤ ∥∇ℓ(t)∥F ∥∇ℓ(t)W (t)⊤∇ℓ(t)∥F ≤ ∥∇ℓ(t)∥3Fσmax(W (t))

|⟨τt(∇ℓ(t)),∇ℓ(t)W (t)⊤∇ℓ(t)⟩| ≤ ∥∇ℓ(t)∥Fσmax(W (t))⟨∇ℓ(t), τt(∇ℓ(t))⟩ ≤ λmax(τt)σmax(W (t))∥∇ℓ(t)∥3F
∥∇ℓ(t)W (t)⊤∇ℓ(t)∥2F ≤ σ2

max(W (t))∥∇ℓ(t)∥4F . (58)

Based on above results, we can further upper bound equation 56

L(t+1) ≤ L(t)− η⟨∇ℓ(t), τt(∇ℓ(t))⟩ (59)

+ η2
(
⟨∇ℓ(t),∇ℓ(t)W (t)⊤∇ℓ(t)⟩+ K

2 ∥τt(∇ℓ(t))∥
2
F

)
(60)

− η3K⟨τt(∇ℓ(t)),∇ℓ(t)W (t)⊤∇ℓ(t)⟩ (61)

+
K

2
η4∥∇ℓ(t)W (t)⊤∇ℓ(t)∥2F (62)

≤ L(t)− ηλmin(τt)∥∇ℓ(t)∥2F (63)

+ η2(σmax(W (t))∥∇ℓ(t)∥3F +
K

2
λ2
max(τt)∥∇ℓ(t)∥2F ) (64)

+ η3Kλmax(τt)σmax(W (t))∥∇ℓ(t)∥3F (65)

+ η4
K

2
σ2
max(W (t))∥∇ℓ(t)∥4F (66)

= L(t)− η∥∇ℓ(t)∥2F g(η) (67)

where

g(η) = λmin(τt)− η(σmax(W (t))∥∇ℓ(t)∥F +
K

2
λ2
max(τt))

− η2Kλmax(τt)σmax(W (t))∥∇ℓ(t)∥F − η3
K

2
σ2
max(W (t))∥∇ℓ(t)∥2F .

(68)

When g(η) > 0, which is assumed in equation 19, we apply PL condition 1
2∥∇ℓ(t)∥

2
F ≥ µℓ(t) to the above equation to get

L(t+1) ≤ L(t)×
{
1− 2ηµλmin(τt)

+ 2η2µ
(
σmax(W (t))∥∇ℓ(t)∥F +

K

2
λ2
max(τt)

)
+ 2η3µKλmax(τt)σmax(W (t))∥∇ℓ(t)∥F

+ η4µKσ2
max(W (t))∥∇ℓ(t)∥2F

}
= ρ(η, t)L(t).

(69)
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C PROOF OF THEOREM 3.1 AND THEOREM 3.2

Here we prove a new Theorem which implies Theorem 3.1 and Theorem 3.2.
Theorem C.1. Under the assumptions in Theorem 3.1, for any 0 < η ≤ ηmax := min{ηmax

1 , ηmax
2 }, the following four

properties hold for all t = 0, 1, 2, · · · .

• A1(t) : L(t) ≤ f(η, t)L(t−1), where f(η, t) = 1− a1η + a2(t)η
2 + a3(t)η

3 + a4(t)η
4 < 1.

• A2(t) : p1 ≤ σmin(W (t)) ≤ σmax(W (t)) ≤ p2.

• A3(t) : ∥D(t)−D(0)∥F ≤ 2c2β0σ
2
max(X)L(0)η2

1−f(η,0) when η < ηmax.

• A4(t) : c1α0 ≤ σ2
min(W1(t)) + σ2

min(W2(t)) ≤ λmin(τt) ≤ λmax(τt) ≤ σ2
max(W1(t)) + σ2

max(W2(t) ≤ c2β0.

Notice Theorem 3.1 is Property A2(t), A4(t), and Theorem 3.2 is implied by Property A1(t) because when L(k) ≤ L(0)
hold for all k = 0, 1, · · · , t, we have a2(k) ≤ a2(0), a3(k) ≤ a3(0), a4(k) ≤ a4(0). Thus, f(η, k) ≤ f(η, 0). As a result,
the following inequality holds

L(t) ≤ f(η, t)L(t− 1) ≤ L(0)

t−1∏
k=0

f(η, k) ≤ f(η, 0)tL(0). (70)

Before proving Theorem C.1, we first present several preliminary lemmas.
Lemma C.1. For matrix A,B, we have

σ2
min(A)∥B∥2F ≤ ∥AB∥2F ≤ σ2

max(A)∥B∥2F
σ2
min(B)∥A∥2F ≤ ∥AB∥2F ≤ σ2

max(B)∥A∥2F . (71)

Proof.

∥AB∥2F = tr
(
ABB⊤A⊤)

= tr
(
A⊤ABB⊤) use cyclic property of trace

≤ λmax

(
A⊤A

)
∥B∥2F use trace inequality

= σ2
max(A)∥B∥2F . (72)

For the other way

∥AB∥2F = tr
(
ABB⊤A⊤)

= tr
(
A⊤ABB⊤)

≤ λmax

(
BB⊤) ∥A∥2F

= σ2
max(B)∥A∥2F . (73)

The lower bound is similar.

Lemma C.2. Let X ∈ RN×n, Y ∈ RN×m. Assume N ≤ n and rank(X) = N . For arbitrary W ∈ Rn×m, the following
holds for ℓ(W ) = 1

2∥Y −XW∥2F
2σ2

min(X)ℓ(W ) ≤ ∥∇ℓ(W )∥2F ≤ 2σ2
max(X)ℓ(W ). (74)

Proof. The first inequality is PL inequality. We then prove the second

∥∇ℓ(W )∥2F = ∥X⊤(Y −XW )∥2F gradient calculation

≤ σ2
max(X)∥Y −XW∥2F use Lemma C.1

= 2σ2
max(X)ℓ(W ). (75)
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Lemma C.3. The difference of the imbalance between iteration t+ 1 and t can be upper bounded by

∥D(t+1)−D(t)∥F ≤ 2η2σ2
max(X)

(
σ2
max(W1(t)) + σ2

max(W2(t))
)
L(t). (76)

Proof. Notice the definition of imbalance is D(t) := W⊤
1 (t)W1(t)−W2(t)W

⊤
2 (t) and the update of GD is given in equa-

tion 4. Thus, using both results, one has

D(t+1) =
(
W1(t)− η∇ℓ(t)W2(t)

⊤)⊤(W1(t)− η∇ℓ(t)W2(t)
⊤) plug in GD update

−
(
W2(t)− ηW1(t)

⊤∇ℓ(t)
)(
W2(t)− ηW1(t)

⊤∇ℓ(t)
)⊤

= D(t) + η2
(
W2(t)∇ℓ(t)⊤∇ℓ(t)W2(t)

⊤ −W1(t)
⊤∇ℓ(t)∇ℓ(t)⊤W1(t)

)
. (77)

Then, we can upper bound ∥D(t+1)−D(t)∥F using Lemma C.1 and Lemma C.2

∥D(t+1)−D(t)∥F = η2∥W2(t)∇ℓ(t)⊤∇ℓ(t)W2(t)
⊤ −W1(t)

⊤∇ℓ(t)∇ℓ(t)⊤W1(t)∥F
≤ η2

(
∥W2(t)∇ℓ(t)⊤∇ℓ(t)W2(t)

⊤∥F + ∥W1(t)
⊤∇ℓ(t)∇ℓ(t)⊤W1(t)∥F

)
≤ η2

(
∥W2(t)∇ℓ(t)⊤∥2F + ∥W1(t)

⊤∇ℓ(t)∥2F
)

by Lemma C.1

≤ η2
(
σ2
max(W1(t)) + σ2

max(W2(t))
)
∥∇ℓ(t)∥2F by Lemma C.2

≤ 2η2σ2
max(X)

(
σ2
max(W1(t)) + σ2

max(W2(t))
)
L(t). (78)

Lemma C.4. Suppose h > min{r,m}. Given any A ∈ Rr×h, B ∈ Rh×m that satisfy A⊤A−BB⊤ = D, we have

λm(B⊤B) ≥ −λ̄+ λ+
√
(λ̄+ λ)2 + 4σ2

m(AB)

2
(79)

where λ̄ = max{λ1(D), 0} and λ = max{λm(−D), 0}.

Lemma C.4 is cited from Min et al. [2022] and the proof can be found in Min et al. [2022] Lemma 8.

Lemma C.5. Suppose h > min{r,m}. Given any A ∈ Rr×h, B ∈ Rh×m that satisfy A⊤A−BB⊤ = D, we have

λmax(B
⊤B) ≤

max(λmax(−D), 0) +
√

max(λmax(−D), 0)2 + 4σ2
max(AB)

2
(80)

Proof. We first choose z ∈ Rm with ∥z∥2 = 1 s.t.

z⊤B⊤Bz = λmax(B
⊤B). (81)

Then, we have

λ2
max(B

⊤B)− z⊤B⊤A⊤ABz = z⊤B⊤BB⊤Bz − z⊤B⊤A⊤ABz

= z⊤(B⊤BB⊤B −B⊤A⊤AB)z

= z⊤B⊤(BB⊤ −A⊤A)Bz

= z⊤B⊤(−D)Bz. (82)

Notice

λ2
max(B

⊤B)− z⊤B⊤A⊤ABz ≥ λ2
max(B

⊤B)− σ2
max(AB)

z⊤B⊤(−D)Bz ≤ max(λmax(−D), 0)∥Bz∥22 ≤ max(λmax(−D), 0)λmax(B
⊤B). (83)

Thus, we have
λmax(B

⊤B)2 − σ2
max(AB) ≤ max(λmax(−D), 0)λmax(B

⊤B). (84)

The solution to the above inequality gives us the results.
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Then, we begin the proof of Theorem C.1.

Proof. Assume A1(k), A2(k), A3(k), A4(k) hold at iteration k = 1, 2, · · · , t, then we prove they all hold at iteration t+1.

First, we prove A1(t+1) hold. According to Lemma 3.1, we have

L(t+1) ≤ L(t)×
{
1− 2ηµλmin(τt)

+ 2η2µ
(
σmax(W (t))∥∇ℓ(t)∥F +

K

2
λ2
max(τt)

)
+ 2η3µKλmax(τt)σmax(W (t))∥∇ℓ(t)∥F

+ η4µKσ2
max(W (t))∥∇ℓ(t)∥2F

}
(85)

Since A2(t), A4(t) hold, we can further upper bound the above inequality

L(t+1) ≤ L(t)×
{
1− 2ηµc1α0 + 2η2µ

(
p2∥∇ℓ(t)∥F +

K

2
(c1β0)

2
)

+ 2η3µKc1β0p2∥∇ℓ(t)∥F + η4µKp22∥∇ℓ(t)∥2F
}

(86)

Apply Lemma C.2

L(t+1) ≤ L(t)×
{
1− 2ηµc1α0 + 2η2µ

(
p2
√

2σ2
max(X)L(t) +

σ2
max(X)

2
(c2β0)

2
)

+ 2η3µσ2
max(X)c2β0p2

√
2σ2

max(X)L(t) + 2η4µσ4
max(X)p22L(t)

}
= L(t)×

{
1− 2ησ2

min(X)c1α0 + 2η2
(
p2

√
2κσ6

min(X)L(t) +
κσ4

min(X)

2
(c2β0)

2
)

+ 2η3c2β0p2

√
2κ3σ10

min(X)L(t) + 2η4p22κ
2σ6

min(X)L(t)

}
= L(t)× [1− a1η + a2(t)η

2 + a3(t)η
3 + a4(t)η

4]

(87)

Finally, we show when 0 < η ≤ ηmax, f(η, t) < 1. Notice f(η, t) is a decreasing functions in t, it suffices to show
f(η, 0) < 1

f(η, 0) < 1 ⇐⇒ a4(0)η
3 + a3(0)η

2 + a2(0)η < a1. (88)

Compare the above inequality with equation 30, one has

a4(0)η
3 + a3(0)η

2 + a2(0)η < a4(0)η
3+a3(0)η

2+
(
a2(0)+

4c2L(0)σ
2
max(X)

c2 − 1

)
η

a4(0)η
3 + a3(0)η

2 + a2(0)η < a4(0)η
3+a3(0)η

2+
(
a2(0)+

8c2β0L(0)σ
2
max(X)

(1− c1)α0

)
η. (89)

Thus, when 0 < η ≤ ηmax, we have

a4(0)η
3 + a3(0)η

2 + a2(0)η < a4(0)η
3+a3(0)η

2+
(
a2(0)+

4c2L(0)σ
2
max(X)

c2 − 1

)
η ≤ a1

a4(0)η
3 + a3(0)η

2 + a2(0)η < a4(0)η
3+a3(0)η

2+
(
a2(0)+

8c2β0L(0)σ
2
max(X)

(1− c1)α0

)
η ≤ a1. (90)

which is equivalent to f(η, 0) < 1. Thus, A1(t+1) is proved.

Then, we prove A2(t+1) hold. Since loss is decreasing, i.e. L(t+1) ≤ L(t) ≤ L(0), we have

∥Y −XW (t+1)∥F ≤ ∥E(0)∥F . (91)
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equation 91 is equivalent to

∥Y ∥F − ∥E(0)∥F ≤ ∥XW (t+1)∥F ≤ ∥Y ∥F + ∥E(0)∥F . (92)

In Min et al. [2022], Theorem 3, the lower bound is proved. For the upper bound,

σmax(W (t+1))σmin(X) ≤ ∥W (t+1)∥Fσmin(X) ≤ ∥XW (t+1)∥F ≤ ∥Y ∥F + ∥E(0)∥F , (93)

Thus,

σmax(W (t+1)) ≤ ∥Y ∥F + ∥E(0)∥F
σmin(X)

=: p2. (94)

Then, we prove A3(t+1) hold.

∥D(t+1)−D(0)∥F ≤
t∑

k=0

∥D(K+1)−D(k)∥F use Lemma C.3

≤
t∑

k=0

2η2σ2
max(X)

(
σ2
max(W1(k)) + σ2

max(W2(k))
)
L(k) use A4(k)

≤ 2η2σ2
max(X)c2β0

t∑
k=0

L(k) use A1(k)

≤ 2η2c2β0σ
2
max(X)

t∑
k=0

(1− a1η + a2(k)η
2 + a3(k)η

3 + a4(k)η
4)kL(0) (95)

≤ 2η2c2β0σ
2
max(X)

t∑
k=0

(1− a1η + a2(0)η
2 + a3(0)η

3 + a4(0)η
4)kL(0)

≤ 2η2c2β0σ
2
max(X)L(0)

1− f(η, 0)
. (96)

where we upper bound ai(k) by ai(0) in equation 95 for i = 1, 2, 3, 4.

Finally, we prove A4(t+1) hold. λmin(τ) ≤ λmax(τ) is obvious. We begin with the second inequality

λmin(τ) = min
∥W∥F=1

⟨W,WW⊤
2 W2 +W1W

⊤
1 W ⟩ definition of operator norm

≥ min
∥W∥F=1

⟨W,WW⊤
2 W2⟩+ min

∥W∥F=1
⟨W,W1W

⊤
1 W ⟩

= σ2
min(W1) + σ2

min(W2). (97)

The fourth inequality can be proved similarly

λmax(τ) = max
∥W∥F=1

⟨W,WW⊤
2 W2 +W1W

⊤
1 W ⟩

≤ max
∥W∥F=1

⟨W,WW⊤
2 W2⟩+ max

∥W∥F=1
⟨W,W1W

⊤
1 W ⟩

= σ2
max(W1) + σ2

max(W2) (98)

Then, we prove the first inequality and last inequality holds. According to Lemma C.4, we have

σ2
min(W1(t+1)) ≥

−λ̄ (t+1) + λ+(t+1) +

√(
λ̄ (t+1) + λ+(t+1)

)2
+ 4σ2

n (W (t+1))

2
.

σ2
min(W2(t+1)) ≥

−λ̄+(t+1) + λ−(t+1) +

√(
λ̄+(t+1) + λ−(t+1)

)2
+ 4σ2

m (W (t+1))

2
. (99)
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where

λ̄+(t) = max (λ1(D(t)), 0)

λ−(t) = max (λm(−D(t)), 0)

λ̄−(t) = max (λ1(−D(t)), 0)

λ+(t) = max (λn(D(t)), 0)

(100)

We define

h1(∆1,∆2) :=
−λ̄−(0) + ∆1 + λ+(0) + ∆2 +

√(
λ̄−(0) + λ+(0) + ∆1 +∆2

)2
+ 4p21

2

h2(∆3,∆4) =
−λ̄+(0) + ∆1 + λ−(0) + ∆2 +

√(
λ̄+(0) + λ−(0) + ∆1 +∆2

)2
+ 4p21

2
(101)

where

∆1 = λ̄−(t+1)− λ̄ (0)

∆2 = λ+(t+1)− λ+(0)

∆3 = λ̄+(t+1)− λ̄+(0)

∆4 = λ−(t+1)− λ−(0).

(102)

Then, we use σmin(W (t+1)) ≥ p1 to lower bound equation 99

σ2
min(W1(t+1)) ≥

−λ̄ (t+1) + λ+(t+1) +

√(
λ̄ (t+1) + λ+(t+1)

)2
+ 4σ2

n (W (t+1))

2
.

≥
−λ̄ (t+1) + λ+(t+1) +

√(
λ̄ (t+1) + λ+(t+1)

)2
+ 4p21

2
.

:= h1(∆1,∆2). (103)

Similarly, we have
σ2
min(W2(t+1)) ≥ h2(∆3,∆4). (104)

Notice h1(0, 0) + h2(0, 0) = α0 which is independent of t. Our goal is to lower bound h1(∆1,∆2) + h2(∆3,∆4) using
h1(0, 0)+ h2(0, 0). A natural solution is that if we can quantify how large |∆k|, k = 1, 2, 3, 4 is, i.e.|∆k| ≤ ∆h, and if we
can show h1(·, ·), h2(·, ·) are both Lh-Lipschitz continuous. Using these two ingredients, one can show

|h1(∆1,∆2)− h1(0, 0)|≤ Lh

√
∆2

1 +∆2
2

⇒ h1(∆1,∆2) ≥ h1(0, 0)− Lh

√
∆2

1 +∆2
2 ≥ h1(0, 0)−

√
2Lh∆h. (105)

Similarly, we have

h2(∆3,∆4) ≥ h2(0, 0)−
√
2Lh∆h. (106)

Based on above two equations, one has

h1(∆1,∆2) + h2(∆3,∆4) ≥ h1(0, 0) + h2(0, 0)− 2
√
2Lh∆h. (107)

Next, we show the above two assumptions hold

1. h1(·, ·), h2(·, ·) are both Lh-Lipschitz continuous.

2. |∆k| ≤ ∆h hold for all k = 1, 2, 3, 4.
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For the first one, using Weyl’s inequality and Property A3(t+1), we can upper bound |∆k|

|∆1| =
∣∣max(λ1(−D(t+1)), 0)−max(λ1(−D(0)), 0)

∣∣
≤

∣∣λ1(−D(t+1))− λ1(−D(0)), 0)
∣∣ use Weyl’s inequality

≤ ∥D(t+1)−D(0)∥F use Lemma C.3

≤ 2η2c2β0σ
2
max(X)L(0)

1− f(η, 0)
. (108)

Similarly, we have

|∆2|, |∆3|, |∆4| ≤ ∥D(t+1)−D(0)∥F ≤
2η2c2β0σ

2
max(X)L(0)

1− f(η, 0)
. (109)

What’s more, ∣∣∣∣dh1(x, y)

dx

∣∣∣∣ = ∣∣∣∣−1

2
+

x+ y + λ̄−(0) + λ+(0)

2

√(
λ̄−(0) + λ+(0) + x+ y

)2
+ 4p21

∣∣∣∣
≤ 1

2
+

∣∣∣∣ x+ y + λ̄−(0) + λ+(0)

2

√(
λ̄−(0) + λ+(0) + x+ y

)2
+ 4p21

∣∣∣∣
≤ 1

2
+

1

2
≤ 1.

(110)

Similarly, we have
∣∣dh1(x,y)

dy

∣∣, ∣∣dh2(x,y)
dx

∣∣, ∣∣dh2(x,y)
dy

∣∣≤ 1. Combine with equation 110, we have h1(·, ·), h2(·, ·) are
√
2-

Lipschitz continuous. Thus, we have

σ2
min(W1(t)) + σ2

min(W2(t)) ≥ h1(∆1,∆2) + h2(∆3,∆4)

≥ α0 − 2Lh

√
2∥D(t+1)−D(0)∥F Lh =

√
2

≥ α0 −
8η2c2β0σ

2
max(X)L(0)

1− f(η, 0)
. (111)

Although the above lower bound is smaller than α0, it is close to α0 when η is small. This motivates us to introduce
0 < c1 < 1 so that when η is small, the above inequality is lower bounded by c1α0. To derive the upper bound on η, it is
equivalent to ensure

α0 −
8η2c2β0σ

2
max(X)L(0)

1− f(η, 0)
≥ c1α0

⇐⇒ (1− c1)α0 ≥
8η2c2β0σ

2
max(X)L(0)

1− f(η, 0)

⇐⇒ (1− c1)α0 ≥
8ηc2β0σ

2
max(X)L(0)

a1 − a2(0)η − a3(0)η2 − a4(0)η3

⇐⇒ a4(0)η
3 + a3(0)η

2 +
(
a2(0) +

8c2β0L(0)σ
2
max(X)

(1− c1)α0

)
η ≤ a1 (112)

which is ensured when 0 < η < ηmax.

The proof for the fourth inequality σ2
max(W1(t+1)) + σ2

max(W2(t+1)) ≤ c2β0 in A4(t+1) is similar. According to
Lemma C.5, we have

σ2
max(W1(t+1)) + σ2

max(W2(t+1))

≤
max(λmax(D(0)), 0) + ∆3 +

√
4σ2

max(W (t+1)) + [max(λmax(D(0)), 0) + ∆3]2

2

+
max(λmax(−D(0)), 0) + ∆4 +

√
4σ2

max(W (t+1) + [max(λmax(−D(0)), 0) + ∆4]2

2
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≤ max(λmax(D(0)), 0) + ∆3 +
√

4p22 + [max(λmax(D(0)), 0) + ∆3]2

2

+
max(λmax(−D(0)), 0) + ∆4 +

√
4p22 + [max(λmax(−D(0)), 0) + ∆4]2

2
:= h3(∆5,∆6), (113)

where

∆5 = max(λmax(D(t+1)), 0)−max(λmax(D(0)), 0)

∆6 = max(λmax(−D(t+1)), 0)−max(λmax(−D(0)), 0).
(114)

Since ∣∣dh3(x, y)

dx

∣∣= ∣∣1
2
+

x+max(λmax(D(t+1)), 0)

2
√
4p22 + [max(λmax(D(t+1)), 0) + ∆5]2

∣∣≤ 1. (115)

Similarly, |dh3(x,y)
dy | ≤ 1. What’s more, Weyl’s inequality gives us

|∆5| = |max(λmax(D(t+1)), 0)−max(λmax(D(0)), 0)|
≤ |λmax(D(t+1))− λmax(D(0))|
≤ ∥D(t+1)−D(0)∥F (116)

Similarly, we have |∆6| ≤ ∥D(t+1)−D(0)∥F . Thus, we have

σ2
max(W1(t+1)) + σ2

max(W2(t+1)) = h3(∆5,∆6)

≤ h3(0, 0) +
√
2
√

∆2
5 +∆2

6

≤ β0 +
4η2c2β0σ

2
max(X)L(0)

1− f(η, 0)

≤ β0c2

(117)

where the last inequality holds if and only if

a4η
3 + a3η

2 +
(
a2 +

4c2L(0)σ
2
max(X)

c2 − 1

)
η ≤ a1. (118)

D PROOF OF PROPOSITION 3.1

Proposition 3.1. If α0 > 0, for all 0 < η ≤ ηmax and for all t = 0, 1, · · · , the following inequality holds

f(η, t) ≥ 1− 1

κ
(119)

where κ = K
µ is the condition number of the non-overparametrized Problem 1

Proof. The theoretical optimal convergence rate for non-overparametrized regime is 1− 1
κ . Then

f(η, t)− (1− 1

κ
) =

1

κ
− a1η + a2(t)η

2 + a3(t)η
3 + a4(t)η

4 drop last two terms which are non-negative

≥ 1

κ
− 2c1α0σ

2
min(X)η +

(
2
√
2κL(t)σ6

min(X)p2 + κµ2c22β
2
0

)
η2

≥ 1

κ
− 2c1α0σ

2
min(X)η + κσ4

min(X)c22β
2
0η

2 use β0 ≥ α0 to lower bound last term

≥ 1

κ
− 2c1α0σ

2
min(X)η + κσ4

min(X)c22α
2
0η

2

= (
1√
κ
−
√
κσ2

min(X)c2α0η)
2

≥ 0. (120)

Thus, the results are proved.
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E PROOF OF CLAIM 3.1

Claim 3.1. Suppose α0 > 0. Let η′t be the unique positive root of the following equation

dh(η, t)

dη
= 0. (121)

Then the solution to Problem 41 is ηt = min(η′t, ηmax).

Proof. We first observe h(η, t) takes the following general form

h(η, t) = 1− h1(t)η + h2(t)η
2 + h3(t)η

3 + h4(t)η
4 (122)

where h1(t), h2(t), h3(t), h4(t) > 0. Then, dh(η,t)
dη = −h1 +2h2η+3h3η

2 +4h4η
3. Notice the derivative of h(η, t) with

respect to η is monotonically increasing when η > 0 and d2h(η,t)
dη2 > 0. Thus, if η′t ≤ ηmax, the minimizer of Problem 41

is ηmax. If η′t ≥ ηmax, since dh(η,t)
dη is negative when 0 < η ≤ ηmax ≤ η′t, h(η, t) is decreasing in the same range. Thus,

the minimizer is ηmax. Combing the above two cases, the minimizer of Problem 41 is

ηt = min(η′t, ηmax). (123)

Claim E.1. Given some 0 < c1 < 2
3 , pick any

c2 ≥ max

 M + 16L(0)
β0

c1α0σ2
min(X)

,

√√√√M + 8α0L(0)
β2
0

α0σ2
min(X)

, 2

 , (124)

where M =
2α3

0p
2
2L(0)

β6
0κ

+
2
√

2σ2
min(X)L(0)p2α

2
0√

κβ3
0

+
2
√

2L(0)σ2
min(X)p2α0

β2
0

√
κ

.

Such choice of c1, c2 ensures ηmax ≥ η∗t for all t = 0, 1, 2, · · · .

What’s more, we have

ρ(η∗t , t) ≤ ρ̂(η∗t , t) ≤ f(η∗t , t) ≃ 1− (c1α0)
2

(c2β0)2
1

κ
. (125)

Remark E.1. Claim E.1 implies for proper choice of c1, c2, one has ηmax ≥ η∗t for all t = 0, 1, 2, · · · . In the limiting case
when t→∞, one has

lim
t→∞

ρ(η, t) ≤ lim
t→∞

ρ̂(η, t) ≤ lim
t→∞

f(η, t) = 1− 2(c1α0)σ
2
min(X)η + κσ4

min(X)(c2β0)
2η2 (126)

With the choice of c1, c2 specified, we have η∗∞ ≤ ηmax. Thus, the asymptotic convergence rate is

ρ(η∗∞,∞) ≤ ρ̂(η∗∞,∞) ≤ f(η∗∞,∞) = 1− (c1α0)
2

(c2β0)2
1

κ
(127)

The asymptotic convergence rate is determined by c1α0

c2β0
and condition number κ. The smaller κ is, the faster convergence

rate is. What’s more, since λmin(τt)
λmax(τt)

≥ c1α0

c2β0
, we can view c1α0

c2β0
as a lower bound on the condition number of the operator

τt. The more ill-conditioned τt is, i.e. c1α0

c2β0
is small, the slower the convergence rate is.

Proof. Notice a2(t), a3(t), a4(t) depends on L(t) and L(t) decreases as t increases, so a2(t), a3(t), a4(t) decrease as t
increase. From equation 122, we can see η∗t increases as t increases. Thus, to prove η∗t ≤ ηmax, it suffices to show

lim
t→∞

η∗t =
c1α0

c22β
2
0κσ

2
min(X)

≤ ηmax. (128)
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which is equivalent to the following inequalities

a4(0)

(
c1α0

c22β
2
0κσ

2
min(X)

)3

+a3(0)

(
c1α0

c22β
2
0κσ

2
min(X)

)2

+
(
a2(0)+

4c2L(0)σ
2
max(X)

c2 − 1

) c1α0

c22β
2
0κσ

2
min(X)

≤a1, (129)

a4(0)

(
c1α0

c22β
2
0κσ

2
min(X)

)3

+a3(0)

(
c1α0

c22β
2
0κσ

2
min(X)

)2

+
(
a2(0)+

8c2β0L(0)σ
2
max(X)

(1− c1)α0

) c1α0

c22β
2
0κσ

2
min(X)

≤ a1. (130)

For equation 129 to hold, we study its LHS

LHS of equation 129 =
2c31α

3
0p

2
2L(0)

c62β
6
0κ

+
2
√
2L(0)σ2

min(X)p2c
2
1α

2
0√

κc32β
3
0

+
4c1α0L(0)

(c2 − 1)c2β2
0

+
2
√
2L(0)σ2

min(X)p2c1α0

c22β
2
0

√
κ

+ c1α0σ
2
min(X)

=
2c31α

3
0p

2
2L(0)

c62β
6
0κ

+
Pc21α0

c32β0
+

4c1α0L(0)

(c2 − 1)c2β2
0

+
Pc1
c22

+ c1α0σ
2
min(X)

where

P =
2
√
2L(0)σ2

min(X)p2α0√
κβ2

0

. (131)

Since c2 ≥ 2, so c2 − 1 ≥ c2
2 . Then, we upper bound the above equality by substituting higher order terms of ck1 , k ≥ 2

with c1 in the numerator by one except for the last term and replace higher order terms of ck2 , k ≥ 3 with c22,

LHS of equation 129 =
2c31α

3
0p

2
2L(0)

c62β
6
0κ

+
Pc21α0

c32β0
+

4c1α0L(0)

(c2 − 1)c2β2
0

+
Pc1
c22

+ c1α0σ
2
min(X)

≤ 2c31α
3
0p

2
2L(0)

c62β
6
0κ

+
Pc21α0

c32β0
+

8c1α0L(0)

c22β
2
0

+
Pc1
c22

+ c1α0σ
2
min(X) use c2 − 1 ≥ c2

2
in the first term

≤ 2c1α
3
0p

2
2L(0)

c22β
6
0κ

+
Pc1α0

c22β0
+

8c1α0L(0)

c22β
2
0

+
Pc1
c22

+ c1α0σ
2
min(X)

use c1 ≥ ck1 , k ≥ 2 in the numerator and c22 ≤ ck2 , k ≥ 3 in denominator

=
c1
c22

[
2α3

0p
2
2L(0)

β6
0κ

+
Pα0

β0
+

8α0L(0)

β2
0

+ P

]
+c1α0σ

2
min(X)

=
c1
c22

(M +
8α0L(0)

β2
0

) + c1α0σ
2
min(X) use second condition in equation 124

≤ c1α0σ
2
min(X) + c1α0σ

2
min(X) = a1. (132)

For equation 130 to hold, we study its LHS

LHS of equation 130 =
2c31α

3
0p

2
2L(0)

c62β
6
0κ

+
Pc21α0

c32β0
+

8L(0)c1
(1− c1)c2β0

+
Pc1
c22

+ c1α0σ
2
min(X). (133)

Since 0 < c1 < 2
3 , we have 1 − c1 ≥ c1

2 . Then, we upper bound the above equality by substituting c1 with 1 in the
numerator by one except for the last term and replace higher order terms of ck2 , k ≥ 2 with c2,

LHS of equation 130 =
2c31α

3
0p

2
2L(0)

c62β
6
0κ

+
Pc21α0

c32β0
+

8L(0)c1
(1− c1)c2β0

+
Pc1
c22

+ c1α0σ
2
min(X)

≤ 2c31α
3
0p

2
2L(0)

c62β
6
0κ

+
Pc21α0

c32β0
+

16L(0)

c2β0
+

Pc1
c22

+ c1α0σ
2
min(X) use 1− c1 ≥

c1
2

≤ 2α3
0p

2
2L(0)

c2β6
0κ

+
Pα0

c2β0
+

16L(0)

c2β0
+

P

c2
+ c1α0σ

2
min(X)

use c1 ≤ 1 in the numerator and c2 ≥ ck2 , k ≥ 1 in the numerator

=
1

c2

[
2α3

0p
2
2L(0)

β6
0κ

+
Pα0

β0
+

16L(0)

β0
+ P

]
+c1α0σ

2
min
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=
1

c2
[M +

16L(0)

β0
] + c1α0σ

2
min use first condition in equation 124

≤ c1α0σ
2
min(X) + c1α0σ

2
min(X) = a1. (134)

Then, we prove

ρ(η∗t , t) ≤ ρ̂(η∗t , t) ≤ f(η∗t , t) ≃ 1− (c1α0)
2

(c2β0)2
1

κ
. (135)

This is true because

ρ̂(η∗∞,∞) = 1− 2α∞σ2
min(X)

c1α0

c22β
2
0κσ

2
min(X)

+ κσ2
min(X)β2

∞
( c1α0

c22β
2
0κσ

2
min(X)

)2
= 1− 1

κ

( 2c1α0α∞

c22β
2
0σ

2
min(X)

− c21α
2
0β

2
∞

c24β
4
0

)
(136)

Since α∞ ≥ c1α0, β∞ ≤ c2β0, the above can be further upper bounded

ρ̂(η∗∞,∞) = 1− 1

κ

( 2c1α0α∞

c22β
2
0σ

2
min(X)

− c21α
2
0β

2
∞

c24β
4
0

)
(137)

≤ 1− 1

κ

( 2c1α0c1α0

c22β
2
0σ

2
min(X)

− c21α
2
0(c2β0)

2

c24β
4
0

)
(138)

= 1−
(c1α0

c2β0

)2 1
κ
. (139)

Similarly, we can prove

ρ(η∗∞,∞) ≤ 1−
(c1α0

c2β0

)2 1
κ
. (140)

F SIMULATIONS

In Section 4.1, we compare the step sizes proposed in Arora et al. [2018]; Du et al. [2018a], Theorem 3.2 and Algorithm 1.
In Du et al. [2018a], they choose an adaptive step size

ηt =

√
ϵ/r

100(t+1)∥Y ∥
3
2

F

, (141)

where 0 < ϵ < ∥Y ∥F is the final precision we want to achieve, r is the rank of Y . When comparing, we set ϵ = ∥Y ∥F to
select the largest step size possible in their work.

In Arora et al. [2018], they choose constant step size which satisfies

η ≤ p31
6144× 23 × ∥Y ∥4F

, (142)

When comparing, we select the largest step size possible, i.e. η =
p3
1

6144×23×∥Y ∥4
F

.

In Arora et al. [2018]; Du et al. [2018a], the authors make assumptions that there is sufficient margin and zero imbalance at
initialization. What’s more, they both choose the setting of matrix factorization and claim it’s equivalent to linear networks.
To make fair comparison, we generate X using identity matrix. For initialization of the network, we follow Proposition F.1
in Arora et al. [2018] to create a balanced initialization. The magnitude 0.04 of noise added to Y is a hyperparameter which
ensures there is sufficient margin at initialization. The procedure to ensure there is zero imbalance at initialization is given
below

Proposition F.1 (Spectral Balanced Initialization). Given d0, d1, . . . , dN ∈ N such that min{d1, . . . , dN−1} ≥
min{d0, dN} and a distribution D over dN × d0 matrices, a balanced initialization of Wj ∈ Rdj×dj−1 , j=1, . . . , N ,
assigns these weights as follows:
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1. Sample A ∈ RdN×d0 according to D.

2. Take singular value decomposition A = UΣV ⊤, where U ∈ RdN×min{d0,dN}, V ∈ Rd0×min{d0,dN} have orthonor-
mal columns, and Σ ∈ Rmin{d0,dN}×min{d0,dN} is diagonal and holds the singular values of A.

3. Set WN ≃ UΣ1/N ,WN−1 ≃ Σ1/N , . . . ,W2 ≃ Σ1/N ,W1 ≃ Σ1/NV ⊤, where the symbol “≃” stands for equality up
to zero-valued padding.


