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Abstract

One key challenge for multi-task Reinforce-
ment learning (RL) in practice is the absence
of task specifications. Robust RL has been ap-
plied to deal with task ambiguity but may re-
sult in over-conservative policies. To balance
the worst-case (robustness) and average perfor-
mance, we propose Group Distributionally Ro-
bust Markov Decision Process (GDR-MDP), a
flexible hierarchical MDP formulation that en-
codes task groups via a latent mixture model.
GDR-MDP identifies the optimal policy that
maximizes the expected return under the worst-
possible qualified belief over task groups within
an ambiguity set. We rigorously show that
GDR-MDP’s hierarchical structure improves dis-
tributional robustness by adding regularization
to the worst possible outcomes. We then de-
velop deep RL algorithms for GDR-MDP for
both value-based and policy-based RL meth-
ods. Extensive experiments on Box2D control
tasks, MuJoCo benchmarks, and Google foot-
ball platforms show that our algorithms outper-
form classic robust training algorithms across
diverse environments in terms of robustness
under belief uncertainties. Demos are avail-
able on our project page (https://sites.
google.com/view/gdr-rl/home).

1 INTRODUCTION

Reinforcement learning (RL) has demonstrated extraor-
dinary capabilities in sequential decision-making, even
for handling multiple tasks (Mnih et al., 2013; Kober
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et al., 2013; Kirk et al., 2021; Finn et al., 2017). With
policies conditioned on accurate task-specific contexts,
RL agents could perform better than ones without access
to context information (Steimle et al., 2021; Sodhani
et al., 2021). However, one key challenge for contextual
decision-making is that, in real deployments, RL agents
may only have incomplete information about the task
to solve. In principle, agents could adaptively infer the
latent context with data collected across an episode, and
prior knowledge about tasks (Wilson et al., 2007; Rakelly
et al., 2019; Hausman et al., 2018). However, the context
estimates may be inaccurate (Xie et al., 2022; Sharma
et al., 2019) due to limited interactions, poorly constructed
inference models, or intentionally injected adversarial
perturbations. Blindly trusting the inferred context and
performing context-dependent decision-making may lead
to significant performance drops or catastrophic failures in
safety-critical situations. Therefore, in this work, we are
motivated to study the problem of robust decision-making
under the task estimate uncertainty.

Prior works about robust RL involve optimizing over the
worst-case qualified elements within one uncertainty set
(Nilim and El Ghaoui, 2005; Iyengar, 2005). Such robust
criterion assuming the worst possible outcome may lead
to overly conservative policies, or even training instabil-
ities (Zhang et al., 2020a; Yu et al., 2021; Huang et al.,
2022). For instance, an autonomous agent trained with ro-
bust methods may always assume the human driver is ag-
gressive regardless of recent interactions and wait until the
road is clear, consequently blocking the traffic. Therefore,
balancing the robustness against task estimate uncertain-
ties and the performance when conditioned on the task es-
timates is still an open problem. We provide one solution to
address the above problem by modeling the commonly ex-
isting similarities between tasks under distributionally ro-
bust Markov Decision Process (MDP) formulations.

Each task is typically represented by a unique combination
of parameters or a multi-dimensional context in multi-task
RL. We argue that some parameters are more important
than others in terms of affecting the environment dynamics
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Figure 1: Illustration examples when modeling tasks with
a flat latent structure that uses one distribution for all tasks
as in (a), and a hierarchical latent structure that clusters
tasks to different mixtures as in (b). The graphical model
with a hierarchical latent structure for both GDR-MDP and
HLMDP is shown in (c). At episode n, a mixture zn is first
sampled from a prior distribution w. An MDP m is then
sampled according to µzn(m) and controls the dynamics
of the n’th episode.

model and thus tasks can be properly clustered into mix-
tures according to the more crucial parameters as in Figure
1 (a) and (b). However, existing robust MDP formulations
(Nilim and El Ghaoui, 2005) lack the capacity to model
task groups, or equivalently, task subpopulations. Thus the
effect of task subpopulations on the policy’s robustness is
unexplored. In this paper, we show that the task subpopula-
tions help balance the worst-case performance (robustness)
and average performance under conditions (Section 5.2).

In contrast to prior work (Xie et al., 2022) that leverages
point estimates of latent contexts, we take a probabilistic
point of view and represent the task subpopulation estimate
with a belief distribution. Holding a belief of the task
subpopulation, which is the high-level latent variable,
helps leverage the prior distributional information of task
similarities. It also naturally copes with distributionally
robust optimization by optimizing w.r.t. the worst-possible
belief distribution within an ambiguity set. We consider
an adaptive setting in line with system identification
methods (Yu et al., 2017), where the belief is initialized
as a uniform distribution and then updated during one
episode. Our problem formation is related to the ambiguity
modeling (Etner et al., 2012) inspired by human’s bounded
rationality to approximate and handle distributions, which
has been studied in behavioral economics (Ellsberg, 1961;
Machina and Siniscalchi, 2014) yet has not been widely
acknowledged in RL.

We highlight our main contributions as follows:

1. We formulate Hierarchical-Latent MDP (HLMDP)
(Section 4), which utilizes a mixture model over
MDPs to encode task subpopulations. HLMDP has a
high-level latent variable z as the mixture, and a low-
level m to represent tasks (Figure 1 (c)).

2. We introduce the Group Distributionally Robust
MDP (GDR-MDP) in Section 5 to handle the over-
conservative problem, which formulates the robust-

ness w.r.t. the ambiguity of the adaptive belief b(z)
over mixtures. GDR-MDP builds on distributionally
robust optimization (Rahimian and Mehrotra, 2019;
Kuhn et al., 2019) and HLMDP to leverage rich dis-
tributional information.

3. We show the convergence property of GDR-MDP in
the infinite-horizon case. We find that the hierarchical
latent structure helps restrict the worst-possible out-
come within the ambiguity set and thus helps generate
less conservative policies with higher optimal values.

4. We design robust deep RL training algorithms based
on GDR-MDP by injecting perturbations to beliefs
stored in the data buffer. We empirically evalu-
ate in three environments, including robotic control
tasks and google research football tasks. Our results
demonstrate that our proposed algorithms outperform
baselines in terms of robustness to belief noise.

2 RELATED WORK

Robust RL and Distributionally Robust RL. RL’s
vulnerability to uncertainties has attracted large efforts to
design proper robust MDP formulations accounting for
uncertainties in MDP components (Nilim and El Ghaoui,
2005; Iyengar, 2005; Wiesemann et al., 2013; Osogami,
2015; Tessler et al., 2019; Zhang et al., 2020b). Existing
robust deep RL algorithms (Moos et al., 2022; Klibanoff
et al., 2005; Foerster et al., 2017; Pinto et al., 2017; Zhang
et al., 2020c; Osogami, 2015) are shown to generate robust
policies with promising results in practice. However,
it is also known that robust RL that optimizes over
the worst-possible elements in the uncertainty set may
generate over-conservative policies by trading average
performance for robustness and may even lead to training
instabilities (Huang et al., 2022). In contrast, distribu-
tionally robust RL (Xu and Mannor, 2010; Yu and Xu,
2015; Smirnova et al., 2019; Grand-Clément and Kroer,
2020; Zhou et al., 2021; Nakao et al., 2021; Sinha et al.,
2020; Delage and Ye, 2010) assumes that the distribution
of uncertain components (such as transition models) is
partially/indirectly observable. It builds on distributionally
robust optimization (Rahimian and Mehrotra, 2019; Kuhn
et al., 2019) which optimizes over the worst possible distri-
bution within the ambiguity set. Compared with common
robust methods, distributionally robust RL embeds prior
probabilistic information and generates less conservative
policies with carefully calibrated ambiguity sets (Xu
and Mannor, 2010). We aim to propose distributionally
robust RL formulations and training algorithms to handle
task estimate uncertainties while maintaining a trade-off
between robustness and performance.

One relevant work is the recently proposed distributionally
robust POMDP (Nakao et al., 2021) which maintains a be-
lief over states and finds the worst possible transition model
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distribution within an ambiguity set. We instead hold a be-
lief over task mixtures and find the worst possible belief
distribution. (Sinha et al., 2020) also maintains a belief dis-
tribution over tasks but models tasks with a flat latent struc-
ture. Moreover, (Sinha et al., 2020) achieves robustness by
optimizing at test-time, while we aim to design robust train-
ing algorithms to save computation during deployment.

RL with Task Estimate Uncertainty. Inferring the la-
tent task as well as utilizing the estimates in decision-
making have been explored under the framework of
Bayesian-adaptive MDPs (Ghavamzadeh et al., 2015;
Brunskill, 2012; Guez et al., 2012; Lee et al., 2018; Yu
et al., 2017). Our work is similar to Bayesian-adaptive
MDPs in terms of updating a belief distribution with
Bayesian update rules, but we focus on the robustness
against task estimate uncertainties at the same time. The
closest work to our research is Xie et al. (2022), which op-
timizes a conditional value-at-risk objective and maintains
an uncertainty set centered on a context point estimate. In-
stead, we maintain an ambiguity set over beliefs and further
consider the presence of task subpopulations. Sharma et al.
(2019) also considers the uncertainties in belief estimates
but with a flat latent task structure.

Multi-task RL. Learning a suite of tasks with an
RL agent has been studied under different frameworks,
such as Latent MDP (Kwon et al., 2021), Multi-model
MDP (Steimle et al., 2021), Contextual MDP (Hallak
et al., 2015), Hidden Parameter MDP (Doshi-Velez and
Konidaris, 2016), and etc (Brunskill and Li, 2013). Our
proposed HLMDP builds on the Latent MDP (Kwon et al.,
2021) which contains a finite number of MDPs, each
accompanied by a weight. In contrast to Latent MDP
utilizing a flat structure to model each MDP’s probability,
HLMDP leverages a rich hierarchical model to cluster
MDPs to a finite number of mixtures. In addition, HLMDP
is a special yet important subclass of POMDP (Kaelbling
et al., 1998). It treats the latent task mixture that the cur-
rent environment belongs to as the unobservable variable.
HLMDP resembles the recently proposed Hierarchical
Bayesian Bandit (Hong et al., 2021) model but focuses on
more complex MDP settings.

3 PRELIMINARY

This section introduces Latent MDP and the adaptive belief
setting, both serving as building blocks for our proposed
HLMDP (Section 4) and GDR-MDP (Section 5).

Latent MDP. An episodic Latent MDP (Kwon et al.,
2021) is specified by a tuple (M, T,S,A, µ). M is a
set of MDPs with cardinality |M| = M . Here T , S,
and A are the shared episode length (planning horizon),
state, and action space, respectively. µ is a categorical dis-

tribution over MDPs and
∑M
m=1 µ(m) = 1. Each MDP

Mm ∈ M,m ∈ [M ] is a tuple (T,S,A,Pm,Rm, νm)
where Pm is the transition probability, Rm is the reward
function and νm is the initial state distribution.

Latent MDP assumes that at the beginning of each episode,
one MDP from set M is sampled based on µ(m). It
aims to find a policy π that maximizes the accumulated
expected return solving maxπ

∑M
m=1 µ(m)Eπm

[∑T
t=1 rt

]
,

where Em[·] denotes EPm,Rm [·].

The Adaptive Belief Setting In general, a belief distri-
bution contains the probability of each possible MDP that
the current environment belongs to. The adaptive belief
setting (Steimle et al., 2021) holds a belief distribution that
is dynamically updated with streamingly observed interac-
tions and prior knowledge about the MDPs. In practice,
prior knowledge may be acquired by rule-based policies
or data-driven learning methods. For example, it is pos-
sible to pre-train in simulated complete information sce-
narios or exploit unsupervised learning methods based on
online collected data (Xu et al., 2020). There also exist
multiple choices for updating the belief, such as applying
the Bayesian rule as in POMDPs (Kaelbling et al., 1998)
and representing beliefs with deep recurrent neural nets
(Karkus et al., 2017).

4 HIERARCHICAL LATENT MDP

In realistic settings, tasks share similarities, and task sub-
populations are common. Although different MDP formu-
lations are proposed to solve multi-task RL, the task rela-
tionships are in general overlooked. To fill in the gap, we
first propose Hierarchical Latent MDP (HLMDP), which
utilizes a hierarchical mixture model to represent distribu-
tions over MDPs. Moreover, we consider the adaptive be-
lief setting to leverage prior information about tasks.

Definition 1 (Hierarchical Latent MDPs). An episodic
HLMDP is defined by a tuple (Z,M, T,S,A, w). Z de-
notes a set of Latent MDPs and |Z| = Z. M is a set of
MDPs with cardinality |M| = M shared by different La-
tent MDPs. T , S, and A are the shared episode length
(planning horizon), state, and action space, respectively.
Each Latent MDP Zz ∈ Z, z ∈ [Z] consists of a set of
joint MDPs {Mm}Mm=1 and their weights µz satisfying∑M
m=1 µz(m) = 1. w is the categorical distribution over

Latent MDPs and
∑Z
z=1 w(z) = 1.

We provide a graphical model of HLMDP in Figure 1 (c).
HLMDP assumes that at the beginning of each episode,
the environment first samples a Latent MDP z ∼ w(z)
and then samples an MDP m ∼ µz(m). HLMDP encodes
task similarity information via the mixture model, and
thus contains richer task information than Latent MDP
proposed in (Kwon et al., 2021). For instance, we could
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always find one Latent MDP for each HLMDP. However,
there may exist infinitely many corresponding HLMDPs
given one Latent MDP.

HLMDP in Adaptive Belief Setting. When solving
multi-task RL problems, the adaptive setting is shown to
help generate a policy with a higher performance (Steimle
et al., 2021) than the non-adaptive one since it leverages
prior knowledge about the transition model as well as the
online collected data tailored to the unseen environment.
Hence we are motivated to formulate HLMDP in the adap-
tive belief setting.

HLMDP maintains a belief distribution b(z) over task
groups to model the probability that the current environ-
ment belongs to each group z. At the beginning of each
episode, we initialize the belief distribution with a uniform
distribution b0. We use the Bayesian rule to update beliefs
based on interactions and a prior knowledge base. Note that
the knowledge base are not accurate enough and may lead
to inaccurate belief updates. At timestep t, we get the next
belief estimate bt+1 with the state estimation function SE:

SE(bt, st) =
bt(j)L(j)∑
i∈[Z] bt(i)L(i)

,∀j ∈ [Z], (1)

where L represents the likelihood calculated based on the
(inaccurate) knowledge base.

Under the adaptive belief setting, HLMDP aims to find
an optimal policy π̄? within a history-dependent policy
class Π, under which the discounted expected cumulative
reward is maximized as in Equation 2. Following gen-
eral notations in POMDPs, we denote the history at time
t as ht = (s0, a1, s1, . . . , st−1, at−1, st) ∈ Ht containing
state-action pairs (s, a). At timestep t, we use both the ob-
served state st and the inferred belief distribution bt(z) as
the sufficient statistics for history ht.

V̄ ? = max
π∈Π

Eb0:T (z)Eµz(m)Eπm
[ T∑
t=1

γtrt
]
, (2)

where rt denotes the reward received at step t. b0(z) is the
initial belief at timestep 0.

5 GROUP DISTRIBUTIONALLY
ROBUST MDP

The belief update function in Equation 1 may not be accu-
rate, which motivates robust decision-making under belief
estimate errors. In this section, we introduce Group Dis-
tributionally Robust MDP (GDR-MDP) which models
task groups and considers robustness against the belief am-
biguity. We then study the convergence property of GDR-
MDP in the infinite-horizon case in Section 5.1. We find
that GDR-MDP’s hierarchical structure helps restrict the

worst-possible value within the ambiguity set and provide
the robustness guarantee in Section 5.2.

Definition 2 (General Ambiguity Sets). Let ∆k be a k-
simplex. Considering a categorical belief distribution b ∈
∆k, a general ambiguity set without special structures is
defined as C∆k containing all possible distributions for b.

Definition 3 (Group Distributionally Robust MDP).
An episodic GDR-MDP is defined by a 8-tuple
(C,Z,M, T,S,A, w, SE). C is a general belief am-
biguity set. T,S,A,M,Z, w are elements of an episodic
HLMDP as in Definition 1. SE : ∆Z−1 × S → ∆Z−1 is
the belief updating rule. GDR-MDP aims to find a policy
π? ∈ Π that obtains the following optimal value:

V ? = max
π∈Π

min
b̂0:T
∈C∆Z−1

Eb̂0:T (z)Eµz(m)Eπm
[ T∑
t=1

γtrt
]
, (3)

where C∆Z−1 is a general ambiguity set tailored to beliefs
over Latent MDPs in set Z .

GDR-MDP naturally balances robustness and performance
by leveraging distributionally robust formulation and rich
distributional information. In contrast to HLMDP, which
maximizes expected return over nominal adaptive belief
distribution (Equation 2), GDR-MDP aims to maximize
the expected return under the worst-possible beliefs within
an ambiguity set C∆Z−1 . Moreover, GDR-MDP optimizes
over fewer optimization variables than when directly
perturbing MDP model parameters or states. It resembles
the group distributionally robust optimization problem in
supervised learning (Sagawa et al., 2019; Oren et al., 2019)
but focuses on sequential decision-making in dynamic
environments.

5.1 Convergence in Infinite-horizon Case

With general ambiguity sets (as in Definition 2), calculat-
ing the optimal policy is intractable (Yu and Xu, 2015; De-
lage and Ye, 2010). We propose a belief-wise ambiguity
set that follows the b-rectangularity to facilitate solving the
proposed GDR-MDP.

Assumption 1 (b-rectangularity). We assume a belief-wise
ambiguity set, C̃ :=

⊗
b∈∆Z−1 Cb, where

⊗
represents

Cartesian product. b serves as the nominal distribution of
the ambiguity set.

More concretely, the b-rectangularity assumption uncou-
ples the ambiguity set related to different beliefs. When
conditioned on beliefs at each timestep, the minimization
loop selects the worst-case realization unrelated to other
timesteps. The b-rectangularity assumption is motivated
by the s-rectangularity first introduced in Wiesemann et al.
(2013), which helps reduce a robust MDP formulation to
an MDP formulation and get rid of the time-inconsistency
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problem (Xin and Goldberg, 2021). Ambiguity sets be-
yond rectangularities are recently explored in Mannor et al.
(2016) and Goyal and Grand-Clement (2018), which we
leave for future works.

With b-rectangular ambiguity sets, we derive Bellman
equations to solve Equation 3 with dynamic programming.
Detailed proofs are in Appendix Section B.1.

Proposition 1 (Group Distributionally Robust Bellman
Equation). Define the distributionally robust value of an
arbitrary policy π as follows where bt+1 = SE(bt, st).

V πt (bt, st)= min
b̂t:T∈
Cbt:T

Eb̂t:T (z)Eµz(m)Eπt:Tm

[ T∑
n=t

γn−trn|bt, st
]
.

The Group Distirbutionally Robust Bellman expectation
equation is

V πt (bt, st) = min
b̂t∈Cbt

Eb̂t(z)Eµz(m)Eπt
[
ERm [rt]+

γ
∑
st+1

Pm(st+1|st, at)V πt+1(bt+1, st+1)
]
. (4)

Lemma 1 (Contraction Mapping). Let V be a set of real-
valued bounded functions on ∆Z−1×S . LV (b, s) : V → V
refers to the Bellman operator defined as

LV (b, s) = max
π∈Π

min
b̂∈Cb

Eb̂(z)Eµz(m)Eπ
[
ERm [r]+

γ
∑
s′

Pm(s′|s, a)V π(SE(b, s), s)
]
. (5)

LV (b, s) is a γ-contraction operator on the complete met-
ric space (V, ‖ · ‖∞). That is, given ∀ U, V ∈ V ,
‖LU − LV ‖∞ ≤ γ‖U − V ‖∞.

Theorem 1 (Convergence in Infinite-horizon Case). De-
fine V∞(b, s) as the infinite horizon value function. For all
b ∈ B and s ∈ S, we have V∞(b, s) is the unique solu-
tion to LV∞(b, s) = V∞(b, s), and limt→∞ LVt(b, s) =
LV∞(b, s) uniformly in ‖ · ‖∞.

By repeatedly applying the contraction operator in
Lemma 1, the value function will converge to a unique
fixed point, which corresponds to the optimal value based
on Banach fixed point theorem (Banach, 1922).

5.2 Robustness Guarantee of GDR-MDP

This section shows how GDR-MDP’s hierarchical task
structure and the distributionally robust formulation help
balance performance and robustness. We compare the op-
timal value of GDR-MDP denoted as VGDR(π?GDR), with
three different robust formulations. Group Robust MDP is
a robust version of GDR-MDP with its optimal value de-
noted as VGR(π?GR). Distributionally Robust MDP holds

a belief over MDPs without the hierarchical task structure
whose optimal value denoted as VDR(π?DR). Robust MDP
is a robust version of Distributionally Robust MDP, de-
noted as VR(π?R). π?· denote optimal policies under differ-
ent formulations. We achieve the comparison by studying
how maintaining beliefs over mixtures affects the worst-
possible outcome of the inner minimization problem and
the resulting RL policy.

We study the worst-possible value via the relationships be-
tween ambiguity sets projected to the space of beliefs over
MDPs. We first define a discrepancy-based ambiguity set
that is widely used in existing DRO formulations (Abdullah
et al., 2019; Sinha et al., 2017; Lecarpentier and Rachelson,
2019).

Definition 4 (Ambiguity set with total variance distance).
Consider a discrepancy-based ambiguity set defined based
on total variance distance. Formally, the ambiguity set is

CνX ,dTV ,ξ(X) = {ν′(X) : sup
X∈X

|ν′(X)− νX (X)| ≤ ξ},

whereX ∈ X is the support, νX is the nominal distribution
over X and ξ is the ambiguity set’s size.

To achieve a reasonable comparison, we control the adver-
sary’s budget ξ the same when perturbing the belief over
task groups z and tasks m, which correspond to different
model misspecification forms when there is a hierarchical
latent structure about tasks.

Theorem 2 (Values of different robust formulations). Let
Um(π) = Eπm

[∑T
t=1 γ

trt
]
. Let Cb(m),dTV ,ξ(m) and

Cb(z),dTV ,ξ(z) denote the ambiguity sets for beliefs over
tasks m and groups z, respectively. b(m) and b(z) satisfy
b(m) =

∑
Z µz(m)b(z) and are the nominal distributions.

For any history-dependent policy π ∈ Π, its value function
under different robust formulations are:

VGDR(π) = min
b̂(z)∈Cb(z),dTV ,ξ(z)

Eb̂(z)Eµz(m)[Um(π)],

VGR(π) = min
z∈[Z]

Eµz(m)[Um(π)],

VDR(π) = min
b̂(m)∈Cb(m),dTV ,ξ

(m)
Eb̂(m)[Um(π)],

VR(π) = min
m∈[M ]

[Um(π)].

We have the following inequalities hold: VGDR(π) ≥
VGR(π) ≥ VR(π) and VGDR(π) ≥ VDR(π).

Theorem 2 shows that with a nontrivial ambiguity set,
the distributionally robust formulation in GDR-MDP helps
regularize the worst-possible value when compared with
robust ones, including the group robust (GR) and task ro-
bust (R) formulations. It also shows that GDR-MDP’s hi-
erarchical structure further helps restrict the effect of the
adversary, resulting in higher values than the distribution-
ally robust formulation with a flat latent structure (DR). To
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Figure 2: Hierarchical Latent Bandit examples. (a), (b) and
(c) show the graphical model, the relationship between am-
biguity sets, and different robust formulations’ optimal val-
ues for an example with two groups and two unique tasks.
(d) shows the relationship between ambiguity sets for an
example with two groups and three unique tasks.

get Theorem 2, we first find that when projecting the ξ-
ambiguity set for b(z) to the space of b(m), the resulting
ambiguity set is a subset of the ξ-ambiguity set for b(m).
Proofs are detailed in Appendix Section B.2. Our setting
is different from Staib and Jegelka (2017) which states that
DRO is a generalization of point-wise attacks. The key dif-
ference is that when the adversary perturbs b(m), we omit
the expectation over the mixtures under b(z).

Theorem 3 (Optimal values of different robust formula-
tions). Let π?· denote the converged optimal policy for
different robust formulations, we have VGDR(π?GDR) ≥
VGR(π?GR) ≥ VR(π?R) and VGDR(π?GDR) ≥ VDR(π?DR).

Based on Theorem 2, we can compare the optimal values
for different robust formulations. Theorem 3 shows that
imposing ambiguity set on beliefs over mixtures helps gen-
erate less conservative policies with higher optimal values
at convergence compared with other robust formulations.

Illustration Examples in Figure 2. We provide two hier-
archical latent bandit examples in Figure 2. The first ex-
ample shown in Figure 2 (a) has two latent groups with
different weights over two unique MDPs. (b) shows the
ambiguity sets of the example in (a). The orange sets de-
note the ξ-ambiguity sets for the beliefs over mixtures and
MDPs. The green set denotes the ambiguity set projected
from the ξ-ambiguity set for belief distributions over mix-
tures. We show that the mapped set is a subset of the orig-
inal ξ-ambiguity set for the MDP belief distributions. (c)
shows the optimal policy and value of different robust for-
mulations for the example in (a). Our proposed GDR has
the potential to get a less conservative policy with higher
returns than other robust baselines. (d) follows the same
notations in (b) but corresponds to an example with three
possible MDPs. (b) and (d) together shows that the hier-
archical structure helps regularize the adversary’s strength.
The detailed procedure for getting the optimal policies is
shown in Appendix A.

Algorithm 1: GDR-MDP Trajectory Rollout
Input: Mixing weights w(z) and µz(m), episode

index n, episode length T , belief update
function SE, rollout policy πθ(b(z), s),
exploration ε

Initialize episodic history h = {} ;
Sample mixture zn ∼ w(z) ;
Sample MDP mn ∼ µzn(m) ;
Initialize belief b0(z) as a uniform distribution ;
for t = 0 to T do

Sample action at with the ε-greedy method and
rollout in MDP m;
bt+1(z) = SE(bt(z), st+1) ;
Append the most recent data pair
d = {(bt, st), at, rt, (bt+1, st+1)} to h ;

Return: history h, episode return

Algorithm 2: Group Distributionally Robust Training
for GDR-DQN and GDR-SAC
Input: Q-net Qθ(b(z), s, a), ambiguity set C·,dTV ,ξ,

training episodes N ,
Initialize data buffer D ;
for n = 0 to N do

Rollout one episode with Algorithm 1 and append
data pairs to D ;

if Update Q-net parameters then
Sample batch data from D ;
for Each di in the batch do

Get badv ∈ Cb′(z),dTV ,ξ with modified
FGSM;

Update Q-net θ ← θ − αθ∇θLQθ ;
Return: Q-net Qθ

6 ALGORITHMS

To solve the proposed GDR-MDP, we propose novel robust
deep RL algorithms (summarized in Algorithm 2 and Algo-
rithm 3 in appendix), including GDR-DQN based on Deep
Q learning (Mnih et al., 2013), GDR-SAC based on soft
actor-critic (Haarnoja et al., 2018), and GDR-PPO based
on PPO (Schulman et al., 2017). We learn robust policies
that take the inferred belief distribution over mixtures b(z)
and the state s as input. We implement GDR-DQN and
GDR-SAC with Tianshou (Weng et al., 2021) and GDR-
PPO with stable-baselines3 (Raffin et al., 2021). Details
are in Appendix Section D.

GDR-DQN and GDR-SAC. We update the Q-net in
GDR-DQN and the critic net in GDR-SAC toward TD
targets with perturbed beliefs. We follow Definition 4
to construct the ambiguity set Cb′(z),dTV ,ξ which cen-
ters at the originally inferred b′(z) and satisfies the b-
rectangularity assumption stated in Assumption 1. At
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each training step, we sample a batch data {d =
(b(z), s, a, r, b′(z), s′, a′, r′)}N from the replay bufferD to
estimate the perturbed TD target.

We update Q-functions with gradient descents. For both
GDR-DQN and GDR-SAC, we have loss as

LQθ =
∑
d

(
r + min

p(z)∈
Cb′(z),dTV ,ξ

∑
a∈A

Qθ(p(z), s
′, a)

−
∑
a∈A

Qθ(b(z), s, a)
)2

.

GDR-PPO. GDR-PPO conducts robust training by de-
creasing the advantages of trajectories that are vulnerable
to belief noises. More concretely, given a trajectory d, its
advantage for (bt, st) is calculated as follows.

Â(bt, st) =

T−1∑
t′=t

rt −Rdrop − Vθ(bt, st), where

Rdrop = V (bt, st)− min
p(z)∈Cbt(z),dTV ,ξ

Vθ(p(z), st).

We measure the performance drop Rdrop under worst-
possible beliefs within the ambiguity set.

Worst-possible Beliefs. To obtain the worst case distri-
bution badv ∈ Cb′(z),dTV ,ξ, we iteratively apply a stochas-
tic variant of fast gradient sign method (FGSM) (Goodfel-
low et al., 2014) to make sure that the perturbed discrete
distribution satisfies

∑
z p(z) = 1. For each attack to the

belief distribution, we randomly sample an index i ∈ Z,
and apply the attack to each element in p(z) as follows
p(z)j = p(z)j + αb · sign(∇p(z)jV (p(z), s′)),∀j 6= i
and p(z)i = p(z)i −

∑
j 6=i p(z)j . αb is the perturbation

step size. To stabilize robust training, we pretrain for a
small amount of episodes with exact one-hot beliefs to en-
sure that the value function could approximate the actual
state value to some extent. To achieve a certain level of
robustness over noisy inferred belief b(z), we fix the am-
biguity set size along with robust training, which is analo-
gous to the adversary budget and the robustness level (Zhou
et al., 2021). Note that FSGM (Goodfellow et al., 2014)
is an effective and efficient attack method that is widely
used in existing robust RL literature (Huang et al., 2017;
Mandlekar et al., 2017; Zhang et al., 2020b). Many other
attacks are designed based on different specialized objec-
tives, assumptions, and constraints, such as the projected
gradient attack. In principle, our hierarchical robust for-
mulation GDR-MDP and corresponding deep RL training
algorithms are agnostic to attack types.

7 EXPERIMENTS

We conduct experiments to empirically study (a) the effect
of GDR-MDP’s hierarchical structure on the robust training
stability and (b) policy’s robustness to belief estimate error.

7.1 Environments

We evaluate GDR-DQN in Lunarlander (Brockman et al.,
2016), GDR-SAC in Halfcheetah (Todorov et al., 2012),
and GDR-PPO in Google Research Football (Kurach et al.,
2020). Table 1 shows a summary of environment setups.
More details are in Appendix Section C. To initialize each
episode, we first sample a group z ∼ w(z), and then a task
m ∼ µz(m) for the episode. Note that both z and m are
unknown to the agent.

Google Research Football (GRF). This domain
presents additional challenges due to its AI randomness,
large state-action spaces, and sparse rewards. The RL
agent will control one active player on the attacking team
at each step and can pass to switch control. The non-active
players will be controlled by built-in AI. The dynamics of
our designed 3 vs. 2 tasks are determined by the player
types including central midfield (CM) and centre back
(CB), and player capability levels. The built-in CM player
tends to go into the penalty area when attacking and guard
the player on the wing (physically left or right) when
defending, while the CB player tends to guard the player
in the middle when defending, and not directly go into the
penalty area when attacking. Different patterns of policies
are required to solve the tasks from different groups. In
a CM-attacking-CB-defending task, a good solution is to
first pass the ball to the player on the wing, and then shoot.
In a CB-attacking-CM-defending task, a good policy is to
directly run into the penalty area and shoot.

Box2D Control Task: LunarLander. The Lunarlan-
der’s dynamics are controlled by the engine mode and en-
gine power. In the flipped mode, the action turning on the
left (or right) engine in normal mode will turn on the right
(or left) engine instead.

Mujoco Control Task: HalfCheetah. In HalfCheetah,
each task’s dynamics are controlled by both the torso mass
and the failure joint, to which we cannot apply action. Our
setting is similar to the implementation in Xie et al. (2022)
but with a fixed failure joint within each episode.

7.2 Baselines

We compare our Group Distributionlly Robust training
methods (GDR) with five baselines. In G-Exact, the RL
agent is trained with the exact mixture information encoded
in a one-hot vector. The agent in DR maintains a belief dis-
tribution b(m) and utilizes distributionally robust training
over b(m). It uses the same belief updating rule as in GDR
to update b(z) at each timestep but projects b(z) to b(m)
with µz(m). DR utilizes no mixture information and helps
ablate the effect of the hierarchical latent structure. The
agent in No-Belief has no access to the context information
and generates action only based on state s. The No-Belief
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Figure 3: The training performance of GDR and baselines. Each curve is averaged over 5 runs and shaded areas represent
standard errors. Our results show that GDR has better training stability than DR by implicitly regularizing the adversary’s
strength with the hierarchical structure.

Figure 4: Robustness evaluations when facing belief inference errors. Each plot is averaged over 5 runs and shaded areas
represent standard errors. GDR preserves higher robustness to belief inference errors compared with baselines.

baseline helps show the importance of the adaptive belief
setting. In G-Belief, the agent maintains belief b(z) and
is trained towards a nominal TD target. Compared with
GDR, G-Belief helps reveal the effect of distributionally
robust training. The State-R agent takes both the inferred
belief b(z) and state s as input. It updates towards a TD tar-
get with perturbed states along with training. For baselines
with belief modules, we utilize the Bayesian update rule in
Equation 1 and leave the detailed likelihood calculation in
Appendix Section D.

8 RESULTS and DISCUSSION

8.1 Influence of the GDR-MDP’s Hierarchical
Structure on Robust Training

We study the effect of the hierarchical structure on the ad-
versary’s strength based on training performances in Fig-
ure 3. We show the importance of mixture information
since the No-Belief baseline consistently underperforms G-
Exact during training in all three environments. Lunarlan-
der and HalfCheetah have a return much lower than G-
Exact since the kinematic observation fed into the neural

net does not reveal any mixture information. In GRF, the
No-Belief baseline underperforms G-Exact since it could
not effectively learn distinct strategies with regard to dif-
ferent types of players as teammates and opponents, while
G-Exact could learn group-specific policies.

When compared with other robust training baselines in-
cluding DR and State-R, GDR achieves a higher average
return at convergence in all environments as in Figure 3. In
LunarLander and HalfCheetah, DR which maintains a be-
lief b(m) over MDPs induces significant training instabil-
ity, instead of learning a meaningful conservative policy. In
GRF, DR has a worse asymptotic performance than GDR.
Those observations empirically validate our theoretical re-
sult (Section 5.2) in the regime of deep RL, which is that,
with the same ambiguity set size, perturbing b(m) omitting
mixture information will lead to larger value perturbations
than perturbing b(z) over mixtures. The State-R baseline
leads to more considerable training instability than DR and
fails to learn in all three environments.

We compare GDR with non-robust training baselines, in-
cluding G-Exact and G-belief to study the importance of ro-
bust training. In LunarLander, GDR has comparable train-
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Table 1: Environment setups. Both parameters affect the
environment dynamics. In GRF, the strongest player has
a capability level of 1.0. Our tasks are more challenging
than the original 3 vs. 2 task in GRF (1.0 vs. 0.6) in
terms of capability level. For notation simplicity, let 1k be
a k-dimensional vectored filled with 1, and E(k) = 1

k1
k.

Ei(k) shows the i-th matrix block on the diagonal.

Environment GRF (3 vs. 2) LunarLander HalfCheetah

Parameter 1 Player Type Engine Mode Failure Joint
(Mixture) {CM vs. CB, CB vs. CM} {Normal, Flipped} {0,1,2,3,4,5}

Parameter 2 Player Capability Level Engine Power Torso Mass
{0.9 vs. 0.6, 1.0 vs. 0.7} {3.0, 6.0} {0.9, 1.0, 1.1}

# Mixtures 2 2 6

w [0.5, 0.5] [0.5, 0.5] 1
61

6

# MDPs 4 4 18

µz(m)

[
1
21

2 0
0 1

21
2

] [
1
21

2 0
0 1

21
2

] E0(6) 0 0
0 · · · 0
0 0 E5(6)



ing performance with G-Exact and G-Belief. In GRF, GDR
has slightly worse asymptotic performance than G-Exact
and better performance than G-Belief. These observations
show that GDR successfully extracts task-specific informa-
tion stored in the noisy beliefs and conditions on the beliefs
for action generation. In HalfCheetah, GDR performs bet-
ter than G-Exact. Although GDR leads to an immediate
performance drop after pretraining (100000 steps), the ro-
bust training in GDR converges to higher performance. We
conjecture that this is due to the perturbed belief helping
the algorithm get out of local optima.

8.2 Robustness to Belief Inference Errors

We test the robustness against belief noise of the best poli-
cies obtained with GDR and baselines along with training.
The results are shown in Figure 4. We define the belief
noise level as the inaccuracy of the likelihood when updat-
ing belief with the Bayesian rule. During robustness eval-
uation, G-Exact generate actions conditioned on the same
noisy beliefs as GDR and G-Belief.

In GRF and HalfCheetah, GDR is consistently more robust
to belief noise than robust and nominal training baselines.
In LunarLander, the mean reward of GDR is better than G-
Exact when there is a high belief noise level and is better
than DR when a low belief noise level. The large variances
in LunarLander are due to the large penalty when crashes
which are further exaggerated by the fixed episode length.
Although GDR has its performance decreasing along with
the increase of the belief noise level, its performance is
still an upper bound of DR and G-Exact’s performances.
These observations show that GDR successfully balances
the information between belief distributions and states, and
is more robust to belief inference errors.

G-Exact is prone to injected belief noise since it heavily
relies on accurate mixture information to achieve high per-

Figure 5: Ablation studies in HalfCheetah.

formance. G-Belief does not show significant robustness
improvement over G-Exact. It shows that the group dis-
tributionally robust training procedure instead of the belief
randomness along training helps improve the robustness.

8.3 Ablation Study

We perform empirical sensitivity analysis to reveal the ef-
fect of uncertainty set size on GDR’s policy robustness in
HalfCheetah. Figure 5 (a) shows that gradually increasing
the ambiguity set size up to 0.2 helps improve the robust-
ness. The ambiguity set whose size is greater or equal to
0.25, easily leads to training instability and thus decreases
the robustness. In contrast, even with an ambiguity set of
size 0.05 and pretraining for 300000 steps, DR without the
mixture information still causes unstable training (see Ap-
pendix Section E). Figure 5 (b) provides the average belief
errors at each time step corresponding to different belief
noise levels. Figure 5 (b) and Figure 4 show that GDR only
shows significant performance drops when the belief error
is nonzero for a large portion of steps.

9 CONCLUSION

This paper considers robustness against task estimate un-
certainties. We propose the GDR-MDP formulation that
can leverage rich distribution information, including adap-
tive beliefs and prior knowledge about task groups. To
the best of our knowledge, GDR-MDP is the first distri-
butionally robust MDP formulation that models ambiguity
over belief estimates in an adaptive setting. We theoret-
ically show that GDR-MDP’s hierarchical latent structure
helps enhance its distributional robustness compared with
a flat task structure. We also empirically show that our pro-
posed group distributionally robust training methods gener-
ate more robust policies than baselines when facing belief
inference errors in realistic scenarios. We hope this work
will inspire future research on how diverse domain knowl-
edge affects robustness and generalization. One exciting
future direction is to scale the group distributionally robust
training to high-dimensional and continuous latent task dis-
tributions for diverse decision-making applications.
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A Toy Example: Hierarchical Latent Bandit
In this section, we show the process of getting the optimal policies for different robust formulations in the Hierarchical
Latent Bandit problem as illustrated in Figure 2 (a).

The agent has two possible actions, a0 and a1. There are two possible mixtures/groups denoted as z, and two possible
MDPs denoted as m. Given the mixture, we have the conditional probability for each MDP as µ(m = 0|z = 0) = 0.8,
µ(m = 1|z = 0) = 0.2, µ(m = 0|z = 1) = 0.0, µ(m = 1|z = 1) = 1.0. We assume the same type of ambiguity set
measured by the total variance distance as in the analysis. Let the current belief over groups be b(z) = [0.5, 0.5] and the
ambiguity set size be ξ = 0.2.

We compare the optimal policies of four robust formulations, including

• our proposed GDR-MDP (shorthanded as GDR) that utilizes both the hierarchical structure and distributionally robust
formulation, and optimizes over the worst-possible beliefs over groups,

• group robust MDP (GR), which optimizes over the worst-possible groups,

• distributionally robust MDP (DR), which holds a belief over MDPs without the hierarchical task structure and opti-
mizes over the worst-possible belief distribution,

• robust MDP (R), which is a robust version of distributionally robust MDP and optimizes over the worst-possible MDP.

Optimal policy for R. R desires robustness over the worst possible MDPs. We can see that the worst possible MDP is
m1 since the reward when choosing a0 or a1 in m1 is consistently smaller than the rewards when in m0. Since the optimal
policy for m1 is selecting a1, the optimal policy for R is a1.

Optimal policy for GR. GR desires robustness over the worst-possible mixtures. The value for selecting a0 under
mixture z0 is V (a0|z0) = 22 ∗ 0.8 = 17.6. Similarly, V (a1|z0) = 5, V (a0|z1) = 0 and V (a1|z1) = 5. Assume the
agent has a stochastic policy, π(p) = [p, 1 − p], The value of the policy under mixture z0 is V (π(p), z0) = 0.8 ∗ (22p +
5 ∗ (1 − p)) + 0.2 ∗ (0 ∗ p + 5 ∗ (1 − p)) = 12.6p + 5. The value of the policy under mixture z1 is V (π(p), z1) =
0.5 ∗ (5p + 0.0 ∗ (1 − p)) + 0.5 ∗ (5p + 0 ∗ (1 − p)) = 5p. Since V (π(p), z1) < V (π(p), z0),∀p ∈ [0, 1]. The worst
possible mixture is thus z1 and the optimal policy for GR is a1.

Optimal policy for DR. DR desires robustness over the worst possible belief distribution over MDPs. The nominal
m-level belief distribution is b(m) = [0.4, 0.6], which is mapped from current z-level belief b(z) = [0.5, 0.5]. Considering
that there always exists one deterministic policy π as the optimal policy for each belief distribution b′(m), we directly
analyze the value of the two actions with perturbed belief b̂(m). When the deterministic policy puts all mass on action
a1, perturbing belief doesn’t affect the resulting value estimates since each m has the same reward 5 when selecting a1.
Therefore the value of a1 is always 5. When the deterministic policy puts all mass on action a0, the worst possible belief
decreases the weight of m0 by ξ, which is the maximum attack the adversary can apply. In this worst case, the value
estimates of a1 is V̂ = (0.4− ξ) ∗ 22 = 4.4 < 5. Therefore the optimal policy is a1.

Similar results can be derived with the value function. Formally, given ε ∈ [−ξ, ξ] = [−0.2, 0.2], π(a0) = p, π(a1) = 1−p,
we want to solve the following optimization problem

max
p

min
ε
V (π(p), Cb(m),ξ) = max

p
min
ε

(0.4− ε)[22p+ 5(1− p)] + (0.6 + ε)[0p+ 5(1− p)]

= max
p

min
ε
−22pε+ 3.8p+ 5

Since ∂
∂εV (π(p), Cb(m),ξ) = −22p, p ∈ [0, 1], we have arg minε V (π(p), Cb(m),ξ) = 0.2.

max
p

min
ε
V (π(p), Cb(m),ξ) = max

p
−0.6p+ 5

Therefore when p = 0, the value is maximized. It shows that the optimal policy is a1.

Optimal policy for GDR. GDR instead desires robustness over the worst possible belief distribution over contexts.
Similar to the analysis for DR, the value estimate of a1, V̂ (a1), is always equal to 5 regardless of the perturbed b̂(z). Now
we need to investigate the value when selecting deterministic policy as a0. The weight on z0 in the perturbed belief lies in
range b̂(z0) ∈ [0.5 − ξ, 0.5 + ξ] = [0.3, 0.7]. The value estimate for a0 is thus V̂ (a0) = b̂(z0) ∗ 0.8 ∗ 22 = 17.6b̂(z0) ∈
[5.28, 12.32]. Since the lower bound is larger than the value of V̂ (a1) = 5, the optimal policy for GDR is a0.
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Similarly, we can also write out the value function and the optimization problem.

max
p

min
ε
V (π(p), Cb(z),ξ)

= max
p

min
ε

(0.5− ε)[0.8 ∗ (22p+ 5(1− p)) + 0.2 ∗ (0p+ 5(1− p))] + (0.5 + ε)[0p+ 5(1− p)]

= max
p

min
ε
−17.6pε+ 3.8p+ 5

Since ∂
∂εV (π(p), Cb(z),ξ) = −17.6p, p ∈ [0, 1], we have arg minε V (π(p), Cb(z),ξ) = 0.2.

max
p

min
ε
V (π(p), Cb(z),ξ) = max

p
0.28p+ 5

Therefore when p = 1, the value is maximized. It shows that the optimal policy is a0.

To sum up, the Hierarchical Latent Bandit example shows that our proposed GDR-MDP has the potential to find a less
conservative policy compared with other robust formulations.

B Additional Proofs

B.1 Proofs for Section 5.1: Convergence of GDR-MDP in Infinite-horizon Case
This section proves the convergence of GDR-MDP in the infinite-horizon case. We first prove the Bellman expectation
equation and Bellman optimality equation in Section B.1.1. We then show the contraction operator build on the Bell-
man optimality equation is a contraction operator in Section B.1.2. Finally, we show the convergence of GDR-MDP in
Section B.1.3.

B.1.1 Proofs for Proposition 1
We provide the proof for the Bellman expectation equation as follows. Starting from the definition of V πt (bt, st), we first
separate the elements at time step t from future timesteps. We then find that the elements related to future timesteps starting
from step t+ 1 could be aggregated to the group distributionally robust value at step t+ 1.

V πt (bt, st) = min
b̂t:T∈Cbt:T

Eb̂t:T (z)Eµz(m)Eπt:Tm

[ T∑
n=t

γn−trn|bt, st
]

= min
b̂t:T∈Cbt:T

Eb̂t:T (z)Eµz(m)Eπt:Tm

[
{rt + γ

T∑
n=t+1

γn−t−1rn}|bt, st
]

= min
b̂t∈Cbt

Eb̂t(z)Eµz(m)Eπtm
[
{rt + γ·

min
b̂t+1:T∈Cbt+1:T

Eb̂t+1:T (z)Eµz(m)Eπt+1:T
m

[ T∑
n=t+1

γn−t−1rn
]
}|bt, st

]
= min
b̂t∈Cbt

Eb̂t(z)Eµz(m)Eπt
[
{ERm [rt] + γ ·

∑
st+1

Pm(st+1|st, at)·

min
b̂t+1:T∈Cbt+1:T

Eb̂t+1:T (z)Eµz(m)Eπt+1:T
m

[ T∑
n=t+1

γn−t−1rn
]
}|bt, st

]
= min
b̂t∈Cbt

Eb̂t(z)Eµz(m)Eπt
[
ERm [rt] + γ ·

∑
st+1

Pm(st+1|st, at)·

min
b̂t+1:T∈Cbt+1:T

Eb̂t+1:T (z)Eµz(m)Eπt+1:T
m

[ T∑
n=t+1

γn−t−1rn|bt+1 = SE(bt, st), st+1

]
}
]

= min
b̂t∈Cbt

Eb̂t(z)Eµz(m)Eπt
[
ERm [rt] + γ

∑
st+1

Pm(st+1|st, at)V πt+1(bt+1, st+1)
]
.
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Therefore, the Group Distributionally Robust Bellman expectation equation is

V πt (bt, st) = min
b̂t∈Cbt

Eb̂t(z)Eµz(m)Eπt
[
ERm [rt] + γ

∑
st+1

Pm(st+1|st, at)V πt+1(bt+1, st+1)
]
.

Proposition 2. The Group Distributionally Robust Bellman optimality equation is

V π
?

t (bt, st) = max
πt

min
b̂t∈Cbt

Eb̂t(z)Eµz(m)Eπt
[
ERm [rt] + γ

∑
st+1

Pm(st+1|st, at)V π
?

t+1(bt+1, st+1)
]
.

Following a similar process, we could also prove the Bellman optimality equation as follows.

V π
?

t (bt, st) = max
πt:T

min
b̂t:T∈Cbt:T

Eb̂t:T (z)Eµz(m)Eπt:Tm

[ T∑
n=t

γn−trn|bt, st
]

= max
πt:T

min
b̂t:T∈Cbt:T

Eb̂t:T (z)Eµz(m)Eπt:Tm

[
{rt + γ

T∑
n=t+1

γn−t−1rn}|bt, st
]

= max
πt

min
b̂t∈Cbt

Eb̂t(z)Eµz(m)Eπtm
[
{rt + γ·

max
πt+1:T

min
b̂t+1:T∈Cbt+1:T

Eb̂t+1:T (z)Eµz(m)Eπt+1:T
m

[ T∑
n=t+1

γn−t−1rn
]
}|bt, st

]
= max

πt
min
b̂t∈Cbt

Eb̂t(z)Eµz(m)Eπt
[
{ERm [rt] + γ ·

∑
st+1

Pm(st+1|st, at)·

max
πt+1:T

min
b̂t+1:T∈Cbt+1:T

Eb̂t+1:T (z)Eµz(m)Eπt+1:T
m

[ T∑
n=t+1

γn−t−1rn
]
}|bt, st

]
= max

πt
min
b̂t∈Cbt

Eb̂t(z)Eµz(m)Eπt
[
ERm [rt] + γ ·

∑
st+1

Pm(st+1|st, at)·

max
πt+1:T

min
b̂t+1:T∈Cbt+1:T

Eb̂t+1:T (z)Eµz(m)Eπt+1:T
m

[ T∑
n=t+1

γn−t−1rn|bt+1 = SE(bt, st), st+1

]
}
]

= max
πt

min
b̂t∈Cbt

Eb̂t(z)Eµz(m)Eπt
[
ERm [rt] + γ

∑
st+1

Pm(st+1|st, at)V π
?

t+1(bt+1, st+1)
]
.

Therefore, the Group Distributionally Robust Bellman optimality equation is

V π
?

t (bt, st) = max
πt

min
b̂t∈Cbt

Eb̂t(z)Eµz(m)Eπt
[
ERm [rt] + γ

∑
st+1

Pm(st+1|st, at)V π
?

t+1(bt+1, st+1)
]
.

B.1.2 Proof for Lemma 1

Let V refer to a set of real-valued bounded functions on ∆Z−1 × S and LV (b, s) : V → V refer to the Bellman operator
defined as

LV (b, s) = max
π∈Π

min
b̂∈Cb

Eb̂(z)Eµz(m)Eπ
[
ERm [r] + γ

∑
s′

Pm(s′|s, a)V π(SE(b, s), s)
]
.

Now we start the proof to show that the Bellman operator above is a contraction operator. For notation simplicity, let

Lπ
b̂

= Eb̂(z)Eµz(m)Eπ
[
ERm [r] + γ

∑
s′

Pm(s′|s, a)V π(SE(b, s), s)
]
, and LV (b, s) = max

π∈Π
min
b̂∈Cb
Lπ
b̂
.

Given arbitrary U, V ∈ B and based on the definition of the operator LV above, LU,LV are real-valued and bounded.
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Let (bU , πU ) and (bV , πV ) be the saddle points for LU and LV , respectively.

Observe that, LπUbU U(b, s) ≤ LπUbV U(b, s) and LπVbV V (b, s) ≥ LπUbV V (b, s).

‖LU(b, s)− LV (b, s)‖∞
= ‖LπUbU U(b, s)− LπVbV V (b, s)‖∞
≤ ‖LπUbV U(b, s)− LπUbV V (b, s)‖∞
= ‖LπUbV (U(b, s)− V (b, s))‖∞

= ‖Eb̂(z)Eµz(m)Eπ
[
γ
∑
s′

Pm(s′|s, a) · (U(SE(b, s, µ), s)− V (SE(b, s, µ), s))
]
‖∞

≤ γEb̂(z)Eµz(m)Eπ
[∑
s′

Pm(s′|s, a) · ‖U(SE(b, s, µ), s)− V (SE(b, s, µ), s)‖∞
]

≤ γ‖U(SE(b, s, µ), s)− V (SE(b, s, µ), s)‖∞
= γ‖U(b′, s)− V (b′, s)‖∞.

Considering that 0 < γ < 1, we conclude that LV (b, s) is a contraction operator on complete metric space (V, ‖ · ‖∞).

B.1.3 Proof for Theorem 1

Since LV (b, s) is a contraction operator based on Lemma 1, we directly follow the Banach’s Fixed-Point Theorem Heyman
and Sobel (2004) to show that (a) there exist a unique solution for LV∞(b, s) = V∞(b, s), and (b) the value function
initiating from any value converge uniformly by iterative applying the Bellman update built in finite horizon case.

B.2 Proofs for Section 5.2: Robustness Guarantee for GDR-MDP

In this section, we prove the robustness guarantee of our proposed GDR-MDP. We compare the GDR-MDP’s optimal value
with three different robust formulations. We achieve the comparison by studying how maintaining beliefs over mixtures
affects the worst-possible outcome of the inner minimization problem and the resulting RL policy. We study the worst-
possible value via the relationships between ambiguity sets projected to the space of beliefs over MDPs.

B.2.1 Ambiguity Set Projection and Set Relationships

Recall that we consider a discrepancy-based ambiguity set defined based on total variance distance in Definition 4. For-
mally, the ambiguity set is

CνX ,dTV ,ξ(X) = {ν′(X) : sup
X∈X

|ν′(X)− νX (X)| ≤ ξ},

where x ∈ X is the support, νX is the nominal distribution over X , and ξ is the ambiguity set’s size.

Define a column stochastic matrix A = ((aij)) ∈ RM×Z , i ∈ [M ], j ∈ [Z], where aij = µz=j(m = i) represents a
conditional probability equal to the i-th element of µz=j defined in GDR-MDP.

Based on the total probability theorem, the matrix A maps distributions overZ to distributions overM. Formally, ∀p(z) ∈
[0, 1]Z ,

∑
Z p(z) = 1, there exists p(m) = Ap(z),p(m) ∈ [0, 1]M ,

∑
m p(M) = 1.

We now define the operator that maps an ambiguity set over distribution for mixtures to an ambiguity set over distributions
for MDPs.

Definition 5 (Ambiguity Set Projection). The operator TA projects an ambiguity set for distributions over Z to an ambi-
guity set for distributions overM, and

TA(Cb(z),d,ξ(z)) = {p′(m) : p′(m) = Ap(z),∀p(z) ∈ Cb(z),d,ξ(z)}.

Cb(m),d,ξ(m) is the ambiguity set for admissible distributions over supportsM, where b(m) is the nominal distribution.
d is the distance metric. ξ is the set size and also the adversary’s perturbation budget around the nominal distribution.
Similarly, Cb(z),d,ξ(z) is the ambiguity set for admissible distributions over supports Z .
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With the set projection operator TA, we can derive the relationships between the projected ambiguity set TA(Cb(z),d,ξ(z))
and the ξ-ambiguity set Cb(m),d,ξ(m) which directly represents the model misspecifications over different MDPs. We state
the results in Proposision 3.

Proposition 3 (Ambiguity Set Regularization with the Hierarchical Latent Structure). Consider two adversaries with the
same attack budget ξ. One adversary perturbs the z-level distribution by selecting the worst possible distribution within
Cb(z),d,ξ(z) and the other perturbs them-level distribution by selecting the worst possible distribution within Cb(m),d,ξ(m).
Given the nominal distribution for Z as b(z), we have the following statements hold:

1. b(m) = Ab(z).

2. TA(Cb(z),d,ξ(z)) ⊆ Cb(m),d,ξ(m). Them-level ambiguity set projected from a z-level ξ-ambiguity set is a subset of the
m-level ξ-ambiguity set when directly perturbing m-level distributions. It means the hierarchical structure imposes
extra regularization/constraints on the adversary.

The second statement in Proposition 3 shows that the hierarchical structure imposes extra regularization/constraints on the
adversary by shrinking the ambiguity set. The actual regularization reflected on the perturbed value of (b, s) is related to
the rank of the matrix A and the loss function of downstream tasks (e.g. the transition models in the group of RL). The
hierarchical latent structure in GDR-MDP can be viewed as a mixture model with random variables as m ∈ [M ] such that
Mm ∈M, and latent variables as z ∈ [Z]. The results in Proposition 3 are applicable for general mixture models.

We now provide the proof for Proposition 3 as follows.

Proof for Proposition 3. Item (1) directly follows the definition of operator TA in Definition 5.

Define the ambiguity sets based on Definition 4, where the cost function is the cost total variance distance.

Cb(m),dTV ,ξ(m) = {p(m) : sup
M∈M

|p(m)− b(m)| ≤ ξ},

Cb(z),dTV ,ξ(z) = {p(z) : sup
Z∈Z
|p(z)− b(z)| ≤ ξ}

Consider an arbitrary p′(m) ∈ TA(Cb(z),d,ξ(z)), there exists a distribution p(z) ∈ Cb(z),d,ξ(z), such that p′(m) = Ap(z).
Therefore,

p′(m)− b(m) = Ap(z)− b(m) = Ap(z)−Ab(z) = A(p(z)− b(z))

Let g = p′(m)− b(m). Denote the i-th element of g as gi, i ∈ [n]. Let ai ∈ [0, 1]
1×m denote the i-th row of A.

Considering that elements in ai are non-negative and lie in interval [0, 1], we have

gi = aTi (p(z)− b(z))
≤ aTi (p(z)− b(z))+ ((·)+ is an operator that replaces negative elements with 0)

≤
∑

(p(z)− b(z))+ (each element in ai is in [0, 1])

= dTV (p(z), b(z))

≤ ξ, ∀i ∈ [n].

Similarly, we can prove −gi ≤ ξ, ∀i ∈ [n].

−gi = −aTi (p(z)− b(z)) = aTi (b(z)− p(z)) ≤ aTi (b(z)− p(z))+

≤
∑

(b(z)− p(z))+ = dTV (p(z), b(z))

≤ ξ, ∀i ∈ [n].
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Therefore, we have elements in g bounded by ξ: |gi| ≤ ξ, ∀i ∈ [n].

|gi| ≤ ξ, ∀i ∈ [n]

⇒|Ap(z)− b(m)| ≤ ξ, ∀z ∈ [Z] (because of the definition of gi)
⇒ sup

z∈Z
|Ap(z)− b(m)| ≤ ξ

⇒TA(CµZ ,d,ξ(z)) ⊆ CµM,d,ξ(m).

Remark. A is not a stochastic row matrix, which makes the proof different from the contraction mapping proof in tabular
RL settings where the transition matrix is a stochastic row matrix.

B.2.2 Proof for Theorem 2

With the ambiguity set relationships in Proposition 3, we are now ready to prove Theorem 2.

Recall that for notation simplicity, let Um(π) = Eπm
[∑T

t=1 γ
trt
]
. Let Cb(m),dTV ,ξ(m) and Cb(z),dTV ,ξ(z) denote the

ambiguity sets for beliefs over MDPs m and mixtures z, respectively. b(m) and b(z) satisfy b(m) =
∑
Z µz(m)b(z)

and are the nominal distributions. For any history-dependent policy π ∈ Π, its value function under different robust
formulations are:

VGDR(π) = min
b̂(z)∈Cb(z),dTV ,ξ(z)

Eb̂(z)Eµz(m)[Um(π)], VGR(π) = min
z∈[Z]

Eµz(m)[Um(π)],

VDR(π) = min
b̂(m)∈Cb(m),dTV ,ξ

(m)
Eb̂(m)[Um(π)], VR(π) = min

m∈[M ]
[Um(π)].

Proof for Theorem 2. First prove item (1) which is VGDR(π) ≥ VGR(π) ≥ VR(π):

Given an arbitrary policy π ∈ Π, we have

VGDR(π) = min
b̂(z)∈Cb(z),dTV ,ξ(z)

Eb̂(z)Eµz(m)[Um(π)]

≥ min
b̂(z)∈∆Z

Eb̂(z)Eµz(m)[Um(π)]

= min
z∈|Z|

Eµz(m)[Um(π)]

= VGR(π)

It means that with a nontrivial ambiguity set Cb(z),dTV ,ξ(z), the distributionally robust value is more optimistic than the
group robust formulation.

VGR(π) = min
z∈|Z|

Eµz(m)[Um(π)]

≥ min
z∈[Z]

min
m∼µz(m)

[Um(π)]

≥ min
m∈[M ]

[Um(π)]

= VR(π1)

Therefore, we have VGDR(π) ≥ VGR(π) ≥ VR(π).

Remark The belief robust method with VGR is compatible with a non-adaptive robust problem, where the policy of the
decision maker is a Markov policy that only depends on the current state. In contrast, the belief distributionally robust
method with VGDR corresponds to an adaptive robust problem, where the decision maker utilizes a history-dependent
policy. In other words, it considers both the current state and the information gathered along with interactions. A similar
argument but in a non-robust version is presented as Proposition 1. in Steimle et al. (2021).

Now prove the inequality relationship in item (2) which is VGDR(π) ≥ VDR(π):
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Based on the projection operator in Definition 5, we change the minimization over belief distribution on mixtures to an
equivalent expression that has minimization over belief distribution on MDPs instead.

VGDR(π) = min
b̂(z)∈Cb(z),dTV ,ξ(z)

Eb̂(z)Eµz(m)[Um(π)]

= min
b̂(z)∈Cb(z),dTV ,ξ(z)

Em∼∑z b̂(z)µz(m)[Um(π)]

= min
b̂(m)∈TA(Cb(z),d,ξ(z))

Eb̂(m)[Um(π)] (based on Definition 5)

Then with Proposition 3, which shows the set relationships, we have,

VGDR(π) = min
b̂(m)∈TA(Cb(z),d,ξ(z))

Eb̂(m)[Um(π)]

≥ min
b̂(m)∈Cb(m),dTV ,ξ

(m)
Eb̂(m)[Um(π)] (because of TA(Cb(z),d,ξ(z)) ⊆ Cb(m),d,ξ(m))

= VDR(π).

It shows that, in general, distributionally robust over high-level latent variable z is more optimistic than that over low-level
latent variable m. The hierarchical mixture model structure help regularize the strength of the adversary and generate less
conservative policies than the flat model structure.

Therefore, we have the following inequalities hold: VGDR(π) ≥ VGR(π) ≥ VR(π) and VGDR(π) ≥ VDR(π).

B.2.3 Proof for Theorem 3

Based on Theorem 2, we can derive the relationships between the optimal values for different formulations.

Proof for Theorem 3. First prove that VGDR(π?GDR) ≥ VDR(π?DR).

Since π?GDR is the optimal policy for GDR-MDP, we have

VGDR(π?GDR) ≥ VGDR(π?DR).

Since VGDR(π) ≥ VDR(π),∀π, base on Theorem 2, we have

VGDR(π?DR) ≥ VDR(π?DR).

Therefore we have

VGDR(π?GDR) ≥ VDR(π?DR).

Following similar procedures, we prove that VGDR(π?GDR) ≥ VGR(π?GR) ≥ VR(π?R).

VGDR(π?GDR) ≥ VGDR(π?GR) (since π?GDR is the optimal policy for GDR-MDP)
≥ VGR(π?GR) (since VGDR(π) ≥ VGR(π),∀π in Theorem 2)
≥ VGR(π?R) (since π?GR is the optimal policy for group robust MDP)
≥ VR(π?R). (since VGR(π) ≥ VR(π),∀π in Theorem 2)

Therefore, we have shown the following inequalities hold: VGDR(π?GDR) ≥ VGR(π?GR) ≥ VR(π?R) and VGDR(π?GDR) ≥
VDR(π?DR).
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C Environment Details

C.1 Google Research Football

Google Research Football (GRF) is a physics-based 3D soccer simulator for reinforcement learning. This domain presents
additional challenges due to its AI randomness, large state-action spaces, and sparse rewards. The RL agent will control
one active player on the attacking team at each step and can pass to switch control. The non-active players will be controlled
by built-in AI. In our designed 3 vs. 2 tasks, there are three attacking players of a certain type and two defending players,
including one player of a chosen type and a goalkeeper.

The dynamics of the 3 vs. 2 tasks are determined by the player types, including central midfield (CM) and centre back
(CB), and player capability levels. The mixture index set Z has a cardinality of two, z = 0 and z = 1, corresponding
to CM vs. CB (with the goalkeeper) and CB vs. CM (with the goalkeeper), respectively. The built-in CM player tends
to go into the penalty area when attacking and guard the player on the wing (physically left or right) when defending,
while the CB player tends to guard the player in the middle when defending, and not directly go into the penalty area
when attacking. Thus, different patterns of policies are required to solve the tasks from different groups. As shown in
Figure 6, in a CM-attacking-CB-defending task, a good solution is to first pass the ball to the player on the wing and then
shoot. In a CB-attacking-CM-defending task, a good policy is to directly run into the penalty area and shoot. To further
encourage task diversity, we add some noisy actions to a run-into-penalty policy in a CM-attacking-CB-defending task, and
to a pass-and-shoot policy in a CB-attacking-CM-defending task, when the controlled player faces high-intensity defense.

For the player capability level, we have two types of settings, players with 1.0 capability attacking while players with 0.7
capability defending (1.0 vs. 0.7), and players with 0.9 capability attacking while players with 0.6 capability defending
(0.9 vs. 0.6). The strongest player has a capability level of 1.0. It is worth noting that these settings are more challenging
than the original 3 vs. 2 task in GRF (1.0 vs. 0.6) in terms of capability level. Detailed descriptions of the state and action
space are shown in Table 2.

Figure 6: This figure displays good solutions for tasks from two groups in GRF 3 vs. 2. The yellow solid arrow depicts
the movement direction of the ball, the yellow dashed arrow depicts the movement direction of the attacking player on the
wing, and the blue dashed arrow shows the movement direction of the defending player.
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Table 2: Observation and action space in Google Research Football

Dim. Continuous Observation Space range

0-7 x, y positions of the attacking players (including the goalkeeper) [−1, 1]
8-11 x, y positions of the defending players [−1, 1]
12-19 movements of the attacking players along x, y directions [−1, 1]
20-23 movements of the defending players along x, y directions [−1, 1]
24-26 x, y, z positions of the ball [− inf, inf]
27-29 movements of the ball along x, y, z directions [−1, 1]
30-32 x, y, z rotation angles of the ball in radians [−π, π]
33-35 the one-hot encoding denoting the team controlling the ball {0, 1}
36-40 the one-hot encoding denoting the player controlling the ball {0, 1}
41-42 scores for each team (an episode terminates when any team scores) {0, 1}
43-46 the one-hot encoding denoting the active player controlled by RL {0, 1}
47-56 10-elements vectors of 0s or 1s denoting whether a sticky action is active {0, 1}
Index Discrete Action Space

0 idle
1 run to the left, sticky action
2 run to the top-left, sticky action
3 run to the top, sticky action
4 run to the top-right, sticky action
5 run to the right, sticky action
6 run to the bottom-right, sticky action
7 run to the bottom, sticky action
8 run to the bottom-left, sticky action
9 perform a long pass
10 perform a high pass
11 perform a short pass
12 perform a shot
13 start sprinting, sticky action
14 reset current movement direction
15 stop sprinting
16 perform a slide
17 start dribbling, sticky action
18 stop dribbling

Table 3: Detailed task descriptions for Google Research Football

Task Index Parameter 1 Parameter 2 Group Index ProbabilityPlayer Type Player Capability Level

0 CM vs. CB 0.9 vs. 0.6 0 0.5
1 CM vs. CB 1.0 vs. 0.7 0 0.5

2 CB vs. CM 0.9 vs. 0.6 1 0.5
3 CB vs. CM 1.0 vs. 0.7 1 0.5
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C.2 LunarLander

We modify the LunarLander environment Brockman et al. (2016) by changing the engine mode and engine power. The
mixture index set Z has a cardinality of two, z = 0 and z = 1, corresponding to two different engine operation modes,
normal mode and left-right-flip mode, respectively. When in left-right-flip mode, the action turning on the left engine in
normal mode will turn on the right engine instead, and the action turning on the right engine in normal mode will turn on
the left instead. We visualize the tasks in Figure 7. The engine power has two choices which are 3.0 and 6.0. The MDP set
M has carnality four corresponding to four combinations of engine mode and engine power. Detailed descriptions of the
state and action space are shown in Table 5.

Figure 7: LunarLander task visualization. Task 0 and task 1 belong to group 0 (normal mode). Tasks 2 and task 3 belong
to group 1 (flip mode).

Table 4: Detailed task descriptions for LunarLander

Task Index Parameter 1 Parameter 2 Group Index ProbabilityEngine Mode Engine Power

0 Normal 3.0 0 0.5
1 Normal 6.0 0 0.5

2 Flipped 3.0 1 0.5
3 Flipped 6.0 1 0.5

Table 5: Observation and action space in LunarLander

Dim. Continuous Observation Space range

0 x position [− inf, inf]
1 y position [− inf, inf]
2 x velocity [− inf, inf]
3 y velocity (relative): x, y, vx, vy [− inf, inf]
4 angle [−π, π]
5 angular velocity [− inf, inf]
6 if left leg contact with ground {0, 1}
7 if right leg contact with ground {0, 1}
Index Discrete Action Space

0 idle
1 turn on left engine (normal mode)/Turn on right engine (left-right-flip mode)
2 turn on main engine
3 turn on right engine (normal mode)/Turn on left engine (left-right-flip mode)
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C.3 HalfCheetah

We modify the joint failure and torso mass of HalfCheetah and build 18 tasks with different dynamics. The joint failure
has six choices which correspond to the 6 joints of HalfCheetah. For instance, when the joint failure index is 0, we cannot
apply control torque (action) to joint 0. The torso mass has three choices, which are 0.9, 1.0, and 1.1 times the original
torso mass. We visualize the joint indexes in Figure 8. Detailed descriptions of the state and action space are shown in
Table 6.

Figure 8: HalfCheetah visualization.

Table 6: Observation and action space in HalfCheetah

Dim. Continuous Observation Space

0-8 positional information
9-16 velocity information

Dim Continuous Action Space

0-5 control torque

Table 7: Detailed task descriptions for HalfCheetah

Task Index Parameter 1 Parameter 2 Group Index ProbabilityFailure Joint Torso Mass

0 0 0.9 0 1/3
1 0 1.0 0 1/3
2 0 1.1 0 1/3

3 1 0.9 1 1/3
4 1 1.0 1 1/3
5 1 1.1 1 1/3

6 2 0.9 2 1/3
7 2 1.0 2 1/3
8 2 1.1 2 1/3

9 3 0.9 3 1/3
10 3 1.0 3 1/3
11 3 1.1 3 1/3

12 4 0.9 4 1/3
13 4 1.0 4 1/3
14 4 1.1 4 1/3

15 5 0.9 5 1/3
16 5 1.0 5 1/3
17 5 1.1 5 1/3
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D Implementation Details
Trajectory rollout. In both training and testing, we initialize the environment by sampling first a mixture and then an
MDP realization. The sampled mixture and MDP are fixed throughout one episode. In our environments with discrete
mixtures and MDPs, we can represent the ground truth mixture index ẑ with a one-hot vector eẑ , which is used in the
pretraining phase of all baselines and in the whole training phase of baseline G-Exact. For baselines with belief module
including GDR, G-Belief, DR, State-R, the actual mixture ẑ and MDP weights µ(m|ẑ) are unknown to the RL agent.
Instead, the RL agent is given the number of possible mixtures Z and is able to infer a belief over mixtures b(z) based on
a belief update function SE. A detailed algorithm for trajectory rollout is Algorithm 1. For baseline No-Belief, we mask
out the beliefs in the input by replacing them with zeros.

Belief update mechanism. In our implementation (Section 7), we use the Bayesian update rule to update beliefs based
on the interaction at each timestep. At the beginning of each episode, we initialize a uniform belief distribution b0(i) =
1/(|Z|),∀i ∈ [|Z|]. At timestep t, we update the belief as follows

bt+1(j) =
bt(j)L(j)∑

i∈[|Z|] bt(i)L(i)
,∀j ∈ [|Z|],

where L represents the likelihood. Let ẑ denote the true mixture index for the episode. We let the likelihood L vector be a
soft version of the actual one-hot mixture encoding eẑ .

More concretely, at each time step, we first sample a noisy index j where j = ẑ with probability εl and j is uniformly
sampled from [Z] otherwise. The likelihood L is a vector with dimension |Z|, and ∀i ∈ [|Z|], the i-th element L(i) is

L(i) =

{
l, if i = j

(1− l)/(|Z| − 1), if i 6= j

There are lots of literature on accurate belief updates Sokota et al. (2021). In this work, we utilize a simple but controllable
belief update mechanism above, which is more suitable for robustness evaluations since we could explicitly vary the
hyperparameters. We leave a more sophisticated design of belief update mechanism for future work.

Belief noise level During robustness evaluation in Section 8, we control the belief noise level εẑ which affects the like-
lihood L. More concretely, we add another layer of randomness on the estimate of ẑ. Define the noisy mixture index at
test-time as ztext, we have

ztest =

{
ẑ with probability εẑ
a random index uniforms samples from [|Z|], otherwise

During the robust evaluation, the likelihood Ltest is calculated based on ztest. More concretely, at each time step, we first
sample a noisy index j where j = ztest with probability εl and j is uniformly sampled from [Z] otherwise. The likelihood
and belief updates are as follows:

Ltest(i) =

{
l, if i = j

(1− l)/(|Z| − 1), if i 6= j
, and bt+1(j) =

bt(j)Ltest(j)∑
i∈[|Z|] bt(i)Ltest(i)

,∀j ∈ [|Z|].

Distributionally robust training with belief distribution over MDPs (DR) DR has an agent that takes the belief
distribution b(m) and state s as inputs. DR uses the same belief updating rule as in GDR to update b(z) at each timestep
and then project b(z) to b(m) with µz(m).

This is a variant of our proposed Group Distributionally Robust DQN, which has a perturbed target taking m-level belief
distribution as part of its input. Note that in DR, we still update z-level belief b(z) based on the same belief updating
function SE as in GDR. However, in DR, for data pair d, the ambiguity set Cb′(m),dTV ,ξ is centered at b′(m) = TA(b′(z))
which is mapped from b′(z). We also modify the fast gradient sign attack over b(m) accordingly. We first sample i ∈ [M ]
and apply attacks as p(m)j = p(m)j + αb · sign(∇p(m),jV (p(m), s′)), ∀j 6= i and p(m)i = p(m)i −

∑
j 6=i p(m)j . We

iteratively apply the gradient sign attack to find badv(m) = arg minp(m)∈Cb′(m),dTV ,ξ

∑
a∈AQθ(p(m), s′, a).
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D.1 GDR-PPO

We represent the pseudo algorithm of GDR-PPO in Algorithm 3. We collect rollouts with un-perturbed beliefs and use the
online rollouts to update the value network. To enhance the robustness to belief ambiguity, we tend to down-weight the
probability of trajectories that may lead to large performance drops under the worst-possible belief within the ambiguity
set. Hence we construct a pseudo-advantage Â by subtracting the performance drop Rdrop from the actual accumulated
return. The worst-possible belief is calculated by FGSM.

Algorithm 3: Group Distributionally Robust Training for GDR-PPO
Input: Value-net Vθ(b(z), s), ambiguity set C·,dTV ,ξ, training episodes N
Initialize data buffer D ;
for n = 0 to N do

Rollout several episode with Algorithm 1 and append data pairs to D ;
if Update Actor-net parameters then

Sample batch data from D ;
for Each trajectory in the batch do

Get advantage for the data pair at timestep t
Â(bt, st) =

∑T−1
t′=t rt −

(
V (bt, st)−minp(z)∈Cbt(z),dTV ,ξ Vθ(p(z), st)

)
− Vθ(bt, st) ;

Update Actor-net with PPO ;
Return: Actor-net

D.2 Hyperparameters

We show the hyperparameters for training Google Research Football, Lunarlander and Halfcheetah in Table 8, Table 9 and
Table 10, respectively. We select hyperparameters via grid search.

Table 8: Hyperparameters for the Google Research Football

reward decay 0.997
net hidden structure [256, 256]
net activation function Tanh
learning rate 0.00012
GAE (λ) 0.95
clipping range 0.115
entropy coefficient 0.00155
value function coefficient 0.5
number of environment steps per update 8192
epoch 10
adv budget 0.2
adv step size 0.1
adv max step 10
batch size 256

Table 9: Hyperparameters for the LunarLander task

reward decay 0.95
net hidden structure [128, 128]
net activation function ReLU
value function learning rate 0.01
value function learning rate decay 0.999
epoch 20
gradient steps per epoch 5000
adv budget 0.4
adv step size 0.02
adv max step 50
batch size 256
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Table 10: Hyperparameters for the Halfcheetah

reward decay 0.99
net hidden structure [256, 256]
net activation function ReLU
value function learning rate 0.001
value function learning rate decay 0.999
epoch 200
gradient steps per epoch 5000
adv budget 0.2
adv step size 0.02
adv max step 50
batch size 256

E Additional Ablation Study
In this section, we show how the ambiguity set size and the pretrain episodes affect the training stability and robustness of
DR, which maintains a belief over MDPs. Compared with our proposed GDR, DR omits the hierarchical structure.

E.1 The effect of Ambiguity Set Size
Figure 9 shows the effect of the ambiguity set in HalfCheetah. All curves in Figure 9 are pre-trained in the first 100000
episodes. With ambiguity set size 0.01 and 0.05, the DR does not crash and converge to a non-negative value. Comparing
Figure 9 (b) for DR with Figure 3 (c) for GDR, we can conclude that GDR is less sensitive to the ambiguity set size along
training since it converge to a non-negative value with a larger range of ambiguity set size. Comparing Figure 5 (a) with
Figure 4 (c) for our proposed GDR, we can conclude that the hierarchical structure enhances the robustness to belief noise
since the robustness performance for GDR consistently outperforms that of DR for different ambiguity set sizes.

Figure 9: Ablation study about the effect of ambiguity set budget on DR’s robustness and training stability. We choose the
ambiguity set size among 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, and 0.35.

E.2 The effect of Pretrain Episodes
Figure 10 shows the effect of the pretrain episodes in HalfCheetah. All curves in Figure 10 has an ambiguity set size 0.2.
Figure 10 shows that even pretraining for 900000 episodes, DR still will crash after the pretraining phase. It shows that
DR is less sensitive to the pretraining episodes compared with the ambiguity set size.
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Figure 10: Ablation study about the effect of pretrain episodes on DR’s robustness and training stability. We choose the
number of pretrain episodes among 100000, 300000, 500000, 700000, and 900000.
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