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Abstract

We study the problem of reconstructing a contin-
uous multidimensional signal from a small num-
ber of samples under Fourier constraints assum-
ing that the Fourier power spectrum of the signal
has some desirable properties, e.g. being com-
pactly supported, being sparse. We further as-
sume that the Fourier constraint can be expressed
as a prior distribution on the Fourier power spec-
trum, which subsumes the aforementioned exam-
ples. The study of sampling and reconstructing in
this vein has attracted much attention with a long
history. In this paper, we are interested in find-
ing oblivious sampling strategies, that is, sam-
pling without knowing what specific constraint
is put on the Fourier power spectrum. We show
that it is possible to obliviously sample a Fourier-
constrained multidimensional signal with a near-
optimal (up to a logarithmic factor) number of
samples that guarantee successful reconstruction,
partially answering an open question in Avron
et al. (2019) which considered the 1-dimensional
case. Our approach highlights a phenomenon
that is unique for dimension d ≥ 2 that the sam-
pling strategy should depend on the geometry of
the region on which the signal is to be recon-
structed, unlike the case d = 1 where all regions
are of the form [a, b] which are all geometrically
equivalent. Our proof, using tools from convex
geometry, also illuminates an idea obscured in
d = 1, that to reconstruct a signal in a given
region, it can be helpful to take some samples
outside that region.
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1 INTRODUCTION

A fundamental problem in science and engineering is to re-
construct a continuous signal, say f(x), from a few of its
samples f(x1), . . . , f(xk). The signal can be multidimen-
sional1, i.e. x can take values in Rd. It is obvious that
such reconstruction is possible only if one assumes suffi-
cient “regularity” of f with some proper notion of “regu-
larity”. Apart from the most straight-forward smoothness
assumptions, an important class of regularity assumptions
are Fourier constraints, which require the Fourier spectrum
f to have some desirable properties. In this work we con-
sider a special form of Fourier constraints, following Ra-
mani et al. (2005); Eldar and Unser (2006); Avron et al.
(2019), which is simple yet powerful enough to express
most commonly-used Fourier constraints. Specifically, we
model the assumptions on the Fourier power spectrum as a
prior distribution µ, thereby expressing f as

f(x) =

∫
α(ξ)ei⟨ξ,x⟩dµ(ξ). (1)

This model subsumes common Fourier constraints like
bandlimited constraints, spectral decay constraints and
Fourier-sparse constraints, which are absolutely fundamen-
tal and have been extensively studied in signal processing,
communication, image processing, etc. (Rasmussen, 2003;
Ripley, 2005; Mishali and Eldar, 2010). Furthermore, it
has a clear meaning within Bayesian approaches to signal
reconstruction. The latter point links our model to the dom-
inantly useful “Gaussian process regression” and “kriging”
methods for fitting continuous signals in diverse scientific
disciplines including geostatistics and economics (Ripley,
2005; Ramani et al., 2006); see Avron et al. (2019) for a
precise formulation of this link.

In this paper we investigate oblivious sampling strategies
under model (1), which in our settings means we will sam-
ple the signal without knowing what µ is. Of course, we
will nevertheless have to use information about µ when
reconstructing the signal using the samples, but oblivious
sampling remains to be of interest since it allows to apply

1Please be aware that, following conventions in signal pro-
cessing, this means the domain of f rather than the range of f is
multidimensional.
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the same sampling strategy, which in practice may corre-
spond to a fixed hardware design, to different tasks. It was
first shown by Avron et al. (2019) that near-optimal obliv-
ious sampling is possible for one-dimensional signal. The
more general multidimensional case is proposed as an open
problem therein. Multidimensional signals are often en-
countered in practice, e.g. in array signal processing, med-
ical imaging (Friston et al., 1994; Mishali and Eldar, 2010).
Our main result provides a partial answer to this problem
by establishing a near-optimal oblivious sampling strategy
for a wide class of regions which covers most practical pur-
poses. More concretely, we show that for multidimensional
signals,

• There is an oblivious sampling strategy whose sample
complexity is at most a polynomial of the optimal sam-
ple complexity, regardless of the prior distribution µ, and
achieves accurate reconstruction.

• If the reconstruction region is a polyhedron (or a sim-
plicial complex) with not too many vertices, the above
strategy is near-optimal.

• If we allow sampling outside the reconstruction region,
there is similarly an oblivious sampling strategy that
achieves near-optimal sample complexity and accurate
reconstruction under very mild assumption on the recon-
struction region (see Section 4.3).

We remark that even the first point is already non-trivial: to
the best of our knowledge no comparable result has been
obtained in the multidimensional setting before, consider-
ing that it is already difficult (Slepian, 1964) to obtain satis-
factory result for very specific choices of the reconstruction
region and the Fourier prior µ.

Arguably, in practice the most important cases are d =
1, 2, 3, 4, e.g. in array signal processing, geostatistics and
image processing. For this reason, in this work we focus
on multidimensional signals rather than high-dimensional
signals. Technically speaking, this means we will not try to
optimize the dependence on dimension d. Instead, we are
free to think of “constants that depend only on d” as abso-
lute constants, though we will always make it clear when
we are doing so.

1.1 Related Works

The study of optimal sampling and reconstruction strat-
egy for Fourier-constrained signals has a long history, dat-
ing back to Nyquist (1928); Kotelnikov (1933); Shannon
(1949); it is probably futile to try to make a comprehen-
sive list of related works here. We only take some sam-
ples of them that are most representative and most closely
related to our work. Classical works such as Nyquist
(1928); Kotelnikov (1933); Shannon (1949) mainly consid-
ered bandlimited unidimensional signals, corresponding to
µ being the normalized Lebesgue measure on a fixed in-

terval. Subsequent works in this setting have managed to
achieve optimal sample complexity using techniques stem-
ming from the so-called prolate spheroidal wave functions
(Slepian and Pollak, 1961; Landau and Pollak, 1961; Xiao
et al., 2001; Osipov and Rokhlin, 2014). These works fo-
cus on the bandlimited signals and are very difficult to gen-
eralize; even generalizing to multiband signals can take a
substantial amount of efforts (Zhu and Wakin, 2017).

It was Avron et al. (2019) who provide the first oblivious
near-optimal sampling strategy in dimension one. It is left
as open problem there whether their results can be extended
to higher dimensions, and our work provides a partial affir-
mative answer to this problem. As we will see soon, the
multidimensional setting is much more challenging due to
the complicated geometry of multidimensional regions, in
sharp contrast to the unidimensional setting where all re-
gions are geometrically equivalent to the unit interval. It
takes novel ideas and substantial efforts to overcome such
challenges. More discussions on the technical and method-
ological differences between our work and Avron et al.
(2019) can be found at the end of this subsection.

Sampling multidimensional signals has been studied for
some specific regions in Slepian (1964) for bandlimited
signals, though with a much less clear and less definitive
answer than in dimension one. Modern works on this prob-
lem also concentrate on specific forms of µ and are hard
to generalize (Pesquet-Popescu and Véhel, 2002; Ramani
et al., 2006).

Another type of Fourier-constrained signals that have at-
tracted significant attention in recent years are Fourier-
sparse signals (Donoho, 2006; Eldar and Kutyniok, 2012).
There is a major difference between our work and these
works: sparse recovery is interested in recovering the sig-
nal with µ sparse but unknown, while we do not assume µ
to be sparse but do need µ to be known for reconstruction
(though the knowledge of µ is not required in sampling).
It is an interesting future direction to see if these two tech-
niques can be combined to obtain better sampling and re-
construction schemes.

Comparison with Avron et al. (2019). On a high-level,
our proof is greatly inspired by Avron et al. (2019). How-
ever, the multidimensional setting we consider has a fun-
damental difference from the unidimensional setting there,
which requires new ideas and new tools to deal with. Our
result reveals that the (near-)optimal sampling strategy de-
pends crucially on the geometry of the sampling region Ω,
a phenomenon that manifests itself only in the multidimen-
sional setting for the following reason. In multidimensional
setting, one has to take into account the fact that the region
Ω on which the signal is to be sampled and reconstructed
can have very different shapes, or geometries. This does
not happen in unidimensional setting, where all regions
are of the form [a, b] which are all geometrically equiva-
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lent. In fact, this difference makes it more difficult to de-
sign near-optimal sampling strategy for a general region Ω
which calls for new ideas not present in the unidimensional
case and also new tools from convex geometry to accom-
plish better generality in presence of various geometries,
c.f. Section 4.

1.2 Basic Notations

By a region we mean a compact set in Rd whose interior
is non-empty. For a region Ω, denote its volume by |Ω|. A

convex body is a convex region. Denote a∧ b △
= min(a, b),

Õ(N) = O(N logO(1)N). By a ≍ b we mean that
a = O(b) and b = O(a) hold simultaneously. By Cd
or C(d) we mean a constant that depending only on d,
and a = Od(b) means a ≤ C(d)b for some constant
C(d) depending only on d. Similarly we define Õd(N) =

Od(log
Od(1)N), and by a ≍d b we mean a = Od(b) and

b = Od(a). By a = poly(b) (resp. a = polyd(b)) we mean
a = O(bO(1)) (resp. a = Od(b

Od(1))). Other notations will
be introduced upon their first occurrence.

2 BACKGROUNDS

In this section we discuss our basic settings, which are nat-
ural extensions of those in Avron et al. (2019) to multidi-
mensions. Recall that we are interested in signals f of the
form (1) where µ is a probability measure on Rd. Further-
more, we consider the noisy version of (1):

f̃(x) =

∫
α(ξ)ei⟨ξ,x⟩dµ(ξ) + n(x), (2)

where n denotes the noise. We allow the noise to be adver-
sarial, i.e. n can be an arbitrary function. We would like
to reconstruct f on a given region Ω. To measure the re-
construction accuracy we introduce the following standard
norms. Denote by ∥ · ∥Ω and ∥ · ∥µ the L2-norm associ-
ated to the normalized Lebesgue measure on Ω and to µ
respectively, i.e.

∥g∥Ω
△
=

(
1

|Ω|

∫
Ω

|g(x)|2dx
)1/2

,

∥β∥µ
△
=

(∫
|β(ξ)|2dµ(ξ)

)1/2

,

where |Ω| denotes the volume of Ω. Similarly we intro-
duce the notations ⟨·, ·⟩Ω and ⟨·, ·⟩µ for inner products and
the notations L2(Ω), L2(µ) for the corresponding Hilbert
spaces. We seek to prove reconstruction guarantees in the
following form:

Definition 2.1. A function f̂ is said to be an (ϵ,K)-
accurate approximation of f if

∥f̂ − f∥2Ω ≤ ϵ∥α∥2µ +K∥n∥2Ω. (3)

Throughout this paper we will simply take K to be a suffi-
ciently large constant and omit its appearance; that is, f̂ is
said to be an ϵ-accurate approximation of f if (3) holds for
some K that is sufficiently large and fixed throughout this
paper.

The above form of reconstruction error and its variants are
pervasive in relevant literature (Bhaskar et al., 2013; Avron
et al., 2019; Jin et al., 2020). The term ∥n∥2Ω is the total en-
ergy of the noise. Generally, it is not possible to guarantee a
reconstruction error less than ∥n∥2Ω, so up to a multiplica-
tive constant the reconstruction accuracy is characterized
by ϵ, justifying the simplified notation “ϵ-accurate”. The
term ∥α∥2µ can be interpreted as the “energy” of the signal
f . For more discussion on Definition 2.1, please refer to
Avron et al. (2019).

For the sequel we denote by F the Fourier transform oper-
ator L2(µ) → L2(Ω):

Fβ =

∫
β(ξ)ei⟨ξ,·⟩dµ(ξ), ∀β ∈ L2(µ).

The adjoint of F can be explicitly expressed as

F∗g =
1

|Ω|

∫
Ω

g(x)e−i⟨·,x⟩dx, ∀g ∈ L2(Ω).

Note that by Cauchy-Schwarz inequality, Fβ (resp. F∗g)
can be defined pointwise rather than as an element inL2(Ω)
(resp. L2(µ)). We will use notations like (Fβ)(x) freely
in the sequel.

2.1 Reconstruction via Ridge Regression

Following Avron et al. (2019), we reconstruct f using ridge
regression. For pedagogical reason, we first consider the
case where we have full knowledge of f̃ . We may then find
an estimate of f by solving

β̂ = argmin
β∈L2(µ)

∥Fβ − f̃∥2Ω + ϵ∥β∥2µ, (4)

f̂ = F β̂. (5)

It was shown in Avron et al. (2019) (and is well-known)
that the f̂ obtained in (5) is a Cϵ-accurate reconstruction of
f for some absolute constant C > 0, even if β̂ is only an√
C-approximate solution2 of (4).

In reality we only have access to a few samples
f̃(x1), . . . , f̃(xk) of f̃ . In this case we need to properly
discretize (4). It turns out that it is very useful to assign
to each sample a certain weight and then approximate the
continuous integral ∥ · ∥2Ω by a weighted discrete sum. In

2This means ∥F β̂−f̃∥2Ω+ϵ∥β̂∥2µ ≤
√
Cminβ(∥Fβ−f̃∥2Ω+

ϵ∥β∥2µ).
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particular, we will choose some weights w1, . . . , wk ≥ 0,
and define a norm ∥ · ∥w on Ck by

∥z∥2w =

k∑
j=1

wj |zj |2

where z = (z1, . . . , zk). Denote by f̃X = (f̃(xj))
k
j=1

the vector formed by the samples at our disposal, and by
FX : L2(µ) → Ck the operator obtained by sampling F
at x1, . . . , xk, e.g. FXβ =

(∫
β(ξ)ei⟨ξ,xj⟩dµ(ξ)

)k
j=1

. The
discrete version of (4) can be expressed as

β̂ = argmin
β∈L2(µ)

∥FXβ − f̃X∥2w + ϵ∥β∥2µ, (6)

meanwhile f̂ is still obtained as in (5). Though (6) is
infinite-dimensional in nature, it does not need to be solved
in practice since we are only interested in f̂ . By ele-
mentary algebraic manipulation one may obtain an effec-
tively computable analytic expression for f̂ assuming ac-

cess to an oracle which computes the kernel kµ(x, x′)
△
=∫

ei⟨ξ,x−x
′⟩dµ(ξ). In many practical scenarios such an ora-

cle exists and each access to the oracle takesO(1) time. For
more details on algorithmic aspect of the ridge regression
approach to reconstruction we refer the interested readers
to Avron et al. (2019) or the extended version of this paper.

Algorithm 1 Reconstruct

Input: Samples f̃X = (f̃(x1), . . . , f̃(xk)), sample loca-
tions x1, . . . , xk, weights w1, . . . , wk ≥ 0.

Output: An estimation f̂ of f .
1. Solve (6) to find the optimal β̂.
2. Let f̂ = F β̂.
3. Output f̂ .

2.2 Leverage Score Sampling

Next we introduce an important method, called leverage
score sampling (Spielman and Srivastava, 2011; Drineas
and Mahoney, 2016; Cohen and Migliorati, 2017), to
choose the sample points xi’s and the weights wi’s near-
optimally.

Definition 2.2 (Leverage score). Given ϵ > 0, the leverage
score function τµ,Ω,ϵ is defined on Ω as

τµ,Ω,ϵ(x)
△
=

1

|Ω|
sup

β∈L2(µ),β ̸=0

|(Fβ)(x)|2

∥Fβ∥2Ω + ϵ∥β∥2µ

for x ∈ Ω. The effective dimension sµ,Ω,ϵ is defined as

sµ,Ω,ϵ = tr(F(F∗F + ϵI)−1F∗).

We put the definitions of τµ,Ω,ϵ and sµ,Ω,ϵ together for good
reasons. In fact, it is not hard (Avron et al., 2019) to show

that τµ,Ω,ϵ is continuous, and

sµ,Ω,ϵ =

∫
Ω

τµ,Ω,ϵ(x)dx. (7)

What we would like to stress here is that τµ,Ω,ϵ, or an upper
bound of it, provides very useful information to choose xi’s
and wi’s:

Lemma 2.1 (Near-optimality of leverage score sampling).
There exists some absolute constant C > 0 such that
the following holds. Assume τ̃ (called leverage score
bound) is a measurable function satisfying τ̃ ≥ τµ,Ω,ϵ.
Let s̃ =

∫
Ω
τ̃(x)dx. Let x1, . . . , xk be i.i.d. samples

drawn from the distribution on Ω given by p.d.f. τ̃ /s̃. Let
wj =

1
k|Ω|

s̃
τ̃(xj)

for j = 1, . . . , k. For any δ > 0, whenever
k ≥ Cs̃(log s̃+1/δ), the solution to (6) is a 3-approximate
solution of (4) with probability at least 1− δ. In that case,
the estimate f̂ obtained by (6) and (5) is C ′ϵ-accurate for
some absolute constant C ′ > 0. On the other hand, under
mild assumptions on µ and Ω, at least Ω(sµ,Ω,ϵ) samples
are required to achieve Cϵ-accuracy.

Algorithm 2 LeverageScoreSamp

Input: Leverage score bound τ̃ , sampling region Ω, num-
ber of samples k, an oracle to sample f̃ at any given point
in Ω.

Output: Sample locations x1, . . . , xk ∈ Ω, samples f̃X ,
weights w1, . . . , wk.
1. Compute s̃ =

∫
Ω
τ̃(x)dx.

2. Take k i.i.d. samples x1, . . . , xk from the distribution
on Ω with p.d.f. τ̃ /s̃.
3. Sample f̃ at x1, . . . , xk, forming a vector f̃X =
(f̃(x1), . . . , f̃(xk)).
4. Compute wj = 1

k|Ω|
s̃

τ̃(xj)
for j = 1, . . . , k.

5. Output x1, . . . , xk, f̃X and w1, . . . , wk.

The proof of the upper bound is a simple application of
operator Bernstein inequality (Minsker, 2017), c.f. Avron
et al. (2019) where a formal statement and the proof of the
lower bound can also be found3. By Lemma 2.1, to obtain
a near-optimal sampling strategy, one only needs to find
an upper bound τ̃ of τµ,Ω,ϵ satisfying s̃ =

∫
Ω
τ̃(x)dx =

Õ(sµ,Ω,ϵ). The rest part of this paper is in fact devoted to
proving such bounds.

3 SAMPLING ON THE UNIT CUBE

In this section we consider the most fundamental case
where Ω = [0, 1]d is the unit cube. Let ρ(x) = 1/(x∧ (1−
x)) on (0, 1) and ρ(0) = ρ(1) = +∞, making ρ a func-
tion defined on [0, 1]. One may recognize that κ(κ5 ∧ ρ)

3Note that Avron et al. (2019) did not consider the role of Ω,
but since Lemma 2.1 is a highly abstract statement hiding all ex-
plicit dependences on Ω, the proof remains verbatim.
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is the unidimensional leverage score bound obtained in
Avron et al. (2019). Our first result shows this can be nat-
urally generalized to a tight leverage score bound on the
unit cube (Theorem 3.1), yielding a near-optimal sampling
strategy on unit cube (Corollary 3.1; see also Fig. 1(b)).
Note that this generalization is not a trivial one that follows
from some tensorization trick: though the unit cube can be
viewed as some “tensorized” version of [0, 1], the Fourier
prior µ may not be a tensor product of unidimensional dis-
tributions. Neither is the leverage score bound τ̃κ below a
tensorization of the bound in unidimensional setting. One
has to delve into a certain technical depth to reach such
generalization.

Theorem 3.1. Let ρd(x) =
∏d
j=1 ρ(xj) for x =

(x1, . . . , xd) ∈ Ω. Let

τ̃κ = κ(κ5d ∧ ρd), (8)

with κ > 0 being a parameter to be chosen later. Then

s̃κ
△
=
∫
Ω
τ̃κ(x)dx = Õd(κ). Furthermore, there exists

some absolute constant C > 0 such that τµ,Ω,ϵ ≤ τ̃κ if
κ ≥ C(d)sµ,Ω,ϵ.

The implication of this theorem on sampling strategy will
be given soon in Corollary 3.1 below. Before that we intro-
duce a useful notation stemming from Theorem 3.1:

Definition 3.1. A well-parametrized family of leverage
score bounds on Ω is a parametrized function τ̃κ defined on

Ω with parameter κ > 0, satisfying s̃
△
= τ̃κ(x)dx = Õd(κ)

and that for any probability measure µ it holds τµ,Ω,ϵ ≤ τ̃κ
whenever κ ≥ C(d)sµ,Ω,ϵ.

With this definition, Theorem 3.1 provides a well-
parametrized family of leverage score bounds on the unit
cube. The importance of well-parametrized family of lever-
age score bounds can be seen from the following

Lemma 3.1. Let {τ̃κ}κ be a well-parametrized family of
leverage score bounds on Ω′, where Ω′ is an arbitrary re-
gion. Then LeverageScoreSamp (Algorithm 2) with lever-
age score bound τ̃κ takes Õd(κ+1/δ) (where δ > 0 is arbi-
trary) samples and guarantees Cϵ-accurate reconstruction
using Reconstruct (Algorithm 1) with probability at least
1− δ whenever κ ≥ C(d)sµ,Ω,ϵ.

By Lemma 2.1 we know that Ω(sµ,Ω,ϵ) is a lower-bound
for most cases, thus well-parametrized family of leverage
score bounds provides a way to derive near-optimal sam-
pling strategies.

Corollary 3.1 (Near-optimal sampling on a cube).
With κ ≥ C(d)sµ,Ω,ϵ and τ̃κ as in Theorem 3.1,
LeverageScoreSamp (Algorithm 2) with leverage score
bound τ̃κ takes Õd(κ + 1/δ) (where δ > 0 is arbitrary)
samples and guarantees Cϵ-accurate reconstruction with
probability using Reconstruct (Algorithm 1) at least 1− δ.

The requirement κ ≥ Csµ,Ω,ϵ does not imply that the sam-
pling strategy needs to depend on µ. Rather, one should
think of κ as a parameter controlling the number of sam-
ples: larger κ corresponds to more samples and leads to
smaller ϵ, i.e. better reconstruction accuracy.

4 SAMPLING ON GENERAL REGIONS

In this section we present several techniques to general-
ize the results in Section 3 to different reconstruction re-
gion Ω’s. The simplest generalization follows from the
fact that our sampling strategy is equivariant with respect
to affine transforms, which allows Ω to be any paral-
lelepiped (Corollary 4.1). For more general region Ω, we
provide a leverage score bound in terms of the boundary
behavior of Ω which, when applied to polyhedra with “not
too many” vertices, still yield near-optimal results (Theo-
rem 4.3). However, for some Ω it is not clear how to find
near-optimal sampling strategy with this approach, even
though the sub-optimal sampling strategy given by this ap-
proach for general convex regions (Theorem 4.1) is already
highly non-trivial and has not been obtained before. For-
tunately, this can be remedied by assuming we have access
to samples of f̃ outside Ω. An alternative viewpoint of this
assumption is to think that we can sample f̃ on a larger
region Ω′ and would like to reconstruct f̃ on a smaller re-
gion Ω ⊂ Ω′. In this case, we may still attain near-optimal
sampling under mild assumptions on Ω (Theorem 4.4). To
facilitate understanding, we depict in Fig. 1 the probability
density used for our sampling strategy for different regions.

4.1 Affine Equivariance

Any affine transform can be expressed as a composition of
a linear transform and a translation. We observe that the
leverage score function is equivariant with respect to linear
transforms and translations, hence to affine transforms.

Lemma 4.1. Let A : Rd → Rd be an invertible linear
transform, and b ∈ Rd be a vector. Denote AΩ = {Ax :
x ∈ Ω} and Ω+ b = {x+ b : x ∈ Ω}. Then

τµ,AΩ,ϵ(x) =
1

|detA|
τµ◦A∗−1,Ω,ϵ(A

−1x), ∀x ∈ AΩ,

τµ,Ω+b,ϵ(x) = τµ,Ω,ϵ(x− b), ∀x ∈ Ω+ b,

where µ ◦ A∗−1 denotes the push-forward of µ by A∗, i.e.
µ ◦A∗−1(E) = µ(A∗−1E) for any measurable set E.

Assume we have a well-parametrized family of leverage
score bounds for some region Ω0 as in Theorem 3.1.
Then for any Ω that is an image of Ω0 under some affine
transform, we may use Lemma 4.1 to produce a well-
parametrized family of leverage score bounds for Ω0. This
process is summarized in Algorithm 3:

By Lemma 4.1 it is easy to prove the following
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Figure 1: Sampling probability density

Algorithm 3 AffineReduce

Input: A region Ω0; a well-parametrized family of lever-
age score bounds {τ̃0κ}κ on Ω0; an invertible linear op-
erator A; a vector b ∈ Rd; the affine-transformed region
Ω = AΩ0 + b; an oracle to sample f̃ at any given point
in Ω.

Output: A parametrized family of leverage score bounds
{τ̃κ}κ on Ω;
1. Compute B = A−1, σ = |detA|.
2. Let τ̃κ = τ̃0κ(B(x− b))/σ.
3. Output {τ̃κ}κ.

Lemma 4.2. The output of AffineReduce (Algorithm 3) is
a well-parametrized family of leverage score bounds on Ω.

Applying this argument to Ω0 = [0, 1]d, the conclusion
of 3.1 and Corollary 3.1 can be directly generalized to the
case where Ω is a parallelepiped.

Corollary 4.1 (Near-optimal sampling on a par-
allelepiped). With κ ≥ C(d)sµ,Ω,ϵ, running
ParallelepipedSamp (Algorithm 4) takes Õd(κ + 1/δ)
(where δ > 0 is arbitrary) samples and guarantees Cϵ-
accurate reconstruction using Reconstruct (Algorithm 1)
with probability at least 1− δ.

4.2 A General Bound

In this part we consider a general region Ω and proves a
bound that generalizes previous results but are not neces-

Algorithm 4 ParallelepipedSamp

Input: A parallelepiped Ω, number of samples k, an oracle
to sample f̃ at any given point in Ω.

Output: Sample locations x1, . . . , xk ∈ Ω, samples f̃X ,
weights w1, . . . , wk.
1. Compute an invertible matrix A and a vector b such
that Ω = AΩ0 + b, where Ω0 = [0, 1]d is the unit cube.
2. Let {τ̃0κ}κ be the well-parametrized family on Ω0

given by the right hand side of (8).
3. Apply AffineReduce (Algorithm 3) to Ω0, {τ̃0κ}κ, A,
b, Ω and obtain a parametrized family of leverage score
bounds {τ̃κ}κ on Ω.
4. Output the result of LeverageScoreSamp (Algo-
rithm 2) applied to τ̃κ, Ω, k with a specified κ.

sarily optimal in some cases. We first set up some technical
notations. For a point x ∈ Ω, denote by Ωsym

x the convex
body of maximum volume contained in Ω that is symmetric
with respect to x, and by Ωst

x the maximal star-shaped set
with respect to x contained in Ω. More precisely, denoting
by [u, v] the segment connecting u and v for u, v ∈ Rd,

Ωst
x

△
= {z ∈ Ω : [x, z] ⊂ Ω}.

Observe that when Ω is convex, Ωst
x = Ω, and

Ωsym
x = {z ∈ Ω : [2x− z, z] ⊂ Ω}.

A technical leverage score bound can be described with the
above notations.

Theorem 4.1. For x ∈ Ω, let

τ̃κ = κmin(κ5d/|Ωst
x |, 1/|Ωsym

x |)

with κ > 0 being a parameter to be chosen later. Then
there exists some absolute constant C > 0 such that
τµ,Ω,ϵ ≤ τ̃κ if κ ≥ C(d)sµ,Ω,ϵ.

This already implies a non-trivial sample complexity bound
for any convex region Ω, of which, to the best of our knowl-
edge, no comparable result has been obtained before.

Theorem 4.2 (Sub-optimal sampling on convex regions).
Assume Ω is convex. With κ ≥ C(d)sµ,Ω,ϵ, running
LeverageScoreSamp (Algorithm 2) with τ̃κ ≡ κ5d+1/|Ω|
takes polyd(sµ,Ω,ϵ)+O(1/δ) samples and guarantees Cϵ-
accurate reconstruction with probability at least 1− δ.

The above theorem indicates that regardless of the form of
µ, it is possible to achieve accurate reconstruction with uni-
formly random sampling over Ω, taking only polyd(sµ,Ω,ϵ)
number of samples which can be fully controlled by the op-
timal sample complexity sµ,Ω,ϵ. Considering that so few
have been known for the sampling complexity on general
regions Ω and for general µ in multidimensions, this is al-
ready a remarkably strong result.
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Next we discuss whether it is possible to attain the
near-optimal sample complexity Õd(sµ,Ω,ϵ) instead of
polyd(sµ,Ω,ϵ). In Theorem 4.1 we do not provide a bound

for s̃κ
△
=
∫
Ω
τ̃κ(x)dx. In general such a bound can be use-

ful only if |Ωst
x | and |Ωsym

x | behave well. The following
lemma is a quantified version of this idea.
Lemma 4.3. Assume |Ω|/|Ωst

x | = Od(1). Assume for some
constant C(d) > 0 depending only on d and for any λ > 2,

1

|Ω|

∫
Ω

λ ∧ |Ω|
|Ωsym
x |

dx ≤ logC(d) λ. (9)

Then s̃κ
△
=
∫
Ω
τ̃κ(x)dx = Õd(κ) with τ̃κ, κ defined as in

Theorem 4.1.
Corollary 4.2. With assumptions and notations as in The-
orem 4.1 and Lemma 4.3, leverage score sampling with
leverage score bound τ̃κ (see Lemma 2.1) takes Õd(κ +
1/δ) (where δ > 0 is arbitrary) samples and guarantees
Cϵ-accurate reconstruction with probability at least 1− δ.

We discuss different settings where the assumptions of
Lemma 4.3 hold and fail. Arguably Ω being convex is
the most important case in practice. As we have observed,
Ωst
x = Ω if Ω is convex, thus in this case |Ω|/|Ωst

x | = 1
holds. On the other hand, the behavior of |Ωsym

x | is closely
related to the boundary behavior of Ω. For Ω being a
parallelepiped, one may easily check that (9) holds with
C(d) = d. In fact, reducing to the case where Ω is the unit
cube by affine equivariance, one may check that 1/|Ωsym

x | is
exactly equal to the function ρd(x) defined in Theorem 3.1.
With some tedious computations one may also show these
assumptions are satisfied for Ω being a simplex or other
polyhedron with Od(1) vertices:
Theorem 4.3 (Near-optimal sampling on a polyhedron).
If Ω is a polyhedron with Od(1) vertices, with κ ≥
C(d)sµ,Ω,ϵ, running LeverageScoreSamp (Algorithm 2)
with leverage score bound τ̃κ defined as in Theorem 4.1
takes Õd(κ + 1/δ) samples and guarantees Cϵ-accurate
reconstruction with probability at least 1− δ.
Remark 1. From an algorithmic perspective it is reasonable
to ask how τ̃κ can be efficiently computed. One may indeed
show that for Ω being a polyhedron with Od(1) vertices as
above, it is possible to upper-bound τ̃κ by another well-
parametrized family τ̂κ which can be efficiently computed
(given that Ω can be efficiently represented). This provides
a method to implement the above near-optimal sampling
scheme efficiently. Details can be found in the extended
version of this paper.
Remark 2. Using techniques introduced later in Sec-
tion 4.3, the above theorem can be generalized to the case
where Ω is a simplicial complex (i.e., almost disjoint union
of polyhedra) withOd(1) vertices. For ease of presentation
we will not present the details here.

For many practical purposes the above theorem should be
sufficiently general and tight. However, when Ω is, for

example, the d-dimensional unit ball, one has |Ωsym
x | ≍

(1 − |x|)−(d+1)/2, and (9) fails since the left hand side
is polynomial in λ. In effect, this leads to a sub-optimal
sampling strategy on such Ω which requires polyd(sµ,Ω,ϵ)
samples rather than the near-optimal Õd(sµ,Ω,ϵ) samples.

The reason for the aforementioned non-optimality for some
Ω may be due to the fact that our sampling strategy
(leverage score sampling), together with the leverage score
bound we proved, puts particular emphasis on the “corners”
of Ω. This can be seen clearly when Ω is the unit cube:
the sampling density function τ̃ can be viewed as a trunca-
tion of ρd by some constant, and ρd grows fastest around
the corners of the unit cube. This indicates that samples
around the “corners” of Ω are crucial to the reconstruction
performance. However, for Ω with smooth boundary, e.g.
when Ω is the unit ball, no “corners” exist, making it diffi-
cult to design an effective sampling strategy. It is currently
not clear whether this difficulty can be resolved within the
framework of leverage score sampling, i.e. by improving
upon Theorem 4.1. We leave this direction for future work,
possibly by utilizing the techniques in the next subsection.
For the rest of this paper we consider another approach,
which assumes access to samples outside Ω. One may
imagine that it is then possible to embed Ω into a slightly
larger region with sufficiently many “corners”, and achieve
near-optimal sampling and reconstruction on the larger re-
gion. If the larger region is not too large, the restriction of
the reconstructed function to Ω is the a good estimation of
f on Ω. This is indeed the case, as we will show soon.

4.3 Near-Optimal Bound with Outside Samples

In this section we assume that (2) holds for all x ∈ Rd,
and we may sample f̃ for any x ∈ Rd. Meanwhile, we
still aim at reconstructing f on a given region Ω. As will
be shown in our proofs, these assumptions can be signifi-
cantly relaxed: we only need to sample f̃ on a region that
is slightly larger than Ω, but for ease of presentation we
choose to omit these details.

Unless specified otherwise, throughout this section we as-
sume that Ω can be expressed by the almost disjoint union
of convex regions Ω1, . . . ,Ωn. By almost disjoint we mean
|Ωj ∩ Ωl| = 0 whenever j ̸= l. The reason for this as-
sumption is that we have to assume basic regularity of Ω
to obtain such a strong result as a near-optimal sampling
strategy on Ω, and convexity as a regularity assumption is
amenable to analysis as well as being able to cover most
practical purposes. Here we further allow Ω to be a finite
union of convex sets, which should be sufficiently general
for practical use. We first present a basic property of this
model.

Lemma 4.4. For Ω = ∪nj=1Ωj with |Ωj ∩ Ωl| = 0
whenever j ̸= l (no convexity is assumed), setting ϵj =



Oblivious near-optimal sampling for multidimensional signals with Fourier constraints

ϵ|Ω|/|Ωj |, we have

max
1≤j≤n

sµ,Ωj ,ϵj ≤ sµ,Ω,ϵ ≤
n∑
j=1

sµ,Ωj ,ϵj .

Consequently, if Od(1), we have

sµ,Ω,ϵ ≍d max
1≤j≤n

sµ,Ωj ,ϵj .

We will use Lemma 4.4 to reduce our general case to the
simpler case where Ω is convex, by showing that it suffices
to sample and reconstruct on the components Ωj . This sim-
pler case will then be handled by the following tools origi-
nated from convex geometry (Brazitikos et al., 2014):
Lemma 4.5. Let Ω be a convex body. Then there exists a
parallelepiped Ω′ in Rd such that Ω ⊂ Ω′ and

|Ω′| ≤ Cd|Ω|.

Moreover, Ω′ can be effectively computed given knowledge
of |Ω|,

∫
Ω
xjdx,

∫
Ω
xjxldx for 1 ≤ j, l ≤ d and an ora-

cle that for any affine transform f computes sup{|f(x)| :
x ∈ Ω}. The algorithm of computing Ω′ is shown in Algo-
rithm 5.

Algorithm 5 FindParallelepiped

Input: A convex region Ω, quantities |Ω|,
∫
Ω
xjdx,∫

Ω
xjxldx for 1 ≤ j, l ≤ d, an oracle that for any affine

transform f computes sup{|f(x)| : x ∈ Ω}.
Output: A parallelepiped Ω′ fulfilling Lemma 4.5.

1. Let b = (b1, . . . , bd), where bj =
∫
Ω
xjdx/|Ω|.

2. Compute A = 1
|Ω|
∫
Ω
xjxldx− bjbl, which should be

positive definite (Brazitikos et al., 2014).
3. Compute B = A−1/2.
4. Using the oracle, compute R = sup{|B(x− b)| : x ∈
Ω}.
5. Let B∞(R) = {x ∈ Rd : ∥x∥∞ ≤ R}.
6. Output Ω′ = B−1B∞(R) + b.

For each Ωj , Lemma 4.5 gives a parallelepiped Ω′
j that is

slightly larger than Ωj in the sense that |Ω′
j | ≤ Cd|Ωj |.

We may then apply the procedure ParallelepipedSamp in
Algorithm 4 to each Ω′

j with κ > 0 to be chosen later and
using these samples to compute a reconstruction f̂j of f on
Ω′
j using Reconstruct (Algorithm 1). Ignoring boundary

values, letting f̂ = f̂j on Ωj for j = 1, . . . , n, we obtain
an f̂ defined on the whole Ω. The next lemma show that f̂
is Od(ϵ)-accurate given κ ≥ Csµ,Ω,ϵ and demonstrate the
near-optimality of the sampling strategy.
Theorem 4.4. The procedure described above takes
Õd(n(κ + n/δ)) samples and outputs a Cdϵ-accurate
reconstruction f̂ of f with probability at least if κ ≥
C(d)nsµ,Ω,ϵ. In particular, when n = Od(1), it takes
Õd(κ + n/δ) samples and outputs a Od(ϵ)-accurate re-
construction given κ ≥ C(d)sµ,Ω,ϵ.

Instead of gluing piecewise defined functions f̂j , one may
simply use all samples to reconstruct f on ∪nj=1Ω

′
j and then

restrict to Ω. This algorithm has almost identical theoretical
guarantee as that in Theorem 4.4. We omit the correspond-
ing result here to avoid repetition.

5 CONCLUSION

In this work we present a oblivious near-optimal sampling
strategy for multidimensional signals with Fourier con-
straints that can be expressed by a prior distribution on
Fourier power spectrum. Built on a well-known random-
ized algorithm called leverage score sampling, we derive
our sampling strategy by proving upper bounds for leverage
score functions on different sampling regions. While our
bounds are tight and yield near-optimal sampling strate-
gies for many useful regions such as parallelepipeds, it fails
to be optimal when the boundary of the region is smooth
and has no enough “corners”. Using tools from convex
geometry, we are able to resolve this challenge assuming
that we may sample the signal outside the region on which
we would like to reconstruct the signal. In this case, we
show that it is still possible to obtain oblivious near-optimal
sampling strategy under very mild assumptions on the re-
construction region. A few problems are left open. Is it
possible to obtain oblivious near-optimal sampling strategy
without sampling outside the reconstruction region? Is it
possible to design a deterministic sampling strategy with
the same performance? Is it possible to tightening the de-
pendence on the dimension d so that the results can be used
in high dimensions? We leave these problems for future
work.
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A EXAMPLES OF PRIOR DISTRIBUTIONS

We list some commonly-used µ in model (1) and (2). For one-dimensional signals this was investigated by Avron et al.
(2019). Here we focus on the multidimensional setting.

A.1 Prior Distributions From Wave Theory

In this subsection we use a notation slightly different from the main text to conform to wave-theoretic conventions. We
view a 4-dimensional signal as a signal in two variables x, t, where x ∈ R3 and t ∈ R means respectively the spatial
domain and the time domain. The Fourier transform of such a signal, also defined on R4, is considered to be a function in
two variables k, ω where k ∈ R3, ω ∈ R, corresponding respectively to the spatial domain and the time domain.

In wave theory, a plane wave can be thought of as a signal defined on R4 = R3 × R:

f(x, t) = Aei(⟨k,x⟩−ωt)

with |k| = ω/c, c being the speed of light. Obviously, such a signal corresponds to

µ = δk ⊗ δω

where δ denotes the Dirac measure.

This model can be generalized in multiple ways. For example, a single-frequency wave arrived from an unknown direction
can be modelled by

µ = Unif
(ω0

c
S2
)
⊗ δω0

where ω0 denotes the frequency of the wave, Unif
(
ω0

c S
2
)

denotes the uniform measure on ω0

c S
2 = {z ∈ R3 : |z| = ω0/c},

and δω0
denotes the Dirac measure centered at ω0.

In the above formulation we have assumed a flat prior on the direction of the wave. Instead, we may assume we have some
knowledge on the possible directions expressed by a prior distribution µ0 on ω0

c S
2. In this case we can set

µ = µ0 ⊗ δω0
.

Next we extend the above discussions to waves consisting of many frequencies. For example, we consider waves that are
bandlimited, i.e. consisting of frequencies ω ∈ [ω0, ω1]. In this case, assuming a flat prior on the directions of the wave,
we have

µ =
1

ω1 − ω0

∫ ω1

ω0

Unif
(ω
c
S2
)
⊗ δωdω.

Similarly, one may model multiband signals with direction priors, frequency-sparse signals with direction priors, etc., by
generalizing the corresponding models for one-dimensional frequency domain prior in Avron et al. (2019) in the above
way.

A.2 Prior Distributions From Gaussian Process Regression

Another viewpoint to the prior distribution µ is to think of µ as a prior on the power spectrum of a Gaussian process, that is,
the Fourier transform of the autocorrelation of the Gaussian process, see Avron et al. (2019). Sampling and reconstruction
in this setting is coined the name “Gaussian process regression”, a dominantly useful technique in various fields in science
and engineering. With this viewpoint many µ can be proposed for different scenarios of Gaussian process regression. In
geostatistics and image processing, the following (isotropic) Matern model (Ramani et al., 2006) of the p.d.f. of µ is often
used:

p(ξ) =
σ2
0

(α2 + |ξ|2)ν+d/2
,

where α, ν are parameters and σ0 are normalizing constants. Generalized versions of Matern model, e.g. anisotropic
Matern model, can also be formulated in terms of a prior distribution µ, see Ramani et al. (2006). In Pesquet-Popescu and
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Véhel (2002), many more complicated priors are considered for image processing (where d = 2), e.g. the 2D FARIMA is
a prior with p.d.f.

p(ξ) ∝
(
sin2

ξ1
2

+ sin2
ξ2
2

)−H

,

where H is the so-called Hurst parameter. For more examples in this vein, please refer to Ripley (2005).

B AN EFFICIENT RECONSTRUCTION ALGORITHM

We briefly describes an efficient version of Reconstruct (Algorithm 1). Denote by L2(w) the (finite-dimensional) Hilbert
space Ck equipped with the inner product

⟨u, v⟩w =

k∑
j=1

wjujvj .

We may view FX as an operator from L2(µ) to L2(w) and talk about its adjoint F∗
X . With this notation the solution of (6)

can be expressed as:
β̂ = (F∗

XFX + ϵI)−1F∗
X f̃X .

By elementary linear algebra one has (F∗
XFX + ϵI)−1F∗

X = F∗
X(FXF∗

X + ϵI)−1 (note that the I’s in the left hand side
and in the right hand side are different: they are identities on different Hilbert spaces L2(µ) and L2(w)). The reason we
make this transform is that FXF∗

X is simply an endomorphism on the finite-dimensional space Ck, which can be computed
directly in matrix form:

FXF∗
X = (kµ(xj , xl)wl)1≤j,l≤k

where
kµ(x, x

′)
△
=

∫
ei⟨ξ,x−x

′⟩dµ(ξ).

Moreover, for any u ∈ Ck we have

(FF∗
Xu)(x) =

k∑
j=1

wjujkµ(x, xj).

Denote K = (kµ(xj , xl))1≤j,l≤k, W = diag(w), then FXF∗
X = KW . We deduce from f̂ = F β̂ and the above equations

that

f̂(x) = FF∗
X(FXF∗

X + ϵI)−1f̃X =

k∑
j=1

(W (KW + ϵI)−1f̃X)jkµ(x, xj)

which can be computed efficiently assuming access to an oracle that computes kmu(x, x′) for any given x, x′ ∈ Rd. Also
note that if W ≻ 0, one may write KW + ϵI =W−1/2(W 1/2KW 1/2 + ϵI)W 1/2, thus

f̂(x) = FF∗
X(FXF∗

X + ϵI)−1f̃X =

k∑
j=1

(W 1/2(W 1/2KW 1/2 + ϵI)−1W 1/2f̃X)jkµ(x, xj).

This last expression has the advantage that W 1/2KW 1/2ϵI is a Hermitian matrix, which may allow for faster linear solver
to compute (W 1/2KW 1/2 + ϵI)−1W 1/2f̃X .

We remark that for any given x the above approach computes f̂(x) with O(k2) calls to the oracle computing kµ, and with
O(kω) additions and multiplications, where 2 ≤ ω < 2.373 is the exponent for the matrix multiplication. Moreover, if we
may reuse K and W , e.g. if we have computed K and W for some Ω and would like to sample and reconstruct signals on
a translation of Ω, say Ω′ = Ω + b for some b ∈ Rd, then (by affine equivariance) the algorithm takes O(k) calls to the
oracle computing kµ and uses O(k2) additions and multiplications.

C SOME MISSING PROOFS

We present the proofs of the main results in the main text. First we prove those results which require less technical
background and leave the more involved proofs of Theorem 4.1 (see Section D) and Theorem 4.3 (see Section E) for later.
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C.1 Proof of Thereom 3.1

The bound s̃κ
△
=
∫
Ω
τ̃κ(x)dx = Õd(κ) is elementary. Define

K = {x = (x1, . . . , xd) ∈ Ω : min(xj , 1− xj) ≤ κ−5d, j = 1, . . . , d}.

It is evident that ρd ≥ κ5d on K, thus

κ5d ∧ ρd(x) ≤

{
κ5d, x ∈ K,

ρd(x), x ∈ Ω \K.
(10)

Now we evaluate the integral
∫
K
κ5ddx and

∫
Ω\K ρd(x)dx respectively.

Since all points of K are within κ−d distance to the boundary of the convex region Ω, we have |K| ≤ κ−5d|∂Ω| where ∂Ω
denotes the boundary of Ω and |∂Ω| is the surface area of ∂Ω. It is well-known that |∂Ω| = 2d = Od(1), thus∫

K

κ5ddx = κ5d|K| ≤ |∂Ω| = Od(1). (11)

On the other hand, observe that

Ω \K = {x = (x1, . . . , xd) ∈ Ω : κ−5d ≤ xj ≤ 1− κ−5d, j = 1, . . . , d}.

Thus ∫
Ω\K

ρd(x)dx =

d∏
j=1

(∫ 1−κ−5d

κ−5d

ρ(xj)dxj

)
.

But by elementary integration it follows that
∫ 1−ε
ε

ρ(t)dt = 2 log(2/ε) for ε ∈ (0, 1/2). This implies∫
Ω\K

ρd(x) = 2d logd(2κ5d) = polylogd(κ). (12)

Putting together (10), (11) and (12), we obtain∫
Ω

κ(κ5d ∧ ρd(x))dx ≤ κOd(1) + κpolylogd(κ) = Õd(κ), (13)

as desired.

The second part of Theorem 3.1 is a special case of Theorem 4.1, which will be proved later in Section D. In fact, assuming
in Theorem 4.1 that Ω is the unit cube, it is clear that Ωst

x = Ω. Moreover, for a point x = (x1, . . . , xd) ∈ Ω, it is clear that
the region

{z = (z1, . . . , zd) ∈ Ω : |zj − xj | ≤ min(xj , 1− xj), j = 1, . . . , d}
is a convex set (in fact, a rectangular parallelepiped) and is symmetric with respect to x. It has volume

d∏
j=1

(2min(xj , 1− xj)) = 2dρ−1
d (x),

thus |Ωsym
x | ≥ 2dρ−1

d (x). By Theorem 4.1 we know

τ̂κ = κ(κ5d ∧ (2−dρd)) = 2−dκ((21/5κ)5d ∧ ρd)

satisfies τµ,Ω,ϵ ≤ τ̂κ if κ ≥ C(d)sµ,Ω,ϵ. Recalling the definition of τ̃κ = κ(κ5d ∧ ρd) in Theorem 3.1, it is clear that
τ̃κ ≥ τ̂κ/2. Thus for κ ≥ 2C(d)sµ,Ω,ϵ we have τµ,Ω,ϵ ≤ τ̃κ, as desired.

C.2 Proof of Lemma 3.1 and Corollary 3.1

Lemma 3.1 is nothing more than a straightforward application of Lemma 2.1. Corollary 3.1 follows from combining
Theorem 3.1 and Lemma 3.1.
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C.3 Proof of Lemma 4.1

In this proof we will use notations like FΩ instead of F as in the main text to emphasize the dependence of related operators
on the region of interest. Of course, for a different region Ω′, FΩ′ is the Fourier transform L2(µ) → L2(Ω′) (note that
L2(Ω′) is endowed with the normalized Lebesgue measure on Ω′). If we furthermore wish to emphasize the dependence
on µ, we will use notations like Fµ,Ω.

To prove the first equation we note that, for any x ∈ Ω and any β ∈ L2(µ) we have

Fµ,AΩβ(Ax) =

∫
β(ξ)ei⟨ξ,Ax⟩dµ(ξ) =

∫
β(ξ)ei⟨A

∗ξ,x⟩dµ(ξ) =

∫
β(A∗−1η)ei⟨η,x⟩d(µ ◦A∗−1)(η),

where the last equality follows from change-of-variable formula. For any β ∈ L2(µ), denote

β̃(η) = β(A∗−1η), µ̃ = µ ◦A∗−1.

It is clear that β̃ ∈ L2(µ̃). It is also clear that the mapping β 7→ β̃ is an isometric isomorphism between L2(µ) and L2(µ̃).
We have proved

Fµ,AΩβ(Ax) = Fµ̃,Ωβ̃(x). (14)

Taking squares and averaging with respect to x ∈ Ω yields

1

|AΩ|

∫
AΩ

|Fµ,AΩβ(x
′)|2dx′ = 1

|Ω|

∫
Ω

|Fµ,AΩβ(Ax)|2dx =
1

|Ω|

∫
Ω

|Fµ̃,Ωβ̃(x)|2dx. (15)

By definition we know that for any x ∈ Ω,

τµ,AΩ,ϵ(Ax) =
1

|AΩ|
sup

β∈L2(µ),β ̸=0

|Fµ,AΩβ(Ax)|2
1

|AΩ|
∫
AΩ

|Fµ,AΩβ(x′)|2dx′ + ϵ∥β∥2µ

=
1

|AΩ|
sup

β̃∈L2(µ̃),β ̸=0

|Fµ̃,Ωβ̃(x)|2
1
|Ω|
∫
Ω
|Fµ̃,Ωβ̃(x)|2dx+ ϵ∥β̃∥2µ

=
1

|detA|
τµ̃,Ω,ϵ(x),

which proves the first equation of Lemma 4.1. The second equation of Lemma 4.1 can be proved in a similar but much
easier way.

C.4 Proof of Lemma 4.2 and Corollary 4.1

Lemma 4.2 is a straight-forward consequence of Lemma 4.1. Corollary 4.1 is then obtained by combining Lemma 3.1.

C.5 Proof of Theorem 4.2

When Ω is convex, it is obvious that Ωst
x = Ω for all x ∈ Ω. We then infer from Theorem 4.1 that τµ,Ω,ϵ ≤ κ5d+1/|Ω| for

κ ≥ C(d)sµ,Ω,ϵ. The conclusion then follows from Lemma 2.1, where s̃ =
∫
Ω
κ5d+1dx/|Ω| = κ5d+1.

C.6 Proof of Lemma 4.3 and Corollary 4.2

Under the assumption |Ω|/|Ωst
x | = Od(1), the τ̃κ defined in Theorem 4.1 satisfies

τ̃κ ≤ C(d)

|Ω|
κ

(
κ ∧ |Ω|

|Ωsym
x |

)
.

It is then obvious that s̃κ =
∫
τ̃κ(x)dx = Õd(κ) under the assumptions in Lemma 4.3.

Corollary 4.2 follows from combining Theorem 4.1, Lemma 4.3 and Lemma 3.1.
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C.7 Proof of Lemma 4.4

The proof will make crucial use of operator analysis, for which Bhatia (2013) is a useful reference.

As in Section C.3 we will use notations like FΩ instead of F as in the main text to emphasize the dependence of related
operators on the region of interest. Recall that by the definition and by our choice of ϵj we have

sµ,Ωj ,ϵj = tr(FΩjF∗
Ωj
(FΩjF∗

Ωj
+ ϵjI)−1) = tr(F̃Ωj

F̃∗
Ωj
(F̃Ωj

F̃∗
Ωj

+ ϵ|Ω|I)−1) (16)

where F̃Ωj
=
√

|Ωj |FΩj
denotes the unnormalized Fourier transform. This new notation has the advantage that

(F̃Ωj
F̃∗

Ωj
f)(x) =

∫
dµ(ξ)

∫
Ωj

f(x′)ei⟨ξ,x−x
′⟩dx′

does not explicitly contain |Ωj |. In particular, one may check from this expression (and the corresponding expression for
Ω) that F̃Ωj

F̃∗
Ωj

is the compression4 of F̃ΩF̃∗
Ω to the subspace L2(Ωj) ⊂ L2(Ω). Since F̃ΩF̃∗

Ω is positive, it follows from
Courant-Fischer-Weyl minimax principle or Cauchy’s interlacing law (Bhatia, 2013) that λk(F̃Ωj

F̃∗
Ωj
) ≤ λk(F̃ΩF̃∗

Ω),
where λk(A) denotes the k-th largest eigenvalue of a compact Hermitian operator A. Thus

sµ,Ωj ,ϵj = tr(F̃Ωj
F̃∗

Ωj
(F̃Ωj

F̃∗
Ωj

+ ϵ|Ω|I)−1) =

∞∑
k=1

λk(F̃Ωj F̃∗
Ωj
)

λk(F̃Ωj
F̃∗

Ωj
) + ϵ|Ω|

≤
∞∑
k=1

λk(F̃ΩF̃∗
Ω)

λk(F̃ΩF̃∗
Ω) + ϵ|Ω|

= sµ,Ω,ϵ

since the function λ 7→ λ/(λ+ ϵ|Ω|) is increasing on [0,∞). This proves the first inequality in the Lemma.

To prove the last inequality in the Lemma, we further note that L2(Ωj) are mutually orthogonal by the assumption |Ωj ∩
Ωl| = 0 for j ̸= l, and together with Ω = ∪jΩj this implies

L2(Ω) =

n⊕
j=1

L2(Ωj).

Making this identification, we observe that
⊕

j F̃Ωj
F̃∗

Ωj
can be identified as a pinching5 of F̃ΩF̃∗

Ω. By a well-known
majorization inequality of pinchings (Bhatia, 2013, Problem II.5.5) and the concavity of the function π : λ 7→ λ(λ+ϵ|Ω|)−1

on [0,∞), we have

n∑
j=1

∞∑
k=1

λk(F̃Ωj
F̃∗

Ωj
)

λk(F̃Ωj
F̃∗

Ωj
) + ϵ|Ω|

= trπ(λ(⊕jF̃Ωj
F̃∗

Ωj
)) ≤ trπ(λ(F̃ΩF̃∗

Ω)) =

∞∑
k=1

λk(F̃ΩF̃∗
Ω)

λk(F̃ΩF̃∗
Ω) + ϵ|Ω|

where the notation λ(A) denotes the vector formed by all the eigenvalues (with multiplicity) of a compact Hermitian
operator A, π(v) denotes the entrywise application of π on a vector v, and tr(v) denotes the sum of all entries of a vector
v, following the notations in Bhatia (2013). This proves

∑n
j=1 sµ,Ωj ,ϵj ≤ sµ,Ω,ϵ, as desired.

C.8 Proof of Lemma 4.5

It is clear that B∞(R) ⊃ B(Ω− b), where B(Ω− b) = {B(x− b) : x ∈ Ω}. Thus

Ω′ = B−1B∞(R) + b ⊃ B−1B(Ω− b) + b = Ω.

Furthermore, the region Ω′, which is an affine-transformed cube, is evidently a parallelepiped. It remains to prove the
inequality |Ω′| ≤ C(d)|Ω|.

We consider an auxiliary affine-transform x 7→ B(x−b)/|BΩ|1/d taking Ω to a new region Ω̃ which is an isotropic convex
body of volume 1. For such a convex body, it is known (Brazitikos et al., 2014) that

RΩ̃

△
= sup{|x| : x′ ∈ Ω} ≤ CdLΩ̃,

4For an operator A on a Hilbert space H and H′ a subspace of H, the compression of A to H′ is an operator on H′ defined as V∗AV ,
where V is the inclusion map H′ ↪→ H. This can be viewed as a generalization of the notion of principal submatrix in finite dimensions.

5For an operator A on a Hilbert space H =
⊕n

j=1 Hj , the pinching of A (with respect to the decomposition H =
⊕n

j=1 Hj) is an
operator on H defined by

∑n
j=1 PjAPj , where Pj is the orthogonal projection on Hj .
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where LΩ̃ is the isotropic constant of Ω̃. It is an ubiquitous conjecture in convex geometry that LΩ̃ = O(1). For our
purpose, it suffices to know that LΩ̃ = Od(1), e.g. LΩ̃ ≤ Cd1/4 log d (Brazitikos et al., 2014). As a consequence, we have
RΩ̃ = Od(1).

Let Ω̃′ = RΩ̃B∞ where B∞ denotes the ℓ∞ unit ball. Then Ω̃′ is a cube, Ω̃ ⊂ Ω̃′, and

|Ω̃′| = Rd
Ω̃
= Od(1).

Return to the orignal algorithm, we may observe that the intermediate quantity R obtained in the algorithm
FindParallelepiped is equal to |BΩ|1/dRΩ̃, and B∞(R) there is equal to |BΩ|1/dΩ̃′. Thus Ω′ = |BΩ|1/dB−1Ω̃′ + b.
Consequently,

|Ω′| = |BΩ||B−1Ω̃′| = (detB)(detB−1)|Ω||Ω̃′| = |Ω̃′||Ω|,
which is no more than C(d)|Ω| by the above argument. This completes the proof.

C.9 Proof of Theorem 4.4

In the proof we will need to consider the noise n(x) ∈ L2(Ω), so it is better to use an alternative notation N instead of n
for the number of regions in the assumption on Ω. This means Ω = ∪Nj=1Ωj . Let ϵj = ϵ|Ω|/|Ωj |. From Corollary 4.1 we
know that, given κ ≥ C(d)max1≤j≤N sµ,Ω′

j ,ϵj
our sampling strategy takes Õd(κ+ 1/δ) samples on each Ω′

j and outputs

f̂j ∈ L2(Ω′
j) (recall that Ω′

j is the parallelepiped obtained by FindParallelepiped (Algorithm 5) applied to Ωj) such that

1

|Ω′
j |

∫
Ω′

j

|f̂j(x)− f(x)|2dx ≤ Cϵj∥α∥2µ +K∥n∥2Ω′
j
.

By Lemma 4.5 we know that |Ω′
j | ≤ Cd|Ω|. Combined with Ωj ⊂ Ω′

j we obtain∫
Ωj

|f̂j(x)− f(x)|2dx ≤ Cdϵj |Ωj |∥α∥2µ + Cd

∫
Ω′

j

|n(x)|2dx = Cdϵ|Ω|∥α∥2µ + Cd

∫
Ω′

j

|n(x)|2dx.

Recall that our choice of f̂ is obtained by gluing together all f̂j on Ωj . Thus∫
Ω

|f̂(x)− f(x)|2dx =

n∑
j=1

∫
Ωj

|f̂j(x)− f(x)|2dx ≤ CdNϵ|Ω|∥α∥2µ + Cd

n∑
j=1

∫
Ω′

j

|n(x)|2dx,

By setting Ω′ = ∪jΩ′
j , we have

∥f̂ − f∥2Ω ≤ CdNϵ∥α∥2µ + CdN∥n∥2Ω′ ,

which proves that the reconstruction is Od(Nϵ)-accurate 6, in particular, Od(ϵ)-accurate if N = Od(1).

It remains to bound the sample complexity. As mentioned in the beginning, we need Õd(κ + 1/δ) samples on each Ω′
j ,

hence Õd(Nκ + N/δ) samples in total. The assumption on κ is κ ≥ C(d)maxj sµ,Ω′
j ,ϵj

. It suffices to show that this is
implied by κ ≥ C(d)sµ,Ω,ϵ, which amounts to bounding sµ,Ω′

j ,ϵj
. To this end we need more tools from convex geometry.

Lemma C.1. The region Ω′
j can be decomposed into Od(1) almost disjoint parallelepipeds Ωj,1, . . . ,Ωj,M , where M =

Od(1), such that all of them are translations of the same parallelepiped, say Ω∗
j . Furthermore, |Ω∗

j | ≥ c(d)|Ωj | and
Ωj,1 ⊂ Ωj .

Proof. Recalling the proof of Lemma 4.5 (Section C.8), by an affine transform we may reduce to the case where Ωj is
centered isotropic and Ω′

j is a cube B∞(R). Let r = sup{r′ ≥ 0 : B∞(r′) ⊂ Ωj}. By a lower bound on inradius
(Brazitikos et al., 2014, Eqn. (3.2.1)) we have r ≥ c(d), hence R/r = Od(1). Now note that Ω′

j = [−R,R]d and divide
[−R,R] evenly into ⌈2R/r⌉ intervals I1, . . . , IK , K = ⌈2R/r⌉ = Od(1). Each interval has length 2R⌈2R/r⌉ ≤ r,
thus there is some interval Ik∗ ⊂ [−r, r]. Taking d-fold Cartesian products of this division gives a decomposition of
[−R,R]d = Ω′

j into ⌈2R/r⌉d = Od(1) cubes with side length 2R/⌈2R/r⌉. We verify that this decomposition has all
desired properties:

6Strictly speaking, we have enlarged the constant coefficient of ∥n∥2Ω and moreover replaced ∥n∥2Ω with ∥n∥2Ω′ . The first point is not
really important, and for the latter point we argue as following: it is reasonable to expect that the noise n distributes “randomly”, so some
form of ergodicity would imply the average energy ∥n∥2Ω does not vary much for different “large” regions Ω, hence ∥n∥2Ω ≍ ∥n∥2Ω′ .
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• Each of these cubes is a tranlation of the cube B∞(R/⌈2R/r⌉).

• The volume of such a cube is |Ω′
j |/⌈2R/r⌉d ≥ c(d)|Ω′

j | ≥ c(d)|Ωj |.

• One of these cubes, namely Idk∗ , is contained in [−r, r]d = B∞(r) ⊂ Ω. We may index that cube by Ωj,1 and the
desired property follows.

This completes the proof.

Return to our task of bounding sµ,Ω′
j ,ϵj

. Take a decomposition Ω′
j = ∪Mk=1Ωj,k as in the above lemma. Let

λ = |Ω′
j |/|Ωj,1| ≥ 1. By affine equivariance (Lemma 4.3), we know sµ,Ωj,k,λϵj does not depend on k. Thus by Lemma 4.4

we have
sµ,Ω′

j ,ϵj
≤ Od(1)sµ,Ωj,1,λϵj .

Let λ′ = |Ωj |/|Ωj,1| = Od(1). Since Ωj,1 ⊂ Ωj , by Lemma 4.4 applied to Ωj = Ωj,1 ∪ (Ωj \ Ωj,1) we know

sµ,Ωj,1,λϵj ≤ sµ,Ωj ,λϵj/λ′ .

Note that λ/λ′ ≥ cd > 0. The above two equations together imply

sµ,Ω′
j ,ϵj

≤ C(d)sµ,Ωj ,λϵj/λ′ ≤ Cdsµ,Ωj ,cdϵj ,

where we used sµ,Ωj ,ϵ is, as can be clearly seen from (16), decreasing in ϵ.

Now we may apply Lemma 4.4 to obtain

max
1≤j≤N

sµ,Ω′
j ,ϵj

≤ Cd max
1≤j≤N

sµ,Ωj ,cdϵj ≤ Cdsµ,Ωj ,cdϵ, ∀ϵ > 0.

Thus κ ≥ C(d)sµ,Ω,cdϵ would be sufficient to imply κ ≥ C(d)maxj sµ,Ω′
j ,ϵj

, and hence an accurate reconstruction.

Collecting what we have proved so far, we know that given κ ≥ C(d)sµ,Ω,cdϵ, the proposed sampling and reconstruction
strategy requires Õd(κ+1/δ) samples and guaranteesOd(Nϵ)-accurate reconstruction (which reduces to aOd(ϵ)-accurate
reconstruction if the number of regions N = Od(1)). Replacing ϵ by ϵ/cd, we arrived at the desired conclusion.

D PROOF OF THEOREM 4.1

It suffices to prove the “uniform” bound

τµ,Ω,ϵ(x) ≤ Cds5d+1
µ,Ω,ϵ ·

1

|Ωst
x |

(17)

and the “relative” bound
τµ,Ω,ϵ(x) ≤ Cdsµ,Ω,ϵ/|Ωsym

x |, (18)

which entail different approaches presented below.

D.1 Uniform Bound: Smoothness of Fourier-Sparse Functions

The overall idea is to reduce the uniform bound (17) to a smoothness estimate of Fourier-sparse functions by a sparsifier.
Denote by

Ss
△
=

f ∈ C∞(Rd) : f(x) =
s∑
j=1

cj exp(i⟨ξj , x⟩), cj ∈ C, ξj ∈ Rd
 (19)

the set of d-dimensional s-Fourier-sparse functions, where s is a positive integer. Using a celebrated sparsification tech-
nique (Batson et al., 2012) one may prove the following result.
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Lemma D.1 (Sparsification). Assume there is some monotonically increasing function p such that the following bound
holds for all s > 0, f ∈ Ss and for all region Ω:

|f(x)|2 ≤ p(s)∥f∥2Ωst
x
, ∀x ∈ Ω, (20)

then for some universal constant C > 0 we have, for any region Ω, that

τµ,Ω,ϵ(x) ≤ Csµ,Ω,ϵp(Csµ,Ω,ϵ) ·
1

|Ωst
x |
.

The next lemma shows the assumption (20) does hold with p(s) = Cs2d+2 logd+2 s.

Lemma D.2 (Smoothness estimate). There exists a universal constant C > 0 such that for any s > 0, f ∈ Ss and for any
region Ω, we have, for any x ∈ Ω, that

|f(x)|2 ≤ Cs2d+2(logd+2 s)∥f∥2Ωst
x
.

It is clear that (17) follows from combining the above two lemmas. The rest of this part is devoted to the proof of these
lemmas.

D.1.1 Proof of Sparsification

The basic ingredient of the proof is the following result, essentially proved in Batson et al. (2012). A formal proof in
the unidimensional setting can be found in Avron et al. (2019, Theorem 9), and the modifications required to prove the
multidimensional version are mostly notational (hence omitted here).

Lemma D.3. There exists some frequency vectors ξ1, ξ2, . . . , ξK ∈ Rd with K = O(sµ,Ω,ϵ) such that the following holds.
Let Ξ be the subspace of L2(Ω) spanned by (ei⟨ξj ,x⟩)Kj=1, and PΞ be the orthogonal projection onto Ξ. Then

tr((I − PΞ)FF∗(I − PΞ)) ≤ 4ϵsµ,Ω,ϵ. (21)

where the trace is well-defined since F is an integral operator between finite-measure spaces with a uniformly bounded
kernel, hence a Hilbert-Schmidt operator.

Remark 3. Note that Ξ is spanned by a finite collection of smooth functions, thus any element in Ξ, being a finite sum of
smooth functions, can be considered pointwise defined. Moreover, for any f ∈ L2(Ω), we may say PΞf ∈ L2(Ω) ∩ SK .
Remark 4. In the sense of the above remark, one may formally deduce for any β ∈ L2(µ) that

PΞFβ = PΞ

∫
β(ξ)ei⟨ξ,·⟩dµ(ξ) =

∫
β(ξ)(PΞe

i⟨ξ,·⟩)dµ(ξ),

which can be verified by standard functional analysis. To clarify the notations we denote by ϕξ the smooth function in
L2(Ω) given by ϕxi(x) = exp(i⟨ξ, x⟩). Note that ϕξ is also smooth in ξ. The above identity can be written as

PΞFβ =

∫
β(ξ)PΞϕξdµ(ξ).

By a well-known expression of Hilbert-Schmidt norm of integral operators it is easy to check the following identity:

tr((I − PΞ)FF∗(I − PΞ)) =
1

|Ω|

∫
dµ(ξ)

∫
Ω

∣∣∣ei⟨ξ,x⟩ − (PΞϕξ)(x)
∣∣∣2 dx, (22)

which is no more than 4ϵsµ,Ω,ϵ by Lemma D.3.

Now we decompose

τµ,Ω,ϵ(x) =
1

|Ω|
sup

β∈L2(µ),β ̸=0

|(Fβ)(x)|2

∥Fβ∥2Ω + ϵ∥β∥2µ

≤ 2

|Ω|
sup

β∈L2(µ),β ̸=0

|(PΞFβ)(x)|2 + |((F − PΞF)β)(x)|2

∥Fβ∥2Ω + ϵ∥β∥2µ

≤ 2

|Ω|
sup

β∈L2(µ),β ̸=0

|(PΞFβ)(x)|2

∥Fβ∥2Ω
+

|((F − PΞF)β)(x)|2

ϵ∥β∥2µ
(23)
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We handle the last two terms separately. For the first term, note that PΞFβ ∈ SK , which by the assumption of Lemma D.1
satisfies

|(PΞFβ)(x)|2 ≤ p(K)∥PΞFβ∥2Ωst
x
=
p(K)

|Ωst
x |

∫
Ωst

x

|(PΞFβ)(x)|2dx

≤ p(K)

|Ωst
x |

∫
Ω

|(PΞFβ)(x)|2dx

=
|Ω|
|Ωst
x |
p(K)∥PΞFβ∥2Ω

≤ |Ω|
|Ωst
x |
p(K)∥Fβ∥2Ω,

where the last inequality follows from the definition that PΞ is an orthogonal projection in L2(Ω). This proves

|(PΞFβ)(x)|2

∥Fβ∥2Ω
≤ |Ω|

|Ωst
x |
p(K). (24)

We turn to the second term in (23). Recall the formulas in Remark 4, we have

|((F − PΞF)β)(x)|2 =

∣∣∣∣∫ β(ξ)(ei⟨ξ,x⟩ − (PΞϕξ)(x))dµ(ξ)

∣∣∣∣2
≤ ∥β∥2µ

∫ ∣∣∣ei⟨ξ,x⟩ − (PΞϕξ)(x)
∣∣∣2 dµ(ξ) (25)

by Cauchy-Schwarz inequality. Now note that, since PΞϕξ ∈ SK , it follows that ei⟨ξ,·⟩ − (PΞϕξ)(·) ∈ SK+1, thus by the
assumption of Lemma D.1 we have∣∣∣ei⟨ξ,x⟩ − (PΞϕξ)(x)

∣∣∣2 ≤ p(K + 1)
∥∥∥ei⟨ξ,·⟩ − (PΞϕξ)(·)

∥∥∥2
Ωst

x

≤ p(K + 1)

|Ωst
x |

∫
Ω

∣∣∣ei⟨ξ,x⟩ − (PΞϕξ)(x)
∣∣∣2 dx.

Integrating with respect to dµ(ξ), we obtain∫ ∣∣∣ei⟨ξ,x⟩ − (PΞϕξ)(x)
∣∣∣2 dµ(ξ) ≤ p(K + 1)

|Ωst
x |

∫
dµ(ξ)

∫
Ω

∣∣∣ei⟨ξ,x⟩ − (PΞϕξ)(x)
∣∣∣2 dx

≤ |Ω|
|Ωst
x |

(4ϵsµ,Ω,ϵ)p(K + 1)

by (22) and Lemma D.3. Plugging back into (25), it follows

|((F − PΞF)β)(x)|2

ϵ∥β∥2µ
≤ 4 · |Ω|

|Ωst
x |
p(K + 1)sµ,Ω,ϵ. (26)

Combining (23), (24), (26), we arrive at

τµ,Ω,ϵ ≤ Csµ,Ω,ϵ(p(K) + p(K + 1)) · 1

|Ωst
x |

from which the conclusion of Lemma D.1 readily follows since p is monotonically increasing and K = O(sµ,Ω,ϵ).

D.1.2 Proof of Smoothness Estimate

A key tool of the proof is the following universal self-bounding property of recursive sequences with characteristic roots
of modulo 1, proved in Chen et al. (2016).

Lemma D.4 (Universal self-bounding). There exists some universal constant C > 0 such that the following holds. Let
am =

∑s
j=1 αjz

m
j where αj , zj ∈ C, |zj | = 1. Then

|a0| ≤ C

⌊Cs2 log s⌋∑
m=1

|am|.
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We are now ready to prove Lemma D.2, which can be regarded as a generalization of a result in Chen et al. (2016) from
the unidimensional setting to the multidimensional setting.

Proof of Lemma D.2. Let K = (Ωst
x − x)/(Cs2 log s). By Lemma D.4, for any t ∈ K we have

|f(x)| ≤ C
∑

1≤m≤Cs2 log s

|f(x+mt)|.

Integrating with respect to t inside K we obtain

|K||f(x)| ≤ C
∑

1≤m≤Cs2 log s

∫
mK

m−d|f(x+ t)|dt

≤ C
∑

1≤m≤Cs2 log s

m−d
√

|mK|
(∫

mK
|f(x+ t)|2dt

)1/2

≤ C
∑

1≤m≤Cs2 log s

m−d/2
√
|K|
√

|Ωst
x |∥f∥Ωst

x
,

where in the last inequality we used the fact that x+mK ⊂ Ωst
x by definition of Ωst

x and K. Since |K| = |Ωst
x |/(Cs2 log s)d,

it follows that
|f(x)| ≤ (Cs2 log s)d/2∥f∥Ωst

x

∑
1≤m≤Cs2 log s

m−d/2

The last factor is less than Cs
√
log s when d = 1 and is less than C log(s2 log s) ≤ C log s when d = 2. When d > 2, it

is O(1). Anyway, we arrive at the desired conclusion.

D.2 Relative Bound: Comparison Principles

In proving the relative bound we will need to compare the leverage score functions on different regions. To this end we
use notations like FΩ instead of F as in the main text to emphasize the dependence of related operators on the region of
interest. Of course, for a different region Ω′, FΩ′ is the Fourier transform L2(µ) → L2(Ω′), (note that L2(Ω′) is endowed
with the normalized Lebesgue measure on Ω′). The relative bound is based on the following dual representation of leverage
score function.

Lemma D.5. The leverage score function τµ,Ω,ϵ can be alternatively expressed as

τµ,Ω,ϵ(x) =
1

ϵ|Ω|
inf

g∈L2(Ω)
∥F∗

Ωg − φx∥2µ + ϵ∥g∥2Ω, (27)

where φx
△
= exp(−i⟨·, x⟩) is regarded as an element in L2(µ).

Proof. The ridge regression problem (27) can be solved explicitly. The optimal solution is g = (FΩF∗
Ω + ϵI)−1FΩφx.

This leads to a calculation that shows the right hand side is equal to |Ω|−1⟨φx, (F∗
ΩFΩ + ϵ)−1φx⟩. On the other hand, in

the original definition one may show

1

|Ω|
sup

β∈L2(µ),β ̸=0

|(FΩβ)(x)|2

∥FΩβ∥2Ω + ϵ∥β∥2
=

1

|Ω|
sup

β∈L2(µ),β ̸=0

|⟨φx, β⟩|2

∥(F∗
ΩFΩ + ϵI)1/2β∥2µ

=
1

|Ω|
sup

β′∈L2(µ),β′ ̸=0

|⟨(F∗
ΩFΩ + ϵI)−1/2φx, β

′⟩|2

∥β′∥2µ

where we substitute β′ = (F∗
ΩFΩ + ϵ)−1/2β. The last quantity is a standard eigenvalue problem for a rank-one operator,

which can be shown to be |Ω|−1∥(F∗
ΩFΩ+ ϵ)−1/2φx∥2µ = |Ω|−1⟨φx, (F∗

ΩFΩ + ϵ)−1φx⟩, exactly equal to the value of the
right hand side of (27) as computed above.

Let Ω′ = 1
2x + 1

2Ω
sym
x = x + 1

2 (Ω
sym
x − x). Let ϵ′ = ϵ|Ω|/|Ω′|. Since x ∈ Ωsym

x , it follows from the definition of Ωsym
x

(which is required to be a convex body symmetric with respect to x) we have Ω′ ⊂ Ωsym
x ⊂ Ω.
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To prove the relative bound, it turns out useful to consider an intermediate quantity sµ,Ω′,ϵ′ . By Lemma 4.4, we know
sµ,Ω′,ϵ′ ≤ sµ,Ω,ϵ. On the other hand, by definition we have sµ,Ω′,ϵ′ =

∫
Ω′ τµ,Ω′,ϵ′dx. This (together with the continuity of

leverage score function, which can be inferred from the expression given in the proof of Lemma D.5) implies the existence
of some x⋆ ∈ Ω′ such that

τs,Ω′,ϵ′(x⋆) ≤
1

|Ω′|
sµ,Ω,ϵ.

Using Lemma D.5, this in turn implies the existence of some g⋆ ∈ L2(Ω′) such that

∥F∗
Ω′g⋆ − φx⋆

∥2µ + ϵ′∥g⋆∥2Ω′ ≤ ϵ′sµ,Ω,ϵ.

Now define a function g ∈ L2(Ω) in the following way. If u ∈ (x− x⋆) + Ω′, then g(u) = |Ω|
|Ω′|g⋆(u+ x⋆ − x), which is

well-defined since u+x⋆−x ∈ Ω′. Otherwise, let g(u) = 0. Now, since Ωsym
x is convex and symmetric with respect to x, it

follows that Ω′ = x+ 1
2 (Ω

sym
x −x) is also convex and symmetric with respect to x. Thus we have x−x⋆ ∈ x−Ω′ = Ω′−x,

and
(x− x⋆) + Ω′ ⊂ Ω′ − x+Ω′ = 2Ω′ − x = Ωsym

x ⊂ Ω.

This yields

(F∗
Ωg)(ξ) =

1

|Ω|

∫
Ω

g(u)e−i⟨ξ,u⟩du =
1

|Ω|

∫
(x−x⋆)+Ω′

g(u)e−i⟨ξ,u⟩du

=
1

|Ω|

∫
Ω′

|Ω|
|Ω′|

g⋆(u
′)e−i⟨ξ,u

′+(x−x⋆)⟩du′

= (F∗
Ω′g⋆)(ξ)e

−i⟨ξ,x−x⋆⟩,

It is also clear from similar computations that ∥g∥2Ω = |Ω|
|Ω′|∥g⋆∥

2
Ω, hence

∥F∗
Ωg − φx∥2µ + ϵ∥g∥2Ω =

∫ ∣∣∣(F∗
Ω′g⋆)(ξ)e

−i⟨ξ,x−x⋆⟩ − e−i⟨ξ,x⟩
∣∣∣2 dµ(ξ) + ϵ

|Ω|
|Ω′|

∥g⋆∥2Ω

=

∫ ∣∣∣(F∗
Ω′g⋆)(ξ)− e−i⟨ξ,x⋆⟩

∣∣∣2 dµ(ξ) + ϵ′∥g⋆∥2Ω

= ∥F∗
Ω′g⋆ − φx⋆

∥2µ + ϵ′∥g⋆∥2Ω
≤ ϵ′sµ,Ω,ϵ.

Again, by Lemma D.5 applied to region Ω, this implies

τµ,Ω,ϵ(x) ≤
1

ϵ|Ω|
(∥F∗

Ωg − φx∥2µ + ϵ∥g∥2Ω) ≤
1

ϵ|Ω|
ϵ′sµ,Ω,ϵ =

1

|Ω′|
sµ,Ω,ϵ.

The desired bound (18) now follows from the obvious fact that |Ω′| = 2−d|Ωsym
x | since Ω′ is a translation of 1

2Ω
sym
x .

E PROOF OF THEOREM 4.3

We begin with the simplest case where Ω is a polyhedron with d+1 vertices in Rd where it is easier to see the heart of the
matter. Later we will present a trick to reduce the general case to this simplest case using basic convex geometry.

E.1 A Toy Case: Polyhedra with Least Vertices

Assume Ω is a polyhedron with d+1 vertices, namely the convex hull of points {v1, . . . , vd+1} where the vertices {vj}d+1
j=1

are in generic position. In this case Ωst
x = Ω, and we only need to evaluate the integral (by Theorem 4.1)∫

Ω

κmin

(
κ5d

|Ω|
,

1

|Ωsym
x |

)
dx =

κ

|Ω|

∫
Ω

κ5d ∧ |Ω|
|Ωsym
x |

dx. (28)

With Theorem 4.1 in mind, we need to show that the above integral is Õd(κ) (recalling Lemma 3.1). Our first observation
is that it suffices to consider a fixed choice of Ω, since all polyhedra with d + 1 vertices are affine-isomorphic, and since
the related quantities such as |Ωsym

x | are equivariant under affine transforms.
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Lemma E.1 (Affine equivariance). Let A be an invertible linear operator on Rd and b ∈ Rd. For any region Ω ⊂ Rd, we
have

(AΩ+ b)stAx+b = AΩst
x + b, (AΩ+ b)symAx+b = AΩsym

x + b.

Consequently, if Ω is convex, we have

κ

|Ω|

∫
Ω

κ5d ∧ |Ω|
|Ωsym
x |

dx =
κ

|AΩ+ b|

∫
AΩ+b

κ5d ∧ |AΩ+ b|
|(AΩ+ b)symx |

dx.

Proof. The first two equations can be checked by definitions. The last equation then follows from the change-of-variable
formula.

Denote the canonical basis of Rd by e1, . . . , ed. Note that ej is simply the vector with all entries zero but the j-th entry 1.
By Lemma E.1, it is without loss of generality to assume

vj =

{
ej , 1 ≤ j ≤ d,

0, j = d+ 1.
(29)

It will be helpful to keep in mind that with this choice of vj we have |Ω| = 1/d! ≥ c(d), where c(d) > 0 means a constant
depending only on d.

Since Ω is the convex hull of {v1, . . . , vd+1}, for any x ∈ Ω we have the following representation

x =

d+1∑
j=1

θjvj , θj ≥ 0,

d+1∑
j=1

θj = 1. (30)

With this representation we will show that

Lemma E.2. There exists a constant c(d) > 0 depending only on d such that

|Ωsym
x | ≥ c(d)

d+1∏
j=1

θj .

Proof. Since
∑
j θj = 1, at most one of θj can exceed 1/2. Let j∗ = argmaxj θj , then θj ≤ 1/2 for all j ̸= j∗. Now

consider the set

Kx
△
=


d+1∑
j=1

θ′jvj : 0 ≤ θ′j ≤ 2θj ; (θ
′
1, . . . , θ

′
d+1) ∈ ∆d

 .

It is clear that Kx is convex and symmetric with respect to x, hence |Ωsym
x | ≥ |Kx|. To estimate |Kx| we divide into two

cases.

Case 1: θj∗ ≥ 1/2. In this case the constraint 0 ≤ θ′j∗ ≤ 2θj∗ in the definition of Kx is trivially true given that
(θ′1, . . . , θ

′
d+1) ∈ ∆d. Since θ′j∗ = 1−

∑
j ̸=j∗ θ

′
j , one may see

Kx =

vj∗ +
∑
j ̸=j∗

θ′j(vj − vj∗) : 0 ≤ θ′j ≤ 2θj

 ,

which is a parallelepiped with sides parallel to vj−vj∗ , j ̸= j∗. By elementary geometry (or a calculation via determinant),
such a parallelepiped would have volume d!|Ω| = 1 if all its sides have length 1. Thus

|Kx| = 2dd!|Ω|
∏
j ̸=j∗

θj ≥ 2d
d+1∏
j=1

θj ,

where the last inequality follows from θj∗ ≤ 1.
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Case 2: θj∗ < 1/2. Using θ′j∗ = 1−
∑
j ̸=j∗ θ

′
j again, we have

Kx =

vj∗ +
∑
j ̸=j∗

θ′j(vj − vj∗) : 0 ≤ θ′j ≤ 2θj , 1− 2θj∗ ≤
∑
j ̸=j∗

θ′j ≤ 1

 .

Using further θj∗ = 1−
∑
j ̸=j∗ and the assumption θj∗ < 1/2, one may check that Kx contains a parallelepiped:

Kx ⊃

vj∗ +
∑
j ̸=j∗

θ′j(vj − vj∗) :
1− 2θj∗
1− θj∗

θj ≤ θ′j ≤
1

1− θj∗
θj ,∀j ̸= j∗


This parallelepiped again has sides parallel to vj − vj∗ and has side lengths (2θj∗)θj/(1− θj∗), thus has volume(

2θj∗
1− θj∗

)d
d!|Ω|

∏
j ̸=j∗

θj .

Note that by the definition of j∗ we have θj∗ ≥
∑
j θj/(d+1) = 1/(d+1), thus θd−1

j∗
≥ c(d). Combining these arguments

we obtain

|Kx| ≥
(

2θj∗
1− θj∗

)d
d!|Ω|

∏
j ̸=j∗

θj ≥ 2dd!|Ω|θdj∗
∏
j ̸=j∗

θj ≥ c(d)

d+1∏
j=1

θj ,

as claimed.

Return to our proof of the toy case. In light of Lemma E.2 we have

κmin

(
κ5d

|Ω|
,

1

|Ωsym
x |

)
≤ c(d)−1κmin

(
κ5d,

1∏d+1
j=1 θj

)
, (31)

where we also used |Ω| = 1/d! ≥ c(d). The main goal of bounding (28) is thus reduced to bounding

I =

∫
Ω

κ5d ∧ 1∏d+1
j=1 θj

dx, (32)

where θj = θj(x) should be regarded as functions in x. With vj as in (29), we may explicitly compute for x =
(x1, . . . , xd) ∈ Ω that

θj(x) = xj , j ≤ d; θd+1(x) = 1−
d∑
j=1

xj . (33)

The evaluation of I should be elementary, but the fastest way utilizes idea from integration theory on the manifold Sd. We
cover Ω by d+ 1 “charts”:

Ωj
△
= {x ∈ Ω : θj(x) = max

j′
θj′(x)}. (34)

The constraint θj(x) = maxj′ θj′(x) can be expressed as a set of affine-linear inequalities, thus Ωj is again a polyhedron.
Note that on Ωj we have θj ≥

∑
j′ θj′/(d+ 1) = 1/(d+ 1), thus∫
Ωj

κ5d ∧ 1∏d+1
j′=1 θj′

dx ≤ C(d)

∫
Ωj

κ5d ∧ 1∏
j′ ̸=j θj′

dx.

It is also clear that Ω = ∪jΩj , thus

I ≤ C(d)

d+1∑
j=1

∫
Ωj

κ5d ∧ 1∏
j′ ̸=j θj′

dx. (35)
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On Ωj we use the “local coordinates” (θ1, . . . , θj−1, θj , . . . , θd+1). This is possible since by (30) every x ∈ Ω can be
expressed as

x = vj +
∑
j′ ̸=j

θj′(vj′ − vj), θj′ ≥ 0,
∑
j′ ̸=j

θj′ ≤ 1. (36)

By the same argument as in the proof of Lemma E.2, we know that the affine-linear coordinate transform

ψj : (θ1, . . . , θj−1, θj , . . . , θd+1) 7→ x = vj +
∑
j′ ̸=j

θj′(vj′ − vj)

has Jacobian equal to d!|Ω| = 1, thus the change-of-variable formula reads∫
Ωj

κ5d ∧ 1∏
j′ ̸=j θj′

dx =

∫
ψ−1

j (Ωj)

κ5d ∧ 1∏
j′ ̸=j θj′

∏
j′ ̸=j

dθj′ .

It follows trivially from (36) that ψ−1
j (Ω) ⊂ [0, 1]d, hence ψ−1

j (Ωj) ⊂ [0, 1]d. Thus we have

∫
ψ−1

j (Ωj)

κ5d ∧ 1∏
j′ ̸=j θj′

∏
j′ ̸=j

dθj′ ≤
∫
[0,1]d

κ5d ∧ 1∏
j′ ̸=j θj′

∏
j′ ̸=j

dθj′ =

∫
[0,1]d

κ5d ∧ 1∏d
l=1 x

′
l

d∏
l=1

x′l,

where we have changed the label of coordinates to reflect the fact that the middle term is actually independent of j. For
simplicity denote x′ = (x′1, . . . , x

′
d) ∈ [0, 1]d. A good news is that a larger integral has already been estimated in the

proof of Theorem 3.1. In fact, recalling the definition of the function ρ(x) = 1/(x ∧ (1 − x)) and ρd(x′) =
∏
l ρ(x

′
l) in

Theorem 3.1, it is clear that 1/x′l ≤ ρ(x′l), thus 1/
∏
l x

′
l ≤ ρd(x

′), and∫
[0,1]d

κ5d ∧ 1∏d
l=1 x

′
l

d∏
l=1

x′l ≤
∫
[0,1]d

κ5d ∧ ρd(x′)dx′.

By (11) and (12), we know ∫
[0,1]d

κ5d ∧ ρd(x′)dx′ ≤ Od(1) + polylogd(κ) ≤ polylogd(κ).

The above equations together imply ∫
Ωj

κ5d ∧ 1∏
j′ ̸=j θj′

dx ≤ polylogd(κ),

which can be plugged into (35) to deduce
I ≤ polylogd(κ).

By (31), we finally obtain ∫
Ω

κmin

(
κ5d

|Ω|
,

1

|Ωsym
x |

)
dx ≤ C(d)κpolylogd(κ) = Õd(κ),

as desired.

E.2 The General Case

Now we consider the general case where Ω is a polyhedron with Od(1) vertices. Denote by V its vertex set and by V [d+1]

the collection of all subsets of V containing exactly (d + 1) elements. In this case, we know that |V [d+1]| = Od(1) (note
that here |V [d+1]| denotes the cardinality of V [d+1] instead of the volume).

For any V ′ ∈ V [d+1], the convex hull PV ′ = conv(V ′) is a possibly-degenerate polyhedron with d + 1 vertices. If it is
non-degenerate, it would be affine-isomorphic to the polyhedron already investigated in Section E.1, thus∫

PV ′

κmin

(
κ5d

|Ω|
,

1

|Ωsym
x |

)
dx = Õd(κ). (37)
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On the other hand, if PV ′ is degenerate, it simply has volume 0, so∫
PV ′

κmin

(
κ5d

|Ω|
,

1

|Ωsym
x |

)
dx = 0. (38)

By Carathéodory’s theorem (Schneider, 2013) we have Ω = ∪V ′∈V [d+1]PV ′ . Hence∫
Ω

κmin

(
κ5d

|Ω|
,

1

|Ωsym
x |

)
dx ≤

∑
V ′∈V [d+1]

∫
PV ′

κmin

(
κ5d

|Ω|
,

1

|Ωsym
x |

)
dx ≤ |V [d+1]|Õd(κ) = Od(1)Õd(κ) = Õd(κ),

as desired.

E.3 Remarks on Computational Issues

In the proof of the simplest case in Section E.1 we actually constructed an efficiently computable and near-optimal upper
bound of τ̃κ given by (31), where θj can be computed via (33).

For the general case, by inspecting the proof we may conclude that if we can compute a Carathéodory representation
efficiently for any x ∈ Ω, i.e. finding V ′ ∈ V [d+1] such that x ∈ conv(V ′), then we may use Lemma E.1 to transform the
efficiently computable bound in the simplest case to the general case. Obviously, if the polyhedron is efficiently represented
by its vertex set with size Od(1), a Carathéodory representation can be found by an exhaustive enumeration in Od(1) time.
This shows that the sampling scheme indicated by Theorem 4.3 is indeed efficiently implementable.
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