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Abstract

A key challenge to deploying reinforcement learn-
ing in practice is avoiding excessive (harmful)
exploration in individual episodes. We propose
a natural constraint on exploration—uniformly
outperforming a conservative policy (adaptively
estimated from all data observed thus far), up to
a per-episode exploration budget. We design a
novel algorithm that uses a UCB reinforcement
learning policy for exploration, but overrides it as
needed to satisfy our exploration constraint with
high probability. Importantly, to ensure unbiased
exploration across the state space, our algorithm
adaptively determines when to explore. We prove
that our approach remains conservative while min-
imizing regret in the tabular setting. We experi-
mentally validate our results on a sepsis treatment
task and an HIV treatment task, demonstrating
that our algorithm can learn while ensuring good
performance compared to the baseline policy for
every patient; the latter task also demonstrates that
our approach extends to continuous state spaces
via deep reinforcement learning.

1 INTRODUCTION

Reinforcement learning is a promising approach to learn
policies for sequential decision-making to enable data-
driven decision-making. For instance, it can be used to help
manage health conditions such as sepsis (Komorowski et al.,
2018) and chronic illnesses (Zhou et al., 2018), which re-
quire the clinician to make sequences of decisions regarding
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treatment. Other applications include adaptively sequencing
educational material for students (Mandel et al., 2014) or
learning inventory control policies with uncertain demand
(Giannoccaro and Pontrandolfo, 2002; Keller et al., 2006).

The core challenge in reinforcement learning is how to bal-
ance the exploration-exploitation tradeoff—i.e., how to bal-
ance taking exploratory actions (to estimate the transitions
and rewards of the underlying system) and exploiting the
knowledge acquired thus far (to make good decisions). How-
ever, in high-stakes settings, exploration can be costly or
even unethical—for instance, taking exploratory actions on
patients or students can lead to adverse outcomes that could
have been avoided.

One solution is conservative exploration (Garcelon et al.,
2020), where the agent is required to avoid underperforming
a baseline policy (a handcrafted heuristic or a policy trained
on offline data) by more than some small exploration budget.
This strategy ensures that the agent does not concentrate
exploration (and accrue a large amount of regret) early on;
instead, it is forced to balance exploration across time.

However, there are two key shortcomings of conservative ex-
ploration. First, it only requires that the learning algorithm
outperforms the baseline on average across all episodes
so far. Thus, the agent could still concentrate exploration
on a single episode at a time—indeed, existing algorithms
for conservative exploration use exactly such a strategy.
Concentrating exploration in a single episode remains prob-
lematic in many settings; for instance, in healthcare settings,
episodes may correspond to individual patients, and in edu-
cation settings, they may correspond to individual students.

Second, this strategy only considers a single, fixed baseline
policy. However, in practice, the initial baseline policy
may not be very good—e.g., a handcrafted heuristic policy
may perform significantly worse than the optimal policy.
Ideally, the baseline would be updated over time to account
for all observations so far. For instance, if the algorithm
has discovered that a treatment achieves good outcomes for
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the current patient, then it is obligated to use either that
treatment or an alternative that is only slightly worse. Taken
together, we are interested in the following constraint on
exploration:

With high probability, the algorithm should never
take actions significantly worse than the ones
known to be good based on the knowledge ac-
cumulated so far.

By “knowledge accumulated so far”, we mean all obser-
vations that have been gathered so far. Next, by “actions
known to be good”, we mean high-value actions according
to offline (or batch) reinforcement learning algorithms (Ernst
et al., 2005; Levine et al., 2020), which are designed to pro-
vide conservative estimates of the value function based on
historical data (Yu et al., 2020; Kumar et al., 2020). Then,
our constraint is that, with high probability, the algorithm
never takes an action that is significantly worse than using
the current baseline policy. We refer to this constraint as
uniformly conservative exploration.

Uniformly conservative exploration is significantly harder
to satisfy compared to the existing notion of conservative
exploration while achieving sublinear regret. Intuitively, we
can achieve conservative exploration by simply using the
baseline policy for a certain number of episodes; since the
exploration budget is a fraction of the accumulated regret,
we will have earned enough slack to use an existing algo-
rithm like UCBVI (Azar et al., 2017) for an entire episode.
By using UCBVI continuously for entire episodes in this
manner, we can sufficiently explore the entire state space,
ensuring sublinear regret.

However, this strategy no longer works when the exploration
constraint must hold for each episode, since UCBVI may not
be able to explore for a full episode. In particular, consider
a strategy where we use UCBVI at the start of each episode
until we exhaust our exploration budget, and then switch to
the baseline policy. Then, UCBVI will only get to explore
near the beginning of each episode, failing to learn about
states that can only be visited later in the episode, yielding
linear regret.

To remedy this issue, we propose an algorithm that adap-
tively determines when to explore, with the goal of “stitch-
ing” together exploration across multiple episodes; these
form a single meta-episode, which is equivalent to the in-
formation gained from using UCBVI for an entire episode.
To do so, our algorithm records the state where it switches
from the UCBVI policy to the baseline policy, and then
only restarts using the UCBVI policy once it encounters
the same state in a future episode. We prove that our algo-
rithm explores uniformly conservatively, and obtains regret
guarantees similar to those of UCBVI in the number of
episodes—i.e., the cost of our constraint is only a constant
factor.

Finally, we test the performance of our algorithm on two
real-world tasks: learning treatments for sepsis and human
immunodeficiency virus (HIV). The latter task has a contin-
uous state space; to this end, we leverage a natural extension
of our approach to a deep reinforcement learning algorithm.
Our results show that our algorithm can learn as efficiently
as existing reinforcement learning algorithms while signif-
icantly reducing violations of our uniformly conservative
exploration constraint.

Our main contributions in this paper include:

• We propose a new notion of uniformly conservative
exploration (equation (1)) for reinforcement learning;

• We design a novel meta-episodic online reinforcement
learning algorithm that satisfies our exploration con-
straint and achieves sublinear regret;

• We empirically demonstrate the conservativeness and
efficiency of our algorithm on real-world cases in learn-
ing treatments for sepsis and HIV.

2 PROBLEM FORMULATION

Preliminaries. Consider a Markov decision process (MDP)
M = 〈S,A, P,R〉, with finite states S, finite actions A,
transition probability P (s′ | s, a), rewardsR(s, a) ∈ [0, 1]1,
and time horizon H ∈ N2, where s′, s ∈ S and a ∈ A.
Thus, we have S = |S| states and A = |A| actions. Our
analysis is based on N episodes. We consider policies
a = πt(s, z) with internal state z ∈ Z, along with internal
state transitions z′ = σt(s, z, a) for each step t ∈ [H]. Our
uniformly conservative exploration property (described in
(1)) is a constraint on the reward accrued by our policy
across multiple steps in the MDP; thus, our policy uses an
internal state to track this information and ensure that our
policy satisfies this property.

We define a rollout as a random sequence of length H ,
i.e., α = ((s1, a1, r1, s2), · · · , (sH , aH , rH)), where at =
πt(st, zt), rt = R(st, at), st+1 ∼ P (· | st, at), and zt+1 =
σt(st, zt, t). We assume s1 is deterministic and z1 is given.
We denote the distribution over rollouts by α ∼ Dπ,σ(·),
and the rollout of episode k ∈ [N ] by αk. Define the Q
function as

Q
(π,σ)
t (s, z, a) = R(s, a) +

∑
s′∈S

P (s′ | s, a)

· V (π,σ)
t (s′, σt(s, z, a))

with Q(π,σ)
H (s, z, a) = 0, and the value function as

V
(π,σ)
t (s, z) = Q

(π,σ)
t (s, z, πt(s, z)),

1This is only for simplicity. One can always rescale our result
according to the scale of the rewards.

2The horizon H is the length of episode.
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with V (π,σ)
H (s, z) = 0.

Regret. We let π∗t (s) denote the (deterministic) optimal
policy, and Q∗t (s, a) and V ∗t (s) the optimal Q- and value
functions respectively. P and R are initially unknown. At
episode k ∈ [N ], we choose a policy (πk, σk) along with
an initial internal state zk,1 based on the observations so far,
and observe a new rollout αk ∼ Dπk,σk(·). Our goal is to
choose (πk, σk) and zk,1 to minimize the cumulative regret

ρ = E

[
N∑
k=1

V ∗1 (s1)− V (πk,σk)
1 (s1, zk,1)

]
,

where the expectation is taken over the randomness of the
rollouts {α1, · · · , αN}.

Uniformly conservative exploration. Intuitively, our ex-
ploration constraint says we do not take actions in an episode
that achieve significantly worse rewards than a baseline pol-
icy π̄k trained on all observations so far (for simplicity, we
assume π̄k is only updated at the end of an episode). Then,
it ensures that we do not take harmful action sequences that
would have been avoided by π̄k.

The strength of the exploration constraint depends on π̄k;
thus, these bounds should be as tight as possible to avoid
harm. We build on a UCB strategy called UCBVI (Azar
et al., 2017), a state-of-the-art algorithm that achieves mini-
max regret guarantees. This algorithm constructs policies
based on values that are optimistic compared to the true
values; its minimax guarantees stem from the fact that its
confidence intervals around its value estimates are very tight.
We modify UCBVI to instead construct policies based on
conservative values, thereby resulting in a variant of con-
servative Q-learning, an offline reinforcement learning al-
gorithm (Kumar et al., 2020). We describe our approach in
detail in Section 3.

Now, given η, δ ∈ R>0, our exploration constraint says
that with probability at least 1− δ (over the randomness of
{αk}k∈[N ]), for every k ∈ [N ] and t ∈ [H], we have

z∗t :=

t∑
τ=1

max
{
V (π̄k)
τ (sk,τ )−Q(π̄k)

τ (sk,τ , ak,τ ), 0
}
≤ η.

(1)

We call z∗t the reward deficit, since it is the deficit in re-
ward compared to π̄k, and η the exploration budget, since it
bounds how much exploration we can do.
Definition 2.1. An algorithm π is uniformly conservative if
equation (1) is satisfied for any k ∈ [N ] and t ∈ [H] with
at least a probability of 1− δ.

To understand (1), consider the alternative

V
(π̄k)
t (sk,1)− V (πk,σk)(sk,1, zk,1)

= E

[
H∑
t=1

V
(π̄k)
t (sk,t)−Q(π̄k)

t (sk,t, ak,t)

]
≤ η, (2)

where the equality follows by a telescoping sum argument
(see, e.g., Lemma 2.1 in Bastani et al. (2018)). Intuitively,
(2) says that our cumulative expected reward must be within
η of that of π̄k across the entire episode. In contrast, (1)
is significantly stronger, since the maximum ensures that
we cannot compensate for performing worse than π̄k in one
part of an episode by performing better later.

Note that our algorithm can always use π̄k, which satis-
fies (1); the challenge is how to take exploratory actions
in a way that minimizes regret while exploring uniformly
conservatively.

Assumptions. Ensuring uniformly conservative exploration
and sublinear regret is impossible without assumptions on
our MDP. Otherwise, any exploration by an agent could lead
to a violation. Our first assumption says that the MDP is
ergodic (e.g., it is also required for conservative exploration
under an infinite horizon (Garcelon et al., 2020)). Let Π be
the set of all deterministic policies.
Assumption 2.2. Let Tπ(s′, s) be the minimum time it
takes to transition from state s′ to state s following policy π.
Then, Υ := maxs′ 6=s maxπ∈Π E[Tπ(s′, s)] ≤ H/2.

Here, Υ is the worst-case diameter of the MDP—i.e., the
worst-case time it takes for any policy π to reach any state s
from any state s′. This assumption says that every state is
visited by any policy π; for instance, if there is a state not
visited by one of our baseline policies π̄k, then we would
not be able to explore that state, potentially leading to linear
regret. Our second assumption says that any single step of
exploration in the MDP does not violate our exploration
constraint:
Assumption 2.3. For any π ∈ Π, s ∈ S and a ∈ A, we
have V (π)

t (s)−Q(π)
t (s, a) ≤ η/2.

That is, using an arbitrary action a in state s and then
switching to π (i.e., Q(π)

t (s, a)), is not much worse than
using π (i.e., V (π)

t (s)). Note that we must at least assume

V
(π̄k)
t (s)−Q(π̄k)

t (s, a) ≤ η; otherwise, any exploratory ac-
tion could potentially violate the constraint. The stricter η/2
tolerance enables us to continue to take exploratory steps if
we have only accrued error ≤ η/2 so far: if the tolerance

were η, then if we take a single step such that V (π̄k)
t (s)−

Q
(π̄k)
t (s, a) > 0, then at each subsequent step t′ > t, we

cannot take an exploratory action, since we run the risk that
(V

(π̄k)
t (s)−Q(π̄k)

t (s, a)) + (V
(π̄k)
t′ (s)−Q(π̄k)

t′ (s, a)) > η,
which would violate the constraint.

3 ALGORITHM

The key challenge is how to take exploratory actions to min-
imize regret while ensuring that our exploration constraint
holds. We build on upper confidence bound value iteration
(UCBVI) (Azar et al., 2017), which obtains near-optimal
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regret guarantees for finite-horizon MDPs. Like other UCB
algorithms, it relies on optimism—i.e., it takes actions that
optimize the cumulative reward under optimistic assump-
tions about its estimates of the MDP. A natural strategy is
to use the internal state to keep track of the reward deficit
accrued so far; then, we can use the UCBVI policy from the
beginning of each episode until we exhaust our exploration
budget, after which we switch to the baseline policy.

The challenge is that the UCBVI regret guarantees depend
crucially on using the UCBVI policy for the entire horizon,
or at least for extended periods of time. The reason is that
selectively using UCBVI at the beginning of each episode
biases the portions of the state space where UCBVI is used;
for instance, if there are some states that are only reached
late in the episode, then we may never use UCBVI in these
states, causing us to underexplore and accrue high regret.

To avoid this issue, our algorithm uses the UCBVI policy
in portions of each episode in a sequence of episodes, such
that we can “stitch” these portions together to form a single
meta-episode that is mathematically equivalent to using the
UCBVI policy for an entire episode. The cost is that we
may require multiple episodes to obtain a single UCBVI
episode, which would slow down exploration and increase
regret. However, we can show that the number of episodes
in a meta-episode is not too large with high probability, so
the strategy actually achieves similar regret as UCBVI.

Overall algorithm. Our algorithm is summarized in Algo-
rithm 1; m indexes a single meta-episode, and n indexes an
episode of m. To be precise, we use meta-episode to refer to
an iteration m of the outer loop of Algorithm 1, and episode
to refer to an iteration (m,n) of the inner loop; we alterna-
tively index episodes by k when referring to the sequence of
all episodes. Then, we use rollout to refer to the sequence
αm,n of observations (s, a, r, s′) during an episode, and a
meta-rollout to refer to the rollout α̂m consisting of a subset
of the observations in {αm,1, · · · , αm,Nm

}, where Nm is
the total number of episodes in meta-episode m. In par-
ticular, α̂m consists of observations (s, a, r, s′) where the
UCB policy π̂ was used; our algorithm uses π̂ in a way that
ensures that α̂m is equivalent to a single rollout sampled
from the MDP while exclusively using π̂.

At a high level, at the beginning of each episode k, our
algorithm constructs the baseline policy π̄ using the cur-
rent rollouts U = {α1, · · · , αk−1}. Furthermore, at the
beginning of each meta-episode m, our algorithm con-
structs the UCBVI policy π̂ using the current meta-rollouts
Û = {α̂1, · · · , α̂m−1}. Then, it obtains a sequence of roll-
outs using π̃, which combines the current π̄ and π̂ to explore
uniformly conservatively. It does so in a way that it can
“stitch” together portions of the rollouts using π̂ into a single
rollout α̂m whose distribution equals the distribution over
rollouts induced by using π̂. In other words, α̂m is equiva-
lent to using π̂ for a single episode. Thus, each meta-rollout

of our algorithm corresponds to a single UCBVI episode.
As long as the number of episodes per meta-episode is not
too large, we obtain similar regret as UCBVI. We detail our
algorithm below.

Algorithm 1 Uniformly Conservative UCBVI
procedure UNIFCONSERVUCBVI(M,N, δ)

Initialize rollout history U ← ∅
Initialize meta-rollout history Û ← ∅
for m ∈ N do

Compute π̂ using Û
Initialize target state s′ ← s1

for n ∈ N do
Compute π̄, V̂ (π̄), and Q̄(π̄) using U
Obtain a rollout αm,n using z1 = (s′, 0), σ as

in (4), and π̃ as in (5), and add it to U
Update s′ to be the next target state, or break

if done (and terminate if |U | ≥ N )
end for
Construct α̂m from αm,1, · · · , αm,Nm

and add it
to Û

end for
end procedure

Uniformly conservative exploration. Our algorithm en-
sures uniformly conservative exploration by using the policy
internal state to keep track of the reward deficit. In particular,
suppose we have V̂ (π̄)

t satisfying V̂ (π̄)
t (s) ≥ V

(π̄)
t (s) and

Q̄
(π̄)
t satisfying Q̄(π̄)

t (s, a) ≤ Q
(π̄)
t (s, a) with high proba-

bility; then, we use internal state z1 = 0 and

σt(s, z, a) = z + max{V̂ (π̄)
t (s)− Q̄(π̄)

t (s, a), 0}

= z + V̂
(π̄)
t (s)− Q̄(π̄)

t (s, a),

where the second equality follows since we always have
V̂

(π̄)
t (s) ≥ Q̄

(π̄)
t (s, a). In particular, zt ≥ z∗t with high

probability. Then, our algorithm switches to π̄ as soon as
zt > η/2 (i.e., zt−1 ≤ η/2)—i.e., it uses the shield policy

π̃t(s, z) =

{
π̂t(s) if zt ≤ η/2
π̄t(s) otherwise,

where π̂ is the current UCBVI policy. Thus, we have

z∗t ≤ zt ≤ zt−1 + η/2 ≤ η,

where the second inequality follows by Assumption 2.3.
Since using π̄ does not increase the reward deficit, z∗H ≤ η,
so (1) holds—i.e., π̃ ensures the exploration constraint with
high probability.

Meta-episodes. As defined, π̃ implements the naı̈ve strat-
egy of using π̂ at the beginning of each episode, and switch-
ing to π̄ if it can no longer satisfy the exploration constraint.
However, as discussed above, this strategy may explore the
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state space in a biased way, accruing linear regret. Instead,
we modify π̃ to construct a single UCBVI episode (called
a meta-episode) across multiple actual episodes, which en-
sures exploration equivalent to UCBVI. We denote such a
meta-episode by m ∈ [M ] and an episode in meta-epsiode
m by n ∈ [Nm] (i.e., there are Nm episodes in m, so
we have N =

∑M
m=1Nm total episodes); we index our

episodes by (m,n) instead of k.

At a high level, in the first episode of a meta-episode m (i.e.,
n = 1), we use π̂ from the beginning. If π̃ uses π̂ for the
entire episode, then this single episode is equivalent to a
UCBVI episode, so we are done. Otherwise, we switch to
using π̄ at some step t (i.e., at state sm,1,t). Then, in the
next episode, we initially use π̄ until some step t′ such that
sm,2,t′ = sm,1,t; at this point, we switch to π̂ until we have
exhausted our exploration budget. If we do not encounter
sm,1,t, then we try again in the next episode; since the MDP
is ergodic, we are guaranteed to find sm,1,t after a few tries
with high probability. We continue this process until we
have used π̂ forH steps (i.e., a full UCB episode). Formally,
we augment the internal state of our policy with the target
state s from which we want to continue using π̂m (or s1 for
the initial episode), so z = (s′, ζ) ∈ S × R. In particular,
we let

zm,n,1 =

{
(s1, 0) if n = 1

(s′m,n, 0) otherwise,
(3)

where s′m,n is the target state for episode n—i.e., the state
sm,n′,t at which we switched to π̄ for some n′ < n, such
that we did not encounter sm,n′,t in episodes n′ < n′′ < n.
Next, we have

σt

(
s, (s′, ζ), a

)
=

{
(s′, 0) if s′ 6= ∅ and s′ 6= s(
∅, ζ + V̂

(π̄)
t (s)− Q̄(π̄)

t (s, a)
)

otherwise.

(4)

That is, the internal state remains z = (s′, 0) until encoun-
tering the target state s′; at this point, it becomes (∅, 0) and
starts accruing reward deficit as before. Finally, we have

π̃t

(
s, (s′, ζ)

)
=

{
π̂t(s) if s′ = ∅ and ζ ≤ η/2
π̄t(s) otherwise,

(5)

i.e., we use the UCBVI policy π̂ if we have reached the
target state s′ and do not risk exceeding our exploration
budget; otherwise, we use the backup policy π̄.

Finally, a meta-episode terminates once we have used π̂ at
least H times across the rollouts αm,1, · · · , αm,n; in this
case, we have n = Nm episodes in meta-episode m. Then,
our algorithm constructs the corresponding meta-rollout α̂m
by concatenating the portions of αm,1, · · · , αm,n that use
π̂. In the very last episode αm,n, we may continue using π̂

even after we have obtained the necessary H steps using π̂;
we ignore the extra steps so α̂m is exactly H steps long.

Policy construction. Finally, we describe how our algo-
rithm constructs the quantities Q̄(π̄), V̂ (π̄)

t (s), π̄, and π̂. The
constructions are based on the UCBVI algorithm; in partic-
ular, note that on step m, Û is equivalent to a set of m− 1
UCBVI rollouts, so we can use it to construct a UCBVI
policy π̂ for the mth episode.3 In particular, we construct
π̂ by estimating the transitions and rewards based on the
data collected so far (i.e., the tuples (s, a, r, s′) collected on
steps using the UCBVI policy, so a = π̂(s), r = R(s, a),
and s′ ∼ P (· | s, a)), to obtain

P̂ (s′ | s, a) =
|{(s, a, ·, s′) ∈ U}|

N(s, a)

R̂(s, a) =

∑
(s,a,r,·)∈U r

N(s, a)

where N(s, a) = |{(s, a, ·, ·) ∈ U}| is the number of obser-
vations of state-action pair (s, a) in the data collected so far.
Then, we use value iteration to solve the Bellman equations

Q̂∗t (s, a) = R̂′(s, a) + γ ·
∑
s′∈S

P̂ (s′ | s, a) · V̂ ∗t+1(s′)

V̂ ∗t (s) = max
a∈A

Q̂∗t (s, a),

where R̂′(s, a) = R̂(s, a) + b(s, a;N(s, a)), where
b(s, a;N) = 4H

√
SL/max{1, N} is a bonus term, and

where L = log(5SAH
∑M
m=1Nm/δ). Finally, we take

π̂t(s) = arg maxa∈A Q̂
∗(s, a).

We construct Q̄(π̄) and V̂ (π̄) similarly. For Q̄(π̄), we use the
above strategy except we subtract the bonus—i.e., letting
R̄′(s, a) = R̂(s, a)− b(s, a;N(s, a)), we have

Q̄∗t (s, a) = R̄′(s, a) + γ ·
∑
s′∈S

P̂ (s′ | s, a) · V̄ ∗t+1(s′)

V̄ ∗t (s) = max
a∈A

Q̄∗t (s, a).

Then, we take π̄t(s) = arg maxa∈A Q̄
∗
t (s, a). Finally, for

V̂ (π̄), we add the bonus, but use value iteration for policy
evaluation instead of policy optimization—i.e.,

Q̂
(π̄)
t (s, a) = R̂′(s, a) + γ ·

∑
s′∈S

P̂ (s′ | s, a) · V̂ (π̄)
t+1(s′)

V̂
(π̄)
t (s) = Q̂

(π̄)
t (s, π̄(s)).

Deep reinforcement learning. We can straightforwardly
adapt our algorithm to MDPs with continuous states using
deep reinforcement learning. To this end, we replace the

3By only using meta-episodes to construct π̂, the meta-episodes
exactly mimic the execution of UCBVI; in practice, we can use
the entire dataset U to construct π̂.
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conservative Q function Q̄ using the Q function learned
via conservative Q-learning (CQL) (Kumar et al., 2020);
we replace the optimistic value function V̂ using a value
function learned via deep Q-learning with an optimistic
bonus. Note that the MDP may in general never return
to exactly the same state (since the states are continuous);
instead, we check if the current state approximately matches
(e.g., within a small distance) the target state s′. Our HIV
experiment successfully implements this approach.

4 THEORETICAL GUARANTEES

All our results are conditioned on a high-probability event E
that (i) our confidence sets around the estimated transitions
P̂ and rewards R̂ hold, and (ii) we find the target state s′ in a
reasonable number of episodes (see Lemma 4.7). This event
holds with probability at least 1− δ; see Appendix A.1.

First, we prove our algorithm satisfies our exploration con-
straint.

Theorem 4.1. On event E , Algorithm 1 satisfies (1) for all
k ∈ [N ].

Proof. First, we show that zt ≤ η for all t ∈ [H]. Consider
following cases at step t: (i) if π̃ uses π̂, then zt ≤ η/2, (ii)
if π̃ switches to π̄ on step t, then zt ≤ zt−1 + η/2 ≤ η, and
(iii) otherwise, zt = zt−1 remains the same, so the claim
follows by induction. As a consequence, it suffices to show
that zt ≥ z∗t on event E . To this end, the following lemma
says that the high probability upper and lower bounds V̂ (π̄)

and Q(π̄)
t (s, a) used to construct zt are correct.

Lemma 4.2. On event E , for all s ∈ S, a ∈ A, k ∈ [N ],
and t ∈ [H], we have (i) Q̄(π)

k,t (s, a) ≤ Q
(π)
t (s, a), and (ii)

V̂
(π)
k,t (s) ≥ V (π)

t (s).

This result is based on standard arguments; we give a proof
in Appendix A.2. Now, by Lemma 4.2,

zt ≥
t∑

τ=1

max
{
V (π̄k)
τ (sk,τ )−Q(π̄k)

τ (sk,τ , ak,τ ), 0
}

= z∗t

on event E , so the claim holds.

Next, we prove that our algorithm has sublinear regret.

Theorem 4.3. On event E , the cumulative expected regret
of Algorithm 1 is

ρ ≤ 20HL
√
SAHN + 250H2S2AL2

+
960H3S

η

√
2ALHN,

where L = log(5SAH2MN), and where the expectation
is taken over the randomness during all of the rollouts taken.

Furthermore, letting T = H
∑M
m=1Nm = HN be the

total number of time-steps by the end of meta-episode M ,
the regret satisfies ρ = Õ(H3

√
SAT ).

Proof. The main idea is to bound the regret by the regret
of the meta-rollouts (which correspond to UCBVI rollouts),
plus the regret of the shield policy π̃ on the remaining steps—
i.e., ρ = ρ̂+ ρ̄, where

ρ̂ = E

[
M∑
m=1

V ∗1 (s1)− V (π̂m)
1 (s1)

]

ρ̄ = E

[
M∑
m=1

Nm∑
n=1

(V ∗1 (s1)− V (π̄m,n)
1 (s1))1((n, t) 6∈ α̂m)

]
,

where (n, t) 6∈ α̂m denotes that the tth step (sm,n,t, am,n,t)
of episode n is not included in meta-rollout α̂m. By equiva-
lence to UCBVI, ρ̂ is bounded by the UCBVI regret:

Lemma 4.4. On event E , we have

ρ̂ ≤ 20HL
√
SAHN + 250H2S2AL2.

The proof is based on the UCBVI regret analysis; for com-
pleteness, we give a proof in Appendix A.3. Thus, we focus
on bounding ρ̄. First, we have the straightforward bound,

ρ̄ ≤ E

[
M∑
m=1

H(Nm − 1)

]
, (6)

which follows since the maximum regret during a single
episode is H (since the rewards are bounded by 1), and
since we can also omit the steps for which (n, t) ∈ α̂m, of
which there are exactly H .

As a consequence, the key challenge in bounding ρ̄ is prov-
ing that the number of episodes Nm in a meta-episode be-
comes small—in particular, once Nm = 1, then the entire
(single) rollout αm,1 is part of the meta-rollout α̂m, so the
second term in the regret is zero.

To prove that Nm becomes small, we note that for any
episode, one of the following conditions must hold: (i) the
exploration budget is exhausted—i.e., z∗H ≥ η/2, (ii) the
algorithm explores using π̂ for at least H/4 time steps, or
(iii) the episode does not reach the target state s′ in the first
3H/4 time steps; in particular, if (iii) does not hold, then
either the episode uses π̂ for the final H/4 steps of that
episode (so (ii) holds) or the exploration budget is exhausted
(so (i) holds). We let N1

m, N
2
m, N

3
m denote the number

of episodes that satisfy the three respective cases in meta-
episode m; note that either Nm = 1 (i.e., always use the
UCBVI policy) or Nm = N1

m +N2
m +N3

m. We bound the
three possibilities separately. First, we show that number of
episodes N1

m in case (i) is bounded by the UCBVI regret
(i.e., the regret of the meta-episode), which is sublinear.
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Lemma 4.5. On event E , we have

N1
m ≤

2

η

H∑
t=1

V̂
(π̂m)
t (ŝm,t)− Q̄(π̄m,n)

t (ŝm,t, π̂(ŝm,t)).

where L = log(5SAH
∑M
m=1Nm/δ), and Nm(s, a) is the

total number of observations of the state-action pair (s, a)
prior to meta-episode m.

Intuitively, this lemma follows since if our algorithm ex-
hausts the exploration budget, then it explores sufficiently;
thus, the number of times N1

m that the exploration budget
is exhausted cannot be too large. We give a proof in Ap-
pendix A.4. The left-hand side of the bound is essentially
(but not exactly) the UCBVI regret, and we can bound it
using the same strategy. In particular, we have:

Lemma 4.6. On event E , we have

M∑
m=1

H∑
t=1

V̂
(π̂m)
t (ŝm,t)− Q̄(π̄m,nt )

t (ŝm,t, π̂(ŝm,t))

≤ 12H2S
√
ALHN.

The proof is based on the same strategy as UCBVI, so we
defer it to Appendix A.5. Note that we have summed over
meta-episodes m ∈ [M ]; later, we use Lemma 4.6 to di-
rectly bound

∑M
m=1N

1
m. Next, to bound N2

m, note that we
can use π̂ for H/4 time steps in at most four episodes, since
at the end of the fourth episode we would have a complete
UCBVI episode (which has length H); thus, N2

m ≤ 4. Next,
we use the following result to bound N3

m.

Lemma 4.7. On event E , for any state s ∈ S, a rollout
using π̃ will reach state s within 3H/4 time steps after at
most 6 log(1/δ) episodes.

This result follows applying Markov’s inequality in con-
junction with Assumption 2.2, which says the MDP M is
ergodic; thus, it visits s with high probability early in the
rollout. We give a proof in Appendix A.6. Finally, we have
the following overall bound:

Lemma 4.8. On event E , we have

Nm ≤ max{30N1
m log(1/δ), 1}.

This result follows by the previous lemmas; we give a proof
in Appendix A.7. In summary, we have

ρ̄ ≤ 30H log(1/δ)E

[
M∑
m=1

N1
m

]
≤ 960H3S

η

√
2ALHN,

(7)

where the first inequality follows by combining (6) with
Lemma 4.8 (which implies Nm − 1 ≤ 30 log(1/δ)N1

m),
and the second follows from Lemmas 4.5 & 4.6. Finally,
Theorem 4.3 follows by combining (7) and Lemma 4.4.

Table 1: HIV Treatment: maximum discounted return of
our approach vs. CQL and ε-greedy Q-learning over 1,000
episodes. Numbers are in the millions scale (i.e., ×106).

ALGORITHM MAX DISCOUNTED RETURN

Ours Budget = 40 3.84± 0.04
Ours Budget = 60 3.72± 0.09
Ours Budget = 100 3.78± 0.03
CQL 3.75± 0.09
ε-greedy Q-learning 3.82± 0.04

5 EXPERIMENTS

We compare the performance and exploration constraint
violations of our algorithm and baseline algorithms on two
tasks. We give details on the experimental setup in Ap-
pendix B.

Sepsis management. To validate our approach in a real-
istic setting where excessive exploration on individuals is
especially harmful, we simulate learning a sepsis treatment
policy on the MIMIC-III dataset. Sepsis is the body’s acute
response to infection that can lead to organ dysfunction,
tissue damage, and death. It is the leading cause of hospi-
talization in the U.S. and the third leading cause of death
worldwide. The management of intravenous fluids and vaso-
pressors are crucial in treatment, but current clinical practice
is shown to be suboptimal. To develop a more efficient treat-
ment strategy, we can model the problem as an MDP and
apply reinforcement learning algorithms. The states are
aggregated patient data, and rewards reflect the patient’s
outcome after medication doses (Komorowski et al., 2018).

Figure 1 (left) compares the performance of our algorithm
with the UCBVI baseline and a conservative benchmark
CUCBVI (Garcelon et al., 2020). Our results are averaged
over at least 4 trials. The regret of our algorithm converges
at similar rates as UCBVI and CUCBVI, and our regret
moves closer to UCBVI and CUCBVI as the exploration
budget increases. Figure 1 (right) shows that our algorithm
satisfies our exploration constraint most of the time for all
exploration budgets, while UCBVI and CUCBVI violate
the constraint significantly more even for relatively large
exploration budgets. In this setting, each episode represents
a patient’s treatment cycle, so each constraint violation indi-
cates a patient has received a failed treatment or experienced
an adverse outcome. Thus, it is highly undesirable to violate
the constraint even for a few episodes.

HIV Treatment. Next, we consider learning an optimal
HIV treatment based on the simulation in Ernst et al. (2006).
Acquired immunodeficiency syndrome (AIDS) is a chronic
and life-threatening disease caused by HIV. By 2018, there
were 36.9 million people living with HIV worldwide and
nearly 1 million death caused by AIDS annually (Schwetz
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Figure 1: Sepsis management: regret (left) and exploration constraint violations (right) of our approach with different
exploration budgets vs. UCBVI and CUCBVI.

Figure 2: HIV treatment: discounted return (top) and exploration constraint violations (bottom) of our approach (green)
with different exploration budgets vs. deep Q-learning (red).

and Fauci, 2019). To design an optimal drug prescription
policy for HIV-infected patients, prior work formulates the
problem as a continuous-state MDP that tracks patients’
physiological responses to different classes of drugs. We
use our algorithm adapted to deep reinforcement learning;
our implementation builds on Killian et al. (2017).

Figure 2 (up) shows that the performance of our algorithm is
comparable to that of Q learning. Figure 2 (down) shows the
number of exploration constraint violations of Q learning
and our algorithm as a function of the episode. Our results
are averaged over at least 9 trials. As can be seen, our algo-
rithm significantly reduces violations compared to vanilla Q
learning, while reducing rewards only negligibly. We use
conservative Q learning (CQL) as a baseline to our approach,
since uniformly conservative exploration is always guaran-
teed for CQL under our definition. Table 1 shows that our
algorithm improves the maximum discounted return over
CQL via carefully planned exploration instead of always
being conservative. These results show that our algorithm
successfully extends empirically to continuous-state MDPs.
We discuss the extension in more detail in Appendix B.

6 CONCLUSION

We have proposed a novel reinforcement learning algorithm
that ensures close performance compared to our current
knowledge uniformly across every step of every episode
with high probability. We derive assumptions on the MDP
under which both uniformly conservative exploration and
sublinear regret can be achieved. Our theoretical results
show that the price of uniformly conservative exploration in
learning is negligible—i.e., a constant, T -independent factor.
Our experiments demonstrate that our algorithm can achieve
similar performance to state-of-the-art approaches—even in
settings with continuous state spaces—while significantly
reducing excessive exploration on individual episodes. Our
work has ethical considerations insofar as we are proposing a
way to reduce the harm of reinforcement learning in practice.
Before deploying our approach in any domain, it is critical
to ensure that the algorithm does not harm the individuals it
impacts, either through excessive exploration (the focus of
this work) or other context-specific factors.
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A Proofs for Section 4

A.1 High probability event

We first introduce the high probability event E under which the concentration inequalities described in the policy construction
and in UCBVI-CH hold. Let E1,δ be the high probability event under which the UCBVI-CH regret analysis holds. This
event E1,δ is defined in the equation on the bottom of page 16 in the appendices of Azar et al. (2017). The proof that E1,δ
holds with probability at least 1− δ is proved in the subsequent Lemma 1. We then define

cp(n) := 2

√
SL

max{1, n}
,

cr(n) := 2

√
L

max{1, n}
.

Let P denote the set of all probability distributions on the states S, then construct the confidence sets for every k = 1, . . . , N
and (s, a) ∈ S ×A

Bkp (s, a) :=
{
R̃(· | s, a) : |R̃(s, a)−R(s, a)| ≤ cr(Nk(s, a))

}
,

Bkr (s, a) :=
{
P̃ (· | s, a) ∈ P :

∥∥∥P̃ (· | s, a)− P (· | s, a)
∥∥∥

1
≤ cr(Nk(s, a))

}
.

Next, we define the random event E2,δ

E2,δ :=
⋂

(s,a)∈S×A

⋂
k∈[N ]

{
P̂k(· | s, a) ∈ Bkp (s, a)

}{
R̂k(s, a) ∈ Bkr (s, a)

}
.

where Nk(s, a) is the number of observations of state-action pair (s, a) up to episode k. Finally, letting E := E1,δ ∩ E2,δ , we
conclude that E holds with probability at least 1− 2δ. Indeed,

Pr(Ec2,δ) ≤
∑
s,a

∑
k

2δ

5NSA
≤ δ

and the claim follows from a union bound.

A.2 Proof of Lemma 4.2

Proof. First, we prove claim (i). We show by induction that Q̄(π)
k,t is indeed a lower bound on Q(π)

t , the real Q functions.
Define the sets

Ω̄
(π)
k,t = {Q̄(π)

i,j ≤ Q
(π)
j ,∀(i, j), i ∈ [N ], j ∈ [H], i < k ∨ (i = k ∧ j > t)}

We want to show that the set of events {Ω̄(π)
k,t }k∈[K],t∈[H] hold under the event E .

We proceed by induction. For t = H , by definition, Q̄(π)
k,H = Q

(π)
H , so Q̄(π)

k,t ≤ Q
(π)
t holds. Now, assuming Q̄(π)

k,t+1 ≤ Q
(π)
t+1

holds, we want to show that Q̄(π)
k,t ≤ Q

(π)
t also holds. To this end, note that

Q
(π)
t (s, a)− Q̄(π)

k,t (s, a) = bk(s, a) + P (· | s, a)V
(π)
t+1 − P̂ (· | s, a)V̄

(π)
k,t+1 +R(s, a)− R̂(s, a)

= bk(s, π(s)) +
(
P (· | s, a)− P̂ (· | s, a)

)
V

(π)
t+1(s)

+ P̂ (· | s, a)
(
V

(π)
t+1 − V̄

(π)
k,t+1

)
(s) +R(s, a)− R̂(s, a)

= bk(s, π(s)) +
(
P (· | s, a)− P̂ (· | s, a)

)
V

(π)
t+1(s)

+ P̂
(
· | s, a)(Q

(π)
t+1 − Q̄

(π)
k,t+1

)
(s, π(s)) +R(s, a)− R̂(s, a)

≥ bk(s, π(s)) +
(
P (· | s, a)− P̂ (· | s, a)

)
V

(π)
t+1(s) +R(s, a)− R̂(s, a)
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where we use the induction hypothesis in the last inequality. The event E , by Hölder’s inequality, implies that∣∣∣(P (· | s, a)− P̂ (· | s, a)
)
V

(π)
t+1(s) +R(s, a)− R̂(s, a)

∣∣∣
≤ ‖P (· | s, a)− P̂ (· | s, a)‖1‖V (π)

t+1‖∞ + 2
√
L/max{1, Nk(s, π(s))}

≤ 2H
√
SL/max{1, Nk(s, π(s))}+ 2

√
L/max{1, Nk(s, π(s))}

≤ bk(s, π(s))

as claimed. Next, we prove claim (ii), again by backwards induction. Define the sets

Ω̂
(π)
k,t = {V̂ (π)

i,j ≥ V
(π)
j ,∀(i, j), i ∈ [N ], j ∈ [H], i < k ∨ (i = k ∧ j > t)}.

We want to show that the set of events {Ω̂(π)
k,t }k∈[K],t∈[H] hold under the event E . Again we proceed by induction. By

definition, V̂ (π)
k,H = V

(π)
H . Assuming V̂ (π)

k,t+1 ≥ V
(π)
t+1 holds, we want to show that V̂ (π)

k,t ≥ V
(π)
t also holds. To this end, note

that

V̂
(π)
k,t (s)− V (π)

t (s) = bk(s, π(s)) + P̂
(π)
k V̂

(π)
k,t+1(s)− P (π)V

(π)
t+1(s) + R̂(s, π(s))−R(s, π(s))

= bk(s, π(s)) + (P̂
(π)
k − P (π))V

(π)
t+1(s) + P̂

(π)
k (V̂

(π)
k,t+1 − V

(π)
t+1)(s)

+ R̂(s, π(s))−R(s, π(s))

≥ bk(s, π(s)) + (P̂
(π)
k − P (π))V

(π)
t+1(s) + R̂(s, π(s))−R(s, π(s))

where we use the induction hypothesis in the last inequality. The event E , by Hölder’s inequality, implies that

|(P̂ (π)
k − P (π))V

(π)
t+1(s) + R̂(s, π(s))−R(s, π(s))|

≤ ||P̂ (π)
k − P (π)||1||V (π)

t+1||∞ + 2
√
L/max{1, Nk(s, π(s))}

≤ 2H
√
SL/max{1, Nk(s, π(s))}+ 2

√
L/max{1, Nk(s, π(s))}

≤ bk(s, π(s))

as claimed.

A.3 Proof of Lemma 4.4

Proof. Note that

ρ̂ := E

[
M∑
m=1

V ∗1 (s1)− V (π̂m)
1 (s1)

]

=

M∑
m=1

∑
(n,t)∈α̂m

E [V ∗t (sm,n,t)−Q∗t (sm,n,t, π̂(sm,n,t))]

=

M∑
m=1

H∑
t=1

E [V ∗t (ŝm,t)−Q∗t (ŝm,t, π̂(ŝm,t))]

where the last equality follows after relabeling the steps in the UCBVI pseudo-episodes. We then apply the same argument
in the proof of Theorem 1 in Azar et al. (2017). Note that the pigeon-hole principle only works if we take the total time steps
in the theorem to be the total time steps of the whole M meta-episodes. Therefore, the desired bound holds with probability
at least 1− δ.

A.4 Proof of Lemma 4.5

Proof. First, we sum the condition z∗m,n,H ≥ η/2 over episode n ∈ [Nm], which gives

N1
m ·

η

2
≤

Nm∑
n=1

z∗m,n,H =

Nm∑
n=1

H∑
t=1

max
{
V

(π̄m,n)
t (sm,n,t)−Q(π̄m,n)

t (sm,n,t, π̂(sm,n,t)), 0
}
.



Uniformly Conservative Exploration in Reinforcement Learning

Now, note that only when am,n,t 6= π̄m,n(sm,n,t), V (π̄m,n)
t (sm,n,t) 6= Q

(π̄m,n)
t (sm,n,t, am,n,t)—i.e., when (sm,n,t, am,n,t)

is part of the meta-rollout α̂m. Thus, we can restrict the sum to steps in α̂m:

N1
m ·

η

2
≤

H∑
t=1

max
{
V

(π̄m,nt )
t (ŝm,t)−Q(π̄m,nt )

t (ŝm,t, π̂(ŝm,t)), 0
}

≤
H∑
t=1

V̂
(π̄m,nt )
t (ŝm,t)− Q̄(π̄m,nt )

t (ŝm,t, π̂(ŝm,t))

≤
H∑
t=1

V̂
(π̂m)
t (ŝm,t)− Q̄(π̄m,nt )

t (ŝm,t, π̂(ŝm,t)).

Here, the second line follows since by Lemma 4.2, V̂ (π̄) is an upper bound and Q̄(π̄) is a lower bound on event E , and
since V̂ (π̄)

t (s) ≥ V̄
(π̄)
t (s) ≥ Q̄

(π̄)
t (s, a) for any a since π̄ by definition of π̄. Finally, the third line follows since π̂ is

optimistic.

A.5 Proof of Lemma 4.6

Proof. By Bellman equations,

V̂
(π̂m)
t (ŝm,t)− Q̄(π̄m,nt )

t (ŝm,t, π̂(ŝm,t)) =

(
R̂(ŝm,t, π̂(ŝm,t)) +

[
P (π̂)

]T
V̂

(π̂)
t+1(ŝm,t+1) + bm(ŝm,t, π̂(ŝm,t))

)
−
(
R̂(ŝm,t, π̂(ŝm,t)) +

[
P (π̂)

]T
V̄

(π̄)
t+1(ŝm,t+1)− bm(ŝm,t, π̂(ŝm,t))

)
≤ max
q∈Bm

p

(q − p∗)TV̂ (π̂)
t+1(ŝm,t+1)− min

q∈Bm
p

(q − p∗)TV̄ (π̄)
t+1(ŝm,t+1)

+ 2bm(ŝm,t, π̂(ŝm,t)) + p∗T
(
V̂

(π̂)
t+1 − V̄

(π̄)
t+1

)
(ŝm,t+1).

We define

(a)m,t := max
q∈Bm

p

(q − p∗)TV̂ (π̂)
t (ŝm,t)− min

q∈Bm
p

(q − p∗)TV̄ (π̄)
t (ŝm,t)

(b)m,t := 2bm(ŝm,t, π̂(ŝm,t)).

Then, for each t, note that

V̂
(π̂)
t (ŝm,t)− V̄ (π̄)

t (ŝm,t) = V̂
(π̂)
t (ŝm,t)−max

a∈A
Q̄

(π̄)
t (ŝm,t, a) ≤ V̂ (π̂)

t (ŝm,t)− Q̄(π̄)
t (ŝm,t, π̂(ŝm,t)).

Thus, we have

V̂
(π̂)
t (ŝm,t)− Q̄(π̄)

t (ŝm,t, π̂(ŝm,t)) ≤ (a)m,t+1 + (b)m,t + p∗T
(
V̂

(π̂)
t+1 − Q̄

(π̄)
t+1(·, π̂)

)
(ŝm,t+1).

Continuing this argument, and noticing that by construction V̂ (π̂)
H (ŝm,H) = Q̄

(π̄)
H (ŝm,H , π̂(ŝm,H)) = 0, we have by

induction that

V̂
(π̂)
t (ŝm,t)− Q̄(π̄)

t (ŝm,t, π̂(ŝm,t)) ≤
H−t∑
`=0

((a)m,t+`+1 + (b)m,t+`)
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Summing over the whole UCBVI episode, under the event E , we have

H∑
t=1

V̂
(π̂m)
t (ŝm,t)− Q̄(π̄m,nt )

t (ŝm,t, π̂(ŝm,t))

≤
H∑
t=1

H−t∑
`=0

((a)m,t+`+1 + (b)m,t+`)

=

H∑
`=1

H∑
t=`

((a)m,t+1 + (b)m,t)

≤
H∑
`=1

H∑
t=1

(
4

√
SL

max{1, Nm(ŝm,t, âm,t)}
+ 8H

√
SL

max{1, Nm(ŝm,t, âm,t)}

)

= H

H∑
t=1

(
4

√
SL

max{1, Nm(ŝm,t, âm,t)}
+ 8H

√
SL

max{1, Nm(ŝm,t, âm,t)}

)

= 4H
√
SL (1 + 2H)

H∑
t=1

√
1

max{1, Nm(ŝm,t, âm,t)}

where L = log(5SAH
∑M
m=1Nm/δ). Then, summing over the M meta-episodes, we have

M∑
m=1

H∑
t=1

V̂
(π̂m)
t (ŝm,t)− Q̄(π̄m,nt )

t (ŝm,t, π̂(ŝm,t))

≤ 4H
√
SL(1 + 2H)

M∑
m=1

H∑
t=1

√
1

max{1, Nm(ŝm,t, âm,t)}

≤ 4H
√
SL(1 + 2H)

∑
s,a

NM (s,a)∑
n=1

√
1

n

≤ 12H2S
√
ALHN.

A.6 Proof of Lemma 4.7

Proof. Under our assumption that the MDP is ergodic, let

Γ = max
s=s′

max
π

E[Tπ(s, s′)] ≤ H

2

be the worst-case diameter. Then given any initial state s′, target state s and shield policy π̃, the expected exit time

E[T π̃(s′, s)] ≤ Γ.

By Markov’s inequality,

Pr(T π̃(s′, s) ≥ αH) ≤ 1

2α
.

Therefore, with probability at least 1− ( 1
2α )N , during N episodes, there exists one where the MDP will reach s from s′

using π̃ within αH steps. Letting N = log( 1
δ )/ log(2α) and α = 3/4 completes the proof.

A.7 Proof of Lemma 4.8

Proof. If Nm = 1, then the bound trivially holds. Otherwise, note that we must have N1
m ≥ 1, since if Nm 6= 1

then we must have exhausted the exploration budget during the first episode n = 1. Next, by Lemma 4.7, we have
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N3
m ≤ (N1

m +N2
m) max{6 log(1/δ)− 1, 0}—i.e., it is bounded by the number of “successful” episodes N1

m +N2
m times

the maximum number of tries max{6 log(1/δ) − 1, 0} before finding a successful episode. Together with the fact that
N2
m ≤ 4, we have

Nm = N1
m +N2

m +N3
m

≤ N1
m + 4 + (N1

m + 4) max{6 log(1/δ)− 1, 0}
≤ 5N1

m + 5N1
m max{6 log(1/δ)− 1, 0}

≤ 30N1
m log(1/δ),

where on the second line, we have used the fact that we are considering the case N1
m ≥ 1, which implies N1

m + 4 ≤ 5N1
m.

The claim follows.

B Experiment Details

Sepsis management. We adopt the MDP trained in Komorowski et al. (2018) as the underlying MDP we need to learn, set
the horizon to H = 20, and run all tests over N = 50, 000 total episodes. For the sake of completeness, we describe the
detailed construction of the MDP as follows. A set of 750 mutually exclusive states encode patients’ health states constructed
by clustering patients’ data. The actions are the dose prescribed of intravenous fluids and vasopressors converted into 25
discrete decisions, with the dose of each treatment discretized into one of five possible dose levels. The transition matrix
describes the state transition dynamics, which can be computed via taking sample averages. A positive reward is given at
the end of each patient’s treatment cycle if the patient survives, and a negative reward is issued if the patient dies. Note
that the MDP is hidden to our algorithm, UCBVI and CUCBVI. We also use an offline dataset of 500 randomly generated
past episodes to warm-start the algorithms, and then run all algorithms for N = 50, 000 online episodes respectively. We
compute the regret and number of exploration constraint violations corresponding to various exploration budgets η lying
between 0.078 and 0.119. To account for the randomness of each training, we run the experiment for each η at least four
times and take the average over the regret and constraint violations. The graphs shown in Figure 1 are plotted according to
the average values. We also compare our algorithm to CUCBVI introduced in Garcelon et al. (2020)

HIV treatment. We build on the implementation in Killian et al. (2017). There are 6 state variables represented as a
6-dimensional continuous vector that encodes concentrations of 6 different cells, measured every five days to determine
the drug combination for the next five days. There are 4 actions corresponding to 2 drugs being activated or not, measured
every five days. In particular, these four on-off combinations of drug administration consist of: RTI (Reverse Transcriptase
Inhibitors) and PI (Protease Inhibitors) on, only RTI on, only STI on, RTI and PI off. The horizon is set to 200, which
correspond to 1,000 days of monitoring as the state of each simulated patient is observed and actions updated every five days.
The reward is a function of T-cell counts, free HIV viruses, anti-HIV immune response, and side effects. We collect 10,000
offline samples randomly before training, then run both CQL and our algorithm for N = 1, 000 online episodes respectively.
We plot the discounted reward and the number of exploration constraint violations corresponding to various exploration
budgets η lying between 40 and 100. Table 1 shows the comparison of maximum discounted returns of our algorithm versus
CQL, and ε-greedy Q-learning with an annealing ε schedule. We have additionally run soft actor-critic (SAC) for comparison,
but the SAC agent performs poorly in this environment and quickly gets stuck in a constant suboptimal policy. Compared to
ε-greedy, our algorithm significantly reduces the number of constraint violations without sacrificing performance.

We would like to note that our proposal to extend our algorithm to MDPs with continuous states are purely empirical, as the
extension does not satisfy our assumptions on tabular MDPs and will thus make theoretical analysis significantly harder,
taking it beyond the scope of this work. For future work, we are thinking about using linear function approximation to
model MDPs with continuous states and defining a “small distance” between states as similarity between linear features.

Inventory control. We consider a single-product stochastic inventory control problem based on Garcelon et al. (2020), but
with a finite horizon. At the beginning of each month t, the manager notes the current inventory of a single product, and
then decide the number of items to order from a supplier before observing the random demand. They have to account for the
tradeoff between the costs of keeping inventory and lost sales or penalties resulting from being unable to satisfy customer
demand. The objective is to maximize profit during the entire decision-making process.

The state space is the number of items in the inventory, S = {0, . . . ,M}, where M = 5 is the maximum capacity. The
action space is As = {0, . . . ,M − s} for each state s ∈ S. Given inventory state st at the beginning of month t, the number
of items at to order is determined by the manager. We assume that a time-homogeneous uniform distribution Dt generates
the random demand of each month t, and that the horizon is H = 20. The inventory at the beginning of month t+ 1 is given
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Figure 3: Inventory control: regret (left) and exploration constraint violations (right) of our approach with different
exploration budgets η vs. UCBVI.

by
st+1 = max{0, st + at −Dt}.

Next, we define the associated cost functions. We assume a fixed cost K = 2 for placing orders and a variable cost
c(u) = 2u that increases with the quantity ordered:

O(u) =

{
K + c(u) if u > 0

0 if u = 0.

The cost of maintaining an inventory of u units for a month is represented by the nondecreasing function h(u) = u. If the
demand is j units and sufficient inventory is available to meet the demand, the manager receives a revenue of f(j). Finally,
the reward is defined as r(st, at, st+1) = −O(at) − h(st + at) + f(st + at − st+1), where we take f(u) = 8u in our
experiments. We normalize the rewards so that they are supported in [0, 1]. We use an offline dataset of 1, 500 randomly
generated past episodes to warm-start the algorithms, and then compute the regret and number of exploration constraint
violations corresponding to various exploration budgets η. We use N = 50, 000 total episodes.

Figure 3 (a) shows that the regret of our algorithm starts out linearly increasing, since in the beginning the meta algorithm is
forced to switch to the baseline policy a lot in one meta-episode to satisfy the constraint. As historical data accrues, our
algorithm uses the UCBVI policy more frequently since its reward deficit decreases. At some point, our algorithm starts
to converge at a similar rate as UCBVI. Note that UCBVI converges faster since it ignores the exploration constraint and
can explore arbitrarily, even if some actions result in poor values. Figure 3 (b) shows the number of times the exploration
constraint is violated. Our algorithm almost always satisfies the constraint for all shown values of η, whereas UCBVI fails
to do so in a significant number of episodes, especially when η is small.

C Further Discussions

Contributions. Our main contributions are: (i) We propose a new notion of “uniformly conservative exploration” in
equation (1) for MDPs, (ii) we devise a novel “meta-episodic” online reinforcement learning algorithm to maintain this
exploration constraint, and (iii) we prove that our algorithm ensures uniformly conservative exploration while achieving
sublinear regret. Importantly, our “meta-episodic” strategy is both a novel algorithmic approach for ensuring unbiased
exploration, and also requires novel proof techniques to ensure bounded regret.

Related work. There has been a great deal of recent interest in safe reinforcement learning (Garcıa and Fernández, 2015),
although it has largely focused on guaranteeing safety rather than proving regret bounds (that guarantee convergence to an
optimal policy). Furthermore, most of these approaches focus on safety constraints in the form of safe regions, where the
goal is to stay inside the safe region (Li and Bastani, 2020). Such constraints are common in robotics, but less so for other
applications of reinforcement learning such as healthcare, education, and operations research. In contrast, our approach
studies a conservative exploration approach that focuses on avoiding underperforming an existing policy, which is more
applicable in these settings.
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