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Abstract

Motivated by both theory and practice, we study
how random pruning of the weights affects a neu-
ral network’s neural tangent kernel (NTK). In
particular, this work establishes an equivalence
of the NTKs between a fully-connected neural
network and its randomly pruned version. The
equivalence is established under two cases. The
first main result studies the infinite-width asymp-
totic. It is shown that given a pruning proba-
bility, for fully-connected neural networks with
the weights randomly pruned at the initializa-
tion, as the width of each layer grows to infin-
ity sequentially, the NTK of the pruned neural
network converges to the limiting NTK of the
original network with some extra scaling. If the
network weights are rescaled appropriately af-
ter pruning, this extra scaling can be removed.
The second main result considers the finite-width
case. It is shown that to ensure the NTK’s close-
ness to the limit, the dependence of width on the
sparsity parameter is asymptotically linear, as the
NTK’s gap to its limit goes down to zero. More-
over, if the pruning probability is set to zero (i.e.,
no pruning), the bound on the required width
matches the bound for fully-connected neural
networks in previous works up to logarithmic
factors. The proof of this result requires develop-
ing a novel analysis of a network structure which
we called mask-induced pseudo-networks. Ex-
periments are provided to evaluate our results.

1 INTRODUCTION

Can a sparse neural network achieve competitive perfor-
mance as a dense network? The answer to this question
can be traced back to the early work of (LeCun et al., 1990)
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which showed that pruning a fully-trained neural network
can preserve the original network’s performance while re-
ducing the inference cost. This led to many further devel-
opments in post-training pruning such as (Han et al., 2015).

However, such gain seems hard to be transferred to the
training phase until the discovery of the lottery ticket hy-
pothesis (LTH) (Frankle and Carbin, 2018). The LTH states
that there exists a sparse subnetwork inside a dense net-
work at the initialization stage such that when trained in
isolation, it can achieve almost matching performance with
the original dense network. However, the method they used
to find such a network is computationally expensive: they
proposed iterative magnitude-based pruning (IMP) with
rewinding which requires multiple rounds of pruning and
re-training (Frankle and Carbin, 2018; Frankle et al., 2019;
Chen et al., 2020). Subsequent work has been making
effort in finding good sparse subnetworks at initialization
with little or no training (Lee et al., 2018; Wang et al., 2019;
Tanaka et al., 2020; Frankle et al., 2020; Sreenivasan et al.,
2022b). Nonetheless, these methods suffer a degenerate
performance than IMP. Surprisingly, even random pruning,
albeit the most naive approach, has been observed to be
competitive for sparse training in practice (Su et al., 2020;
Frankle et al., 2020; Liu et al., 2022a).

On the theory side, a recent line of work (Malach et al.,
2020; Pensia et al., 2020; Sreenivasan et al., 2022a) proves
that there exists a subnetwork in a larger network at the
random initialization, that can match the performance of a
smaller trained network without further training. However,
finding such a subnetwork is computationally hard. Other
than that, little theoretical understanding of the aforemen-
tioned practical pruning method is established. Now, since
random pruning is the simplest (and cheapest) avenue to-
wards sparsity, if we can understand how good a random
pruned subnetwork could be, compared to the original un-
pruned network, then we can establish a “lower bound”-
type understanding on the effectiveness of neural network
pruning, compared to other sophisticated pruning options.

To understand the success of deep networks theoretically,
people have proved that running (stochastic) gradient de-
scent on a sufficiently overparameterized deep neural net-
work can rapidly drive the training error toward zero (Du
et al., 2018; Allen-Zhu et al., 2019; Du et al., 2019; Ji and
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Telgarsky, 2019; Lee et al., 2019; Zou et al., 2020), and
further, under some conditions, those networks are able to
generalize (Arora et al., 2019a; Cao and Gu, 2019). All the
aforementioned works either explicitly or implicitly estab-
lish that the neural network is close to its neural tangent
kernel (NTK) (Jacot et al., 2018), provided that the neural
network is sufficiently overparameterized. Further, if the
network width grows to infinity, this matrix converges to
some deterministic matrix under Gaussian initialization. In
addition, it is shown that the convergence and generaliza-
tion of the networks heavily depend on the condition num-
ber and the smallest eigenvalue of the NTK (Du et al., 2018,
2019; Arora et al., 2019a; Cao and Gu, 2019).

Motivated by the established theory on NTK and the recent
empirical observation that random pruning becomes par-
ticularly effective if the original network is wide and deep
(Liu et al., 2022a), we study the effect of randomly pruning
an overparameterized neural network in the NTK regime
by asking the following question:

How does random pruning affect the wide neural
network’s tangent kernel?

If we can understand and bound the difference between the
pruned network’s NTK and its unpruned version, then we
can hope for formalized results suggesting that the pruned
neural network can achieve fast convergence to zero train-
ing error and yield good generalization after training. For
practitioners, this perhaps surprising result is likely to bring
random pruning back to the spotlight of model compression
and efficient training, in our era when neural networks are
practically scaled a lot wider and deeper, say those gigantic
“foundational models” (Bommasani and et al., 2021).

Interestingly, we show that random pruning only incur lim-
ited changes to the neural network’s tangent kernel. We
now summarize the main contributions of this work:

• Asymptotic limit. The first result shows that pruning
does not change the NTK much, asymptotically. More
specifically, Theorem 3.1 states that given a pruning
probability, the NTK of the pruned network converges
to the limiting NTK of the original network at the ini-
tialization with some extra scaling factors depending
on the pruning probability, as the network width grows
to infinity sequentially. As a simple corollary, this
scaling can be removed by rescaling the weights after
pruning. Further, this sequential limit can be indeed
approached by increasing the width of the network.

• Non-asymptotic bound. The second main result
studies how large the network width needs to be to
ensure that the pruned network’s NTK is close to its
infinite-width limit. Theorem 3.5 shows an asymp-
totically linear dependence of the network width on
the sparsity parameter, as the gap between the pruned
network’s NTK and its limit goes down to zero. Fur-
ther, if the pruning probability is set to zero, our

width lower bound recovers the bound in (Arora et al.,
2019b) for fully-connected neural networks up to
some logarithmic factors. The proof of Theorem 3.5
requires developing novel analysis of a network struc-
ture that is closely related to the pruned network which
we called mask-induced pseudo-networks. We give
a detailed explanation in Section 5.2. We further vali-
date our theory experimentally in Section 6.1.

Although our result is about the networks at the initializa-
tion, Du et al. (2018); Arora et al. (2019b); Allen-Zhu et al.
(2019) suggested that the network is still closely related to
the NTK after training, provided that the network is suffi-
ciently overparameterized. Therefore, by further applying
the established analysis in the previous work, the equiva-
lence can still hold after training.

1.1 Related Work

Sparse Neural Networks in Practice. Since the discov-
ery of the Lottery Ticket Hypothesis (Frankle and Carbin,
2018), many efforts have been made to develop methods
to find good sparse networks with little overhead. Those
methodologies can be divided into two groups: static sparse
training and dynamic sparse training (Liu and Wang, 2023).

Static sparse training can be based on either random prun-
ing and non-random pruning. As for random pruning, every
layer can be uniformly pruned with the same pre-defined
pruning ratio (Mariet and Sra, 2015; He et al., 2017; Gale
et al., 2019) or the pruning ratio can be varied for differ-
ent layers such as Erdö-Rényi (Mocanu et al., 2018) and
Erdö-Rényi Kernel (Evci et al., 2020). For non-random
pruning, those methods usually prune network weights ac-
cording to some proposed saliency criteria such as SNIP
(Lee et al., 2018), GraSP Wang et al. (2019), SynFlow
Tanaka et al. (2020) and NTK-based score Liu and Zenke
(2020). On the other hand, dynamic sparse training (Mo-
canu et al., 2018; Liu et al., 2021a) explores the sparsity
pattern in a prune-and-grow scheme according to some
criteria (Mocanu et al., 2018; Mostafa and Wang, 2019;
Dettmers and Zettlemoyer, 2019; Evci et al., 2020; Ye et al.,
2020; Jayakumar et al., 2020; Liu et al., 2021b). Fur-
ther, the sparsity pattern can be learned by using sparsity-
inducing regularizer (Yang et al., 2020). Other ways of re-
ducing the computational cost include finding a good sub-
network and then fine-tuning (Sreenivasan et al., 2022b),
and transferring lottery tickets (Morcos et al., 2019; Chen
et al., 2021c). To understand the transferability of lottery
tickets, Redman et al. (2021) studied IMP via the renor-
malization group theory in physics. Based on this develop-
ment, people in practice use sparsity to improve robustness
(Chen et al., 2021b; Liu et al., 2022b; Ding et al., 2021) and
data efficiency (Chen et al., 2021a; Zhang et al., 2021).

Theoretical Study of The Lottery Ticket Hypothesis. On
the theory side, there are works proving that a small dense
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network can indeed be approximated by pruning a larger
network. Malach et al. (2020) proved that a target network
of width d and depth l can be indeed approximated by prun-
ing a randomly initialized network that is of a polynomial
factor (in d, l) wider and twice deeper even without fur-
ther training. Ramanujan et al. (2020) empirically verified
this stronger version of LTH. Later, Pensia et al. (2020)
improved the widening factor to a logarithmic bound, and
Sreenivasan et al. (2022a) proves that with a polylogarith-
mic widening factor, such a result holds even if the network
weights are binary. Unsurprisingly, all of the above results
are computationally hard to achieve. In addition, all these
works are based on a functional approximation argument
and don’t consider how pruning affects the training process
(and, subsequently, generalization).

Neural Tangent Kernels. Over the past few years, there
is tremendous progress on understanding training overpa-
rameterized deep neural networks. A series of works (Du
et al., 2018; Allen-Zhu et al., 2019; Du et al., 2019; Ji and
Telgarsky, 2019; Lee et al., 2019; Zou et al., 2020) have es-
tablished gradient descent convergence guarantee based on
NTK (Jacot et al., 2018). Further, under some conditions,
these networks are able to generalize (Arora et al., 2019a;
Cao and Gu, 2019). Yang (2019); Arora et al. (2019b) pro-
vided asymptotic and non-asymptotic proofs on the lim-
iting NTK. Further, algorithms for computing the tangent
kernels are developed for various architectures (Lee et al.,
2019; Arora et al., 2019b; Han et al., 2022). Other re-
lated works include studying how depth affects the diago-
nal of NTK (Hanin and Nica, 2019) and the smallest eigen-
value of NTK under certain data distribution assumption
(Nguyen et al., 2021). Overall, the neural tangent kernel
provides valuable, yet oversimplified, explanation on the
neural network’s success (Chizat et al., 2019).

One work in a similar spirit to ours is (Liao and Kyril-
lidis, 2022) which studies the convergence of training an
over-parameterized one-hidden-layer neural network with
sparse activation by gradient descent. Although both works
consider random pruning (or masking), our work is differ-
ent from theirs in a sense that the sparsity in our setting is
from pruning the weights instead of neurons whereas their
sparsity is obtained from masking neurons at the each step
of gradient descent. Further, we consider neural networks
of arbitrary depth and their work is focusing on the one-
hidden-layer neural networks. Note that for the problem
considered in this work, pruning (masking) neurons will be
trivial since it merely incur changes to the network width.

2 PRELIMINARIES

Notations. We use lowercase letters to denote scalars and
boldface letters and symbols (e.g. x) to denote vectors and
matrices. Element-wise product is denoted by ⊙ and ⊗
denotes the Kronecker product. Πx denotes the orthogonal

projection onto the vector space generated by x and ΠA

denote the orthogonal projection onto the column space of
A. We use diag(x) to denote a diagonal matrix where its
diagonals are elements from the vector x. Further, Õ, Θ̃, Ω̃
are used to suppress logarithmic factors in O,Θ,Ω.

2.1 Problem Formulation

Here we want to study the training dynamics of a sparse
sub-network in an ultra-wide neural network. For simplic-
ity, we first apply our analysis on fully-connected neural
networks. We denote by f(x) = f(θ,x) the output of
the full network, f̃(x) = f(θ ⊙ m,x) ∈ R the output of
a sparse sub-network obtained by random pruning where
θ ∈ RN denotes the network parameters, m ∈ RN is
the sparse mask and x ∈ Rd is the input. We distinguish
the output of each layer of the original full networks from
the sparse sub-networks by adding tilde to the symbols.
For simplicity, we assume the network outputs a scalar 1.
We assume that the sparse mask is obtained from sampling
each individual weight i.i.d. from a Bernoulli distribution
with probability α. Formally, let x ∈ Rd be the input, and
denote g̃(0)(x) = x and d0 = d. An L-hidden-layer fully
connected network can be defined recursively as:

f̃ (h)(x) =
(
W(h) ⊙m(h)

)
g̃(h−1)(x) ∈ Rdh ,

g̃(h)(x) =

√
cσ
dh

σ
(
f̃ (h)(x)

)
∈ Rdh , h = 1, 2, . . . , L,

where W(h) ∈ Rdh×dh−1 is the weight matrix in the h-
th layer, m(h) ∈ Rdh×dh−1 is the sparse mask for the
h-th layer σ : R → R is a coordinate-wise activation
function which we only consider ReLU activation in this
work and cσ =

(
Ez∼N (0,1)

[
σ(z)2

])−1
is used to normal-

ize the output of the activation. For ReLU, a simple cal-
culation shows cσ = 2. Let m = (m(1), . . . ,m(L+1))
and θ = (W(1), . . . ,W(L+1)) represents the masks and
weights in the network, respectively. All the weights W(h)

ij

are initialized i.i.d. from N (0, 1) and the masks m(h)
ij are

sampled i.i.d. from Bernoulli(α).

The NTK of the pruned network is given by

Θ̃(x,x′) =

〈
∂f̃(x)

∂θ
,
∂f̃(x′)

∂θ

〉
=

L+1∑
h=1

〈
∂f̃(x)

∂W(h)
,
∂f̃(x′)

∂W(h)

〉
.

(1)

We now compute the gradient of the pruned network. Note
that since the weights being pruned are staying at zero al-
ways during the training process, the gradient of the pruned
network is simply the masked gradient of the unpruned net-

1Without loss of generality, our analysis can be extended to
the vector-output case.
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work. Thus, its gradient is given by

∂f̃(x)

∂W(h)
=

(
b̃(h)(x)

(
g̃(h−1)(x)

)⊤)
⊙m(h), (2)

where b̃(h) is given by

b̃(L+1)(x) = 1 ∈ R,

b̃(h)(x) =√
cσ
dh

D̃(h)(x)(W(h+1) ⊙m(h+1))⊤b̃(h+1)(x) ∈ Rdh ,

(3)

and

D̃(h)(x) = diag
(
σ̇
(
f̃ (h)(x)

))
∈ Rdh×dh , h = 1, . . . , L.

Further, in order to give the infinite-width limit of the NTK
for the fully-connected neural networks we need to define
the following quantities: for h ∈ [L], define

Σ(0)(x,x′) = x⊤x′,

Λ(h)(x,x′) =

[
Σ(h−1)(x,x) Σ(h−1)(x,x′)
Σ(h−1)(x′,x) Σ(h−1)(x′,x′)

]
∈ R2×2,

Σ(h)(x,x′) = cσ E
(u,v)∼N (0,Λ(h))

[σ(u)σ(v)],

and

Σ̇(h)(x,x′) = cσ E
(u,v)∼N (0,Λ(h))

[σ̇(u)σ̇(v)],

where σ̇ denotes the derivative of ReLU: σ̇(x) = I(x > 0).
We define similar quantities of Σ(h) for randomly pruned
neural networks in Section 4. It can be shown that

Θ∞(x,x′) = lim
d1,d2,...,dL→∞

L+1∑
h=1

〈
∂f(θ,x)

∂W(h)
,
∂f(θ,x′)

∂W(h)

〉

=

L+1∑
h=1

(
Σ(h−1)(x,x′)

L+1∏
h′=h

Σ̇(h′)(x,x′)

)
.

3 MAIN RESULTS

In this section, we present the main results of our work. We
show that given the pruning probability, the NTK of the
pruned network is closely related to the limiting NTK of
the unpruned network, if the network is sufficiently wide.

Asymptotic Limit. We first present the asymptotic limit of
the pruned network as width grows to infinity.

Theorem 3.1 (The limiting NTK of randomly pruned net-
works). Consider an L-hidden-layer fully-connected ReLU
neural network. Suppose the network weights are initial-
ized from an i.i.d. standard Gaussian distribution and the
weights except the input layer are pruned independently

with probability 1 − α at the initialization. Assume the
backpropagation is computed by sampling an independent
copy of weights. Then, as the width of each layer goes to
infinity sequentially,

lim
d1,d2,...,dL→∞

Θ̃(x,x′) = αLΘ∞(x,x′),

where Θ̃ denotes the NTK of the pruned network and Θ∞
denotes the limiting NTK of the unpruned network.

The theorem suggests that given a pruning probability,
asymptotically as the network width grows to infinity, the
NTK of the randomly pruned network will converges to the
limiting NTK of the full network up to some scaling de-
pending on the pruning probability. Although we assume
an independent copy of weights for the backward propaga-
tion, we will remove this assumption in Theorem 3.5.
Remark 3.2. From (Arora et al., 2019b), if the training
dataset of size n is given by (X,y), the function induced
by the NTK Θ(X,X) ∈ Rn×n is given as

fntk(x) = Θ(x,X)⊤Θ(X,X)−1y,

where Θ(x,X) ∈ Rn. Thus, any scaling factor in front
of the NTK is cancelled and the actual function induced by
the NTK is the same.

On the other hand, this scaling factor can be removed sim-
ply by rescaling the weights according to the pruning prob-
ability which is given in the following corollary.
Corollary 3.3. Consider the same setting as in Theo-
rem 3.1 except now we rescale the mask by 1/

√
α. Then,

the neural tangent kernel after rescaling Θ̃α satisfies

lim
d1,d2,...,dL→∞

Θ̃α(x,x
′) = Θ∞(x,x′).

Proof. Let f̃α be the network after rescaling and mα de-
note the rescaled mask, i.e., mα = m · (1/

√
α). Based the

definition of b̃(h)(x) in Equation (3), we define b̃
(L+1)
α =

1 and for h = 1, 2, . . . , L,

b̃(h)
α (x) :=

√
cσ
dh

D̃(h)(x)(W(h+1) ⊙m(h+1)
α )⊤b̃(h+1)

α (x).

Based on this definition we have b̃
(h)
α (x) =

(1/
√
α)L+1−hb̃(h)(x). Similarly, define the rescaled

activation output: g̃
(1)
α =

√
cσ
dh

σ(W(h)x) and for

h = 2, . . . , L,

g̃(h)
α (x) =

√
cσ
dh

σ
((

W(h) ⊙m(h)
)
g̃(h−1)
α (x)

)
∈ Rdh .

Since ReLU is positively homogeneous, i.e., σ(cx) = c ·
σ(x) for c > 0, we have g̃(h)

α (x) = (1/
√
α)h−1g̃(h). Thus,

by Equation (2), for all h ∈ [L+ 1] we have

∂f̃α(x)

∂W(h)
=

(
1√
α

)L
∂f̃(x)

∂W(h)
.
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Plugging this in Equation (1) finishes our proof.

From Asymptotic to Non-asymptotic. Since Theorem 3.1
considers sequential limits which assumes all the previous
layers are already at the limit distribution when we ana-
lyze with a given layer. However, a typical drawback of
such analysis is that the limit of expectation (as the previous
layer’s width grows to infinity) is not necessarily the same
as the expectation of limit (the previous layer’s width is ex-
actly infinite). Thus, we need to justify that the network is
indeed able to approach the limit by increasing width. In
mathematical language, this is the same as justifying the
exchange of limit for Eσ(·) and E σ̇(·). Fortunately, ReLU
(and its derivative) are nice enough and we can justify this
by leveraging the tools in measure-theoretic probability.

Lemma 3.4. Conditioned on g(h−1)(x),g(h−1)(x′). Con-
sider a fixed i ∈ [dh+1]. Let

Xdh
=

√ cσ
dh

∑dh

j=1 W
(h+1)
ij m

(h+1)
ij σ(f̃

(h)
j (x))√

cσ
dh

∑dh

j=1 W
(h+1)
ij m

(h+1)
ij σ(f̃

(h)
j (x′))

 ∈ R2,

and let g : R2 → R to be g(x, y) ∈ {σ(x)σ(y), σ̇(x)σ̇(y)}.
Then,

lim
dh→∞

E[g(Xdh
)] = E[g( lim

dh→∞
Xdh

)].

The proof can be found in Section 8.1 in the Appendix.

Non-Asymptotic Bound. Building upon the asymptotic
result in Theorem 3.1, given the pruning probability, we
study how wide the neural network needs to be in order for
its NTK to be close to the limiting NTK.

Theorem 3.5 (Non-asymptotic Bound of Randomly
Pruned Network’s NTK, Simplified Version of Theo-
rem 9.8). Consider an L-hidden-layer fully-connected
ReLU neural network with the h-th layer of width dh. Sup-
pose d1 = d2 = . . . = dL = d. Let the weights be initial-
ized i.i.d. by standard Gaussian distribution. Suppose all
the weights except the input layer are pruned independently
with probability 1− α at the initialization and rescaled by
1/

√
α after pruning. For δ ∈ (0, 1) and sufficiently small

ϵ > 0, if

d ≥ Ω̃

(
max

(
1

α

L6

ϵ4
,
1

α2

L2

ϵ2

))
, (4)

then for any inputs x,x′ ∈ Rd0 such that ∥x∥2 ≤
1, ∥x′∥2 ≤ 1, with probability at least 1− δ over the ran-
domness in the initialization and pruning, we have∣∣∣Θ̃(x,x′)−Θ∞(x,x′)

∣∣∣ ≤ (L+ 1)ϵ.

Note that the two terms in Equation (4) has different depen-
dence on 1/α: only 1/α is needed for the forward propaga-
tion and 1/α2 is needed for the backward pass, which we

show in Section 5. If we let ϵ → 0, the first term in Equa-
tion (4) will dominate and the required width d only needs
to scale linearly with 1/α in this asymptotic case. We vali-
date our theory by comparing the Monte Carlo estimate of
NTK value to the limiting NTK value in Section 6.1.

Remark 3.6. By setting the probability of pruning a given
weight to be zero, our result matches the bound for fully-
connected neural networks in (Arora et al., 2019b) up to
logarithmic factors.

4 THE ASYMPTOTIC LIMIT

In this section, we show how to derive the asymptotic limit
of the NTK of the pruned networks, which gives a proof
outline of Theorem 3.1. We give an outline of our analysis
in this section and we defer the complete proof to Section 8
in Appendix.

We first introduce two quantities for randomly pruned neu-
ral networks analogous to the fully-connected networks.

Definition 4.1. Define

Σ̃(h)(x,x′) := lim
d1,...,dh→∞

〈
g̃(h)(x), g̃(h)(x′)

〉
,

where the limit is taken sequentially from d1 to dh.

As a simple consequence of the law of large numbers, Σ̃(h)

is well-defined. Based on Equation (1), we compute〈
∂f̃(x)

∂W(h)
,
∂f̃(x′)

∂W(h)

〉
=
(
b̃(h)(x)

)⊤
G(h−1)b̃(h)(x′),

where G(h−1) is a diagonal matrix and G
(h−1)
ii =〈

g̃(h−1)(x)⊙m
(h)
i , g̃(h−1)(x′)⊙m

(h)
i

〉
. Notice that un-

der the sequential limit, as dh−1 → ∞, G
(h−1)
ii →

αΣ̃(h−1)(x,x′). Thus, the NTK depends on analyzing both
the forward propagation and the backward propagation of
the pruned neural network. We show the results in the fol-
lowing two simple lemmas.

Lemma 4.2. Suppose a fully-connected neural network
uses ReLU as its activation and d1, d2, . . . , dL → ∞ se-
quentially, then

Σ̃(h)(x,x′) = αh−1Σ(h)(x,x′),

for h = 1, 2, . . . , L.

Lemma 4.3. Assume we use a fresh sample of weights in
the backward pass, then

lim
d1,...,dL→∞

〈
b̃(h)(x), b̃(h)(x′)

〉
= αL+1−h

L∏
h′=h

Σ̇(h′)(x,x′).
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The proof of Lemma 4.3 assumes that we use an indepen-
dent Gaussian copy in the backward propagation which can
be removed in the next section. Combining the two lemmas
provided above, we can prove Theorem 3.1.

Note that pruning the input layer creates additional difficul-
ties since the input dimension is fixed. The NTK of the full
network depends on Σ(0)(x,x′) = x⊤x′. If we prune the
input layer then Σ̃(0)(x,x′) = (m ⊙ x)⊤(m ⊙ x′) which
is random. In this case, it seems hard to relate Σ̃(1)(x,x′)
to Σ(1)(x,x′) in this asymptotic regime.

5 THE NON-ASYMPTOTIC BOUND

In this section, we give a proof outline of Theorem 3.5.
Since in this section we are only talking about the pruned
network, there is no longer ambiguity in distinguishing
pruned and unpruned networks. For notation ease, we re-
move the tilde above all the symbols of the quantities in the
pruned network. In addition, we use m

(h)
i to denote the

i-th row of m(h) and similar for w(h)
i . From a high level,

the proof consists of analyzing the forward propagation and
the backward propagation. We give a complete treatment in
Section 9 in the Appendix.

5.1 Analyzing the Forward Propagation

We first present our result on the forward propagation.

Theorem 5.1 (Simplified Version of Theorem 9.11). Con-
sider the same setting as in Theorem 3.5. There exist con-
stants c such that if ϵ ≤ min(c, 1

L ) and

d ≥ Ω̃

(
1

α

L2

ϵ2

)
,

then with probability 1− δ over the randomness in the ini-
tialization of all the weights and masks, for all h ∈ [L], i ∈
[dh+1], (x

(1),x(2)) ∈ {(x,x), (x,x′), (x′,x′)},∣∣∣ (g(h)(x(1))⊙m
(h+1)
i

)⊤ (
g(h)(x(2))⊙m

(h+1)
i

)
− Σ(h)(x(1),x(2))

∣∣∣ ≤ ϵ.

Our result provides the required width to ensure the activa-
tion of each layer is close to its limit. The dependence on
1/α is precisely due to the presence of random masks and
notice that each mask is a sub-Gaussian random variable
with variance proxy 1/α.

5.2 Analyzing the Backward Propagation

In this section, we show that
〈
b(h)(x(1)),b(h)(x(2))

〉
≈∏L

h′=h Σ̇
(h′)(x(1),x(2)) under the assumption that the

event in Theorem 5.1 occurs. This is where we for-
mally justify the fresh Gaussian copy trick. We con-
sider a fixed pair (x(1),x(2)) and suppress the depen-
dence on inputs when there is no confusion. We do
this by induction: assume b(h+1)(x(1))⊤b(h+1)(x(2)) ≈∏L

h′=h+1 Σ̇(x
(1),x(2)). Define G

(h)
i := [(g(h)(x) ⊙

m
(h+1)
i ), (g(h)(x′)⊙m

(h+1)
i )] and F

(h+1)
i := (W(h+1)⊙

m(h+1))G
(h)
i . Notice that the dependence of b(h+1) on

W(h+1) is by F
(h+1)
i . If W(h+1) is independent to b(h+1)

(which it isn’t), then

E := E
W(h+1)

[
(b(h)(x(1)))⊤b(h)(x(2))

]
(5)

=
2

dh

∑
i

b
(h+1)
i (x(1))b

(h+1)
i (x(2))Tr(M(h+1)

i DM
(h+1)
i ).

It is easy to show that Tr(M(h+1)
i DM

(h+1)
i ) ≈ Σ̇ and

(b(h)(x(1)))⊤b(h)(x(2)) is close to its expectation. Then
by induction hypothesis we are done. Now we show that
W(h+1) is nearly independent to b(h+1). Recall a spe-
cial property of the standard Gaussian: given w ∼
N (0, I) and two fixed vectors x,y, if x⊤y = 0, then
w⊤x and w⊤y are independent. Thus, conditioned on
b(h+1), G

(h)
i ,F

(h+1)
i ,m(h+1), we have w

(h+1)
i Π⊥

Gi

D
=

w̃
(h+1)
i Π⊥

Gi
where w̃

(h+1)
i is an i.i.d. copy of w(h+1)

i . Let

b
(h)
⊥ :=

(
b(h+1)

)⊤ 
((w̃

(h+1)
1 )⊤Π⊥

G1
)⊙m

(h+1)
1

...
((w̃

(h+1)
dh+1

)⊤Π⊥
Gdh+1

)⊙m
(h+1)
dh+1

D,

b
(h)
∥ :=

(
b(h+1)

)⊤ 
((w

(h+1)
1 )⊤ΠG1

)⊙m
(h+1)
1

...
((w

(h+1)
dh+1

)⊤ΠGdh+1
)⊙m

(h+1)
dh+1

D.

Notice that b(h) = b
(h)
⊥ + b

(h)
∥ . Next, we are going to

show that the main contribution of
〈
b(h)(x),b(h)(x′)

〉
is

from b
(h)
⊥ and (b

(h)
⊥ )⊤b

(h)
⊥ ≈ E whereas the contribution

from the dependent part b(h)
∥ is small. We show these two

results in Proposition 5.2 and Proposition 5.3.
Proposition 5.2 (Informal Version of Proposition 9.20).
Under some appropriate conditions, with probability at
least 1 − δ2/2 over the randomness in W(h+1), for any
(x(1),x(2)) ∈ {(x,x), (x,x′), (x′,x′)}, we have∣∣∣∣ 2dh

(
b
(h)
⊥ (x(1))

)⊤
b
(h)
⊥ (x(2))− E

∣∣∣∣ ≤ O

√ log 1
δ2

αdh

 .

Proposition 5.3 (Informal Version of Proposition 9.27).
Under some appropriate conditions, if d ≥ Ω̃( 1

α
L2

ϵ2 ), with
probability 1− δ2/2 over the randomness in the initializa-
tion of W(h+1),m(h+1), . . . ,W(L+1),m(L+1),√

1

dh

∥∥∥b(h)
∥

∥∥∥
2
≤ O

(√
1

α2dh
log

1

δ2

)
.
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The proof of Proposition 5.2 requires some intricate cal-
culation and then applying Gaussian chaos concentration
bound which is left in Section 9.6.1 in Appendix. We now
give a detailed description of the proof of Proposition 5.3.
For the ease of presentation, we omit the dependence on
layer and inputs when there is no confusion. First of all, we
can decompose ΠGi = Πg(x)⊙mi

+ ΠGi/g(x)⊙mi
where

Gi/g(x) ⊙ mi denotes the subspace of Gi orthogonal to
g(x)⊙mi. Bounding the second part is simple by utilizing
the special property of the standard Gaussian. We now fo-
cus on bounding the first part. Writing gi short for g⊙mi,

(
b(h+1)

)⊤ 
((w

(h+1)
1 )⊤Πg1

)⊙m
(h+1)
1

...
((w

(h+1)
dh+1

)⊤Πgdh+1
)⊙m

(h+1)
dh+1


=

1√
α

∑
i

b
(h+1)
i (w

(h+1)
i )⊤

gig
⊤
i

∥gi∥22
. (6)

The presence of the mask introduces further difficulties in
the analysis. In particular, without the pruning masks, the
above vector nicely simplifies to

(b(h+1))⊤W(h+1)g(h) g(h)(x)∥∥g(h)(x)
∥∥
2

= f(x)
g(h)(x)∥∥g(h)(x)

∥∥
2

.

(7)

We would like the above relation to also hold for pruned
network. However, this is not true since each gi is different.
A closer examination of the expression in Equation (6) tells
us that like the relation in Equation (7), the i-th coordinate
of this vector can be written as the product of g(h)

i (x) and
some structure similar to the pruned network, which we call
mask-induced pseudo-networks.

5.2.1 Mask-Induced Pseudo-Network

Definition 5.4 (Pseudo-network induced by mask). Define
the pseudo-network induced by the h-th layer j-th column
of sparse masks m(h) for all h ∈ {2, . . . , L}, j ∈ [dh−1]
and h′ ∈ {h+ 1, h+ 2, . . . , L} to be

g(h,j,h) =

√
cσ
dh

D(h)diagi

 m
(h)
ij

√
α∥∥∥g(h−1) ⊙m
(h)
i

∥∥∥2
2

 f (h),

f (h,j,h
′) =

(
W(h′) ⊙m(h′)

)
g(h,j,h′−1),

g(h,j,h′) =

√
cσ
dh′

D(h′)(x)f (h,j,h
′).

The output of this pseudo-network is f (h,j,L+1).

Using this definition, we can write 1√
α

∑
i

b
(h+1)
i (w

(h+1)
i )⊤

g
(h)
i g

(h)⊤
i∥∥∥g(h)

i

∥∥∥2
2


j

=
1

α
g
(h)
j f (h+1,j,L+1).

Now our goal is to show that |f (h+1,j,L+1)| = Õ(1) for
all h, j. This requires us to analyze the forward propaga-
tion of this pseudo-network. Specifically, we need to show
that the norm of g(h,j,h′) is O(1) for all h < h′ ≤ L.
However, whether a neuron turns on depends on the input
it receives in the pruned network instead of the pseudo-
network. Nonetheless, we show that this doesn’t matter
when we consider the norm of the activation in the pseudo-
network, since it has the same distribution as the activation
in the pruned network.

Proposition 5.5. For any given nonzero vectors x,y,
the distribution of (w⊤x)2I(w⊤y > 0) is the same as
(w⊤x)2I(w⊤x > 0) where w ∼ N (0, I).

This proposition says we can bound the norm of the acti-
vation by ignoring which neurons turn on. Thus, utilizing
this result, we can analyze the forward propagation of the
pseudo-network just as analyzing the pruned network and
show that we indeed have |f (h+1,j,L+1)| = Õ(1) for all
h, j. This completes the proof outline of Proposition 5.3.

6 EXPERIMENTS

This section presents our empirical results. Our results con-
tain two parts: first we validate our theory; then, we evalu-
ate our theory on real world dataset.

6.1 Validating Our Theory

2^5 2^6 2^7 2^8 2^9 2^10 2^11 2^12 2^13
Width

1

2

3

4

5

NT
K 

va
lu

e

Monte Carlo Estimate of NTK
Limiting NTK
Full model
Pruned model

Figure 1: Figure (a) validates Corollary 3.3 which shows
the empirical NTK value generated by the full model and
pruned model with varying width compared with theoreti-
cal NTK limit. The limiting NTK value is computed by a
known closed-form formula in (Arora et al., 2019b).

Validation of Corollary 3.3 (and, thus, Theorem 3.1):
We show that the empirical NTK value computed from the
pruned network converges to the theoretical NTK limit as
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Figure 2: The results of the mean absolute deviation of the
empirical NTK value from the limiting NTK. At each prun-
ing probability, the width of the network is scaled quadrat-
ically and linearly with respect to 1/α.

the width increases. We use fully-connected neural net-
works with 3-hidden layers of the same width as our model.
We rescale the weights by 1/

√
α after pruning. We first

randomly generate two data points x,y and then randomly
initialize the networks with Gaussian distribution. We fix
the pruning probability to be 1/2 and vary the width from
32 to 8192. For each trial, we create 64 samples of the em-
pirical NTK values generated by the unpruned and pruned
networks, and plot their mean. Figure 1 shows that, as the
width increase, our empirical estimates from both unpruned
and pruned model converge to the limiting NTK value.

Validation of Theorem 3.5: Theorem 3.5 suggests that dh
needs to scale asymptotically linearly with respect to 1/α
to maintain the gap between the empirical NTK and limit-
ing NTK. To evaluate our Theorem 3.5, we start with a full
model of width 1024 and then prune the model with vari-
ous probability 1−α while scaling the width quadratically
and linearly with 1/α. Since quadratically scaling width is
expensive, we stop at 0.5 pruning probability. We gener-
ate 100 samples for each pruning probability and take their
mean absolute deviation from the theoretically computed
NTK value. The result is shown in Figure 2. In both cases,
the gap to the limiting NTK is non-increasing.

6.2 On the Real World Data

In this section, we further evaluate our theory on real-
world data. Our theory suggests that if the network is wide
enough, the pruned networks should retain much of the per-
formance of the full networks. We note that here we prune
all layers of the neural networks. We adopt the implemen-
tation from Chen et al. (2021c).

We extensively test our theory across different neural
network architectures and datasets. For pruning meth-
ods, in addition to random pruning (with and without
rescaling weights after pruning), we also include Iterative
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Figure 3: Performance of random pruning without rescal-
ing on ResNet-20 of different widths. Sparsity on the x-axis
means the fraction of weights remaining in IMP and prun-
ing probability in random pruning.

Magnitude-based Pruning (IMP) in our experiments. We
train fully-connected neural networks on MNIST dataset
Deng (2012) and, VGGs and ResNets He et al. (2016) on
CIFAR-10 Krizhevsky et al. (2009), and vary the width of
these architectures. We generate each data point in the plot
by averaging over 2 independent runs. We defer the de-
tailed experiment setup in Section 10.1 in Appendix.

Results. In Figure 3, for random pruning without rescaling,
the testing performance gap narrows as the network width
is getting larger. For ResNet-20-128, at sparsity 86.6%,
the performance of random pruning and the full model is
within 1% on CIFAR-10. Similar results have been ob-
served for other pruning methods and other architectures
and datasets. Further experiment results are shown in Sec-
tion 10.2 in Appendix.

7 DISCUSSION AND FUTURE WORK

In this paper, we establish an equivalence between the NTK
of a randomly pruned neural network and the limiting NTK
of the unpruned network under both asymptotic and finite-
width cases. For the finite width case, we establish an
asymptotically linear dependence of network width on the
sparsity parameter 1/α. One open problem is whether
1/α2 dependence is indeed necessary for the backward
propagation so that the width dependence on 1/α can be
improved to exactly linear instead of asymptotically linear.
We leave further investigation on this open problem.

One limitation of our current analysis is that it only applies
to random pruning and assumes that the pruning distribu-
tion is completely independent from the weight initializa-
tion. Therefore, our analysis is not valid for magnitude-
based pruning or gradient-based pruning, as the weights
being pruned have internal correlations with the magnitude
of the weights. Another limitation is that the NTK analysis
inherently restricts the neural network’s ability to perform
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feature learning. We believe that the advantages of pruning,
such as improving network generalization, can be demon-
strated in a feature learning setting. This direction is left
for future research and exploration as well.
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8 ASYMPTOTIC ANALYSIS (Proof of Theorem 3.1)

This section is devoted to prove the asymptotic limit of the pruned networks’ NTK. Recall that we use tilde over a symbol to
denote the quantity in the pruned network and the corresponding symbol without tilde denotes the quantity in the unpruned
network.

Theorem 8.1 (The limiting NTK of randomly pruned networks, Restatement of Theorem 3.1). Consider an L-hidden-
layer fully-connected ReLU neural network. Suppose the network weights are initialized from an i.i.d. standard Gaussian
distribution and the weights except the input layer are pruned independently with probability 1 − α at the initialization.
Assume the backpropagation is computed by sampling a independent copy of weights. Then, as the width of each layer
goes to infinity sequentially,

lim
d1,d2,...,dL→∞

Θ̃(x,x′) = αLΘ∞(x,x′),

where Θ̃ denotes the NTK of the pruned network and Θ∞ denotes the limiting NTK of the unpruned network.

For the pruned neural networks, its gradient is given by

∂f̃(x)

∂W(h)
=

(
b̃(h)(x)

(
g̃(h−1)(x)

)⊤)
⊙m(h), h = 2, . . . , L+ 1

where

b̃(h)(x) =

{
1 ∈ R, h = L+ 1√

cσ
dh
D̃(h)(x)(W(h+1) ⊙m(h+1))⊤b̃(h+1)(x) ∈ Rdh , h = 1, . . . , L,

(8)

and

D̃(h)(x) = diag
(
σ̇
(
f̃ (h)(x)

))
∈ Rdh×dh , h = 1, . . . , L. (9)

Note that since the weights being pruned are staying at zero always during the training process, the gradient of the pruned
network is simply the masked gradient of the unpruned network.

Now, we have〈
∂f̃(x)

∂W(h)
,
∂f̃(x′)

∂W(h)

〉
=

〈(
b̃(h)(x)

(
g̃(h−1)(x)

)⊤)
⊙m(h),

(
b̃(h)(x′)

(
g̃(h−1)(x′)

)⊤)
⊙m(h)

〉
.

Now we write

(
b̃(h)(x)

(
g̃(h−1)(x)

)⊤)
⊙m(h) =


b̃
(h)
1 (x)g̃(h−1)(x)⊙m

(h)
1

b̃
(h)
2 (x)g̃(h−1)(x)⊙m

(h)
2

...
b̃
(h)
dh

(x)g̃(h−1)(x)⊙m
(h)
dh

 .

Thus, 〈
∂f̃(x)

∂W(h)
,
∂f̃(x′)

∂W(h)

〉
=

〈(
b̃(h)(x)

(
g̃(h−1)(x)

)⊤)
⊙m(h),

(
b̃(h)(x′)

(
g̃(h−1)(x′)

)⊤)
⊙m(h)

〉

=

dh∑
i=1

b̃
(h)
i (x)b̃

(h)
i (x′)

〈
g̃(h−1)(x)⊙m

(h)
i , g̃(h−1)(x′)⊙m

(h)
i

〉
=
(
b̃(h)(x)

)⊤
G(h−1)b̃(h)(x′), (10)

where we define G(h−1) as a diagonal matrix and G
(h−1)
ii =

〈
g̃(h−1)(x)⊙m

(h)
i , g̃(h−1)(x′)⊙m

(h)
i

〉
. Observe that

lim
dh−1→∞

〈
g̃(h−1)(x)⊙m

(h)
i , g̃(h−1)(x′)⊙m

(h)
i

〉
= lim

dh−1→∞

cσ
dh−1

dh−1∑
j=1

σ
(
f̃
(h−1)
j (x)

)
σ
(
f̃
(h−1)
j (x′)

)(
m

(h)
ij

)2
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= E
[
cσσ

(
f̃
(h−1)
j (x)

)
σ
(
f̃
(h−1)
j (x′)

)(
m

(h)
ij

)2]
= E

[
cσσ

(
f̃
(h−1)
j (x)

)
σ
(
f̃
(h−1)
j (x′)

)]
E
[(

m
(h)
ij

)2]
= αE

[
cσσ

(
f̃
(h−1)
j (x)

)
σ
(
f̃
(h−1)
j (x′)

)]
.

This requires us to analyze f̃ (h)(x) for h ∈ [L].

We now analyze the forward dynamics of the pruned neural network:

[̃f (h+1)(x)]i =

dh∑
j=1

[W(h+1) ⊙m(h+1)]ij [g̃
(h)(x)]j

=

√
cσ
dh

dh∑
j=1

[W(h+1) ⊙m(h+1)]ijσ

([
f̃ (h)(x)

]
j

)
.

Conditioned on g(h−1)(x),g(h−1)(x′), we have f̃
(h)
j (x), f̃

(h)
j (x′) are i.i.d. random variables for all j ∈ [n]. However,

for h ∈ {1, . . . , L}, as dh → ∞, by the central limit theorem, [̃f (h+1)(x)]i converges to a Gaussian random variable.
This is certainly not true for the output in the first layer because the input dimension can’t go to infinity. Thus, we make
assumption that the pruning only starts from the second layer.

Now by i.i.d assumption of the mask and weights, we can compute the covariance of pre-activation as

E
W(h+1)

[[
f̃ (h+1)(x)

]
i

[
f̃ (h+1)(x′)

]
i

∣∣∣ f̃ (h),m(h+1)
]
=
〈
g̃(h)(x)⊙m

(h+1)
i , g̃(h)(x′)⊙m

(h+1)
i

〉
=

cσ
dh

dh∑
j=1

σ

([
f̃ (h)(x)

]
j

)
σ

([
f̃ (h)(x′)

]
j

)(
m

(h+1)
ij

)2
dh→∞−−−−→ αcσ E

[
σ

([
f̃ (h)(x)

]
j

)
σ

([
f̃ (h)(x′)

]
j

)]
,

(11)

by the law of large number.

Recall Definition 4.1, we define

Σ̃(h)(x,x′) := lim
d1,...,dh→∞

〈
g̃(h)(x), g̃(h)(x′)

〉
= lim

d1,...,dh→∞

cσ
dh

dh∑
j=1

σ

([
f̃ (h)(x)

]
j

)
σ

([
f̃ (h)(x′)

]
j

)
.

where the limit is taking sequentially from d1 to dh. We further define

Λ̃
(1)

=

[
Σ̃(0)(x,x) Σ̃(0)(x,x′)

Σ̃(0)(x′,x) Σ̃(0)(x,x)

]
,

Λ̃
(h)

= α

[
Σ̃(h−1)(x,x) Σ̃(h−1)(x,x′)

Σ̃(h−1)(x′,x) Σ̃(h−1)(x,x)

]
,

Lemma 8.2 (Restatement of Lemma 4.2). Suppose the neural network uses ReLU as its activation and d1, d2, . . . , dL →
∞ sequentially, then

Σ̃(h)(x,x′) = cσ E
(u,v)∼N (0,Λ̃

(h)
)

[σ(u)σ(v)],

Σ̃(h)(x,x′) = αh−1Σ(h)(x,x′),

for h = 1, 2, . . . , L.
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Proof. We prove by induction. First, notice that Σ̃(0)(x,x′) = Σ(0)(x,x′). When h = 1, there is noting to prove. Now,
assume the induction hypothesis holds for all h such that h ≤ t where t ≥ 1 and we want to show that Σ̃(t+1)(x,x′) =
αtΣ(t+1)(x,x′). Notice that Equation 11 is true for h ∈ {1, . . . , L}. Therefore, as dt → ∞

Σ̃(t+1)(x,x′) = cσ E
[̃f (t+1)(x)]

1
,[̃f (t+1)(x′)]

1

[
σ
([

f̃ (t+1)(x)
]
1

)
σ
([

f̃ (t+1)(x′)
]
1

)]
.

Assume all the previous layers are already at the limit, for t = 1, . . . , L,

([
f̃ (t+1)(x)

]
1
,
[
f̃ (t+1)(x′)

]
1

)
∼ N

(
0, α

[
Σ̃(t)(x,x) Σ̃(t)(x,x′)

Σ̃(t)(x′,x) Σ̃(t)(x,x)

])
= N (0, Λ̃

(t+1)
).

This proves the first equality.

By induction hypothesis on Σ̃(t)(x,x′), we have Λ̃
(t+1)

= α · αt−1Λ(t+1). Hence

Σ̃(t+1)(x,x′) = cσ E
(u,v)∼N (0,αtΛ(t+1))

[σ(u)σ(v)]

= cσ E
(u′,v′)∼N (0,Λ(t+1))

[σ(α
t
2u′)σ(α

t
2 v′)]

= αtcσ E
(u′,v′)∼N (0,Λ(t+1))

[σ(u′)σ(v′)]

= αtΣ(t+1)(x,x′),

where the second last inequality is from our assumption that the activation is ReLU.

This lemma implies that

Σ̃(h)(x,x′) = lim
d1,...,dh→∞

〈
g̃(h)(x), g̃(h)(x′)

〉
= αh−1Σ(h)(x,x′). (12)

Thus, combining Equation (10) and Equation (12) we have〈(
b̃(h)(x)

(
g̃(h−1)(x)

)⊤)
⊙m(h),

(
b̃(h)(x′)

(
g̃(h−1)(x′)

)⊤)
⊙m(h)

〉
=
(
b̃(h)(x)

)⊤
G(h−1)b̃(h)(x′)

d1,...,dh−1→∞−−−−−−−−−→ αh−1Σ(h−1)(x,x′) lim
d1,...,dh−1→∞

(
b̃(h)(x)

)⊤
b̃(h)(x′). (13)

Lemma 8.3 (Restatement of Lemma 4.3). Assume we use a fresh sample of weights in the backward pass, then

lim
d1,...,dL→∞

〈
b̃(h)(x), b̃(h)(x′)

〉
= αL+1−h

L∏
h′=h

Σ̇(h′)(x,x′). (14)

Proof. For the factor
〈
b̃(h)(x), b̃(h)(x′)

〉
, we expand using the definition of b̃(h)(x)〈

b̃(h)(x), b̃(h)(x′)
〉

=

〈√
cσ
dh

D̃(h)(x)
(
W(h+1) ⊙m(h+1)

)⊤
b̃(h+1)(x),

√
cσ
dh

D̃(h)(x′)
(
W(h+1) ⊙m(h+1)

)⊤
b̃(h+1)(x′)

〉
First we analyze D̃(h)(x). Since we use ReLU as the activation function, σ̇(x) = I(x > 0) and in particular, σ̇(cx) =

I(cx > 0) = I(x > 0) = σ̇(x) for any positive constant c. By Lemma 8.2, we show that under sequential limit, f̃ (h)(x)
has the same distribution as αh−1f (h)(x) which implies D̃(h)(x) has the same distribution as D(h)(x).
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Observe that W(h+1) ⊙m(h+1) and b̃(h+1)(x) are dependent. Now we apply the independent copy trick which is rigor-
ously justified for ReLU network with Gaussian weights by replacing W(h+1) with a fresh new sample W̃(h+1).〈

b̃(h)(x), b̃(h)(x′)
〉

=

〈√
cσ
dh

D̃(h)(x)
(
W(h+1) ⊙m(h+1)

)⊤
b̃(h+1)(x),

√
cσ
dh

D̃(h)(x′)
(
W(h+1) ⊙m(h+1)

)⊤
b̃(h+1)(x′)

〉
≈
〈√

cσ
dh

D̃(h)(x)
(
W̃(h+1) ⊙m(h+1)

)⊤
b̃(h+1)(x),

√
cσ
dh

D̃(h)(x′)
(
W̃(h+1) ⊙m(h+1)

)⊤
b̃(h+1)(x′)

〉
d1,...,dh→∞−−−−−−−−→ α

cσ
dh

Tr
(
D̃(h)(x)D̃(h)(x′)

)
lim

d1,...,dh→∞

〈
b̃(h+1)(x), b̃(h+1)(x′)

〉
d1,...,dh→∞−−−−−−−−→ αΣ̇(h)(x,x′) lim

d1,...,dh→∞

〈
b̃(h+1)(x), b̃(h+1)(x′)

〉
. (15)

where we justify the limit as the following: first let D short for D̃(h)(x)D̃(h)(x′)(
cσ
dh

(W̃(h+1) ⊙m(h+1))D(W̃(h+1) ⊙m(h+1))⊤
)

ij

=
cσ
dh

∑
k

DkkW̃
(h+1)
ik m

(h+1)
ik W̃

(h+1)
jk m

(h+1)
jk ,

which converges to a diagonal matrix as dh → ∞. Thus, the inner product is given by

cσ
dh

∑
i,j

b̃
(h+1)
i (x)b̃

(h+1)
j (x′)

∑
k

DkkW̃
(h+1)
ik m

(h+1)
ik W̃

(h+1)
jk m

(h+1)
jk

=
cσ
dh

∑
i,j

b̃
(h+1)
i (x)b̃

(h+1)
j (x′)(w̃

(h+1)
i ⊙m

(h+1)
i )⊤D(w̃

(h+1)
j ⊙m

(h+1)
j )

=
cσ
dh

∑
i,j

b̃
(h+1)
i (x)b̃

(h+1)
j (x′)

(
w̃

(h+1)
i

)⊤
M

(h+1)
i DM

(h+1)
j w̃

(h+1)
j

d1,...,dh→∞−−−−−−−−→ cσ
dh

∑
i

b̃
(h+1)
i (x)b̃

(h+1)
i (x′)Tr(M(h+1)

i DM
(h+1)
i )

d1,...,dh→∞−−−−−−−−→ αΣ̇(h)(x,x′) lim
d1,...,dh→∞

〈
b̃(h+1)(x), b̃(h+1)(x′)

〉
,

where Mi = diag(mi) and w̃i is the i-th row of W̃ and limdh→∞
cσ
dh

Tr(M(h+1)
i DM

(h+1)
i ) = αΣ̇(h)(x,x′). Now, we

can unroll the formula of
〈
b̃(h)(x), b̃(h)(x′)

〉
in Equation (15), we have

lim
d1,...,dL→∞

〈
b̃(h)(x), b̃(h)(x′)

〉
= αL+1−h

L∏
h′=h

Σ̇(h′)(x,x′).

Proof of Theorem 8.1. Combining the result in Equation (13) and Equation (14), we have〈
∂f̃(x)

∂W(h)
,
∂f̃(x′)

∂W(h)

〉
=

〈(
b̃(h)(x)

(
g̃(h−1)(x)

)⊤)
⊙m(h),

(
b̃(h)(x′)

(
g̃(h−1)(x′)

)⊤)
⊙m(h)

〉
d1,...,dL→∞−−−−−−−−→ αLΣ(h−1)(x,x′)

L+1∏
h′=h

Σ̇(h′)(x,x′).

We conclude

Θ̃∞(x,x′) := lim
d1,d2,...,dL→∞

Θ̃(x,x′) = αLΘ∞(x,x′), (16)

which proves Theorem 8.1.
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8.1 Proof of Lemma 3.4: Going from Asymptotic Regime to Non-Asymptotic Regime

Before we give proof for our non-asymptotic result, we note that our asymptotic result is obtained from taking sequential
limits of all the hidden layers which is a somewhat a limited notion of limits since we assume all the layer before is already
at the limit when we deal with a given layer. Non-asymptotic analysis, on the other hand, consider using a large but finite
amount of samples to get close to (but not exactly at) the limit. Thus, we need to justify that the networks are indeed
able to approach by increasing width. In mathematical language, this is the same as justifying taking the limit outside of
Eσ(·),E σ̇(·).

We invoke several results from measure-theoretic probability theory.

Definition 8.4 (Uniformly integrable). A sequence of random variables {Xn} is called uniformly integrable if

lim
a→∞

sup
n

E[|Xn|I(|Xn| ≥ a)] → 0.

Lemma 8.5 (Theorem 3, Chapter 7.10 in (Grimmett and Stirzaker, 2020)). Suppose that {Xn} is a sequence of random
variables satisfying Xn → X in probability. The following statements are equivalent:

1. The family {Xn} is uniformly integrable.

2. E |Xn| < ∞ for all n and E |Xn| → E |X| < ∞.

Theorem 8.6 (Skorokhod’s Representation Theorem, (Billingsley, 1999)). Let {µn} be a sequence of probability measure
defined on a metric space S such that µn converges weakly to some probability measure µ∞ on S as n → ∞. Suppose
that the support of µ∞ is separable. Then there exists S-valued random variables Xn defined on a common probability
space (Ω,F ,P) such that the law of Xn is is µn for all n (including n = ∞) and such that (Xn)n∈N converges to X∞,
P-almost surely.

Theorem 8.7 (Continuous Mapping Theorem (Mann and Wald, 1943)). Let {Xn}, X be random variables defined on a
metric space S. Suppose a function g : S → S′ (where S′ is another metric space) has the set of discontinuities of measure
zero. Then

Xn
D−→ X ⇒ g(Xn)

D−→ g(X),

where D−→ represents convergence in distribution.

Lemma 8.8 (Restatement of Lemma 3.4). Conditioned on g(h−1)(x),g(h−1)(x′). Fix i ∈ [dh+1]. Let

Xn =

[√
cσ
n

∑n
j=1 W

(h+1)
ij m

(h+1)
ij σ(f̃

(h)
j (x))√

cσ
n

∑n
j=1 W

(h+1)
ij m

(h+1)
ij σ(f̃

(h)
j (x′))

]
∈ R2,

and define let g : R2 → R to be g(x, y) ∈ {σ(x)σ(y), σ̇(x)σ̇(y)}. Then,

lim
n→∞

E[g(Xn)] = E[g( lim
n→∞

Xn)].

Proof. First of all, conditioned on g(h−1)(x),g(h−1)(x′), we have f̃
(h)
j (x), f̃

(h)
j (x′) are i.i.d. random variables for all

j ∈ [n].

We first prove the exchange of limit for g(x, y) = σ(x)σ(y) since this function is continuous. By the Central Limit

Theorem, Xn
D−→ X∞ ∼ N (0, Λ̃

(h+1)
). By the Continuous Mapping Theorem, g(Xn)

D−→ g(X∞). Then by the
Skorokhod’s Representation Theorem in Theorem 8.6, there exists another sequence {X ′

n} and X ′
∞ such that g(Xn)

D
=

X ′
n and g(X∞)

D
= X ′

∞ and X ′
n

a.s.−−→ X ′
∞. Now we use the fact that the sequence {X ′

n} is uniformly integrable (see
Definition 8.4). By Lemma 8.5, this implies convergence in L1 (and notice that g(x, y) only outputs non-negative values)

lim
n→∞

E[X ′
n] = E[X ′

∞].

Since

E[g(Xn)] = E[X ′
n],
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E[g(X∞)] = E[X ′
∞],

we have

lim
n→∞

E[g(Xn)] = E[g(X∞)] = E[g(N (0, Λ̃
(h+1)

))].

Now we prove the result for g(x, y) = σ̇(x) ˙σ(y) = I(x ≥ 0, y ≥ 0). Again, apply Skorokhod’s Representation Theorem,
there exists a sequence of random variables {X ′′

n} and another random variable X ′′
∞ such that Xn

D
= X ′′

n and X∞
D
= X ′′

∞
and X ′′

n
a.s.−−→ X ′′

∞. Since convergence almost surely implies convergence in probability, we have

lim
n→∞

E[g(X ′′
n)] = E[g(X ′′

∞)],

which implies

lim
n→∞

E[g(Xn)] = E[g(X∞)].

9 NON-ASYMPTOTIC ANALYSIS (Proof of Theorem 3.5)

9.1 Probability

Theorem 9.1 (Multiplicative Chernoff Bound). If X1, X2, . . . , Xm are i.i.d. Bernoulli random variables with probability
p, then

P

[∣∣∣∣∣
m∑
i=1

Xi − pm

∣∣∣∣∣ ≥ ϵpm

]
≤ 2 exp(−min(ϵ2, ϵ)pm).

Theorem 9.2. Assume X1, . . . , Xm are i.i.d. Sub-Gaussian random variables with variance proxy σ2 and Y1, . . . , Ym are
i.i.d. Bernoulli random variables with probability p. For ϵ ∈ (0, 1/2), t > 0,

P

[∣∣∣∣∣ 1

pm

m∑
i=1

XiYi − E[X]

∣∣∣∣∣ ≥ ϵ(|E[X]|+ t) + t

]
≤ 2 exp(−(1− ϵ)pmt2/(2σ2)) + 2 exp(−min(ϵ2, ϵ)pm).

Proof. Let p̂ =
∑m

i=1 Yi

m . By the concentration of Sub-Gaussian random variable with variance proxy σ2, we have

P

[∣∣∣∣∣ 1

p̂m

m∑
i=1

XiYi − E[X]

∣∣∣∣∣ ≥ t

]
≤ 2 exp(−p̂mt2/(2σ2)) + 2 exp(−min(ϵ2, ϵ)pm).

By Theorem 9.1, we have with probability at least 1 − 2 exp(−min(ϵ2, ϵ)pm), p̂ = (1 ± ϵ)p. Thus, with probability at
least 1− 2 exp(−p̂mt2/(2σ2))− 2 exp(−min(ϵ2, ϵ)pm),

1

pm

m∑
i=1

XiYi =
p̂

p

1

p̂m

m∑
i=1

XiYi = (1± ϵ)(E[X]± t).

Theorem 9.3. Assume X1, . . . , Xm are i.i.d. Sub-Gamma random variables with parameters (σ2, c) and Y1, . . . , Ym are
i.i.d. Bernoulli random variables with probability p. For ϵ ∈ (0, 1/2), t > 0,

P

[∣∣∣∣∣ 1

pm

m∑
i=1

XiYi − E[X]

∣∣∣∣∣ ≥ ϵ(|E[X]|+ t) + t

]
≤ 2 exp(−(1− ϵ)pmmin(t2/(2σ2), t/c)) + 2 exp(−min(ϵ2, ϵ)pm).
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Proof. By the concentration of Sub-Gamma random variables, we have

P

[∣∣∣∣∣ 1

p̂m

m∑
i=1

XiYi − E[X]

∣∣∣∣∣ ≥ t

]
≤ 2 exp(−p̂mmin(t2/(2σ2), t/c)).

The rest of proof follows from the proof of Theorem 9.2.

Lemma 9.4 (Gaussian Chaos of Order 2 (Boucheron et al., 2013)). Let ξ ∼ N (0, In) be an n-dimensional unit Gaussian
random vector, A ∈ Rn×n be a symmetric matrix, then for any t > 0,

P
[
|ξ⊤Aξ − E[ξ⊤Aξ]| > 2 ∥A∥F

√
t+ 2 ∥A∥2 t

]
≤ 2 exp(−t).

Equivalently,

P
[
|ξ⊤Aξ − E[ξ⊤Aξ]| > t

]
≤ 2 exp

(
− t2

4 ∥A∥2F + ∥A∥2 t

)
.

Lemma 9.5 (Example 2.30 in (Wainwright, 2019)). Let w ∼ N (0, Id) and A be a set in Rd. Then supa∈A ⟨a,w⟩ is a
sub-Gaussian random variable with variance proxy supa∈A ∥a∥22.

9.2 Other Auxiliary Results

Lemma 9.6 (Lemma E.2 in (Arora et al., 2019b)). For events A,B, define the event A ⇒ B as ¬A ∨ B. Then P[A ⇒
B] ≥ P[B|A].

Lemma 9.7 (Lemma E.3 in (Arora et al., 2019b)). Let w ∼ N (0, Id), G ∈ Rd×k be some fixed matrix, and random vector
F = w⊤G, then conditioned on the value of F, w remains Gaussian in the null space of the column space of G, i.e.,

Π⊥
Gw

D
=F=w⊤G Π⊥

Gw̃.

where w̃ ∼ N (0, Id) is a fresh i.i.d. copy of w.

9.3 Proof of the Main Result

Now we prove our main result. Notice that we rescale the mask m
(h)
ij ∼

√
1
αBernoulli(α) so that E(m(h)

ij )2 = 1. From a
high level, our proof follows the proof outline of our asymptotic result.

Theorem 9.8 (Non-Asymptotic Bound, Full Version of Theorem 3.5). Consider an L-hidden-layer fully-connected ReLU
neural network with all the weights initialized with i.i.d. standard Gaussian distribution. Suppose all the weights except
the input layer are pruned with probability 1 − α at the initialization and after pruning we rescale the weights by 1/

√
α.

For δ ∈ (0, 1) and sufficiently small ϵ > 0, if

dh ≥ Ω

(
max(

1

α

L6

ϵ4
log

Ldh+1

δ
,
1

α2

L2

ϵ2
log

Ldh+1

∑L−1
h′=1 dh′

δ
,
1

α

L4

ϵ2
log

2Ldh+1

∑h−1
h′=1 d

′
h

δ3
)

)
, ∀h ∈ [L].

Then for any inputs x,x′ ∈ Rd0 such that ∥x∥2 ≤ 1, ∥x′∥2 ≤ 1, with probability at least 1− δ we have∣∣∣∣〈∂f(θ,x)

∂θ
,
∂f(θ,x′)

∂θ

〉
−Θ(L)(x,x′)

∣∣∣∣ ≤ (L+ 1)ϵ.

Our analysis conditions on the following event occur.

Lemma 9.9. For ϵ ∈ (0, 1/2), δ ∈ (0, 1), if dh ≥ Ω( 1
αϵ2 · log( 2dh+1L

δ )), then

P

∀i ∈ [dh+1], h ∈ [L] :

∣∣∣∣∣∣
dh∑
j=1

I(m(h)
ij ̸= 0)− αdh

∣∣∣∣∣∣ ≥ ϵαdh

 ≤ δ
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Proof. The proof is by applying Theorem 9.1 and then take a union bound over i ∈ [dh+1], h ∈ [L].

Let m(h)
i denote the i-th row of the mask in h-th layer. We first define the following events:

• Ah
i (x,x

′, ϵ1) :=

{∣∣∣∣(g(h)(x)⊙m
(h+1)
i

)⊤ (
g(h)(x′)⊙m

(h+1)
i

)
−Σ(h)(x,x′)

∣∣∣∣ ≤ ϵ1

}
.

• Ah(x,x′, ϵ1) =
⋂dh+1

i=1 Ah
i (x,x

′, ϵ1)
⋂{∣∣∣(g(h)(x)

)⊤
g(h)(x′)−Σ(h)(x,x′)

∣∣∣ ≤ ϵ1

}
.

• Ah
(ϵ1) = Ah(x,x, ϵ1) ∩ Ah(x,x′, ϵ1) ∩ Ah(x′,x′, ϵ1).

• A(ϵ1) =
⋂L

h=0 A
h
(x,x′, ϵ1).

• Bh(x,x′, ϵ2) =
{∣∣∣〈b(h)(x),b(h)(x′)

〉
−
∏L

h=h Σ̇
(h)(x,x′)

∣∣∣ < ϵ2

}
.

• Bh
(ϵ2) = Bh(x,x, ϵ2) ∩ Bh(x,x′, ϵ2) ∩ Bh(x′,x′, ϵ2).

• B(ϵ2) =
⋂L+1

h=1 B
h
(x,x′, ϵ2).

• C(ϵ3): a event defined in Definition 9.23.

• Dh
i (x,x

′, ϵ4) =

{∣∣∣∣2Tr(M(h+1)
i D(h)(x,x′)M

(h+1)
i )

dh
− Σ̇(h)(x,x′)

∣∣∣∣ < ϵ4

}
where M

(h+1)
i = diag(m(h+1)

i ).

• Dh(x,x′, ϵ4) =
⋂dh+1

i=1 Dh
i (x,x

′, ϵ4).

• Dh
(ϵ4) = Dh(x,x, ϵ4) ∩ Dh(x,x′, ϵ4) ∩ Dh(x′,x′, ϵ4).

• D(ϵ4) =
⋂L+1

h=1 D
h
(ϵ4).

Proof of Theorem 9.8. Recall that〈
∂f̃(x)

∂W(h)
,
∂f̃(x′)

∂W(h)

〉
=
(
b̃(h)(x)

)⊤
G(h−1)b̃(h)(x′),

where G(h−1) is a diagonal matrix and G
(h−1)
ii =

〈
g̃(h−1)(x)⊙m

(h)
i , g̃(h−1)(x′)⊙m

(h)
i

〉
and

lim
d1,d2,...,dL→∞

〈
∂f̃(x)

∂W(h)
,
∂f̃(x′)

∂W(h)

〉
= Σ(h−1)(x(1),x(2))

L∏
h′=h

Σ̇(h′)(x(1),x(2)).

The rest of proof of our main result is based on letting Theorem 9.10 hold for ϵ′ and then take ϵ := ϵ′/L.

Theorem 9.10. Consider the same setting as in Theorem 9.8. If

dh ≥ Ω

(
max(

1

α

L2

ϵ4
log

Ldh+1

δ
,
1

α2

1

ϵ2
log

Ldh+1

∑L−1
h′=1 dh′

δ
,
1

α

L2

ϵ2
log

2Ldh+1

∑h−1
h′=1 d

′
h

δ3
)

)
, ∀h ∈ [L],

and ϵ ≤ c
L for some constant c, then for any fixed x,x′ ∈ Rd0 , ∥x∥2 , ∥x′∥2 ≤ 1, we have with probability 1 − δ,

∀0 ≤ h ≤ L, ∀(x(1),x(2)) ∈ {(x,x), (x,x′), (x′,x′)},∣∣∣∣(g(h)(x(1))⊙m
(h+1)
i

)⊤ (
g(h)(x(2))⊙m

(h+1)
i

)
− Σ(h)(x(1),x(2))

∣∣∣∣ ≤ ϵ2/2, ∀i ∈ [dh+1],

and ∣∣∣∣∣〈b(h)(x(1)),b(h)(x(2))
〉
−

L∏
h′=h

Σ̇(h′)(x(1),x(2))

∣∣∣∣∣ < 3Lϵ.
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In other words,

P
[
A
(
ϵ2

2

)⋂
B(3Lϵ)

]
≥ 1− δ.

The first part of the result of Theorem 9.10 is proved by the following theorem.

Theorem 9.11 (Full Version of Theorem 5.1). Consider the same setting as in Theorem 9.8. There exist constants c such
that if dh ≥ Ω( 1

α
L2

ϵ2 log 18dh+1L
δ ), ∀h ∈ {1, 2, . . . , L} and ϵ ≤ min(c, 1

L ) then for any fixed x,x′ ∈ Rd0 , ∥x∥2 , ∥x′∥2 ≤
1, we have with probability 1− δ, ∀0 ≤ h ≤ L, ∀i ∈ [dh+1], ∀(x(1),x(2)) ∈ {(x,x), (x,x′), (x′,x′)},∣∣∣∣(g(h)(x(1))⊙m

(h+1)
i

)⊤ (
g(h)(x(2))⊙m

(h+1)
i

)
− Σ(h)(x(1),x(2))

∣∣∣∣ ≤ ϵ∣∣∣∣(g(h)(x(1))
)⊤

g(h)(x(2))− Σ(h)(x(1),x(2))

∣∣∣∣ ≤ ϵ.

In other words, if dh ≥ Ω( 1
α

L2

ϵ21
log 18dh+1L

δ1
), ∀h ∈ {1, 2, . . . , L} and ϵ1 ≤ min(c2,

1
L ) then

P
[
A(ϵ1)

]
≥ 1− δ1

The proof of Theorem 9.11 can be found in Section 9.4.

Lemma 9.12. If dh ≥ Ω( 1
α

1
ϵ24

log 12Ldh+1

δ4
) for all h ∈ [L], then

P
[
A(ϵ21/2) ⇒ D (ϵ1 + ϵ4)

]
≥ 1− δ4.

The proof of Lemma 9.12 on a single pair can be found in Section 9.5 and then take a union bound over pairs
(x,x), (x,x′), (x′,x′).

Lemma 9.13. If dh ≥ Ω( 1
α

L2

ϵ2 log
2Ldh+1

∑h−1

h′=1
d′
h

δ3
) = Ω̃( 1

α
L2

ϵ2 ) for all h ∈ [L], then

P

A(ϵ1) ⇒ C

2

√
log

4
∑L−1

h′=1 dh′

δ3

 ≥ 1− δ3

The proof of Lemma 9.13 can be found in Section 9.6.2.

Lemma 9.14. Let ϵ3 = 2

√
log

4
∑L−1

h′=1
dh′

δ3
. If dh ≥ 8

α log 6
δ2

, with probability 1 − δ2, the event C(ϵ3) holds and, there

exists constant C,C ′ such that for any ϵ2, ϵ4 ∈ [0, 1], we have

P

AL
(ϵ21/2)

⋂
Bh+1

(ϵ2)
⋂

C(ϵ3)
⋂

Dh
(ϵ4) ⇒ Bh

ϵ2 + 2ϵ4 +
48

√
2√

dh
+ 48

√
2

α

log 8
δ2

dh
+

96

α

√
2 log

4
∑L−1

h′=1
dh′

δ3√
dh




≥ 1− δ2/2.

The proof of Lemma 9.14 can be found in Section 9.6.

Proof of Theorem 9.10. We prove by induction on Lemma 9.14. We first let the event in Lemma 9.9 holds with ϵ and
probability 1 − δ/5. In the statement of Theorem 9.11, we set δ1 = δ/5, ϵ1 = ϵ2

8 , if dh ≥ Ω( 1
α

L2

ϵ4 log dh+1L
δ ) =

Ω̃( 1
α

L2

ϵ4 ), ∀h ∈ {1, 2, . . . , L}, we have

P[A(ϵ2/8)] ≥ 1− δ/5.
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In the statement of Lemma 9.12, we set δ4 = δ/5 and ϵ1 = ϵ/2, ϵ4 = ϵ/4. If dh ≥ Ω( 1
α

1
ϵ2 log

Ldh+1

δ ) = Ω̃( 1
α

1
ϵ2 ) for all

h ∈ [L], then

P
[
A(ϵ2/8) ⇒ D (ϵ)

]
≥ 1− δ/5.

In the statement of Lemma 9.13, setting δ3 = δ/5, if dh ≥ Ω( 1
α

L2

ϵ2 log
2Ldh+1

∑h−1

h′=1
d′
h

δ3
) = Ω̃( 1

α
L2

ϵ2 ) for all h ∈ [L], then

P

A(ϵ2/8) ⇒ C

2

√
log

20
∑L−1

h′=1 dh′

δ

 ≥ 1− δ/5.

Take a union bound we have

P

A(ϵ2/2)
⋂

C

2

√
log

20
∑L−1

h′=1 dh′

δ

⋂D(ϵ)

 ≥ 1− 3δ

5
.

Now we begin the induction. First of all, P
[
BL+1

(0)
]
= 1 by definition. For 1 ≤ h ≤ L, in the statement of Lemma

9.14, set ϵ2 = 3(L + 1 − h), ϵ3 = 2

√
log

20
∑L−1

h′=1
dh′

δ , δ2 = δ
4L . If dh ≥ Ω( 1

α2
1
ϵ2 log

L
∑L−1

h′=1
dh′

δ ) = Ω̃( 1
α2

1
ϵ2 ), we have

48
√
2√

dh
+ 48

√
2
α

log 8
δ2

dh
+ 96

α

√
2 log

4
∑L−1

h′=1
d
h′

δ3√
dh

< ϵ/2. Thus we have

P

B(h+1)
((3L− 3h)ϵ)

⋂
C (ϵ3)

⋂
D(ϵ) ⇒ Bh

(3L+ 2− 3h)ϵ+
48
√
2√

dh
+ 48

√
2

α

log 8
δ2

dh
+

96

α

√
2 log

4
∑L−1

h′=1
dh′

δ3√
dh




≥ P
[
B(h+1)

((3L− 3h)ϵ)
⋂

C (ϵ3)
⋂

D(ϵ) ⇒ Bh
((3L+ 3− 3h)ϵ)

]
≥ 1− δ

5L

Applying union bound for every h ∈ [L], we have

P
[
AL

(ϵ2/8)
⋂

B(3Lϵ)
⋂

C(ϵ3)
⋂

D(ϵ)
]

≥ P

[
AL

(ϵ2/8)

L⋂
h=1

Bh
(3(L+ 1− h)ϵ)

⋂
C(ϵ3)

⋂
D(ϵ)

]
≥ 1− P

[
¬
(
A(ϵ2/8)

⋂
C(ϵ3)

⋂
Dh

(ϵ)
)]

−
L∑

h=1

P
[
¬
(
B(h+1)

((3L− 3h)ϵ)
⋂

C (ϵ3)
⋂

D(ϵ) ⇒ Bh
((3L+ 3− 3h)ϵ)

)]
≥ 1− δ

9.4 Proof of Theorem 9.11: Forward Propagation

In this section, we prove A(x,x′, ϵ) holds which is shown in Theorem 9.11 below. The main goal is to obtain bounds on∣∣∣(m(h+1) ⊙ g(h)(x)
)⊤

(m(h+1) ⊙ g(h)(x′))− Σ(h)(x,x′)
∣∣∣. We first introduce a result from previous work.

Lemma 9.15 (Lemma 13 in (Daniely et al., 2016)). Define the function

σ(Σ) = cσ E
(X,Y )∼N (0,Σ)

σ(X)σ(Y ),



On the Neural Tangent Kernel Analysis of Randomly Pruned Neural Networks

and the set

Mγ
+ :=

{[
Σ11 Σ12

Σ12 Σ22

]
∈ M+|1− γ ≤ Σ11,Σ22 ≤ 1 + γ

}
,

where M+ denote the set of positive semi-definite matrices. Then σ is (1+o(ϵ))-Lipschitz on Mϵ
+ with respect to ∞-norm.

Our analysis follows from the proof of Theorem 14 in (Daniely et al., 2016).

Proof of Theorem 9.11. We prove the first inequality first. Define the quantity Bd =
∑d

i=1(1 + o(ϵ))i.

We begin our proof by saying the h-th layer of a neural network is well-initialized if ∀i ∈ [dh+1], we have∣∣∣∣(g(h)(x(1))⊙m
(h+1)
i

)⊤ (
g(h)(x(2))⊙m

(h+1)
i

)
− Σ(h)(x(1),x(2))

∣∣∣∣ ≤ ϵ
Bh

BL
.

We prove the result by induction. Since we don’t prune the input layer, the result trivially holds for h = 0. Assume all the
layers first h− 1 layers are well-initialized.

Now, conditioned on g(h−1)(x(1)),g(h−1)(x(2)),m(h), we have

E
W(h),m(h+1)

[(
g(h)(x(1))⊙m

(h+1)
i

)⊤ (
g(h)(x(2))⊙m

(h+1)
i

)]
= E

W(h)

[(
g(h)(x(1))

)⊤
g(h)(x(2))

]
=

cσ
dh

dh∑
i=1

E
W(h)

[
σ
(〈

W
(h)
i ,m

(h)
i ⊙ g(h−1)(x(1))

〉)
σ
(〈

W
(h)
i ,m

(h)
i ⊙ g(h−1)(x(2))

〉)]
.

where W
(h)
i denotes the i-th row of W(h). Define

Σ̂
(h)
i (x(1),x(2)) =

(
g(h)(x(1))⊙m

(h+1)
i

)⊤ (
g(h)(x(2))⊙m

(h+1)
i

)
,

Λ̂
(h)

i (x(1),x(2)) =

[
Σ̂

(h)
i (x(1),x(1)) Σ̂

(h)
i (x(1),x(2))

Σ̂
(h)
i (x(2),x(1)) Σ̂

(h)
i (x(2),x(2))

]
.

Notice that for a given j, conditioned on m(h), g(h−1)(x(1)) and g(h−1)(x(2)), and consider the randomness in Wj ,

σ
(〈

W
(h)
j ,m

(h)
j ⊙ g(h−1)(x(1))

〉)
σ
(〈

W
(h)
j ,m

(h)
j ⊙ g(h−1)(x(2))

〉)
is subgamma with parameters (O(1), O(1)) and

E
[
σ
(〈

W
(h)
j ,m

(h)
j ⊙ g(h−1)(x(1))

〉)
σ
(〈

W
(h)
j ,m

(h)
j ⊙ g(h−1)(x(2))

〉)]
≤

√
E
[(

σ
(〈

W
(h)
j ,m

(h)
j ⊙ g(h−1)(x(1))

〉))2]
E
[(

σ
(〈

W
(h)
j ,m

(h)
j ⊙ g(h−1)(x(2))

〉))2]

≤

√
E
[(〈

W
(h)
j ,m

(h)
j ⊙ g(h−1)(x(1))

〉)2]
E
[(〈

W
(h)
j ,m

(h)
j ⊙ g(h−1)(x(2))

〉)2]
=
∥∥∥m(h)

j ⊙ g(h−1)(x(1))
∥∥∥
2

∥∥∥m(h)
j ⊙ g(h−1)(x(2))

∥∥∥
2
≤ 4,

where the first inequality is by Cauchy-Schwarz inequality.

By Theorem 9.3, we have

P
[∣∣∣∣Σ̂(h)

i (x(1),x(2))− E
W(h),m(h+1)

Σ̂
(h)
i (x(1),x(2))

∣∣∣∣ > ϵ

]
≤ 4 exp

{
−Ω(αdhϵ

2)
}
,

for some constant c2 such that ϵ < c2.
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Taking a union bound over i ∈ [dh+1], we have if dh ≥ Ω( 1
α

B2
L log

8dh+1L

δ

ϵ2 ), then with probability 1− δ
L for all i ∈ [dh+1],∣∣∣∣∣∣

(
g(h)(x(1))⊙m

(h+1)
i

)⊤ (
g(h)(x(2))⊙m

(h+1)
i

)
− cσ

dh

dh∑
j=1

E
(u,v)∼N (0,Λ̂

(h−1)

j (x(1),x(2)))

[σ(u)σ(v)]

∣∣∣∣∣∣ ≤ ϵ/BL.

Now apply triangle inequality∣∣∣∣(g(h)(x(1))⊙m
(h+1)
i

)⊤ (
g(h)(x(2))⊙m

(h+1)
i

)
− Σ(h)(x(1),x(2))

∣∣∣∣
≤

∣∣∣∣∣∣
(
g(h)(x(1))⊙m

(h+1)
i

)⊤ (
g(h)(x(2))⊙m

(h+1)
i

)
− cσ

dh

dh∑
j=1

E
(u,v)∼N (0,Λ̂

(h−1)

j (x(1),x(2)))

[σ(u)σ(v)]

∣∣∣∣∣∣
+

∣∣∣∣∣∣ cσdh
dh∑
j=1

E
(u,v)∼N (0,Λ̂

(h−1)

j (x(1),x(2)))

[σ(u)σ(v)]− Σ(h)(x(1),x(2))

∣∣∣∣∣∣
≤ ϵ/BL +

1

dh

dh∑
i=1

∣∣∣∣∣cσ E
(u,v)∼N (0,Λ̂

(h−1)

j (x(1),x(2)))

[σ(u)σ(v)]− Σ(h)(x(1),x(2))

∣∣∣∣∣
≤ ϵ/BL +

1

dh

dh∑
i=1

(1 + o(ϵ))ϵ
Bh−1

BL
= ϵ

Bh

BL
,

where the last inequality applies by the fact that σ is (1+o(ϵ))-Lipschitz on Mγ
+ with respect to the ∞-norm in Lemma 9.15

and the induction hypothesis that the first h− 1 layers are well-initialized.

Finally we expand Bd =
∑d

i=1(1 + o(ϵ))i and take ϵ = min(c2,
1
L ), we have

BL =

L∑
i=1

(1 + o(ϵ))i ≤
L∑

i=1

eo(ϵ)L = O(L).

The proof for ∣∣∣∣(g(h)(x(1))
)⊤

g(h)(x(2))− Σ(h)(x(1),x(2))

∣∣∣∣ ≤ ϵ,

largely follows the same steps as above since

E
W(h)

(
g(h)(x(1))

)⊤
g(h)(x(2)) = E

W(h),m(h+1)
Σ̂

(h)
i (x(1),x(2)).

Now applying the concentration of sub-Gamma random variables we have

P
[∣∣∣∣(g(h)(x(1))

)⊤
g(h)(x(2))− E

W(h)

(
g(h)(x(1))

)⊤
g(h)(x(2))

∣∣∣∣ ≥ ϵ

]
≤ 2 exp{−ϵ2dh}

for sufficiently small ϵ, which requires dh ≥ Ω( 1
ϵ2 log

6L
δ ) by taking a union bound over L.

Lemma 9.16. Assume the event A(x,x′, ϵ) holds for ϵ < 1. Then, with probability at least 1− δ over the randomness of
w(L+1)

|f (L+1)(x)| ≤
√

2 log
2

δ
.

Proof. By definition, we have f (L+1)(x) =
〈
w(L+1) ⊙m(L+1),g(h)(x)

〉
. By our assumption,

∥∥g(h)(x)⊙m(h+1)
∥∥2
2
≤

2. Thus, by apply standard Gaussian tail bound, with probability at least 1− δ,

|f (L+1)(x)| ≤
√

2 log
2

δ
.
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9.5 Proof of Lemma 9.12: Analyzing the Activation Gradient of a Single Layer

To prove Lemma 9.12, we first introduce a previous result.

Lemma 9.17 (Lemma E.8. (Arora et al., 2019b)). Define

tσ̇(Σ) = cσ E
(u,v)∼N (0,Σ′)

[σ̇(u)σ̇(v)] with Σ′ =

[
1 Σ12√

Σ11Σ22
Σ12√
Σ11Σ22

1

]
.

Then ∥∥∥G(h)(x,x′)−Λ(h)(x,x′)
∥∥∥
∞

≤ ϵ2

2
⇒
∣∣∣tσ̇ (G(h)(x,x′)

)
− tσ̇

(
Λ(h)(x,x′)

)∣∣∣ ≤ ϵ.

Proof of Lemma 9.12. Conditioned on Λ̂
(h)

i , ∀i ∈ [dh] and consider the randomness of W(h),m(h+1), we have

E
W(h),m(h+1)

[
2

Tr(M(h+1)
i D(h)(x,x′)M

(h+1)
i )

dh

]

= E
W(h)

[
2

Tr(D(h)(x,x′))

dh

]
=

1

dh

dh∑
i=1

E
W(h)

[
σ̇
(〈

W
(h)
i ,m

(h)
i ⊙ g(h−1)(x)

〉)
σ̇
(〈

W
(h)
i ,m

(h)
i ⊙ g(h−1)(x′)

〉)]
=

1

dh

dh∑
i=1

tσ̇

(
Λ̂

(h)

i

)
.

Now, by triangle inequality and our assumption on Λ̂i, ∀i ∈ [dh], apply Lemma 9.17∣∣∣∣∣tσ̇ (Λ(h)(x,x′)
)
− 1

dh

dh∑
i=1

tσ̇

(
Λ̂

(h)

i

)∣∣∣∣∣ ≤ 1

dh

dh∑
i=1

∣∣∣∣tσ̇ (Λ(h)(x,x′)
)
− tσ̇

(
Λ̂

(h)

i

)∣∣∣∣ ≤ ϵ1.

Finally, since σ̇(f
(h)
j (x))σ̇(f

(h)
j (x′)) is a 0-1 random variable, it is sub-Gaussian with variance proxy 1

4 . By Theorem 9.2,
for a given i and t > 0,

P

[∣∣∣∣∣2Tr(M(h+1)
i D(h)(x,x′)M

(h+1)
i )

dh
− 1

dh

dh∑
i=1

tσ̇

(
Λ̂

(h)

i

)∣∣∣∣∣ > t

]
≤ 4 exp

{
−Ω(αdht

2)
}
.

Finally, by taking a union bound over h ∈ [L], i ∈ [dh+1], if dh ≥ Ω( 1
α

1
ϵ24

log 4Ldh+1

δ ) with probability 1 − δ over the

randomness of W(h),m(h+1), we have ∀h ∈ [L], i ∈ [dh+1],∣∣∣∣∣2Tr(M(h+1)
i D(h)(x,x′)M

(h+1)
i )

dh
− 1

dh

dh∑
i=1

tσ̇

(
Λ̂

(h)

i

)∣∣∣∣∣ < ϵ4.

By triangle inequality we have∣∣∣∣∣2Tr(M(h+1)
i D(h)(x,x′)M

(h+1)
i )

dh
− tσ̇

(
Λ(h)(x,x′)

)∣∣∣∣∣ < ϵ1 + ϵ4.

9.6 Proof of Lemma 9.14: The Fresh Gaussian Copy Trick

Proof of Lemma 9.14. The goal is to show that∣∣∣∣∣(b(h+1)(x(1))
)⊤

(W(h+1) ⊙m(h+1))D(h)(x(1))D(h)(x(2))(W(h+1) ⊙m(h+1))⊤b(h+1)(x(2))−
L∏

h′=h

Σ̇(h′)(x(1),x(2))

∣∣∣∣∣
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is small. We can write(
b(h+1)(x(1))

)⊤
(W(h+1) ⊙m(h+1))D(h)(x(1))D(h)(x(2))(W(h+1) ⊙m(h+1))⊤b(h+1)(x(2))

=
cσ
dh

∑
i,j

b
(h+1)
i (x(1))b

(h+1)
j (x(2))

(
w

(h+1)
i

)
M

(h+1)
i D(h)(x(1))D(h)(x(2))M

(h+1)
j w

(h+1)
j

We first show that this term is close to

2

dh

∑
i

b
(h+1)
i (x(1))b

(h+1)
i (x(2))Tr(M(h+1)

i DM
(h+1)
i ) (17)

We do this by the following.

Let G(h)
i = [(g(h)(x) ⊙m

(h+1)
i ) (g(h)(x′) ⊙m

(h+1)
i )] and G(h) = [G

(h)
1 G

(h)
2 . . .G

(h)
dh+1

] and F(h+1) = (W(h+1) ⊙
m(h+1))G(h). We further simplify our notation to let Gi = G

(h)
i since there is no ambiguity on layers. Notice that

conditioned on F(h+1),m(h+1),G(h), notice that

(
b(h+1)(x)

)⊤


((w
(h+1)
1 )⊤Π⊥

G1
)⊙m

(h+1)
1

((w
(h+1)
2 )⊤Π⊥

G2
)⊙m

(h+1)
2

...
((w

(h+1)
dh+1

)⊤Π⊥
Gdh+1

)⊙m
(h+1)
dh+1

 ∈ Rdh

has multivariate Gaussian distribution and by Lemma 9.7 it has the same distribution as

(
b(h+1)(x)

)⊤


((w
(h+1)
1 )⊤Π⊥

G1
)⊙m

(h+1)
1

((w
(h+1)
2 )⊤Π⊥

G2
)⊙m

(h+1)
2

...
((w

(h+1)
dh+1

)⊤Π⊥
Gdh+1

)⊙m
(h+1)
dh+1

 =

dh+1∑
i=1

b
(h+1)
i (x)((w̃

(h+1)
i )⊤Π⊥

Gi
)⊙m

(h+1)
i ,

where w̃
(h+1)
i is a fresh copy of i.i.d. Gaussian. First of all, let M(h+1)

i = diag(m(h+1)
i ), and we have

cσ
dh

∑
i,j

b
(h+1)
i (x(1))b

(h+1)
j (x(2))

(
w

(h+1)
i

)
(ΠGi +Π⊥

Gi
)M

(h+1)
i D(h)(x(1))D(h)(x(2))M

(h+1)
j (ΠGj

+Π⊥
Gj

)w
(h+1)
j

=
cσ
dh

∑
i,j

b
(h+1)
i (x(1))b

(h+1)
j (x(2))

(
w

(h+1)
i

)⊤
Π⊥

Gi
M

(h+1)
i D(h)(x(1))D(h)(x(2))M

(h+1)
j Π⊥

Gj
w

(h+1)
j

+
cσ
dh

∑
i,j

b
(h+1)
i (x(1))b

(h+1)
j (x(2))

(
w

(h+1)
i

)⊤
Π⊥

Gi
M

(h+1)
i D(h)(x(1))D(h)(x(2))M

(h+1)
j ΠGj

w
(h+1)
j

+
cσ
dh

∑
i,j

b
(h+1)
i (x(1))b

(h+1)
j (x(2))

(
w

(h+1)
i

)⊤
ΠGiM

(h+1)
i D(h)(x(1))D(h)(x(2))M

(h+1)
j Π⊥

Gj
w

(h+1)
j

+
cσ
dh

∑
i,j

b
(h+1)
i (x(1))b

(h+1)
j (x(2))

(
w

(h+1)
i

)⊤
ΠGiM

(h+1)
i D(h)(x(1))D(h)(x(2))M

(h+1)
j ΠGjw

(h+1)
j . (18)

We now show that the main contribution from the above term is from the part that involves Π⊥
Gi

and is close to the term in
Equation (17), and the part with ΠGi

is small. This is done by Proposition 9.20 and Proposition 9.27. The rest of proof is
by Proposition 9.18.

Proposition 9.18. If AL
(ϵ21/2)

⋂
Bh+1

(ϵ2)
⋂

C(ϵ3)
⋂
Dh

(ϵ4), then we have∣∣∣∣∣ 2dh ∑i b
(h+1)
i (x(1))b

(h+1)
i (x(2))Tr(M(h+1)

i DM
(h+1)
i )−

L∏
h′=h

Σ̇(h′)(x(1),x(2))

∣∣∣∣∣ ≤ ϵ2 + 2ϵ4.
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Proof. ∣∣∣∣∣ 2dh ∑i b
(h+1)
i (x(1))b

(h+1)
i (x(2))Tr(M(h+1)

i DM
(h+1)
i )−

L∏
h′=h

Σ̇(h′)(x(1),x(2))

∣∣∣∣∣
≤

∣∣∣∣∣∑
i

b
(h+1)
i (x(1))b

(h+1)
i (x(2))

(
2

dh
Tr(M(h+1)

i DM
(h+1)
i )− Σ̇(h)(x(1),x(2))

)∣∣∣∣∣
+
∣∣∣Σ̇(h)(x(1)x(2))

∣∣∣ ∣∣∣∣∣〈b(h+1)(x(1))b(h+1)(x(2))
〉
−

L∏
h′=h+1

Σ̇(h′)(x(1),x(2))

∣∣∣∣∣
≤
∥∥∥b(h+1)(x(1))

∥∥∥
2

∥∥∥b(h+1)(x(2))
∥∥∥
2
ϵ4 + ϵ2

= 2ϵ4 + ϵ2.

Before we prove Proposition 9.20 and Proposition 9.27, we first prove a convenient result.

Proposition 9.19. M
(h+1)
i commutes with ΠGi

(and thus Π⊥
Gi

).

Proof. We can decompose ΠGi
= ΠMig1

+ ΠGi/Mig1
. Observe that ΠGi/Mig1

is projecting a vector into the space
spanned by Mig2 − ⟨Mig1,Mig2⟩Mig1 = Mi(g2 − ⟨Mig1,Mig2⟩g1). Thus, we can first prove Mi commutes with
ΠMig1

and the same result follows for ΠGi/Mig1
. Notice that MiΠMig1

= Mi
Mig1(Mig1)

⊤

∥Mig1∥2
2

= 1√
α

Mig1(Mig1)
⊤

∥Mig1∥2
2

=

Mig1(Mig1)
⊤

∥Mig1∥2
2

Mi = ΠMig1
Mi.

9.6.1 Bounding the Independent Part

Proposition 9.20 (Formal Version of Proposition 5.2). Conditioned on the event in Lemma 9.9 occurs. With probability at
least 1− δ2, if AL

(ϵ21/2)
⋂
Bh+1

(ϵ2)
⋂
C(ϵ3)

⋂
Dh

(ϵ4), then for any (x(1),x(2)) ∈ {(x,x), (x,x′), (x′,x′)}, we have∣∣∣∣∣ cσdh ∑i,j b
(h+1)
i (x(1))b

(h+1)
j (x(2))

(
w̃

(h+1)
i

)⊤
Π⊥

Gi
M

(h+1)
i DM

(h+1)
j Π⊥

Gj
w̃

(h+1)
j

− 2

dh

∑
i

b
(h+1)
i (x(1))b

(h+1)
i (x(2))Tr(M(h+1)

i DM
(h+1)
i )

∣∣∣∣∣ ≤ 3

√
8 log 6

δ2

αdh
,

which implies for any x(1) ∈ {x,x′},

∥∥∥∥∥
√

cσ
dh

∑
i

b
(h+1)
i (x(1))

(
w̃

(h+1)
i

)⊤
Π⊥

Gi
M

(h+1)
i D

∥∥∥∥∥
2

≤

√√√√
4 + 3

√
8 log 6

δ2

αdh
≤ 6,

if dh ≥ 8
α log 6

δ2
.

Proof. First, we compute the difference between the projected version of the inner product and normal inner product in
expectation: First we have

E
W̃(h+1)

 cσ
dh

∑
i,j

b
(h+1)
i (x(1))b

(h+1)
j (x(2))

(
w̃

(h+1)
i

)⊤
M

(h+1)
i DM

(h+1)
j w̃

(h+1)
j


=

cσ
dh

∑
i

b
(h+1)
i (x(1))b

(h+1)
i (x(2))Tr(M(h+1)

i DM
(h+1)
i ).
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Then,

E
W̃(h+1)

(
cσ
dh

∑
i,j

b
(h+1)
i (x(1))b

(h+1)
j (x(2))

(
w̃

(h+1)
i

)⊤
Π⊥

Gi
M

(h+1)
i DM

(h+1)
j Π⊥

Gj
w̃

(h+1)
j

− cσ
dh

∑
i,j

b
(h+1)
i (x(1))b

(h+1)
j (x(2))

(
w̃

(h+1)
i

)⊤
M

(h+1)
i DM

(h+1)
j w̃

(h+1)
j

)
=

cσ
dh

∑
i

b
(h+1)
i (x(1))b

(h+1)
i (x(2))Tr(Π⊥

Gi
M

(h+1)
i DM

(h+1)
i Π⊥

Gi
−M

(h+1)
i DM

(h+1)
i )

=
cσ
dh

∑
i

b
(h+1)
i (x(1))b

(h+1)
i (x(2))Tr((Π⊥

Gi
− I)M

(h+1)
i DM

(h+1)
i )

=
cσ
dh

∑
i

b
(h+1)
i (x(1))b

(h+1)
i (x(2))Tr(ΠGiM

(h+1)
i DM

(h+1)
i ),

where the third last equality is true because we can interchange between M
(h+1)
i and Π⊥

Gi
. And the second

last equality is because Tr(Π⊥
Gi

M
(h+1)
i DM

(h+1)
i Π⊥

Gi
− M

(h+1)
i DM

(h+1)
i ) = Tr(Π⊥

Gi
M

(h+1)
i DM

(h+1)
i Π⊥

Gi
) −

Tr(M(h+1)
i DM

(h+1)
i ) = Tr(Π⊥

Gi
M

(h+1)
i DM

(h+1)
i ) − Tr(M(h+1)

i DM
(h+1)
i ) = Tr((Π⊥

Gi
− I)M

(h+1)
i DM

(h+1)
i ) =

Tr(ΠGi
M

(h+1)
i DM

(h+1)
i ). Since rank(ΠGi

) ≤ 2 and
∥∥∥M(h+1)

i DM
(h+1)
i

∥∥∥
2
≤ 1

α , we have

0 ≤ Tr(ΠGi
M

(h+1)
i DM

(h+1)
i ) ≤ 2

α
.

Now notice that∑
i

b
(h+1)
i (x(1))b

(h+1)
i (x(2))Tr(ΠGiM

(h+1)
i DM

(h+1)
i ) = b(h+1)(x(1))⊤Tb(h+1)(x(2)),

where

T =


Tr(ΠG1

M
(h+1)
1 DM

(h+1)
1 ) 0 . . . 0

0 Tr(ΠG2
M

(h+1)
2 DM

(h+1)
2 ) . . . 0

...
...

...
0 0 . . . Tr(ΠGdh+1

M
(h+1)
dh+1

DM
(h+1)
dh+1

)

 .

Notice that ∥T∥2 ≤ 2
α and thus, |b(h+1)(x(1))⊤Tb(h+1)(x(2))| ≤ 2

α

∥∥b(h+1)(x(1))
∥∥
2

∥∥b(h+1)(x(2))
∥∥
2
. Therefore, we

have

E
W̃(h+1)

(
cσ
dh

∑
i,j

b
(h+1)
i (x(1))b

(h+1)
j (x(2))

(
w̃

(h+1)
i

)⊤
Π⊥

Gi
M

(h+1)
i DM

(h+1)
j Π⊥

Gj
w̃

(h+1)
j

− cσ
dh

∑
i,j

b
(h+1)
i (x(1))b

(h+1)
j (x(2))

(
w̃

(h+1)
i

)⊤
M

(h+1)
i DM

(h+1)
j w̃

(h+1)
j

)

≤ cσ
dh

2

α

∥∥∥b(h+1)(x(1))
∥∥∥
2

∥∥∥b(h+1)(x(2))
∥∥∥
2
≤ cσ

dh

8

α
. (19)

Next, we analyze concentration of

cσ
dh

∑
i,j

b
(h+1)
i (x(1))b

(h+1)
j (x(2))

(
w̃

(h+1)
i

)⊤
Π⊥

Gi
M

(h+1)
i DM

(h+1)
j Π⊥

Gj
w̃

(h+1)
j .

Since the following new random vector has multivariate Gaussian distribution, we can write[∑dh+1

i=1 b
(h+1)
i (x(1))((w̃

(h+1)
i )⊤Π⊥

Gi
)⊙m

(h+1)
i

∑dh+1

i=1 b
(h+1)
i (x(2))((w̃

(h+1)
i )⊤Π⊥

Gi
)⊙m

(h+1)
i

]⊤ D
= Mξ,
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where ξ ∼ N (0, I2dh
), and M ∈ R2dh×2dh and its covariance matrix is given by a blocked symmetric matrix

C =

[
C(x(1),x(1)) C(x(1),x(2))
C(x(1),x(2)) C(x(2),x(2))

]
= MM⊤,

where each block is given by

C(x(p),x(q))

= E
W̃(h+1)

dh+1∑
i=1

b
(h+1)
i (x(p))((w̃

(h+1)
i )⊤Π⊥

Gi
)⊙m

(h+1)
i

⊤dh+1∑
j=1

b
(h+1)
j (x(q))((w̃

(h+1)
j )⊤Π⊥

Gj
)⊙m

(h+1)
j


= E

W̃(h+1)

dh+1∑
i=1

b
(h+1)
i (x(p))(Π⊥

Gi
w̃

(h+1)
i )⊙m

(h+1)
i

dh+1∑
j=1

b
(h+1)
j (x(q))((w̃

(h+1)
j )⊤Π⊥

Gj
)⊙m

(h+1)
j


= E

W̃(h+1)

dh+1∑
i=1

dh+1∑
j=1

b
(h+1)
i (x(p))b

(h+1)
j (x(q))Π⊥

Gi
(w̃

(h+1)
i ⊙m

(h+1)
i )(w̃

(h+1)
j ⊙m

(h+1)
j )⊤Π⊥

Gj


=

dh+1∑
i=1

b
(h+1)
i (x(p))b

(h+1)
i (x(q))Π⊥

Gi

(
E

W̃(h+1)

(w̃
(h+1)
i ⊙m

(h+1)
i )(w̃

(h+1)
i ⊙m

(h+1)
i )⊤

)
Π⊥

Gi

=

dh+1∑
i=1

b
(h+1)
i (x(p))b

(h+1)
i (x(q))Π⊥

Gi
diag

((
m

(h+1)
i

)2)
Π⊥

Gi
,

where the third equality is from Proposition 9.19 and the square on a vector in the last equality is applied element-wise.
Therefore, we can write

C =

[
C(x(1),x(1)) C(x(1),x(2))
C(x(1),x(2)) C(x(2),x(2))

]

=

dh+1∑
i=1

[
b
(h+1)
i (x(1))b

(h+1)
i (x(1)) b

(h+1)
i (x(1))b

(h+1)
i (x(2))

b
(h+1)
i (x(1))b

(h+1)
i (x(2)) b

(h+1)
i (x(2))b

(h+1)
i (x(2))

]
⊗Π⊥

Gi
diag

((
m

(h+1)
i

)2)
Π⊥

Gi
.

Bounding the Operator Norm of the Covariance Matrix C

Next, we want to show that

dh+1∑
i=1

[
b
(h+1)
i (x(1))b

(h+1)
i (x(1)) b

(h+1)
i (x(1))b

(h+1)
i (x(2))

b
(h+1)
i (x(1))b

(h+1)
i (x(2)) b

(h+1)
i (x(2))b

(h+1)
i (x(2))

]
⊗
(
1

α
I−Π⊥

Gi
diag

((
m

(h+1)
i

)2)
Π⊥

Gi

)
⪰ 0. (20)

Given this, since Kronecker product preserves two norm we have that

∥C∥2 ≤ 1

α

∥∥∥∥∥∥
dh+1∑
i=1

[
b
(h+1)
i (x(1))b

(h+1)
i (x(1)) b

(h+1)
i (x(1))b

(h+1)
i (x(2))

b
(h+1)
i (x(1))b

(h+1)
i (x(2)) b

(h+1)
i (x(2))b

(h+1)
i (x(2))

]∥∥∥∥∥∥
2

=
1

α

∥∥∥∥[〈b(h+1)(x(1)),b(h+1)(x(1))
〉 〈

b(h+1)(x(1)),b(h+1)(x(2))
〉〈

b(h+1)(x(1)),b(h+1)(x(2))
〉 〈

b(h+1)(x(2)),b(h+1)(x(2))
〉]∥∥∥∥

2

≤ 1

α

√
2
(〈

b(h+1)(x(1)),b(h+1)(x(1))
〉
+
〈
b(h+1)(x(1)),b(h+1)(x(2))

〉)
,

where the last inequality is by applying ∥A∥2 ≤
√
m ∥A∥∞.

We prove the matrix in Equation (20) is positive semi-definite by constructing a multivariate Gaussian distribution such that
its covariance matrix is exactly the matrix and exploring the fact that the covariance matrix of two independent Gaussian
distribution is the sum of the two covariance matrix. First, notice that

1

α
I−Π⊥

Gi
diag

((
m

(h+1)
i

)2)
Π⊥

Gi
=

1

α

(
Π⊥

Gi
+ΠGi

)
−Π⊥

Gi
diag

((
m

(h+1)
i

)2)
Π⊥

Gi
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= Π⊥
Gi

(
1

α
I− diag

((
m

(h+1)
i

)2)
Π⊥

Gi

)
+

1

α
ΠGi

= Π⊥
Gi

(
1

α

(
Π⊥

Gi
+ΠGi

)
− diag

((
m

(h+1)
i

)2)
Π⊥

Gi

)
+

1

α
ΠGi

= Π⊥
Gi

(
1

α
ΠGi

+

(
1

α
I− diag

((
m

(h+1)
i

)2))
Π⊥

Gi

)
+

1

α
ΠGi

= Π⊥
Gi

(
1

α
I− diag

((
m

(h+1)
i

)2))
Π⊥

Gi
+

1

α
ΠGi .

The final Gaussian is constructed by the sum of the following two groups of Gaussian: let W1,W2 be two independent
standard Gaussian matrices,[∑dh+1

i=1 bi(x
(1))(w

(h+1)
1,i )⊤

(
1√
α
I− diag

(
m

(h+1)
i

))
Π⊥

Gi

∑dh+1

i=1 bi(x
(2))(w

(h+1)
1,i )⊤

(
1√
α
I− diag

(
m

(h+1)
i

))
Π⊥

Gi

]
,[∑dh+1

i=1 bi(x
(1))(w

(h+1)
2,i )⊤ 1√

α
ΠGi

∑dh+1

i=1 bi(x
(2))(w

(h+1)
2,i )⊤ 1√

α
ΠGi

]
,

where wi,j denote the j-th row of Wi.

Now conditioned on {b(h+1)(x(1)),b(h+1)(x(2)),g(h)(x(1)),g(h)(x(2))}, we havedh+1∑
i=1

b
(h+1)
i (x(1))(w

(h+1)
i ⊙m

(h+1)
i )⊤Π⊥

Gi

D

dh+1∑
i=1

b
(h+1)
i (x(2))(w

(h+1)
i ⊙m

(h+1)
i )⊤Π⊥

Gi


D
=

dh+1∑
i=1

b
(h+1)
i (x(1))(w̃

(h+1)
i ⊙m

(h+1)
i )⊤Π⊥

Gi

D

dh+1∑
i=1

b
(h+1)
i (x(2))(w̃

(h+1)
i ⊙m

(h+1)
i )⊤Π⊥

Gi


D
= ([Idh

0]Mξ)⊤D([0 Idh
]Mξ)

D
=

1

2
ξ⊤M⊤

[
0 D
D 0

]
Mξ.

Now, let

A =
1

2
M⊤

[
0 D
D 0

]
M,

and we have

∥A∥2 ≤ 1

2
∥M∥22 ∥D∥2

=
1

2

∥∥MM⊤∥∥
2
∥D∥2

=
1

2
∥C∥2

≤ 1

2α

√
2
(〈

b(h+1)(x(1)),b(h+1)(x(1))
〉
+
〈
b(h+1)(x(1)),b(h+1)(x(2))

〉)
≤ 2

√
2

α
.

Bounding the Trace of the Covariance Matrix C

Naively apply 2-norm-Frobenius-norm bound for matrices will give us

∥A∥F ≤
√

2dh ∥A∥2 ≤ 4
√
dh
α

.

We prove a better bound. Observe that

1

dh
∥A∥F =

1

dh

∥∥∥∥12M⊤
[
0 D
D 0

]
M

∥∥∥∥
F

≤ 1

2dh
∥M∥2 ∥M∥F ∥D∥2 =

1

2dh
√
α
∥M∥F =

1

2dh
√
α

√
Tr(MM⊤).
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Using the similar idea from bounding the 2-norm of C = MM⊤, we want to show that

dh+1∑
i=1

[
b
(h+1)
i (x(1))b

(h+1)
i (x(1)) b

(h+1)
i (x(1))b

(h+1)
i (x(2))

b
(h+1)
i (x(1))b

(h+1)
i (x(2)) b

(h+1)
i (x(2))b

(h+1)
i (x(2))

]
⊗
((

M
(h+1)
i

)2
−Π⊥

Gi

(
M

(h+1)
i

)2
Π⊥

Gi

)

=

dh+1∑
i=1

[
b
(h+1)
i (x(1))b

(h+1)
i (x(1)) b

(h+1)
i (x(1))b

(h+1)
i (x(2))

b
(h+1)
i (x(1))b

(h+1)
i (x(2)) b

(h+1)
i (x(2))b

(h+1)
i (x(2))

]
⊗ΠGi

(
M

(h+1)
i

)2
ΠGi

⪰ 0. (21)

If this equation is true, then we have

1

dh
Tr(MM⊤) ≤ 1

dh
Tr

dh+1∑
i=1

[
b
(h+1)
i (x(1))b

(h+1)
i (x(1)) b

(h+1)
i (x(1))b

(h+1)
i (x(2))

b
(h+1)
i (x(1))b

(h+1)
i (x(2)) b

(h+1)
i (x(2))b

(h+1)
i (x(2))

]
⊗M2

i


=

1

dh

dh+1∑
i=1

[(
b
(h+1)
i (x(1))

)2
+
(
b
(h+1)
i (x(2))

)2]
Tr
((

M
(h+1)
i

)2)

≤ 1

dh

dh+1∑
i=1

[(
b
(h+1)
i (x(1))

)2
+
(
b
(h+1)
i (x(2))

)2]
max

i
Tr
((

M
(h+1)
i

)2)
= max

i

1

dh
Tr
((

M
(h+1)
i

)2)(∥∥∥b(h+1)(x(1))
∥∥∥2
2
+
∥∥∥b(h+1)(x(2))

∥∥∥2
2

)
≤ 4max

i

1

dh
Tr
((

M
(h+1)
i

)2)
.

By Lemma 9.9, with probability ≥ 1− δ, maxi
1
dh

Tr
((

M
(h+1)
i

)2)
≤ 1 + 1 = 2. Thus, we have

1

dh
∥A∥F ≤

√
2

dhα
.

To prove Equation (21), since Mi commutes with Π⊥
Gi

, we have

M2
i −Π⊥

Gi
M2

iΠ
⊥
Gi

= M2
i −M2

iΠ
⊥
Gi

= M2
iΠGi

= ΠGi
M2

iΠGi
.

The Gaussian vector given by[∑dh+1

i=1 bi(x
(1))(w

(h+1)
2,i )⊤MiΠGi

∑dh+1

i=1 bi(x
(2))(w

(h+1)
2,i )⊤MiΠGi

]
has the covariance matrix.

Now apply Gaussian chaos concentration bound (Lemma 9.4), we have with probability 1− δ2
6 ,

1

dh
|ξ⊤Aξ − E[ξ⊤Aξ]| ≤ 1

dh

(
2 ∥A∥F

√
log

6

δ2
+ 2 ∥A∥2 log

6

δ2

)

≤

√
8 log 6

δ2

αdh
+ 4

√
2
log 6

δ2

αdh
. (22)

Finally, combining Equation 19 and Equation 22, we have∣∣∣∣∣ cσdh ∑i,j b
(h+1)
i (x(1))b

(h+1)
j (x(2))

(
w̃

(h+1)
i

)⊤
M

(h+1)
i Π⊥

Gi
DΠ⊥

Gj
M

(h+1)
j w̃

(h+1)
j

− 2

dh

∑
i

b
(h+1)
i (x(1))b

(h+1)
i (x(2))Tr(M(h+1)

i DM
(h+1)
i )

∣∣∣∣∣
≤ 2

dh
|ξ⊤Aξ − E[ξ⊤Aξ]|+

∣∣∣∣∣ 2dh E
[
ξ⊤Aξ

]
− 2

dh

∑
i

b
(h+1)
i (x(1))b

(h+1)
i (x(2))Tr(M(h+1)

i DM
(h+1)
i )

∣∣∣∣∣
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≤ cσ
dh

8

α
+

√
8 log 6

δ2

αdh
+ 4

√
2
log 6

δ2

αdh
≤ 3

√
8 log 6

δ2

αdh
.

where we choose dh ≥ 8
α log 6

δ2
. Then take a union bound over (x,x), (x,x′), (x′,x′). Finally, taking x(1) = x(2), we

have ∥∥∥∥∥
√

cσ
dh

∑
i

b
(h+1)
i (x(1))

(
w̃

(h+1)
i

)⊤
M

(h+1)
i Π⊥

Gi
D

∥∥∥∥∥
2

≤

√√√√√
∣∣∣∣∣∣ cσdh

∑
i,j

b
(h+1)
i (x(1))

(
w̃

(h+1)
i

)⊤
M

(h+1)
i Π⊥

Gi
DΠ⊥

Gj
M

(h+1)
j w̃

(h+1)
j b

(h+1)
j (x(1))

∣∣∣∣∣∣
≤

√√√√ 2

dh

∑
i

b
(h+1)
i (x(1))b

(h+1)
i (x(2))Tr(M(h+1)

i DM
(h+1)
i ) + 3

√
8 log 6

δ2

αdh

≤

√√√√
4 + 3

√
8 log 6

δ2

αdh
≤ 6.

9.6.2 Proof of Lemma 9.13: Bounding Pseudo Networks’ Output

This is the most involving part of the proof. To facilitate the proof, we first introduce a special property of the standard
Gaussian vector.

Proposition 9.21. For any given nonzero vectors x,y, the distribution of (w⊤x)2I(w⊤y > 0) is the same as
(w⊤x)2I(w⊤x > 0) where w ∼ N (0, I).

Proof. Define random variables z1 =
(
w⊤x

)2 I(w⊤y > 0) and z2 =
(
w⊤x

)2 I(w⊤x > 0). Let F1, F2 be the cumulative
distribution function of z1, z2. It is easy to see that both z1 and z2 has probability 1/2 of being zero and thus we consider
the probability that z1 and z2 are not identically zero. Then for z > 0,

P[0 < z1 ≤ z] =

∫
{w:w⊤y>0,|w⊤x|≤

√
z}

1

(2π)k/2
e−

1
2∥w∥2

2 dw

=

∫
{w:w⊤x>0,w⊤y>0,|w⊤x|≤

√
z}∪{w:w⊤x≤0,w⊤y>0,|w⊤x|≤

√
z}

1

(2π)k/2
e−

1
2∥w∥2

2 dw

=

∫
{w:w⊤x>0,w⊤y>0,|w⊤x|≤

√
z}

1

(2π)k/2
e−

1
2∥w∥2

2 dw

+

∫
{w:w⊤x≤0,w⊤y>0,|w⊤x|≤

√
z}

1

(2π)k/2
e−

1
2∥w∥2

2 dw

=

∫
{w:w⊤x>0,w⊤y>0,|w⊤x|≤

√
z}

1

(2π)k/2
e−

1
2∥w∥2

2 dw

+

∫
{w:w⊤x>0,w⊤y≤0,|w⊤x|≤

√
z}

1

(2π)k/2
e−

1
2∥w∥2

2 dw

=

∫
{w:w⊤x>0,|w⊤x|≤

√
z}

1

(2π)k/2
e−

1
2∥w∥2

2 dw

= P[0 < z2 ≤ z],

where the third last equality is by spherical symmetry of Gaussian and take w := −w over the region.

Mask-Induced Pseudo-Network

It turns out that the term in Equation (24) is closely related to a network structure which we defined as follows.
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Definition 9.22 (Pseudo-network induced by mask). Define the pseudo-network induced by the h-th layer j-th column of
sparse masks m(h) denoted by m

(h)
·j for all h ∈ {2, . . . , L}, j ∈ [dh−1] and h′ ∈ {h+ 1, h+ 2, . . . , L} to be

g(h,j,h)(x) =

√
cσ
dh

D(h)(x)diagi

 m
(h)
ij

√
α∥∥∥g(h−1) ⊙m
(h)
i

∥∥∥2
2

 f (h)(x),

f (h,j,h
′)(x) =

(
W(h′) ⊙m(h′)

)
g(h,j,h′−1)(x),

g(h,j,h′)(x) =

√
cσ
dh′

D(h′)(x)f (h,j,h
′)(x).

where f (h,j,L+1)(x) is the output of the pseudo-network.

We would like to bound |f (h+1,j,L+1)(x)| for all h ∈ {2, . . . , L}, j ∈ [dh−1]. Observe that without the diagonal matrix in
g(h,j,h)(x) we have

g(h+1)(x) =

√
cσ

dh+1
D(h+1)(x)f (h+1)(x).

Conditioned on g(h+1,j,L)(x), f (h+1,j,L+1)(x) has distribution N (0,
∥∥g(h+1,j,L)(x)⊙m(L+1)

∥∥2
2
). Therefore, the mag-

nitude of |f (h+1,j,L+1)(x)| would depend on
∥∥g(h+1,j,L)(x)⊙m(L+1)

∥∥
2
.

Definition 9.23. Define the event

C1(ϵ) =
{∣∣∣∣∥∥∥g(h,j,h′)

∥∥∥2
2
− E

∥∥∥g(h,j,h′)
∥∥∥2
2

∣∣∣∣ < ϵ, ∀h ∈ {2, . . . , L}, j ∈ [dh−1], h
′ ∈ {h+ 1, h+ 2, . . . , L}

}
,

C2

x, 2

√
log

4
∑L−1

h′=1 dh′

δ


=

|f (h,j,L+1)(x)| < 2

√
log

4
∑L−1

h′=1 dh′

δ
, ∀h ∈ {2, . . . , L}, j ∈ [dh−1], h

′ ∈ {h+ 1, . . . , L}

 ,

C

2

√
log

4
∑L−1

h′=1 dh′

δ

 = C1(ϵ) ∩ C2

x, 2

√
log

4
∑L−1

h′=1 dh′

δ

 ∩ C2

x′, 2

√
log

4
∑L−1

h′=1 dh′

δ

 .

We are going to show that the event C holds with probability 1− δ.

First, we show that

Lemma 9.24. Assume A(ϵ1) holds for ϵ1 < 1/2. For all h ∈ {2, . . . , L}, j ∈ [dh−1], it holds that for all h′ ∈
{h+ 1, h+ 2, h+ 3, . . . , L},

E
W(h+1),m(h+1)...,W(h′),m(h′)

[∥∥∥g(h,j,h′)(x)
∥∥∥2
2

∣∣∣∣g(h,j,h)

]
≤ 2 E

W(h+1),m(h+1),...,W(h′),m(h′)

[∥∥∥g(h′)(x)
∥∥∥2
2

∣∣∣∣g(h)(x)

]
.

Proof. By Proposition 9.21, for two non-zero vectors x,y we have

E
w∼N (0,I)

[(
w⊤x

)2 I(w⊤y > 0)
]
= E

w∼N (0,I)

[(
w⊤x

)2 I(w⊤x > 0)
]
.

This equation tells us that the direction of y doesn’t matter which implies

E
w∼N (0,I)

[(
w⊤x

)2 cσ
dh+1

σ̇
(
w⊤y

)]
= E

w∼N (0,I)

[(
w⊤x

)2 cσ
dh+1

σ̇
(
w⊤x

)]
=

∥x∥22
dh+1

.
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Now, this implies that conditioned on m,

E
w∼N (0,I)

[(
(w ⊙m)

⊤
x
)2 cσ

dh+1
σ̇
(
(w ⊙m)

⊤
y
)]

= E
w∼N (0,I)

[(
(w ⊙m)

⊤
x
)2 cσ

dh+1
σ̇
(
(w ⊙m)

⊤
x
)]

=
∥x⊙m∥22

dh+1
. (23)

Now, we fix h and j and prove the inequality holds for all h′. By Equation (23),

E
m(h+1),W(h+1)

[∥∥∥g(h,j,h+1)
∥∥∥2
2

]

= E
m(h+1)

dh+1∑
i=1

E
w

(h+1)
i

[((
w

(h+1)
i ⊙m

(h+1)
i

)⊤
g(h,j,h)

)2
cσ

dh+1
σ̇

((
w

(h+1)
i ⊙m

(h+1)
i

)⊤
g(h)

)∣∣∣∣∣m(h+1)

]
=
∥∥∥g(h,j,h)

∥∥∥2
2
.

Hence, by iterated expectation, we have for all h′ ∈ {h+ 1, h+ 2, h+ 3, . . . , L},

E
W(h+1),m(h+1),...,W(h′),m(h′)

[∥∥∥g(h,j,h′)(x)
∥∥∥2
2

∣∣∣∣g(h,j,h)

]
=
∥∥∥g(h,j,h)

∥∥∥2
2
,

E
W(h+1),m(h+1),...,W(h′),m(h′)

[∥∥∥g(h′)(x)
∥∥∥2
2

∣∣∣∣g(h)(x)

]
=
∥∥∥g(h)(x)

∥∥∥2
2
.

By our assumption
∥∥g(h−1) ⊙m(h)

∥∥2
2
≥ 1 − ϵ21 ≥ 1/2, we have

∥∥g(h,j,h)(x)
∥∥2
2
≤ 2

∥∥g(h)(x)
∥∥2
2
. This proves the

lemma.

Corollary 9.25. Assume A(ϵ1) holds for ϵ1 < 1/2. For all h ∈ {2, . . . , L}, j ∈ [dh−1], h′ ∈ {h+1, h+2, h+3, . . . , L}
and i ∈ [dh′+1],

E
W(h+1),m(h+1)...,W(h′),m(h′),m(h′+1)

[∥∥∥g(h,j,h′)(x)⊙m
(h′+1)
i

∥∥∥2
2

∣∣∣∣g(h,j,h)

]
≤ 2 E

W(h+1),m(h+1),...,W(h′),m(h′),m(h′+1)

[∥∥∥g(h′)(x)⊙m
(h′+1)
i

∥∥∥2
2

∣∣∣∣g(h)(x)

]
.

Proof. Use the fact that the mask m
(h′+1)
i is independent and preserve the 2-norm in expectation.

Lemma 9.26. Assume A(ϵ1) holds for ϵ1 < 1/2. Let ϵ ∈ (0, 1). If for all h ∈ L, it satisfies that dh ≥
Ω( 1

α
L2

ϵ2 log
2Ldh+1

∑h−1

h′=1
d′
h

δ ) = Ω̃( 1
α

L2

ϵ2 ), then with probability at least 1 − δ over the randomness in the initialization
of weights and masks, we have for all h ∈ {2, . . . , L}, j ∈ [dh−1],

|f (h,j,L+1)(x)|, |f (h,j,L+1)(x′)| ≤ 2

√
log

4
∑L−1

h′=1 dh′

δ
.

In other words, if dh ≥ Ω( 1
α

L2

ϵ2 log
2Ldh+1

∑h−1

h′=1
d′
h

δ3
) = Ω̃( 1

α
L2

ϵ2 ), then

P

A(ϵ1) ⇒ C

2

√
log

4
∑L−1

h′=1 dh′

δ3

 ≥ 1− δ3

Proof. Proposition 9.21 proved that conditioned on g, g̃,m, the random variable ((w ⊙ m)⊤g̃
√

cσ
dh

)2σ̇((w ⊙m)⊤g)

has the same distribution as ((w ⊙ m)⊤g̃
√

cσ
dh

)2σ̇((w ⊙m)⊤g̃), which implies their concentration properties are the

same. At a given layer h′, we want this concentration to holds for all
∥∥∥g(h,j,h′)(x)⊙m(h′+1)

∥∥∥2
2

where 2 ≤ h ≤ h′ and
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h ∈ [dh−1]. Thus there is in total
∑h′−1

h=1 dh events. Therefore, by Theorem 9.11, if dh′ ≥ Ω( 1
α

L2

ϵ2 log
8dh′+1L

∑h′−1
h=1 dh

δ ),
with probability 1− δ/2, for all layer h′, for all h ∈ {2, . . . , L}, j ∈ [dh−1] and h′ ∈ {h+ 1, h+ 2, . . . , L}, and for both
x,x′

∥∥∥g(h,j,h′)(x)⊙m(h′+1)
∥∥∥2
2
≤ 2E

[∥∥∥g(h′)(x)⊙m(h′+1)
∥∥∥2
2

]
+ ϵ ≤ 3.

By Lemma 9.16, this implies with probability 1− δ/2, for all j ∈ [dh],

|f (h,j,L+1)(x)|, |f (h,j,L+1)(x′)| ≤ 2

√
log

4
∑L−1

h′=1 dh
δ

.

9.6.3 Bounding the Dependent Part

Proposition 9.27 (Formal Version of Proposition 5.3). If dh′ ≥ Ω( 1
α

L2

ϵ2 log
8dh′+1L

∑
h≤h′ dh

δ ), with probability 1− δ3/2,

the event C(
√
log

∑
dh

δ3
) (which we define in the proof) holds and at layer h′, for all j ∈ [dh],∥∥∥∥∥∑

i

b
(h+1)
i (x(1))

(
w

(h+1)
i

)⊤
ΠGiM

(h+1)
i

∥∥∥∥∥
2

≤ 2 + 2

√
1

α
log

8

δ2
+

4

α

√
log

4
∑

dh
δ3

.

Proof. By triangle inequality, combining the result from Lemma 9.28 and Lemma 9.29, we have∥∥∥∥∥∑
i

b
(h+1)
i (x(1))

(
w

(h+1)
i

)⊤
ΠGi

M
(h+1)
i

∥∥∥∥∥
2

≤

∥∥∥∥∥∑
i

b
(h+1)
i (x(1))

(
w

(h+1)
i

)⊤
Π

(g(h)(x)⊙m
(h+1)
i )

M
(h+1)
i

∥∥∥∥∥
2

+

∥∥∥∥∥∑
i

b
(h+1)
i (x(1))

(
w

(h+1)
i

)⊤
Π

Gi/(g(h)(x)⊙m
(h+1)
i )

M
(h+1)
i

∥∥∥∥∥
2

(24)

≤ 2 + 2

√
1

α
log

8

δ2
+

4

α

√
log

∑
h dh
δ3

.

Thus, we need to upper bound the two terms in Equation (24). We first bound the second term which is easier.

Lemma 9.28. With probability 1− δ2,∥∥∥∥∥∑
i

b
(h+1)
i (x(1))

(
w

(h+1)
i

)⊤
Π

Gi/(g(h)(x)⊙m
(h+1)
i )

M
(h+1)
i

∥∥∥∥∥
2

≤ 2

(
1 +

√
1

α
log

8

δ2

)
.

Proof. We omit the superscript denoting layers in this proof when there is no confusion. Notice that
Gi/(g

(h)(x)⊙m
(h+1)
i ) is spanned by the vector

u(i) := g(h)(x′)⊙m
(h+1)
i −

〈
g(h)(x)⊙m

(h+1)
i ,g(h)(x′)⊙m

(h+1)
i

〉
g(h)(x)⊙m

(h+1)
i .

Now conditioned on g(h)(x),b(h+1)(x), observe that
∑

i bi(w̃
⊤
i u

(i))u(i) =
∑

i biwiu
(i) where wi ∼ N (0, 1) is Gaus-

sian (independent of g(h)(x),b(h+1)(x)). Let w := [w1, w2, . . . , wdh+1
]. Its covariance matrix is given by

E
w̃

(∑
i

biwiu
(i)

)∑
j

bjwju
(j)

⊤

= E
w

∑
i,j

bibjwiwju
(i)
(
u(j)

)⊤
=
∑
i

b2
iu

(i)
(
u(i)

)⊤
.
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Let the eigenvalue decomposition of this matrix be UDU⊤, then the vector
∑

i biwiu
(i) has the same distribution as

UD1/2w̃ where w̃ ∼ N (0, I). Thus,

E
w

∥∥∥∥∥∑
i

biwiu
(i)

∥∥∥∥∥
2

2

 = E
w̃

[
w̃⊤D1/2U⊤UD1/2w̃

]
= Tr(D).

Now, we use the fact that the sum of the eigenvalues of a SPD matrix is its trace and we have

Tr(D) = Tr

(∑
i

b2
iu

(i)
(
u(i)

)⊤)
=
∑
j

∑
i

b2
i

(
u
(i)
j

)2
=
∑
i

b2
i = ∥b∥22 .

By Jensen’s inequality, we have

E
w

[∥∥∥∥∥∑
i

biwiu
(i)

∥∥∥∥∥
2

]
≤

√√√√√E
w

∥∥∥∥∥∑
i

biwiu(i)

∥∥∥∥∥
2

2

 = ∥b∥2 .

Further, use the definition of two norm we can write∥∥∥∥∥∑
i

biwiu
(i)

∥∥∥∥∥
2

= sup
∥x∥2=1

〈
x,
∑
i

biwiu
(i)

〉
D
= sup

∥x∥2=1

〈
x,UD1/2w̃

〉
= sup

∥x∥2=1

〈
xD1/2, w̃

〉
.

The last quantity is in form of a Gaussian complexity and, by Lemma 9.5, has sub-Gaussian concentration with variance
proxy σ2 = maxi Dii ≤ Tr(D) = ∥b∥22. Thus, with probability 1− δ2/4,∥∥∥∥∥∑

i

b
(h+1)
i (x(1))

(
w

(h+1)
i

)⊤
Π

Gi/(g(h)(x)⊙m
(h+1)
i )

M
(h+1)
i

∥∥∥∥∥
2

≤
(
1 +

√
2

α
log

8

δ2

)∥∥∥b(h+1)
∥∥∥
2
≤ 2

(
1 +

√
1

α
log

8

δ2

)
.

Now we bound the first term in Equation (24).

Lemma 9.29. With probability 1− δ,∥∥∥∥∥∑
i

b
(h+1)
i (x(1))

(
w

(h+1)
i

)⊤
Π

(g(h)⊙m
(h+1)
i )

M
(h+1)
i

∥∥∥∥∥
2

≤ 4

α

√
log

4
∑

h dh
δ

.

Proof. Since Π
(g(h)⊙m

(h+1)
i )

=
(g(h)⊙m

(h+1)
i )(g(h)⊙m

(h+1)
i )⊤∥∥∥(g(h)⊙m

(h+1)
i )

∥∥∥2

2

we have

∥∥∥∥∥∑
i

b
(h+1)
i (x(1))

(
w

(h+1)
i

)⊤
Π

(g(h)⊙m
(h+1)
i )

M
(h+1)
i

∥∥∥∥∥
2

=

∥∥∥∥∥∥∥
∑
i

b
(h+1)
i (x(1))

(
w

(h+1)
i

)⊤ (g(h) ⊙m
(h+1)
i )(g(h) ⊙m

(h+1)
i )⊤∥∥∥(g(h) ⊙m

(h+1)
i )

∥∥∥2
2

M
(h+1)
i

∥∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥
1√
α

∑
i

b
(h+1)
i (x(1))

(
w

(h+1)
i

)⊤ (g(h) ⊙m
(h+1)
i )(g(h) ⊙m

(h+1)
i )⊤∥∥∥(g(h) ⊙m

(h+1)
i )

∥∥∥2
2

∥∥∥∥∥∥∥
2

.

Now let’s look at the j-th coordinate of this vector: 1√
α

∑
i

b
(h+1)
i (x(1))

(
w

(h+1)
i

)⊤ (g(h) ⊙m
(h+1)
i )(g(h) ⊙m

(h+1)
i )⊤∥∥∥(g(h) ⊙m

(h+1)
i )

∥∥∥2
2


j
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=
1√
α

∑
i

b
(h+1)
i (x(1))

(
w

(h+1)
i

)⊤ (g(h) ⊙m
(h+1)
i )m

(h+1)
ij g

(h)
j∥∥∥(g(h) ⊙m

(h+1)
i )

∥∥∥2
2

=
1

α
g
(h)
j

(
b(h+1)(x(1))

)⊤
diagi

 m
(h+1)
ij

√
α∥∥∥g(h) ⊙m

(h+1)
i

∥∥∥2
2




(
w

(h+1)
1 ⊙m

(h+1)
1

)⊤
(g(h) ⊙m

(h+1)
1 )

√
α(

w
(h+1)
2 ⊙m

(h+1)
2

)⊤
(g(h) ⊙m

(h+1)
2 )

√
α

...(
w

(h+1)
dh+1

⊙m
(h+1)
dh+1

)⊤
(g(h) ⊙m

(h+1)
dh+1

)
√
α


=

1

α
g
(h)
j

(
b(h+1)(x(1))

)⊤
diagi

 m
(h+1)
ij

√
α∥∥∥g(h) ⊙m

(h+1)
i

∥∥∥2
2

 f (h+1)(x(1))

=
1

α
g
(h)
j

(
w(L+1) ⊙m(L+1)

)⊤√ cσ
dL

D(L)(x(1))
(
W(L) ⊙m(L)

)

. . .

√
cσ

dh+1
D(h+1)(x(1))diagi

 m
(h+1)
ij

√
α∥∥∥g(h) ⊙m

(h+1)
i

∥∥∥2
2

 f (h+1)(x(1))

=
1

α
g
(h)
j f (h+1,j,L+1)(x(1))

By Lemma 9.26, we have

|f (h,j,L+1)| ≤ 2

√
log

4
∑L−1

h′=1 dh′

δ
.

Finally, by Theorem 9.11, we have
∥∥g(h)

∥∥
2
≤ 2. This implies∥∥∥∥∥∑

i

b
(h+1)
i (x(1))

(
w

(h+1)
i

)⊤
M

(h+1)
i Π

(g(h)⊙m
(h+1)
i )

∥∥∥∥∥
2

≤ 4

α

√
log

4
∑L−1

h′=1 dh
δ3

Continuing Proof of Lemma 9.14. Wrapping things up, from Equation (18), by Proposition 9.20 and Proposition 9.27,∣∣∣∣∣ cσdh ∑i,j b
(h+1)
i (x(1))b

(h+1)
j (x(2))

(
w

(h+1)
i

)
M

(h+1)
i D(h)(x(1))D(h)(x(2))M

(h+1)
j w

(h+1)
j

− cσ
dh

∑
i,j

b
(h+1)
i (x(1))b

(h+1)
j (x(2))

(
w

(h+1)
i

)⊤
M

(h+1)
i Π⊥

Gi
D(h)(x(1))D(h)(x(2))Π⊥

Gj
M

(h+1)
j w

(h+1)
j

∣∣∣∣∣
≤

∥∥∥∥∥
√

cσ
dh

∑
i

b
(h+1)
i (x(1))

(
w

(h+1)
i

)⊤
M

(h+1)
i Π⊥

Gi
D(h)(x(1))

∥∥∥∥∥
∥∥∥∥∥∥
√

cσ
dh

∑
j

b
(h+1)
j (x(2))D(h)(x(2))ΠGj

M
(h+1)
j w

(h+1)
j

∥∥∥∥∥∥
+

∥∥∥∥∥
√

cσ
dh

∑
i

b
(h+1)
i (x(1))

(
w

(h+1)
i

)⊤
M

(h+1)
i ΠGi

D(h)(x(1))

∥∥∥∥∥
∥∥∥∥∥∥
√

cσ
dh

∑
j

b
(h+1)
j (x(2))D(h)(x(2))Π⊥

Gj
M

(h+1)
j w

(h+1)
j

∥∥∥∥∥∥
+

∥∥∥∥∥
√

cσ
dh

∑
i

b
(h+1)
i (x(1))

(
w

(h+1)
i

)⊤
M

(h+1)
i ΠGi

D(h)(x(1))

∥∥∥∥∥
∥∥∥∥∥∥
√

cσ
dh

∑
j

b
(h+1)
j (x(2))D(h)(x(2))ΠGj

M
(h+1)
j w

(h+1)
j

∥∥∥∥∥∥
≤2

12
√
2√

dh
+ 12

√
2

α

log 8
δ2

dh
+

24

α

√
2 log 4

∑
dh

δ3√
dh

+
2

dh

2 + 2

√
1

α
log

8

δ2
+

4

α

√
log

4
∑

dh
δ3

2
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≤48
√
2√

dh
+ 48

√
2

α

log 8
δ2

dh
+

96

α

√
2 log 4

∑
dh

δ3√
dh

10 ADDITIONAL EXPERIMENT RESULTS

10.1 Experimental Setup

All of our models are trained with SGD and the detailed settings are summarized below.

Table 1: Summary of architectures, dataset and training hyperparameters

MODEL DATA EPOCH BATCH SIZE LR MOMENTUM LR DECAY, EPOCH WEIGHT DECAY

LENET MNIST 40 128 0.1 0 0 0
VGG CIFAR-10 160 128 0.1 0.9 0.1 × [80, 120] 0.0001
RESNETS CIFAR-10 160 128 0.1 0.9 0.1 × [80, 120] 0.0001

10.2 Further Experiment Results

10.2.1 MNIST

For MNIST dataset, we train a fully-connected neural network with 2-hidden layers of width 2048. The performance is
shown in Figure 4.
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Figure 4: Comparing the performance of random pruning with/without rescaling with IMP, SNIP and GraSP using a fully-
connected neural network with 2 hidden layers of width 2048 on MNIST dataset.

10.2.2 CIFAR-10

VGG. We train standard VGG-11 (i.e., VGG-11-64) and VGG-11-128 on CIFAR-10 dataset. The results are shown in
Figure 5a and Figure 5b.

ResNet. We further train ResNet-20 of width 32, 64 and 128 and compare the performance of random pruning with and
without rescaling against IMP. The results are shown in Figure 6a, Figure 6b and Figure 6c.

We further plot random pruning with rescaling across different width in Figure 7 and pruning by IMP in Figure 8. The
result further shows under the same pruning rate, increasing width can make the pruned model perform on par with the full
model.
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Figure 5: The performance of random pruning and IMP using VGG-11 of different width on CIFAR-10 dataset.
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Figure 6: The performance of random pruning with/without rescaling and IMP using ResNet-20 of different width on
CIFAR-10 dataset.
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Figure 7: The test accuracy gap of random pruning with rescaling using ResNet-20 of different width on CIFAR-10 dataset.
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Figure 8: The test accuracy gap of IMP using ResNet-20 of different width on CIFAR-10 dataset.
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