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Abstract

Learning an optimal policy from offline data is
notoriously challenging, which requires the eval-
uation of the learning policy using data pre-
collected from a static logging policy. We study
the policy optimization problem in offline con-
textual bandits using policy gradient methods.
We employ a distributionally robust policy gradi-
ent method, DROPO, to account for the distribu-
tional shift between the static logging policy and
the learning policy in policy gradient. Our ap-
proach conservatively estimates the conditional
reward distributional and updates the policy ac-
cordingly. We show that our algorithm converges
to a stationary point with rate O(1/T ), where T
is the number of time steps. We conduct experi-
ments on real-world datasets under various sce-
narios of logging policies to compare our pro-
posed algorithm with baseline methods in offline
contextual bandits. We also propose a variant of
our algorithm, DROPO-exp, to further improve
the performance when a limited amount of online
interaction is allowed. Our results demonstrate
the effectiveness and robustness of the proposed
algorithms, especially under heavily biased of-
fline data.
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1 INTRODUCTION

Contextual bandits are ubiquitous in sequential decision
problems, ranging from recommendation systems (Li et al.,
2011) to clinical trials (Lu et al., 2021). In contextual ban-
dits, a learning agent interacts with the environment to se-
lect the action that gives the largest reward based on the
context observed for the given items. The agent usually
aims to find an optimal policy that maximizes its cumula-
tive reward along a time horizon (Radlinski et al., 2008;
Cesa-Bianchi et al., 2013). Due to only observing the re-
ward for the selected action at each time step, the agent will
need to explore different actions that could lead to higher
long-term accumulative rewards despite the myopic action
suggested by the short-term empirical reward prediction.
This leads to a long line of research in efficient and effec-
tive exploration in online contextual bandits (Li et al., 2010,
2011; Agarwal et al., 2014; Agrawal and Goyal, 2013; Lale
et al., 2019; Xu et al., 2022).

However, exploration is not always feasible or affordable,
especially in applications where collecting new data is ex-
pensive, slow, or even high-risk (Levine et al., 2020). For
example, switching to a new policy could damage users’
experience in news recommendation systems (Li et al.,
2011); in policy optimization for the robotic control, a new
policy can lead to the crash of the device (Liu et al., 2020);
the treatment exploration on patients has very domain-
specific safety constraints in health care. Therefore, learn-
ing from an offline dataset becomes more imperative in
contextual bandit problems in these and many other do-
mains. In particular, offline contextual bandits require the
agent to be able to evaluate, improve, and optimize its pol-
icy through only a pre-collected dataset. The policy used
for the data collection is usually referred to as the behav-
ior policy or the logging policy (Precup, 2000; Thomas and
Brunskill, 2016).

Policies are often evaluated in contextual bandits by their
expected reward (a.k.a, the value function). However, this
becomes much more challenging in the offline setting be-
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cause we cannot roll out new data using the evaluation
policy, which causes the distributional shift issue between
the logging policy and the evaluation policy. To over-
come this issue, a fruitful line of research has been focused
on the problem of off-policy evaluation (OPE), including
Inverse Propensity Score (IPS) (Horvitz and Thompson,
1952; Swaminathan and Joachims, 2015b), Direct Method
(DM) (Beygelzimer and Langford, 2009), and Doubly Ro-
bust (DR) estimators (Robins and Rotnitzky, 1995; Dudı́k
et al., 2011; Wang et al., 2017; Su et al., 2020) in the pol-
icy evaluation. However, the performance of these OPE
methods is highly dependent on the setup and the specific
dataset (Voloshin et al., 2019). More recent and effective
OPE methods are focused on distributionally robust learn-
ing (Liu et al., 2019; Si et al., 2020b; Kallus et al., 2022),
which overcomes the distributional shift and improves the
robustness of the evaluation by conservatively estimating
the reward mapping.

Given the abundant literature on OPE, a natural question
arises: how can we optimize the policy in offline contextual
bandits? This leads to the off-policy optimization (OPO)
problem. A typical method for policy optimization is pol-
icy gradient (Sutton et al., 1999), where the policy is pa-
rameterized as a distribution πθ(·) over the action space
and the parameter θ is optimized via gradient ascent type of
algorithms. Similar to OPE, the main challenge in OPO is
that the computation of policy gradient entails an accurate
evaluation of the reward function, whereas we only have a
biased one due to the distributional shift. As a result, we
may end up updating the policy with inaccurate gradient
estimates and fail to converge to the optimal policy.

In this work, we propose the distributionally robust offline
policy optimization (DROPO) algorithm for offline contex-
tual bandits. Specifically, we view the distributional shift
problem in offline contextual bandits from a covariate shift
perspective, where the training and test data follow dif-
ferent distributions, but the conditional distribution of the
output given an input remains unchanged (Sugiyama et al.,
2007). This reformulation into a covariate shift problem
is straightforward and natural for offline contextual ban-
dits, where the reward distribution conditional on any input
context-action pair is fixed but the offline dataset and evalu-
ation dataset differ (Chen et al., 2016; Liu et al., 2019). We
perform a distributionally robust regression to learn the re-
ward distribution and subsequently update the policy with
the policy gradient (Sutton et al., 1999).

The most related work to ours is by Si et al. (2020b), who
formulates the distributional shift problem into a perturba-
tion of the joint distribution of context, action, and reward.
They then search for an optimal target policy robust to the
worst-case joint distribution within this perturbation. How-
ever, the joint distributional shift assumption is a general
one, inducing a potentially large uncertainty set. This could
lead to over-conservativeness in practice. In later sections,

we show that our DROPO algorithm outperforms their al-
gorithm both theoretically and empirically.

In summary, our contributions are as follows.

• We propose the distributionally robust offline policy opti-
mization (DROPO) algorithm for offline contextual ban-
dits, which consists of two important components: first,
we perform robust regression on the current parameter-
ized policy by solving a covariate shift problem (Chen
et al., 2016; Liu et al., 2019); then, the policy is updated
with the policy gradient method.

• We provide theoretical analysis for the convergence of
our method under standard assumptions. In particular,
we show that the generalization error of our policy gra-
dient estimator consists of an O(1/N1/2) term and other
terms coming from the offline dataset and model approx-
imation error, where N is the logging dataset size. More-
over, we prove that the policy parameter converges to a
stationary point with an O(1/T ) rate up to the aforemen-
tioned statistical error of the policy gradient estimator,
where T stands for the total time step.

• We conduct experiments on real-world machine learn-
ing datasets including Optdigits, MNIST, CIFAR-10 and
Adult. We compare our algorithm DROPO with baseline
algorithms for offline contextual bandits. We show that
our method is much more robust than baseline methods
and outperforms them in terms of regret minimization in
different levels of distributional shift. The comparison is
more pronounced under large distributional shifts. Fur-
thermore, we propose a variant of DROPO when lim-
ited online exploration is permitted (named as DROPO-
exp). We observe advantages in training with limited on-
line data, especially in the large distributional shift case,
where the performance is significantly improved with
only a small amount of online exploration data.

2 RELATED WORK

OPE in Contextual Bandits There has been growing liter-
ature on OPE in contextual bandits (Li et al., 2010; Krause
and Ong, 2011; Yue et al., 2012; Tang et al., 2013; Bottou
et al., 2013) and reinforcement learning (Precup, 2000; Lei
et al., 2014; Thomas et al., 2015; Thomas and Brunskill,
2016; Tennenholtz et al., 2020). Generally, three kinds of
methods address the OPE problem, which are also used
as the baseline model for comparison in our experiments.
The first one is Direct Method (DM) (Beygelzimer and
Langford, 2009), which learns a mapping from the context-
action pairs to the reward over the observed dataset. It has
low variance but high bias due to the distributional shift
between the logging policy and the evaluation policy. The
second one is Inverse Propensity Score (IPS) (Horvitz and
Thompson, 1952; Swaminathan et al., 2017), which uses
importance weighting to correct the mismatch between the
logging and evaluation policy. It is an unbiased estimator
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when the logging policy is known but it has a large vari-
ance, especially when the distributional shift is large. The
third method Doubly Robust (DR) (Robins and Rotnitzky,
1995; Bang and Robins, 2005; Dudı́k et al., 2011; Wang
et al., 2017; Su et al., 2019) is a combination of them and
leverages the strength of DM (low variance) and IPS (no
bias when logging policy is known). However, DR is still
sensitive to the IPS. Many variants are developed to ac-
count for extreme values in the weights (Wang et al., 2017;
Su et al., 2020; Mahmood et al., 2014; Farajtabar et al.,
2018). A recent benchmark experiment on OPE shows that
the performance of these OPE methods is highly dependent
on the setup and the specific dataset (Voloshin et al., 2019;
Fu et al., 2021). In our paper, we use DM, IPS and DR as
our baseline models. In our approach, we first perform OPE
for our current policy and then estimate the policy gradient
based on the OPE result for updating the policy.

OPO in Contextual Bandits There are a few ways to do
the off-policy optimization in contextual bandits. Similar to
OPE, we can estimate the missing bandit feedback by su-
pervised learning methods (Zadrozny et al., 2003; Beygelz-
imer and Langford, 2009). Propensity scores (Bottou et al.,
2013; Swaminathan and Joachims, 2015a) and doubly ro-
bust (Zhao et al., 2015) can also be used to derive unbiased
estimators from the exploration logs. Recently, pessimistic
learning is also adopted when the offline dataset has insuf-
ficient coverage over the state and action spaces (Nguyen-
Tang et al., 2022; Li et al., 2022). OPO is also closely re-
lated to causal inference (Zhang et al., 2012; Kitagawa and
Tetenov, 2018) and causal perspectives have been incorpo-
rated in OPO as well (Kallus and Zhou, 2018). Recently,
it becomes more important to study real-world problems in
high-dimensional data (Joachims et al., 2018) and applica-
tion systems (Chernozhukov et al., 2019; Pan et al., 2019).

Policy gradient is a direct way to optimize the objective of
bandits and reinforcement learning. The policy is assumed
to be parameterized by a set of parameter Θ. Typically,
we can estimate the gradient with Monte Carlo simulations
(Sutton et al., 1999; Kakade, 2001; Schulman et al., 2015),
but it requires the on-policy sampling. In the off-policy
setting (Silver et al., 2014; Chen et al., 2019; Kallus and
Uehara, 2020), many works consider cases where it is pos-
sible to sample abundant data from the environment in an
online fashion. In our work, we mainly discuss the pure
offline setting, where we only have the historical data or
very limited online data collection. We apply a distribu-
tionally robust method to estimate the policy gradients for
optimizing the policy.

Distributionally Robust Learning Distributionally robust
learning (DRL) tries to minimize the worst-case expected
loss on target data (Chen et al., 2016; Gao et al., 2017;
Mohajerin Esfahani and Kuhn, 2018; Chen and Pascha-
lidis, 2018; Shafieezadeh-Abadeh et al., 2019; Gao and
Kleywegt, 2022). It usually involves a minimax game

with the target distribution playing an adversarial role and
constrained by the source training data. The constraints
are usually the perturbed sets of the distribution in terms
of KL-divergence (Si et al., 2020b; Kallus et al., 2022),
Wasserstein distance (Kuhn et al., 2019), total variation dis-
tance (Dixit et al., 2022) or f -divergence (Kallus et al.,
2022). This idea of ‘distributional robustness’ has also
been applied to the offline bandit evaluation and learning
problems (Smirnova et al., 2019; Liu et al., 2019; Si et al.,
2020b,a; Sakhi et al., 2020; Kallus et al., 2022). The most
related work to ours is by Si et al. (2020b); Kallus et al.
(2022). They estimate the robust value function of a target
policy based on a perturbation of the joint distribution of
context, action, and reward. Similar ideas have also been
studied in the contextual pricing policy evaluation problem
(Biggs et al., 2021), where the goal is to find the minimum
variance loss function within a class of unbiased loss func-
tions, while the demand estimation is perfect or chosen by
an adversary.

Different from them, our method explicitly models the co-
variate shift between the logging policy and the target pol-
icy and focuses on the estimation of biased reward. In our
approach, the adversarial player is the shared conditional
reward distribution instead of the joint distribution (Si et al.,
2020a). The conditional reward distribution given the con-
text and action is usually invariant regardless of the differ-
ent distributions of actions in the off-policy optimization.
This further leads to a nice closed form of the solution of
the robust regression problem (Chen et al., 2016; Liu et al.,
2019). In contrast, the uncertainty set that constrains the
joint distribution of context, action and reward in Si et al.
(2020b) may be too general to capture the specific type
of distributional shift between the logging policy and the
evaluation policy, resulting in poor practical performance.
Moreover, there is no convergence guarantee for their algo-
rithm which is also backed by our experimental results.

There are a line of work formulating DRL under covari-
ate shift in classification problems (Liu and Ziebart, 2014;
Wang et al., 2015; Fathony et al., 2018; Rezaei et al., 2020,
2021). Our work is built on the robust regression under
covariate shift (Chen et al., 2016) such that our reward esti-
mation is robust to the worst-case possible data-generating
conditionals in the logging policy data.

3 PROBLEM SETUP

In contextual bandits, at the t-th round, for each context
vector xt ∈ X , the agent needs to choose an action at ∈
A(xt) and then observes a reward r(xt, at). The agent’s
strategy of choosing actions is called a policy, which is usu-
ally represented by a mapping π(a|x) from X × A to R.
The objective of policy optimization is to find a policy π
that maximizes the value function defined as follows.

V π = Ex∼Px,a∼π(·|x)[r(x, a)],
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where Px is the distribution of the context that is fixed in
this paper, and r(x, a) could be noisy given any context-
action pair. We use θ ∈ Rd to parameterize the policy such
that

∫
a
πθ(a|x)da = 1 for all x ∈ X . Then the gradient of

the value function is given by

∇θV
πθ = Ex∼Px(·),a∼πθ(·|x)[∇ log πθ(a|x)r(x, a)].

(3.1)

In the online setting, we can generate a dataset Dπθ,N =
{(xi, ai, r(xi, ai))}Ni=1 by following the target policy
πθ(·|x). Then the online gradient estimator is given by

gonline(θ) =
∑

i∈Dπθ ,N

∇ log πθ(ai|xi)r(xi, ai)

|Dπθ,N |
, (3.2)

which is an unbiased Monte Carlo estimator for ∇θV
πθ .

Based on the gradient estimator in (3.2), policy gradient
updates the policy parameter by θt+1 = θt + ηgonline(θt).

In this paper, we study the problem of offline policy opti-
mization, where during the learning process we only have
access to an offline dataset Dlog = {(xi, ai, r(xi, ai))}
generated by a specific logging policy β(a|x), x ∈ X , a ∈
A. In other words, we are not allowed to interact with the
environment. Therefore, we can only construct the gradi-
ent estimator based on the logging datasetDlog, which may
follow a different distribution from Dπθ,N .

Off-policy problems as covariate shift When the goal is
to estimate reward, the distributional shift between the log-
ging policy that generates the offline data and the potential
evaluation policy is a covariate shift. As the conditional
reward distribution is usually invariant. That is why the
most common way of dealing with this distribution mis-
match between the datasets is to use importance weights
between policies, which yields the IPS estimator:

gIPS(θ) =
∑

i∈Dlog

∇ log πθ(ai|xi)r(xi, ai)

|Dlog|
πθ(ai|xi)

β(ai|xi)
,

where β(·|x) is the logging policy generating the dataset.
The IPS estimator is known as an unbiased estimator for
∇θV

πθ , which is suggested as follows:

Ex∼Px,a∼β(·|x)[gIPS(θ)]

= Ex∼Px,a∼π(·|x)[∇ log πθ(ai|xi)r(xi, ai)],

which, however, causes instability and high variance in
practice because the importance weight π(a|x)

β(a|x) could be ex-
tremely large at data points that have good coverage in the
target policy π but are seldomly chosen by the source pol-
icy β. In this work, we aim to avoid directly using impor-
tance weights in the gradient estimator by learning a robust
reward distribution estimator.

4 DISTRIBUTIONALLY ROBUST
POLICY OPTIMIZATION

In this section, we present our main algorithms (Algorithm
1 and Algorithm 2) for learning distributional robust pol-
icy gradient and a convergence analysis. We start with the
distributionally robust policy gradient estimator.

4.1 Distributionally Robust Policy Gradient
Estimator

We now write the policy gradient estimator in the previous
section in a more general form. Given the context distri-
bution Px and evaluation policy πθ(·|x), we can simulate
context-action pairs Sπθ

= {(xi, ai)} and use the follow-
ing gradient estimator to approximate∇θV

πθ :

ĝ(θ) =
1

|Sπθ
|
∑

i∈Sπθ

∇ log πθ(ai|xi)r̂Dlog
(x, a), (4.1)

where r̂Dlog
(x, a) is a reward estimator. If we choose

r̂Dlog
(x, a) as the true reward for action context pair (x, a),

we recover the online estimator in (3.2). Similarly, if we
use the reward from the logging dataset with an importance
weight, we recover the IPS estimator. Based on the reward
estimator and the policy gradient estimator in (4.1), we can
update the policy parameter accordingly.

In this paper, we propose a distributionally robust policy
gradient estimator that utilizes a distributionally robust re-
ward estimator r̂Dlog

(x, a). Here Direct Method is em-
ployed to learn the reward estimator, considering the fact
that when we know the target policy πθ and the context-
action pair that we want to query the reward for, the most
straightforward approach is to learn a reward mapping
rDlog

: X × A 7→ R based on the logging dataset Dlog.
We perform distributionally robust learning to estimate a
reward distribution that is robust to the worst-case data-
generating distribution compatible with the logging dataset.
We then utilize the mean of the reward distribution as the
reward estimator in (4.1).

4.2 Distributionally Robust Learning for Reward
Distribution Estimation

To find the robust reward distribution, we formulate the
learning problem as finding the solution of the following
min-max problem introduced by Liu et al. (2019).

min
f(·|x,a)

max
h(·|x,a)∈ΣDlog

Ea∼π[L(f(r|x, a), h(r|x, a))], (4.2)

where f is the reward distribution we aim to learn, h is a
distribution from the constraint set ΣDlog

that imposes con-
sistency with the empirical dataset Dlog, and L is the loss
function. Note that h is chosen as the worst possible distri-
bution in ΣDlog

that could adversarially affect the learning
distribution f . We omit the notation x in the expectation for
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simplicity as the marginal covariate distribution does not
change in our setting. Therefore, the resulting reward esti-
mator f is robust to the worst-case possible data-generating
distribution h that satisfies the constraints in ΣDlog

. In the
sequel, we elaborate on the details of L and ΣDlog

.

Loss function The loss function L is chosen as the relative
log-loss between two distributions as follows:

L(f(r|x, a), h(r|x, a))
= Er∼h(·|x,a)[− log f(r|x, a) + log f0(r|x, a)],

where f0 is a base conditional distribution for the reward
that serves as a prior. L represents the difference between
the cross entropy of a reward distribution predictor f and a
baseline conditional distribution f0 with respect to h on the
evaluation data distribution. This loss function essentially
accounts for the amount of expected “surprise” in modeling
true data distribution Pxπ(a|x)h(r|x, a) that comes from
Pxπ(a|x)f(r|x, a) rather than Pxπ(a|x)f0(r|x, a). Since
the logging data is not always informative in minimizing
the loss function on the evaluation data, we set an upper
bound for f ’s loss using f0. The choice of f0 is usually
based on prior knowledge. In practice, we assume f0 to be
a Gaussian distribution, where we choose rmax+rmin

2 as the
mean of f0.

Uncertainty Set We constrain the adversary reward distri-
bution h into the following uncertainty set ΣDlog

:

ΣDlog ≜

{
h :

∣∣Ea∼β,r∼h[[r ϕ(x, a)][r ϕ(x, a)]⊤]

− 1

|Dlog|
∑

i∈Dlog

[ri ϕ(xi, ai)][ri ϕ(xi, ai)]
⊤∣∣ ≤ λ

}
,

where ϕ(x, a) is a user-defined feature vector (e.g., the last
layer of the neural network), [r ϕ(x, a)] is the vector aug-
mented with the reward, and λ is a hyperparameter control-
ling the size of the constraint set. This constraint means
that the expectation of a quadratic function in reward r un-
der the adversary distribution h must be consistent with the
empirical expectation (the average) of the feature function
in logging data. The reason we choose this quadratic func-
tion is that it induces an exponential family distribution as
the solution of the min-max problem (4.2). More specif-
ically, according to Chen et al. (2016); Liu et al. (2019),
when the base distribution f0 in (4.2) is Gaussian, the solu-
tion to the distributionally robust learning problem is also
a Gaussian distribution.

Compared with other DRL work like Si et al. (2020b),
where a joint distribution over context, action and reward
is modeled, our uncertainty set only focuses on modeling
the shared conditional reward distribution between logging
policy and evaluation policy, which is a more natural and
practical choice. In addition, the feature moment-matching
uncertainty set enables an analytical solution to the mini-
max game, which we will show in Proposition 4.1.

Parametric Formulation The following proposition pro-
vides a closed-form solution to problem (4.2).
Proposition 4.1 (Appendix A in Liu et al. (2019)). As-
sume we choose a Gaussian base distribution in (4.2),
i.e., f0 ∼ N (µ0, σ

2
0). Let f be parameterized by ρ =

(ρr,ρx) ∈ R1+d. Then the min-max problem in (4.2) has
a closed form solution fρ, which is a Gaussian distribution
N (µρ(x, a), σ

2
ρ(x, a)), where

σ2
ρ(x, a) =

(
2
β(a|x)
π(a|x)ρr + σ−2

0

)−1

, (4.3)

µρ(x, a) = σ2
ρ(x, a)

(
−2

β(a|x)
π(a|x)ρxϕ(x, a) + µ0σ

−2
0

)
.

(4.4)

Here, ρ can be obtained via maximum conditional log like-
lihood estimation:

ρ = argmax
ρ

Ea∼π,r∼h

[
log fρ(x, a)

]
. (4.5)

The derivation involves using strong duality to switch the
min problem and the max problem and applying the La-
grangian multiplier ρ to convert the constrained problem
into an unconstrained problem. Note that given the form
of the reward estimator fρ, (4.5) is convex with respect
to ρ. Thus the closed form solution translates our min-
max problem into a parameter learning problem, which is
much easier to solve than the min-max problem in Si et al.
(2020b); Kallus et al. (2022). Moreover, the subsequent al-
gorithm benefits from this closed form solution in clarity
and practicality, since the convergence criterion of param-
eters is rather vague otherwise.

Property of the Prediction This analytic form utilizes
the ratio between the two policies β and π to adjust the
uncertainty of the reward prediction. Note that this den-
sity ratio is the inverse of the importance weight in IPS.
Therefore, it does not cause a high variance issue as in
IPS. For IPS, if β(a|x) ≪ π(a|x), which means the ac-
tion is rarely seen in logging dataset but commonly seen in
the evaluation, the reward estimator will up-weight its re-
ward with extremely high values, causing a high variance.
However, in our approach, if an action is rarely seen in the
logging policy, the ratio is close to 0. σ2

ρ would conse-
quently be bounded by σ2

0 , and µρ would be close to µ0.
This indicates that the logging data cannot supervise the
reward estimation for an action that has scarce support un-
der β(a|x). Moreover, if an action is well-covered by the
logged data, the prediction would be very confident with
µρ, which heavily depends on the parameter ρx learned
from data.

Parameter Learning We take the derivative of
Ea∼π,r∼h

[
log fρ(x, a)

]
with respect to the parame-

ters ρr and ρx based on the offline dataset, which are
denoted as ∇̃ρr

and ∇̃ρx respectively. We have:

∇̃ρr
≜ ∇̃ρr

Ea∼π,r∼h

[
log fρ(x, a)

]
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=
1

|Dlog|
∑

i∈Dlog

r2i − µ2
ρ(xi, ai)− σ2

ρ(xi, ai),

∇̃ρx ≜ ∇̃ρxEa∼π,r∼h

[
log fρ(x, a)

]
=

1

|Dlog|
∑

i∈Dlog

(ri − µρ(xi, ai))ϕ(xi, ai).

We then learn the parameters ρr and ρx using gradient de-
scent. The final algorithm is displayed in Algorithm 1.
In every iteration (taking the t-th iteration for example),
we first solve problem (4.5) and attain the estimated re-
ward distribution fρt ∼ N (µt, σ

2
t ). Then we sample new

context-action pairs with the current evaluation policy πθt

and update the policy parameter θt with gradient ascent.
Here, the gradient is calculated based on (A.1), and r̂Dlog

is substituted by µt. Note that even though the objective
function is the expected target likelihood, the gradients are
only associated with logging data samples. We refer more
details about this result to Chen et al. (2016).

Algorithm 1 Distributionally Robust Offline Policy Opti-
mization (DROPO)

Inputs: Training data S with training samples
{xi, ai, ri}|S|

i=1, learning rates γ and η, ρrr, ρrx

for t = 0, . . . , T do
for k = 0, . . . ,K − 1 do
ρrrt,k+1 = ρrrt,k − γ∇̃ρr

ρrxt,k+1 = ρrxt,k − γ∇̃ρx

end for
σ2
t =

(
2β(a|x)
π(a|x)ρ

rr
t,K + σ−2

0

)−1

µt = σ2
t

(
− 2β(a|x)

π(a|x)ρ
rx
t,Kϕ(x, a) + µ0σ

−2
0

)
Sample context-action pairs Dπθt

from πθt

Update θt+1 = θt + ηĝ(θt), where ĝ(θt) =
1

|Dπθt
|
∑

(ai,xi)∈Dπθt

∇ log πθt
(ai|xi)µt(xi, ai)

end for
Output: πθT

4.3 Convergence Analysis of the Proposed Algorithm

Now we provide a convergence analysis for Algorithm 1.

First, we lay down the following assumptions, on which
our main theorems are based. In assumption 4.2, we bound
the log-density of the policy function πθ.

Assumption 4.2. Let πθ(a|x) be the policy of an agent
observing context x. There exists a constant G > 0
such that the log-density of the policy function satisfies
∥∇θ log πθ(a|x)∥2 ≤ G, for all a ∈ A and x ∈ X .

Assumption 4.2 ensures that the parameterized policy πθ

changes smoothly with the updation of θ. It is a common
and important condition in policy evaluation and optimiza-
tion (Reddi et al., 2016; Allen-Zhu and Hazan, 2016; Pan
et al., 2019; Xu et al., 2019, 2020).

The next assumption regulates that the density ratio is al-
ways bounded in our algorithm.

Assumption 4.3. Let πθt
and β be the target and logging

policies respectively at iteration t. For all t ∈ [T ], there
exists a constant W > 0 such that the density ratio satisfies
πθt

(a|x)/β(a|x) ≤W for all a ∈ A and x ∈ X .

The above assumption follows a line of work in distribu-
tionally robust learning, including (Liu et al., 2019, 2020).
In practice, it can be satisfied as long as the logging policy
is not too extreme, namely every action is chosen with the
probability of at least 1/W in the logging dataset. More-
over, Assumption 4.3 also guarantees the coverage of the
offline dataset over actions.

Now we propose our first main theorem: we show that the
statistical error of policy gradient estimation under distri-
butionally robust learning is bounded.

Theorem 4.4. Assume Assumptions 4.2 and 4.3 hold. In
Algorithm 1, let S = {(xi, ai, ri)}|S|

i=1 be a logging dataset
with i.i.d. training samples from logging policy β, πθt

be
the learning policy at iteration t, F be a reward function
class satisfying sup(x,a)∈S,r,r′∈F |r(x, a)− r′(x, a)| ≤
M for a constant M > 0, and ℜ̂S(F) be the empirical
Rademacher complexity on S. We assume that ρr > 0 is
lower bounded by B, the weight estimation for the pre-
diction β̂(a|x)/π̂θt(a|x) is lower bounded by R for any
context-action pair (x, a), base distribution variance is σ2

0 ,
and λ is the upper bound of all λi among the dimensions
of ϕ(x). With probability at least 1− δ, the generalization
bound of policy gradient estimation satisfies:

Eπθt
[∥ĝ(θt)−∇V πθt∥22]

≤ G2W
[ (

2RB + σ−2
0

)−1
+ λ

+ 4M ℜ̂S(F) + 3M2
√

1/(2|S|) log(2/δ)
]
.

The proof of Theorem 4.4 can be found in Appendix A.1.

Remark 4.5. The above estimation error of policy gradi-
ent can be interpreted as follows. On the right hand side,
(2RB + σ2

0)
−1 + λ stands for the variance and bias com-

ing from the offline dataset. Suppose that we are training
with an unbiased dataset containing enough samples,we
will have an accurate reward estimation, and hence also an
unbiased policy gradient estimator. 4M ℜ̂S(F) reflects the
richness of the assumed reward function class F . The last
term 3M2

√
log (2/δ) /2|S| is an O(1/N1/2) decreases to

zero if we have infinite training samples.

Based on Theorem 4.4, we demonstrate the convergence of
our policy optimization method.
Theorem 4.6. Under the same conditions as Theorem 4.4,
assume that the value function V πθ is always L-smooth for
every θ, and that we run at least T iterations for policy
gradient learning with step size η = 1/(4L). Then the
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output πθT̂
of Algorithm 1 satisfies:

E[∥∇V
πθ

T̂ ∥22] ≤ 4/(Tη)
(
V

πθT+1 − V πθ1
)

+ 3G2W
[
(2RB + σ−2

0 )−1 + λ

+ 4Mℜ̂S(F) + 3M2
√

1/(2|S|) log(2/δ)
]
.

The proof of Theorem 4.6 can be found in Appendix A.2.

Remarks: Theorem 4.6 shows that the policy optimized in
Algorithm 1 converges to a stationary point with a conver-
gence rate of O(1/T ) and O(1/N1/2), where T , N are the
number of time steps and samples respectively. The second
to the last term on the right-hand side comes from policy
gradient estimation in each iteration. As mentioned in Re-
marks for Theorem 4.4, if the reward and policy gradient
estimates are accurate and unbiased at every iteration, then
the policy will converge with an O(1/T ) rate. Compared
with (Si et al., 2020b), where the estimated policy asymp-
totically converges to the optimal policy at a canonical sta-
tistical O(1/N1/2) rate, our method enjoys an additional
O(1/T ) convergence guarantee over time steps.

4.4 Refinement with Limited Online Exploration

In many real-life applications of bandits learning problems,
limited online interaction is allowed to improve perfor-
mance. In this subsection, we show that with limited ac-
cess to the online environment, the policy learned by Algo-
rithm 1 can be further refined with a small number of on-
line exploration samples. The proposed method, DROPO-
exp, is displayed in Algorithm 2. The idea is that after
one episode, we collect an exploration dataset Dexp with
the current policy πθt and add them to the logging dataset
Dlog = Dexp∪Dlog. Then we call Algorithm 1 with the ini-
tial policy parameter θt. We set the exploration size |Dexp|
to be much smaller than the size of the logging dataset |D0|.
Note that we do not update our policy using the collected
reward during the online interaction and thus the explo-
ration could be done in parallel for efficiency.

After we collect online exploration data and merge that
with offline data, we estimate the reward in a similar fash-
ion with the offline setting. Notat that when applying IPS-
based policy gradients estimators in this setting, the “log-
ging policies” are different in the reward estimation in of-
fline data and the online-collected exploration data. Specif-
ically, for Dlog, the logging policy is the one that generates
the offline dataset, while in Dexp, the logging policy is the
current policy in the policy gradient.

5 EXPERIMENTS

In this section, we conduct experiments to study the em-
pirical performances of the proposed algorithms1. We test

1All the implementations are available at https:
//github.com/guoyihonggyh/Distributionally-

Algorithm 2 Distributionally Robust Offline Policy Opti-
mization with Limited Online Exploration (DROPO-exp)

1: Inputs: Initial logging data D0 with training samples
{xi, ai, ri}|D0|

i=1 , learning rate γ, ρrr, ρrx. Exploration
data set Dexp = D0

2: for i = 0, . . . , I do
3:

Offline Learning
4: θi+1 ←Call DROPO with datasetDi and initial pol-

icy parameter θi ▷ Algorithm 1

Online Exploration
5: Collect exploration dataset Dexp from policy πθi+1

6: Update logging dataset Di+1 = Di ∪ Dexp

7: end for

our algorithm and baseline methods on real-world datasets
including Optdigits and Adult from the UCI machine learn-
ing repository (Dua and Graff, 2019), MNIST (LeCun et al.,
1998), and CIFAR-10 (Krizhevsky et al., 2009), with de-
tails in Table 1. We compare DROPO (Algorithm 1) and
DROPO-exp (Algorithm 2) with baseline methods includ-
ing DM, IPS, DR (Dudı́k et al., 2011), and SDRPL (Si
et al., 2020b). Note that DM and DR also need to learn
a reward mapping like in (4.1). Instead of learning reward
mapping using the mean-squared loss function, we use the
same robust regression in our methods but without consid-
ering the covariate shift, which significantly improves the
performance of baseline algorithms. For the completeness
of our work, we also compare the vanilla implementation
of DM and DR using mean-squared loss with our improved
versions in Appendix B.3.1.

Table 1: Real-world datasets used in our experiments.
DIMENSION # OF ARMS # OF SAMPLES

OPTDIGITS 64 10 5,620
MNIST 784 10 60,000
CIFAR-10 3072 10 60,000
ADULT 92 14 45,221

Logging policies We test our algorithms on various offline
scenarios where the logging policy follows different distri-
butions. In particular, inspired by previous work on dealing
with label shifts (Lipton et al., 2018), we design the logging
policy for collecting data as follows.

1. Tweak-1(ρ): one class accounts for ρ probability, and
the other classes evenly share the remaining 1 − ρ.
Larger ρ means a larger distributional shift of the log-
ging dataset. We consider ρ = 0.95, 0.99 respectively.

2. Dirichlet (α): the logging policy complies with Dirich-
let distribution with parameter α. Smaller α means a
larger shift of the logging dataset. We randomly gener-

Robust-Policy-Gradient-for-Offline-
Contextual-Bandits
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(a) Optdigits (b) MNIST (c) CIFAR-10 (d) Adult

Figure 1: Performance comparison for Tweak-1(0.99) in the offline setting on four datasets.
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Figure 2: Performance comparison for Tweak-1(0.95) in the offline setting on four datasets.

ate one logging policy and fix that for every experiment.
α = 1.0, 0.1 is considered in our paper. However, note
that for Dirichlet(0.1), the probability for some classes
will be so small that no sample coming from those
classes is sampled. Therefore, in Dirichlet(0.1), we are
actually using logging policy = 0.95×Dirichlet(0.1)+
0.05× uniform.

Offline dataset generation We first convert a k-class clas-
sification task into a k-armed contextual bandit problem. In
the classification task, we have (x, y) ∼ D, where x ∈ X
is the context vector and y ∈ Y is the label. The goal is
to find a classifier that minimizes the classification error.
We then generate the offline dataset from D based on the
logging policy β. Following Beygelzimer and Langford
(2009), given a feature vector x, we choose a label (arm) a
based on β(a|x) and reveal the reward r(x, a). The offline
data will be in the form of (x, a, r(x, a), β(a|x)). During
the training, we assume the logging policy is known. We
use 60% samples for training and 40% for testing.

Simulating online exploration To implement Algorithm
2, for each dataset, we use 40% samples for the initial of-
fline training, 20% as the online environment and 40% for
testing. In each round, we collect an exploration dataset
Dexp by sampling with replacement. Note that here the
initial offline training size (40%) is smaller than that of the
pure offline learning setting (60%).

Evaluation We use the regret on the test dataset as our eval-
uation metric. For the comparison between offline and on-
line experiments, our experimental result is demonstrated
based on the relationship between “samples” and “regret”.
Here, “samples” means the number of data used for policy
optimization, which equals mini-batch×batch-size in both

the offline setting and online setting. We repeat the exper-
iments 5 times and plot the average regret with standard
deviation. For each experiment, we use the same set of
random seeds for data generation.

DROPO outperforms baseline methods under large dis-
tributional shifts. Average regret and variance for DROPO
and baselines are plotted in Fig. 1 and Fig. 2. We present
the results for Tweak-1(0.95) and Tweak-1(0.99) on Opt-
digits, MNIST, CIFAR-10 and Adult. Results with Dirich-
let logging policies can be found in Appendix B.2. In all
datasets and scenarios, we can clearly see the advantage
of DROPO over baselines, especially in large shift cases
(Tweak-1(0.99)). DROPO has smaller regret on average,
showing its effectiveness. It also has a smaller variance
during training, which means our method is more robust
under various logging policies.

In Fig. 3 and Fig. 4, we plot the results of policy opti-
mization with limited online exploration. We can similarly
conclude that DROPO-exp outperforms the baselines in the
limited online exploration setting. Due to the page limit, we
defer the experimental results for Dirichlet logging policies
to Appendix B.2. Since SDRPL (Si et al., 2020b) does not
have the online exploration version, we only show the re-
sults in pure offline setting. Its performance is significantly
worse than other methods. This is due to that SDRPL is
overly conservative and unstable to train in practice, which
has no convergence guarantees.

Limited online exploration further improves DROPO.
We also compare the results between pure offline and lim-
ited online exploration settings for Optdigits with |Dexp| =
100 and MNIST with |Dexp| = 500 in Fig. 5. DROPO-exp
utilizes a smaller amount of data and achieves better or at
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Figure 3: Performance comparison for Tweak-1(0.99) in the online setting on four datasets. DROPO-exp significantly
outperforms baseline methods.
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Figure 4: Performance comparison for Tweak-1(0.95) in the online setting on four datasets. DROPO-exp outperforms
baseline methods on Optdigits and CIFAR-10 in the whole learning process. It also outperforms baseline methods on
MNIST and Adult in the early stage of the learning.

least comparable performance than the pure offline version.
Note that DROPO-exp starts with a significantly smaller of-
fline dataset and has fewer total training samples, but even-
tually achieves a similar or even better regret than DROPO.
The total number of exploration data is about 14% of all
data when |Dexp| = 100 in Optdigits and 7% of all data
when |Dexp| = 500 in MNIST. We also apply our online
exploration strategy to other baseline models, which again
shows a significant improvement compared to the pure of-
fline version. This is because the newly sampled data can
greatly improve the quality of the combined dataset used
for reward estimation. Besides, we see that online explo-
ration improves the performance more on baseline meth-
ods than ours. This is because DROPO is more robust to
the data insufficiency in the offline training and the online
data is less helpful compared to the baseline methods. We
also investigate two other online exploration strategies. We
defer the results to Appendix B.3.

6 CONCLUSION AND FUTURE WORK

In this paper, we propose the distributionally robust of-
fline policy optimization (DROPO) algorithm for contex-
tual bandits. We show that our method converges to a sta-
tionary point up to the statistical error of the offline dataset
and the model approximation error of the reward function
with convergence rate O(1/T ), where T is the number of
steps. We compare our algorithm with baseline methods
such as DM, IPS, DR, and SDRPL (Si et al., 2020b) in real-
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Figure 5: Comparison between limited online exploration
and pure offline settings on Optdigits and MNIST under
Tweak-1(0.99) shift. The horizontal dashed lines refer
to the best performance that DROPO can achieve in the
pure offline setting. Starting with a significantly smaller
dataset (40% of all data) than offline settings (60% of all
data), DROPO-exp achieves better results with fewer train-
ing samples. See Appendix B.3.2 for more experiments on
different exploration sizes.

world dataset experiments. The results show that DROPO
gives a more robust policy gradient estimation and thus a
lower regret on the test dataset than all baselines. Exten-
sive evaluations show that when the distributional shift is
large, the advantage of our DROPO algorithm is more pro-
nounced. We also propose DROPO-exp that can improve
the performance when even a small amount of online ex-
ploration is allowed. Future work includes the investigation
of more effective exploration strategies to utilize the newly
collected exploration data. We are also interested in study-
ing the exploration under exploration budgets when limited
online exploration is allowed.
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A THEORETICAL ANALYSIS OF THE PROPOSED ALGORITHM

In this section, we prove our theoretical results.

A.1 Distributionally Robust Learning on the Reward Function

We first provide the proof of Theorem 4.4. We begin with recalling the policy gradient estimator defined as follows:

ĝ(θ) =
1

|Sπθ
|
∑

i∈Sπθ

∇ log πθ(ai|xi)r̂(xi, ai), (A.1)

where r̂ is the reward function learned from the offline dataset with the distributionally robust learning method. (A.1)
suggests that the policy gradient estimator ĝ follows directly from the estimated reward function r̂. Therefore, the statistical
error of policy gradient estimation can be reduced to the statistical error of reward estimation. To this end, we present the
following key lemma.

Lemma A.1. (Theorem 1 in Liu et al. (2020)) Assume Assumptions 4.2 and 4.3 hold. In Algorithm 1, let S =

{(xi, ai, ri)}|S|
i=1 be a logging dataset with i.i.d. training samples from logging policy β, πθt

be the learning policy at
iteration t, F be a reward function class satisfying sup(x,a)∈S,r,r′∈F |r(x, a)− r′(x, a)| ≤ M for a constant M > 0,
and ℜ̂S(F) be the empirical Rademacher complexity on S. We assume that ρr > 0 is lower bounded by B, the weight
estimation for the prediction β̂(a|x)/π̂θt

(a|x) is lower bounded by R for any context-action pair (x, a), base distribution
variance is σ2

0 , and λ is the upper bound of all λi among the dimensions of ϕ(x). With probability at least 1 − δ, the
generalization bound of reward estimation satisfies:

Eπθt

[
(r(x, a)− r̂(x, a))

2 ] ≤W

(2RB + σ−2
0

)−1
+ λ+ 4M ℜ̂S(F) + 3M2

√
log 2

δ

2|S|

 .

Lemma A.1 shows that the statistical error of reward estimation is bounded by the composition of the bias and the variance
brought by the offline dataset and the model approximation error. Note that this bound could be small if the offline dataset
is unbiased and the number of training samples is large enough.

Now we are ready to lay down the proof of Theorem 4.4. We restate Theorem 4.4 as follows.

Theorem A.2. Under the same conditions as in Lemma A.1, the generalization bound of policy gradient estimation satis-
fies:

Eπθt
[∥ĝ(θt)−∇V πθt∥22] ≤ G2W

(2RB + σ−2
0

)−1
+ λ+ 4M ℜ̂S(F) + 3M2

√
log 2

δ

2|S|

 .

Proof. By the definition of ĝ(θ) and∇V πθt in (A.1) and (3.1), we have

Eπθt
[∥ĝ(θt)−∇V πθt∥22] = Eπθt

[∥∇ log πθt
r̂(x, a)−∇ log πθt

r(x, a)∥22]

= Eπθt
[∥∇ log πθt

∥22 (r̂ (x, a)− r (x, a))
2
]

≤ G2W

(2RB + σ−2
0

)−1
+ λ+ 4M ℜ̂S(F) + 3M2

√
log 2

δ

2|S|

 ,

where the inequality holds due to Assumption 4.2 and Lemma A.1.

A.2 Convergence of Policy Optimization

We devote this section to the proof of Theorem 4.6. In specific, we demonstrate that the policy parameter θ learned by our
algorithm converges to a stationary point such that ∥∇V πθ∥2 ≤ ϵ+C for any ϵ > 0, where C is a constant determined by
the offline dataset and model approximation error. We first restate Theorem 4.6 as follows.
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Theorem A.3. Under the same conditions as Theorem 4.4, assume that the value function V πθ is always L-smooth for
every θ, and that we run at least T iterations for policy gradient learning with step size η = 1/(4L). Then the output πθT̂

of Algorithm 1 satisfies:

E[∥∇V πθ
T̂ ∥22] ≤

V πθT+1 − V πθ1

Tη/4
+ 3G2W

[ (
2RB + σ−2

0

)−1
+ λ+ 4M ℜ̂S(F) + 3M2

√
log 2

δ

2|S|

]
.

Proof. In the rest of this proof, we denote V (θ) ≜ V πθ to simplify the notation.

Based on the assumption that V (θ) is L-smooth for every θ and the update rule θt+1 = θt + ηĝ(θt), we have

V (θt+1) ≥ V (θt) + ⟨∇V (θt),θt+1 − θt⟩ −
L

2
∥θt+1 − θt∥22

= V (θt) + η⟨∇V (θt), ĝ(θt)⟩ −
L

2
∥θt+1 − θt∥22

= V (θt) + η∥∇V (θt)∥22 + η⟨∇V (θt), ĝ(θt)−∇V (θt)⟩ −
L

2
∥θt+1 − θt∥22. (A.2)

Due to the fact that ∥∇V (θt)∥22 + ∥∇g(θt)−∇V (θt)∥22 ≥ 2|⟨∇V (θt), ĝ(θt)−∇V (θt)⟩|, we have

(A.2) ≥ V (θt) + η∥∇V (θt)∥22 −
η

2
∥∇V (θt)∥22 −

η

2
∥ĝ(θt)−∇V (θt)∥22 −

L

2
η2∥ĝ(θt)∥22

≥ V (θt) + η∥∇V (θt)∥22 −
η

2
∥∇V (θt)∥22 −

η

2
∥ĝ(θt)−∇V (θt)∥22

− Lη2∥∇V (θt)∥22 − Lη2∥ĝ(θt)−∇V (θt)∥22 (A.3)

= V (θt) + (η/2− Lη2)∥∇V (θt)∥22 − (η/2 + Lη2)∥ĝ(θt)−∇V (θt)∥22,

where (A.3) holds due to mean inequality ∥∇V (θt)∥22 + ∥ĝ(θt)−∇V (θt)∥22 ≥ 1
2∥ĝ(θt)∥

2.

Rearranging the above inequality yields

(η/2− Lη2)∥∇V (θt)∥22 ≤ V (θt+1)− V (θt) + (η/2 + Lη2)∥ĝ(θt)−∇V (θt)∥22.

Now we take the expectation over πθt
on both sides of the above inequality and then sum it up over t = 1, 2, · · · , T . We

have

T∑
t=1

Eπθt

[
∥∇V (θt)∥22

]
≤ V (θT+1)− V (θ1)

η/2− Lη2
+

η/2 + Lη2

η/2− Lη2

T∑
t=1

Eπθt

[
∥ĝ(θt)−∇V (θt)∥22

]
.

Setting step size as η = 1/(4L) in the above inequality yields

T∑
t=1

Eπθt

[
∥∇V (θt)∥22

]
≤ V (θT+1)− V (θ1)

η/4
+ 3

T∑
t=1

Eπθt

[
∥ĝ(θt)−∇V (θt)∥22

]
. (A.4)

We define θT̂ such that the index T̂ is randomly picked from {1, . . . , T}. By Jensen’s inequality, we have

E[∥∇V (θT̂ )∥
2
2] ≤

1

T

T∑
t=1

Eπθt

[
∥∇V (θt)∥22

]
. (A.5)

Combining (A.5) with (A.4) and subsequently with Theorem A.3, we immediately have

(A.5) ≤ V (θT+1)− V (θ1)

Tη/4
+

3

T

T∑
t=1

Eπθt

[
∥ĝ(θt)−∇V (θt)∥22

]
≤ V πθT+1 − V πθ1

Tη/4
+ 3G2W

(2RB + σ−2
0

)−1
+ λ+ 4M ℜ̂S(F) + 3M2

√
log 2

δ

2|S|

 .

This completes the proof.
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B ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

In this section, we present some additional experimental results to further justify the effectiveness of our proposed method
and conduct several ablation studies.

B.1 Hyper-parameter Tuning

We tune the hyper-parameter with grid search on the learning rate of policy gradient, reward estimation’s neural net-
work, and learning rate decay of policy gradient. Specifically, the learning rate of the policy gradient is searched in
[0.005, 0.001, 0.0005, 0.0001], the learning rate of reward estimation network is searched in [0.001, 0.005, 0.001, 0.0005]
and the learning rate decay of policy gradient is searched in [1.0, 0.9, 0.7, 0.5]. For optimization of ρr and ρx in (4.3) and
(4.4), we use Stochastic Gradient Descent (SGD), where the learning rate is set as 10

10+
√
i−1

at the i-th epoch.

B.2 More Experiments on Dirichlet Distributional Shift

Fig. 6 and Fig.7 show DROPO’s results for Dirichlet(1.0) and Dirichlet(0.1) on the four datasets in the pure offline setting.
It can be seen that when the logging policy is Dirichlet(0.1), which means the distributional shift is relatively large, DROPO
outperforms all the baseline methods. While for Dirichlet(1.0) where the logging distribution is much closer to a uniform
distribution, all the methods have similar performances. This is consistent with the intuition that a more biased training
dataset induces a worse testing performance.

Fig. 6 and Fig. 7 show DROPO-exp’s results for Dirichlet(1.0) and Dirichlet(0.1) on the four datasets when limited
online exploration is permitted. When the distributional shift is large, i.e., Dirichlet(1.0), DROPO-exp clearly outperforms
baseline methods. When the shift is small, we again observe that DROPO-exp does not have an advantage over the baseline
methods due to the good coverage of the logging data.
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Figure 6: Performance comparison for Dirichlet(1.0) in the offline setting on four datasets. DROPO has similar level of
performance on the four datasets because the logging is close to the uniform policy.
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Figure 7: Performance comparison for Dirichlet(0.1) in the offline setting on four datasets. DROPO outperforms the
baseline methods.

B.3 Ablation Study

B.3.1 Our Direct Method vs. Vanilla Direct Method

In this section, we explain our choice of DM methods in our experiment. In particular, the DM algorithm implemented in
our experiment is a variant of DROPO by setting the weight ratio β(a|x)

π(a|x) to 1 in Algorithm 1 and Algorithm 2. In this way,
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Figure 8: Performance comparison for Dirichlet(1.0) in the online setting on four datasets. DROPO-exp has the same level
of performance compared to the baseline methods because the Dirichlet(1.0) logging policy is close to the uniform policy.
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Figure 9: Performance comparison for Dirichlet(0.1) in the online setting on four datasets. DROPO-exp has the same level
of performance compared to the baseline methods because the Dirichlet(0.1) logging policy is close to the uniform policy.

DROPO is reduced to a direct method since we do not consider the covariate shift between the logging policy β(a|x) and
the current policy π(a|x). In contrast, note that in existing literature, people use DM to refer the Vanilla Direct Method,
which tries to minimize the mean squared error (MSE) loss on the logging data to obtain a reward mapping r̂(x, a).

argmin
r̂

∑
(x,a,r(x,a))∈S

(r(x, a)− r̂(x, a))
2
.

The reason why we choose the non-shift variant of DROPO as the DM is that it is more straightforward to justify the benefit
of considering distributional shift in policy learning by comparing the performance between our DM and DROPO.

To justify our choice, we compare the results of Vanilla DM and our DM in Fig. 10. The experiment is under the pure offline
setting. In general, our DM achieves better results compared to the Vanilla DM in both datasets and has a more stable regret
curve. One explanation is that the reward estimation in our DM has a prior Gaussian distributionf0(r|x, a) ∼ N

(
µ0, σ

2
0

)
,

which helps regularize the method. Therefore, our distributionally robust learning framework benefits the learning under
distributional shift even without explicitly incorporating the density ratios.

B.3.2 Different Exploration Size

We compare the results between online and offline settings for Optdigits and MNIST with different exploration sizes in
Fig. 11 and Fig. 12. We run the online and offline experiments with the same number of epochs. The experiments under
online setting start with a smaller logging dataset and have smaller combined dataset of logging data and exploration data
than the offline setting at each epoch. So the regret curve for the online setting are shorter in length.

In Tweak-1(0.99) (large shift), DROPO-exp utilizes a smaller amount of data and receives a better or at least comparable
performance than DROPO. Also, we see that online exploration improves the performance over the offline version more
on baseline methods than ours. This is because DROPO is more robust to the data insufficiency in the offline training and
the online data is less helpful compared to the baseline methods. Besides, as we increase the exploration size, DROPO-
exp does not benefit a lot, while we can see a great improvement on the baselines methods. For one thing, DROPO is
more robust to the data insufficiency. For another thing, with small amount of high quality data, DROPO already achieves
good performance and more online exploration data is less helpful. But the baseline methods are still far from the best
performance, so they will benefit more from the larger exploration size.

In Tweak-1(0.95) (smaller shift), DROPO-exp barely receives a better performance than DROPO. Our conjecture is that
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Figure 10: Upper row: Experiments of comparison on DM on Optdigits in different distributional shift scenarios. Bot-
tom row: Experiments of comparison on DM on MNIST in different distributional shift scenarios. In general, our DM
outperforms Vanilla DM and has a more stable regret curve, except in Tweak-1(0.99) case.
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Figure 11: Comparison between online and offline setting under different exploration size |Dexp| on Optdigits. Upper row:
Tweak-1(0.95). Bottom row: Tweak-1(0.99). Starting with a significantly smaller dataset, online exploration achieves on
par or even better results. The improvement is more obvious in Tweak-1(0.99). As we increase the exploration size,
our DROPO-exp is not significantly improved while the baseline methods benefit more. DROPO-exp still has the best
performance compared to other baseline under online setting. Different lengths of the curve is due to that we run all the
experiments with the same number of epochs but the epoch size is different across online and offline settings.

the online version starts with a smaller dataset than the offline version. In the large shift case, the smaller newly collected
high-quality dataset is more important and informative than the larger logging dataset in our setting. However, in smaller
shift case, the situation is potentially the opposite. For future work, it would be interesting to explore more on how to
effectively conduct the limited online exploration and select the optimal exploration size with the trade-off between the
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performance and the exploration cost.

B.3.3 IPS Gradient in Online Update

We explore whether the IPS gradient on the exploration data will benefit our gradient estimation. Since the latest explo-
ration data is collected from the current policy, which does not have a large shift as in the logging data, we can directly
calculate the IPS gradient at iteration t by

gIPS(θt) =
1

|Dexp|
∑

(x,a,r)∈Dexp

πθt
(a|x)

βt(a|x)
∇ log πθt

(a|x)r.

In practice, we use the mini-batch gradient ascent for policy gradient optimization and batch-size ̸= |Dexp|. Moreover,
since the exploration data is small, we calculate the IPS gradient on the entire exploration data. At each mini-batch gradient
ascent, the gradient is the weighted linear combination of the batch gradient and the IPS gradient, written as

ĝ(θt) = τ
1

|Sπθt,batch |
∑

i∈Sπθt,batch

∇ log πθt(ai|xi)r̂Dlog
(xi, ai) + (1− τ)gIPS(θt),

where τ ∈ [0, 1] is a hyper-parameter.

Fig. 13 shows how different τ affects the result. Similarly, we run the online and offline experiments with the same epochs.
The experiments under online setting start with a smaller logging dataset and have smaller combined dataset of logging
data and exploration data than the offline setting at each epoch. Hence the regret curve for the online setting are shorter in
length.

The IPS gradient correction does not help with the performance but sometimes causes unstable training. For example, in
Fig. 13 (g), there is a sudden increase on the regret with τ = 0.3 and τ = 0.4. We have a conjecture that IPS gradient has a
large variance even when we are using the combination of the batch gradient and the IPS gradient. This makes the training
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Figure 12: Comparison between online and offline settings under different exploration sizes |Dexp| on MNIST. Upper row:
Tweak-1(0.95). Bottom row: Tweak-1(0.99). Starting with a significantly smaller dataset, online exploration achieves
on-par or even better results. The improvement is more obvious in Tweak-1(0.99). As we increase |Dexp|, our DROPO-
exp is not significantly improved but the baseline methods have significant improvement. DROPO-exp still has the best
performance compared to other baselines in online settings. Different lengths of the curve is due to that we run all the
experiments with the same number of epochs but the epoch size is different across online and offline settings.



Yang, Guo, Xu, Liu, Anandkumar

unstable. In our experiment, we need to set a large learning rate decay to mitigate the unstable training caused by a large
variance of IPS gradient, otherwise the regret curve will have a large fluctuation. A promising future direction is to study
more advanced methods to account for the high variance in online updates for policy learning.
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Figure 13: Upper row: Experiments of different τ for IPS gradient on Optdigits in different distributional shift scenarios.
Limited online exploration is permitted, |Dexp| = 100. Bottom row: Experiments of different τ for IPS gradient on
MNIST in different distributional shift scenarios. Limited online exploration is permitted, |Dexp| = 500. The IPS gradient
in online update does not improve the performance but induces instability in training.
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Figure 14: Upper row: Experiments on different ϵ for uniform sampling on Optdigits in different distributional shift
scenarios. Limited online exploration is permitted, |Dexp| = 100. Bottom row: Experiments on different ϵ for uniform
sampling on MNIST in different distributional shift scenarios. Limited online exploration is permitted, |Dexp| = 500.
ϵ > 0 tends to have better result in (a), (b), (d) and (f) as the training progresses to the end and uniform sampling data
accumulates.

B.4 Alternative Online Data Collection

With limited online exploration, we want to explore if there is a better way to utilize the online exploration. In large shift
scenarios, like the Tweak-1(0.99), the probabilities in logging policy for most of the actions are low, which means there
exists a low coverage of those actions. This will cause a high bias in the reward estimation and gradient estimation. To
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solve the low coverage problem, we propose an ϵ − π exploration policy for online exploration. Instead of sampling the
action with the current policy, we sample the action with a uniform policy with probability ϵ, and sample the action with
the current policy with probability 1− ϵ.

Fig. 14 shows how different ϵ affects the result. As depicted in Fig. 14 (a), (b), (d) and (f), the ϵ > 0 cases tend to
have better a performance compared with the ϵ = 0 case. However, the improvement is insignificant, since we can only
observe it at the last few epochs. In our experiment, the budget for the online exploration is limited, and the exploration
under the uniform policy is performed only with a small probability. Therefore, we are actually collecting only a very
small amount of data with the uniform policy. This offsets the advantages brought by uniform sampling, namely more
informative logging data and less biased reward estimation.

Based on the same logging dataset, the combined dataset of exploration data and logging data is similar across different
ϵ at the first few epochs, because the number of exploration data is significantly smaller than the logging data. However,
as the training progresses and the data sampled with uniform policy accumulates, the difference between the combined
dataset will grow larger. This is when the regret curves in Fig. 14 (a), (b), (d) and (f) start to deviate.

Note that, larger ϵ does not always bring a better performance. The data collected from the current policy are more valuable
for policy learning, while the data collected using the uniform policy are not as effective in policy gradient because of the
distributional shift between the uniform policy and the current policy. Therefore, there exists a trade-off between reward
estimation and policy learning as they require different types of training data. How to balance them in offline policy
learning with limited online exploration is an interesting future direction.

B.5 Code Repository

The code repository for the experiments can be found in: https://github.com/guoyihonggyh/Distributionally-Robust-Policy-
Gradient-for-Offline-Contextual-Bandits

 https://github.com/guoyihonggyh/Distributionally-Robust-Policy-Gradient-for-Offline-Contextual-Bandits
 https://github.com/guoyihonggyh/Distributionally-Robust-Policy-Gradient-for-Offline-Contextual-Bandits
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