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Abstract

Random Fourier Features (RFF) is among the
most popular and broadly applicable approaches
for scaling up kernel methods. In essence, RFF
allows the user to avoid costly computations on a
large kernel matrix via a fast randomized approxi-
mation. However, a pervasive difficulty in apply-
ing RFF is that the user does not know the actual
error of the approximation, or how this error will
propagate into downstream learning tasks. Up to
now, the RFF literature has primarily dealt with
these uncertainties using theoretical error bounds,
but from a user’s standpoint, such results are typi-
cally impractical—either because they are highly
conservative or involve unknown quantities. To
tackle these general issues in a data-driven way,
this paper develops a bootstrap approach to numer-
ically estimate the errors of RFF approximations.
Three key advantages of this approach are: (1)
The error estimates are specific to the problem
at hand, avoiding the pessimism of worst-case
bounds. (2) The approach is flexible with respect
to different uses of RFF, and can even estimate
errors in downstream learning tasks. (3) The ap-
proach enables adaptive computation, so that the
user can quickly inspect the error of a rough ini-
tial kernel approximation and then predict how
much extra work is needed. Lastly, in exchange
for all of these benefits, the error estimates can be
obtained at a modest computational cost.

1 INTRODUCTION

Although kernel methods are fundamental to many types
of machine learning systems, they have an Achilles heel,
insofar as they have limited scalability when they are ap-
plied to large datasets in a direct manner (Schölkopf and
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Smola, 2002; Shawe-Taylor and Cristianini, 2004). The
basic source of this issue is that an n× n kernel matrix de-
rived from n data points typically incurs an O(n2) storage
cost, and an O(n3) processing cost for common learning
tasks. Due to such bottlenecks, techniques for accelerat-
ing kernel methods have been studied extensively, and over
the years, the approach of Random Fourier Features (RFF)
has become well-established as one of the most popular
and effective ways to scale up kernel methods in a plethora
of applications (Rahimi and Recht, 2007; Le et al., 2013;
Dai et al., 2014; Zhao and Meng, 2015; Avron et al., 2017;
Zhang et al., 2019; Liu et al., 2021; Giannakis et al., 2022;
Kiessling et al., 2021).

The core idea of RFF is to avoid direct computations on
a large kernel matrix by working more efficiently with an
approximation built from “randomly sampled features”. As
a result of this approximation, RFF involves an inherent
tradeoff between computational cost and accuracy. How-
ever, managing this tradeoff in practice is complicated by
the fact that the user does not know the actual error of the ap-
proximation, or how this error may jeopardize downstream
results. In addition, this uncertainty about error can lead the
user to sample far more features than are really necessary,
which erodes the computational gains of RFF.

At a conceptual level, the RFF literature is able to offer in-
sights on these issues with various theoretical error bounds,
which are surveyed in Liu et al. (2021). However, there
has been a longstanding gap between theory and practice,
because these results generally do not provide actionable
guidance at a numerical level. One reason for this difficulty
is that theoretical error bounds tend to be formulated to hold
uniformly over a class of possible inputs, which often causes
the bounds to be highly pessimistic for typical problem in-
stances. (Empirical illustrations of this conservativeness
can be found, for example, in Figures 4 and 5 of Sutherland
and Schneider (2015).) Such bounds frequently also involve
unspecified constants or unknown parameters, preventing
the user from extracting any numerical information at all.

Contributions. To overcome the challenges above, we de-
velop a systematic way to numerically estimate the errors
of RFF approximations. Our contributions are briefly sum-
marized below.
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1. The error estimates are fully-data driven, and hence
tailored to the inputs in a given problem. This bypasses
practical limitations of worst-case error bounds.

2. The error estimates enhance the computational efficiency
of RFF, by guiding the user to choose a number of fea-
tures that is just enough for a preferred error tolerance.

3. We give a precise theoretical guarantee on the validity of
the error estimates in the context of kernel matrix approx-
imation (Theorem 1), holding under mild assumptions.

4. We demonstrate the versatility of the error estimates
in several RFF use cases, including kernel matrix ap-
proximation, kernel ridge regression, and kernel-based
hypothesis testing.

1.1 Peliminaries on kernels and RFF

Kernels. Throughout the paper, we consider learning tasks
involving a shift-invariant kernel k : Rd × Rd → R. This
means that k is positive definite and satisfies the relation
k(x, x′) = k(x− x′, 0) for all x, x′ ∈ Rd. In addition, we
will always assume that k is continuous and is normalized
so that k(0, 0) = 1. Kernels with these properties are the
ones most often studied in the RFF literature, and well-
known examples include the Gaussian, Laplacian, Cauchy,
and B-spline kernels, among others surveyed in §4.4-4.5 of
Schölkopf and Smola (2002).

Random features. From a mathematical perspective, the
linchpin of RFF is a classical result from Fourier analysis
known as Bochner’s Theorem, which ensures that if k is of
the stated type, then there exists a probability distribution ρ
on Rd such that k can be represented as

k(x, x′) =

∫
Rd

e
√
−1⟨x−x′,w⟩dρ(w), (1.1)

for all x, x′ ∈ Rd, where ⟨·, ·⟩ is the Euclidean inner prod-
uct (Rudin, 1990). Crucially, this integral representation
allows the kernel to be viewed as an expectation, because if
W is a random vector drawn from ρ, and if we define the
“random feature” ζ(x) = e

√
−1⟨x,W ⟩ for any fixed x ∈ Rd,

then k(x, x′) = E[ζ(x)ζ(−x′)]. However, due to the fact
that k is real-valued, whereas ζ(x) is complex-valued, it has
become common in the RFF literature to use a real-valued
modification of ζ(x). Such a modification can be defined as

Z(x) =
√
2 cos(⟨x,W ⟩+ U),

where U is drawn from the uniform distribution on [0, 2π]
independently of W , leading to

k(x, x′) = E[Z(x)Z(x′)]. (1.2)

Randomized kernel approximations. The importance of
viewing k as an expectation is that it enables us to approx-
imate k with a sample average involving s random fea-
tures, where s ≪ n. Specifically, let W1, . . . ,Ws ∼ ρ

and U1, . . . , Us ∼ Uniform[0, 2π] be independent sets of
i.i.d. samples, and for any fixed x ∈ Rd, denote the asso-
ciated random features as Zi(x) =

√
2 cos(⟨x,Wi⟩+ Ui),

with i = 1, . . . , s. In this notation, the RFF approximation
to k(x, x′) is defined by

k̃(x, x′) =
1

s

s∑
i=1

Zi(x)Zi(x
′), (1.3)

which is unbiased, E[k̃(x, x′)] = k(x, x′), due to (1.2).

Regarding kernel matrices, consider a fixed set of data points
x1, . . . , xn ∈ Rd, and let K ∈ Rn×n have entries given by
Kjj′ = k(xj , xj′). An approximation to K can be developed
by first defining a random matrix Z ∈ Rn×s whose ith
column is 1√

s
(Zi(x1), . . . , Zi(xn)). Then, in light of (1.3),

the RFF approximate kernel matrix is defined as

K̃ = ZZ⊤. (1.4)

To briefly describe the computational advantages of RFF, it
is worth re-emphasizing that the number of random features
s is generally chosen so that s ≪ n. Combining this with
the fact that K̃ is automatically factorized in terms of the
n × s matrix Z, it follows that for any v ∈ Rn, a matrix-
vector product can be computed as K̃v = Z[Z⊤v] with a
cost of only O(sn). Hence, this is much less than the corre-
sponding O(n2) cost to compute Kv. More generally, such
savings in linear-algebraic operations have enabled RFF to
speed up a variety of learning tasks—such as reducing cost
from O(n3) to O(s2n) in both kernel PCA and kernel ridge
regression (Lopez-Paz et al., 2014; Avron et al., 2017).

1.2 Formalizing the error estimation problem

Errors with respect to norms. When assessing the error of
K̃ in relation to the exact matrix K, a variety of norms may
be of interest. Since our approach is flexible with respect to
this choice, we let ∥·∥⋄ denote a generic norm on Rn×n. For
any such choice, it should be stressed that the actual error
∥K̃−K∥⋄ is both random and unknown to the user. Also, we
regard the exact matrix K as fixed, and so the randomness
in ∥K̃− K∥⋄ arises entirely from the random features used
to construct K̃.

Our goal is to numerically estimate the tightest possible
upper bound on ∥K̃−K∥⋄ that holds with a given probability,
say 1 − α, where α ∈ (0, 1). More formally, this ideal
(unknown) bound is called the (1−α)-quantile of ∥K̃−K∥⋄,
and is defined as

ε1−α = inf
{
c ∈ [0,∞)

∣∣∣ P(
∥K̃−K∥⋄ ≤ c

)
≥ 1−α

}
.

Below, Figure 1 illustrates how the quantile ε1−α can be
interpreted in relation to the fluctuations of the random
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variable ∥K̃− K∥⋄, in the particular case when ∥ · ∥⋄ is the
operator (spectral) norm and 1− α = 90%.

To explain Figure 1, consider a hypothetical scenario where
it is possible to track the random variable ∥K̃− K∥⋄ as the
number of features s is increased over a grid ranging from 1
to 1600. The result is displayed with the red curve. Similarly,
by repeating this experiment many times, a large collection
of such random curves can be generated, and these are
displayed in blue. (This scenario would not occur in practice,
and is only for conceptual illustration.) In addition, the 90%
quantile of the curves at each value of s is plotted in black,
which represents ε1−α.

number of features s

∥K̃
−
K
∥ ⋄

—– 90% quantile ε0.90

—– fluctuations of ∥K̃− K∥⋄

Figure 1: (Interpretation of ε1−α when 1 − α = 90%.)
The plot was generated in the setting of the “Swiss roll”
dataset described in Appendix C. In particular, this involved
a Gaussian kernel with bandwidth σ = 4%.

Hence, if the user had access to the black curve for ε1−α, it
would be possible to know if a given number of features s0
is adequate, or to predict what larger value s > s0 should be
used to achieve a higher level of accuracy. Despite the fact
that none of the curves in Figure 1 are available to the user
in practice, our work will show that, for a given value s0,
there is enough information in a single instance of the n×s0
matrix Z (as in (1.4)) to closely estimate ε1−α for that value
of s0. Furthermore, it will also be shown in Section 3.1 that
a simple extrapolation rule can be used to rapidly estimate
ε1−α for all larger values s > s0.

Estimation criteria. When computing a numerical esti-
mate, say ε̃1−α, for the true quantile ε1−α, there are several
important criteria to be met. First, the estimate should serve
as a good proxy for ε1−α, in the sense that the inequality

∥K̃− K∥⋄ ≤ ε̃1−α

holds with a probability that is close to 1−α (cf. Theorem 1).
Second, the estimate should not require any access to the
full kernel matrix K. Third, the algorithm used to compute
ε̃1−α should be efficient, so that the cost of error estimation

does not outweigh the benefit of using RFF. In the remainder
of this work, our proposed approach will be shown to meet
all of these criteria.

Errors with respect to functionals. In addition to mea-
suring error through norms, it is also of interest to measure
error by comparing the kernel functions k̃ and k with re-
spect to various functionals ψ. For example, the values
ψ(k̃) and ψ(k) could be measures of prediction error for
learning algorithms based on k̃ and k respectively, so that
the difference ψ(k̃)−ψ(k) represents how much predictive
performance is sacrificed by the RFF approximation. More
generally, there are many other possibilities for comparing
k̃ and k in different contexts, such as letting ψ represent
eigenvalues in kernel PCA, or letting ψ represent statistics
for testing hypotheses. In these broader scenarios, the pre-
vious formulation of the error estimation problem can be
extended by defining a counterpart for ε1−α according to

δ1−α = inf
{
c ∈ [0,∞)

∣∣∣P(
|ψ(k̃)−ψ(k)| ≤ c

)
≥ 1−α

}
.

Likewise, our proposed approach can be applied to compute
an estimate δ̃1−α for δ1−α that meets the criteria mentioned
previously. Also, the approach can be applied just as easily
if the user prefers to define δ1−α by replacing |ψ(k̃)−ψ(k)|
with ψ(k̃)− ψ(k).

1.3 Related work

The existing literature on theoretical error bounds for RFF
has grown substantially over the years, and so we only pro-
vide an illustrative sample. Results on kernel approximation
can be found in Rahimi and Recht (2007); Sutherland and
Schneider (2015); Sriperumbudur and Szabó (2015); Liu
et al. (2021). With regard to error analysis in other applica-
tions, such as such as kernel-based regression, classification,
and hypothesis testing, we refer to Yang et al. (2012); Suther-
land and Schneider (2015); Avron et al. (2017); Rudi and
Rosasco (2017); Sun et al. (2018); Li et al. (2019); Liu et al.
(2021).

To situate the current paper in the general context of nu-
merical computation, our work can be viewed as part of a
topic known as a posteriori error estimation—which refers
to the process of estimating the error of a numerical solution
after it has been computed. Although this topic has a mature
literature in areas such as numerical PDE and finite element
methods, an important distinction to make is that a posteriori
error estimation has focused historically on deterministic
algorithms (e.g. Babuška and Rheinboldt, 1978; Bank and
Weiser, 1985; Verfürth, 1994; Ainsworth and Oden, 2011).
Meanwhile, from a different perspective, our work can also
be viewed as part of the extensive literature on bootstrap
methods for statistical inference (e.g. Davison and Hinkley,
1997; Hall, 2013; Shao and Tu, 2012). Yet, from the stand-
point of the statistics literature, relatively little attention has
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been given to bootstrap methods in the service of random-
ized algorithms for large-scale computation. Hence, our
work sits at the border of two fields that have traditionally
been quite distinct.

Nevertheless, the possibility of bridging this gap has not
been overlooked completely, and there has been nascent
interest in applying statistical ideas to estimate the errors of
randomized algorithms, as noted in the recent survey (Mar-
tinsson and Tropp, 2020). For instance, such interest has
led to error estimation methods for randomized solutions to
low-rank approximation (Liberty et al., 2007; Woolfe et al.,
2008; Halko et al., 2011), matrix multiplication (Lopes et al.,
2019, 2023), least-squares (Lopes et al., 2018; Ahfock et al.,
2021), singular value decomposition (Lopes et al., 2020),
and principal component analysis (Lunde et al., 2021). How-
ever, to the best of our knowledge, statistical error estima-
tion techniques for RFF have not previously been explored
in a systematic way. Therefore, given that RFF has been
highly impactful, our work may offer new opportuntities to
enhance many applications.

Notation. For any α ∈ (0, 1), the empirical (1−α)-quantile
of a finite set of real numbers A = {a1, . . . , aN} is de-
fined as the smallest a ∈ A such that GN (a) ≥ 1 − α,
where GN (a) = 1

N

∑N
j=1 1{aj ≤ a}, and 1{·} denotes

an indicator function. To denote this quantile, we write
quantile(A; 1 − α). If i = (i1, . . . , is) is a vector with en-
tries taken from {1, . . . , s}, then Z(:, i) refers to the n× s
matrix whose lth column is the ilth column of Z ∈ Rn×s.
Similarly, for a vector b ∈ Rs, we define b(i) ∈ Rs as the
vector whose lth entry is the ilth entry of b.

2 METHOD

Conceptually, the proposed bootstrap method for estimat-
ing ε1−α is based on generating a collection of “pseudo
error variables” ε⋆1, . . . , ε

⋆
N that behave approximately like

i.i.d. samples of the unknown error variable ∥K̃−K∥⋄. Once
the pseudo error variables have been generated, their em-
pirical (1− α)-quantile can then be used to define the esti-
mate ε̃1−α. For example, if the user chooses α = 0.1 and
N = 100, then the estimate ε̃1−α is defined as the 90th
percentile among ε⋆1, . . . , ε

⋆
100.

The subtlety of this approach consists in finding an effective
way to generate ε⋆1, . . . , ε

⋆
N . As a heuristic, we can imagine

generating a random matrix K̃⋆ such that the difference
(K̃⋆ − K̃) is “statistically similar” to the difference (K̃−K),
and then defining each ε⋆j to be of the form ∥K̃⋆ − K̃∥⋄.

To explain this in more detail, it is important to notice that
the matrix Z used to define K̃ has two special properties:
(1) The columns of Z are i.i.d. (2) The columns of Z are

generated so that E[ZZ⊤] = K. Accordingly, we can try to
generate an analogous matrix Z⋆ having columns that are
conditionally i.i.d. given Z, and satisfying the conditional
expectation relation E[Z⋆(Z⋆)⊤|Z] = K̃. Then, we can let
(Z⋆(Z⋆)⊤ −ZZ⊤) play the role of the matrix (K̃⋆ − K̃) men-
tioned earlier, and define pseudo error variables ε⋆j having
the form ∥Z⋆(Z⋆)⊤ − ZZ⊤∥⋄. Furthermore, it turns out that
these desired characteristics of Z⋆ can be achieved by sam-
pling its columns with replacement from the columns of Z,
which leads to the formulation of Algorithm 1 below.

In settings where RFF approximation error is measured in
terms of |ψ(k̃)− ψ(k)|, the principles just discussed carry
over analogously, and Algorithm 1 provides corresponding
pseudo error variables δ⋆1 , . . . , δ

⋆
N .

Algorithm 1. (Error estimation for RFF)

Input: A positive integer N , a number α ∈ (0, 1), the
matrix of random features Z ∈ Rn×s, and the random
functions Z1(·), . . . , Zs(·).

For: j = 1, . . . , N do in parallel

• Draw a random vector i = (i1, . . . , is) by sampling s
numbers with replacement from {1, . . . , s}.

• Define the n× s matrix Z⋆ = Z(:, i).

• Define the function

k̃⋆(·, ·′) = 1

s

(
Zi1(·)Zi1(·′) + · · ·+ Zis(·)Zis(·′)

)
.

• Compute the pseudo error variables

ε⋆j := ∥Z⋆(Z⋆)⊤−ZZ⊤∥⋄ and δ⋆j := |ψ(k̃⋆)−ψ(k̃)|.

Return: The estimates ε̃1−α := quantile(ε⋆1, . . . , ε
⋆
N ; 1−α)

and δ̃1−α := quantile(δ⋆1 . . . , δ
⋆
N ; 1− α).

Remarks. There are a few basic aspects of Algorithm 1 that
are helpful to note for practical purposes. First, it is not al-
ways necessary to explicitly form the matrix Z⋆(Z⋆)⊤−ZZ⊤,
and this will be explained in greater detail in Section 3. Sec-
ond, the matrix Z⋆ and function k̃⋆ can be overwritten after
each iteration, which is why they are not marked with a
subscript j. Third, the number of bootstrap iterations N
generally does not need to be very large, and our experi-
ments in Section 5 illustrate that N ∼ 50 is often sufficient
for a variety of tasks.

3 COMPUTATIONAL EFFICIENCY

This section highlights the computational merits of Algo-
rithm 1, and describes techniques for accelerating both error
estimation and RFF. Since most of the ideas apply equally
well to estimating both types of error, ε1−α and δ1−α, we
mainly address the former.
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3.1 Selecting the number of features by extrapolation

In the literature on bootstrap methods, a classical approach
to speeding up computations is through the use of extrapo-
lation techniques (Bickel and Yahav, 1988). In our current
setting, this approach can be adapted as a two-step process:
In the first step, we estimate the error of a “preliminary”
RFF approximation that is computed from a small number
of random features, say s0. In the second step, we use this
error estimate to predict how much ε1−α will decrease with
a larger number of features, say s1 ≫ s0. More concretely,
if we make the dependence of ε1−α and ε̃1−α on a generic
value of s explicit by writing ε1−α(s) and ε̃1−α(s), then we
seek to estimate ε1−α(s1) by extrapolating from ε̃1−α(s0).

There are two key benefits of this type of extrapolation.
First, it can substantially speed up the error estimation pro-
cess, because extrapolation only relies on ε̃1−α(s0), which
is computed by running Algorithm 1 on a small instance
of Z with size n × s0. (If extrapolation is not used, then
computing ε̃1−α(s1) requires a much larger instance of Z
with size n× s1.) Second, extrapolation enhances RFF by
enabling the user to choose a value of s1 that is “just large
enough” so that ε1−α(s1) nearly matches a preferred error
tolerance. In other words, this avoids the wasted compu-
tation that occurs when a user selects a highly excessive
number of features due to uncertainty about accuracy.

From an algorithmic standpoint, an extrapolation rule can be
developed as follows. Since it is possible to write (K̃−K) as
a sample average of s independent and zero-mean random
matrices, the central limit theorem suggests heuristically
that ∥K̃− K∥⋄ should decrease stochastically like 1/

√
s as

a function of s. This also suggests that ε1−α(s1) should be
smaller than ε1−α(s0) by a factor of

√
s0/s1, and so we

define the extrapolated estimate of ε1−α(s1) as

ε̃ EXT
1−α(s1) =

√
s0
s1
ε̃1−α(s0). (3.1)

Hence, if a user wants to select s1 so that ε1−α(s1) = εtol
for some tolerance εtol, then s1 can be chosen by set-
ting ε̃ EXT

1−α(s1) = εtol, which leads to the choice s1 =
s0(ε̃1−α(s0)/εtol)

2. In Section 5, our experiments illustrate
the effectiveness of this rule when s1 is larger than s0 by
two orders of magnitude, demonstrating that extrapolation
can yield major computational savings.

3.2 Low communication and parallel processing

In modern computing environments, communication costs
are often of greater concern than processing costs (Martins-
son and Tropp, 2020, §16.2). For this reason, it is important
to emphasize that when ε1−α is being estimated, Algorithm
1 does not require any access to the n × n matrices K or
K̃, but only to the much smaller matrix Z. In fact, when

extrapolation is used, Algorithm 1 only needs access to a
“preliminary” instance of Z with s0 columns, rather than a
“full” instance of Z with s1 ≫ s0 columns that will be used
for a high-quality RFF approximation.

Another valuable feature of Algorithm 1 is its “embarrass-
ingly parallel” structure. This means that the N iterations of
the for-loop can be trivially distributed across a collection
of, say m, processors. Furthermore, our experiments will
demonstrate that N ∼ 50 is sufficient in many situations,
and so if the user has access to just one or two dozen pro-
cessors, it is often realistic to treat the number of bootstrap
iterations per processor N/m as being O(1).

3.3 Computational cost in illustrative cases

In this subsection, we quantify the computational cost of
Algorithm 1 in some specific cases, with the benefits of ex-
trapolation and parallel processing taken into account. The
overall point of these examples is to show that the added
cost of error estimation is manageable in comparison to the
typical cost of RFF itself. As a benchmark for comparisons,
it is worth noting that common learning tasks performed
with RFF, such as kernel PCA and kernel ridge regression,
have costs that are O(s21n) (Lopez-Paz et al., 2014; Avron
et al., 2017). (Here and below, we continue to use s0 and s1
respectively to denote number of features used for prelimi-
nary and high-quality RFF approximations.)

Kernel matrix approximation. First, we consider the
cost of computing ε̃ EXT

1−α when error is measured through
the operator norm ∥K̃ − K∥op. Importantly, the matrix
Z⋆(Z⋆)⊤ − ZZ⊤ in Algorithm 1 does not need to be ex-
plicitly formed when computing each ε⋆j . The reason is that
the norm ∥Z⋆(Z⋆)⊤−ZZ⊤∥op can be computed with variants
of the power method, whose iterations are based on matrix-
vector products Z⋆[(Z⋆)⊤v]− Z[Z⊤v] with v ∈ Rn (Golub
and Van Loan, 2013). Also, as a basic guideline, the number
of power iterations may be taken as O(log(n)) (Martinsson
and Tropp, 2020, §6.2.3). In this case, each iteration of
Algorithm 1 incurs a cost of O(s0n log(n)). Hence, if the
iterations are computed in parallel, and the number of itera-
tions per processor is N/m = O(1) (as described above),
then the overall runtime is O(s0n log(n)). Altogether, this
compares well with the benchmark cost of O(s21n) when
s1 ≫ s0.

Alternatively, there is a second way to compute the norm
∥Z⋆(Z⋆)⊤ − ZZ⊤∥op with lower communication costs. This
approach originates from ideas in Epperly and Tropp
(2022) and is based on computing a QR factorization
Z = QR, where Q ∈ Rn×s0 has orthonormal columns, and
R ∈ Rs0×s0 is upper-triangular. By noting that the relation
Z(:, i) = Q(R(:, i)) holds for every index vector i appearing
in Algorithm 1, it follows from the unitary invariance of the
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operator norm that

∥(Z⋆)(Z⋆)⊤ − ZZ⊤∥op = ∥R(:, i)R(:, i)⊤)− RR⊤∥op. (3.2)

So, if the bootstrap iterations are distributed across many
processors, then the identity (3.2) shows that it is only nec-
essary to communicate copies of the s0 × s0 matrix R to the
processors, rather than copies of the n× s0 matrix Z. Also,
the cost of computing the right side of (3.2) at each iteration
is only O(s20 log(s0)). However, these gains are offset by
a one-time cost of O(s20n) that must be paid to extract R.
In the case when N/m = O(1), this approach leads to an
overall runtime of O(s20n). Although this nominally ex-
ceeds the O(s0n log(n)) runtime of the previous approach
when log(n) = O(s0), the reduced communication of this
approach might still lead to better performance in practice.
Also, this approach is favorable when parallel processing is
limited, because its cost per iteration is lower.

Kernel ridge regression. As our second illustration of
computational cost, we consider the use of Algorithm 1 in
estimating the extra mean-squared test error that arises from
RFF in kernel ridge regression.

However, before diving into the details of cost, we first
review the basic elements of kernel ridge regression and its
associated RFF approximation. For a kernel k, let fk denote
a kernel ridge regression function trained on n data points
in Rd. This means that if the training points are denoted
as (x1, y1), . . . , (xn, yn) ∈ Rd × R with y = (y1, . . . , yn),
then

fk(·) =
n∑

i=1

βik(xi, ·), (3.3)

where the vector β ∈ Rn solves (K+λIn)β = y, and λ > 0
is a tuning parameter. For the RFF approximation k̃, the
associated regression function is defined as

fk̃(·) =
s∑

i=1

β̃iZi(·), (3.4)

where the vector β̃ ∈ Rs solves (Z⊤Z + λIs)β̃ = Z⊤y
and the functions Z1(·), . . . , Zs(·) are as defined in Sec-
tion 1.1. Next, let ψ(k) denote the mean-squared test error
of fk. More specifically, if there are t test points denoted as
(x′1, y

′
1), . . . , (x

′
t, y

′
t) ∈ Rd × R, then we have

ψ(k) =
1

t

t∑
i=1

(y′i − fk(x
′
i))

2. (3.5)

Likewise, let ψ(k̃) denote the corresponding quantity in-
volving fk̃.

Returning our attention to error estimation, let δ1−α denote
the (1 − α)-quantile of ψ(k̃) − ψ(k). Our goal here is to
quantify the cost of computing an extrapolated estimate
δ̃ EXT
1−α for δ1−α. In this particular setting, there are a few

ways to reduce the cost of Algorithm 1 by doing some one-
time computations before starting the for-loop. Namely,
it is helpful to compute the scalar value ψ(k̃), as well as
the vector b = Z⊤y, and the QR factorization Z = QR.
(The motivation for the QR factorization is similar to that
discussed earlier in connection with the work of Epperly
and Tropp (2022).)

Inside the for-loop, each iteration computes a separate in-
stance of the pseudo error variable ψ(k̃⋆) − ψ(k̃), with
k̃⋆ being as defined in Algorithm 1. Since ψ(k̃) has been
pre-computed, it is only necessary to compute ψ(k̃⋆). This
requires computing the solution β̃⋆ ∈ Rs0 of the equation
((Z⋆)⊤(Z⋆) + λIs0)β̃

⋆ = b⋆, where Z⋆ = Z(:, i) and b⋆ =
b(i). But instead of solving this equation directly, the initial
QR factorization allows it to be solved more efficiently as(
R(:, i)⊤R(:, i) + λIs0

)
β̃⋆ = b⋆. Once the solution β̃⋆ is in

hand, the scalar ψ(k̃⋆) can be computed similarly to (3.5),
by replacing fk with fk̃⋆(·) = β̃⋆

1Zi1(·) + · · ·+ β̃⋆
sZis0

(·),
where it should be noted that the subscripts i1, . . . , is0 are
the entries of i.

To arrive at a simple overall runtime for computing δ̃ EXT
1−α,

suppose the for-loop is distributed so that the number of
iterations per processor satisfies N/m = O(1). In addition,
suppose that the number of test points satisfies t = O(n),
and the data dimension satisfies d = O(s0). Under these as-
sumptions, the overall runtime to compute δ̃ EXT

1−α, is O(s20n),
which is quite manageable in comparison to the O(s21n)
cost of kernel ridge regression using RFF.

4 THEORY

Here, we analyze the performance of Algorithm 1 when
the RFF kernel approximation error is measured in a uni-
form entrywise sense, which is common in the literature
(e.g. Rahimi and Recht, 2007; Sutherland and Schneider,
2015; Liu et al., 2021). In particular, we use the norm
∥K̃− K∥∞ = max1≤j,j′≤n |K̃jj′ − Kjj′ |. Our main theo-
retical result shows that in the limit of large problem sizes
(n → ∞), the estimate ε̃1−α constructed in Algorithm 1
matches the performance of the ideal value ε1−α with re-
spect to coverage probability.

Assumptions. We consider a sequence of kernel approx-
imation problems indexed by n = 1, 2, . . . , where the di-
mension d = dn of the point set {x1, . . . , xn} ⊂ Rd is
allowed to vary in an unrestricted manner as n → ∞. In
addition, the kernel function k = kn may vary as n→ ∞,
provided that it is of the type described in Section 1.1. That
is, the kernel function k is assumed to be shift-invariant and
continuous with k(0, 0) = 1 for every n.

With regard to RFF and error estimation, the number of
random features s = sn and bootstrap iterations N = Nn
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in Algorithm 1 are both allowed to vary as n→ ∞, subject
to two basic conditions: N → ∞ and log(n)5

s → 0.

Theorem 1. Suppose that the aforementioned assumptions
hold. Also let ε̃1−α be computed with Algorithm 1 from an
input matrix Z ∈ Rn×s that is generated as described in
Section 1.1. Then, for any fixed α ∈ (0, 1), as n→ ∞,

P
(
∥K̃− K∥∞ ≤ ε̃1−α

)
→ 1− α. (4.1)

Remarks. Theorem 1 has been presented in an asymptotic
form for the sake of simplicity. An explicit rate of conver-
gence can be found in the proof in Appendix A, which shows
that the probability in (4.1) differs from (1− α) by a quan-
tity that is at most O

(
(log(N)/N)1/2 + (log(sn)5/s)1/4

)
.

To interpret some other aspects of the result, it should be
emphasized that the assumptions are mild, insofar far as the
point set {x1, . . . , xn} ⊂ Rd is unrestricted with respect to
its geometric structure and dimension d. Also, there are no
extra assumptions on the kernel function beyond those that
are ordinarily used in the study of RFF. Furthermore, the
conditions onN and s are mild, since they allow bothN and
s to grow very slowly compared to n. On the other hand, to
note a limitation of Theorem 1, it only deals with the typical
version of RFF where the columns of the random matrix Z
are independent (as in Section 1.1), and it does not cover
some particular versions of RFF in which these columns
may not be independent (Le et al., 2013; Choromanski and
Sindhwani, 2016). However, even in the typical setting,
our proof utilizes cutting-edge results on the central limit
theorem in high dimensions (Chernozhuokov et al., 2022),
and the challenge extending such results to account for de-
pendence is at the frontier of research in high-dimensional
probability.

5 EXPERIMENTS

We demonstrate the empirical performance of our error
estimates in three settings: kernel matrix approximation
(Section 5.1), kernel ridge regression (Section 5.2), and
kernel-based hypothesis testing (Appendix B). There are
two main takeaways: First, the extrapolated estimates ε̃ EXT

1−α

and δ̃ EXT
1−α closely track their targets ε1−α and δ1−α across

different settings. Second, these estimates can be quickly
computed with modest values of s0 and N . A Python im-
plementation of the experiments is available at the GitHub
repository Yao et al. (2023).

5.1 Error estimation for RFF in kernel matrix
approximation

Here, we examine how accurate ε̃1−α and ε̃ EXT
1−α are as es-

timates of ε1−α. This is done when matrix approximation

error is measured through the ℓ∞-norm ∥K̃ − K∥∞ (Fig-
ure 2), as well as the operator norm ∥K̃− K∥op (Figure 3).

Data examples. The results are based on two datasets de-
rived from: (1) the Lorenz system (Lorenz, 1963) and (2)
the training set portion of MNIST (LeCun et al., 1998).
The Lorenz system is a well-known chaotic dynamical sys-
tem, and we followed (Erichson et al., 2018) by generating
n = 25000 points that reside on a trajectory in R3. The
training set portion of MNIST consists of n = 50000 points
that represent 784-pixel images.

Design of experiments. The following procedures were
used for both datasets, with the kernel matrix K ∈ Rn×n

being computed directly from the data. For each value of
s in a grid ranging from 50 to 6000, we generated 300 re-
alizations of the random matrix Z ∈ Rn×s as described
in Section 1.1, using the probability distribution ρ corre-
sponding to the Gaussian kernel exp(−∥x − x′∥22/(2σ2))
with σ ∈ {0.5, 1, 4}. In addition, for each realization of Z,
we computed the associated error variables ∥K̃− K∥∞ and
∥K̃−K∥op, where K̃ = ZZ⊤. This provided us with a set of
300 realizations of each type of error variable, and we com-
puted the 90th percentile of each set, treating it as ground
truth for ε0.9 at each s. In Figures 2 and 3, the value of ε0.9
at each s is plotted with a black curve. To ease comparisons,
the black curve was rescaled so that its initial value is 1 in
each plot, and the associated blue and red curves (described
below) were rescaled by the same factor.

Next, we applied Algorithm 1 with N = 30 iterations to
each realization of Z, yielding 300 corresponding estimates
ε̃0.9 at each s, and we plotted the average of these estimates
with a blue curve. Also, from each of the 300 realizations
of ε̃0.9 computed at s0 = 50, we obtained the extrapolated
estimates ε̃EXT

0.9 (s) using formula (3.1) for all 50 ≤ s ≤
6000. The average of the extrapolated estimates is plotted
with a red curve, and a pink envelope signifies ±1 standard
deviation. (Note that in some plots within Figure 2, the pink
envelope is almost entirely covered by the red curve.)

Discussion of results. It is clear that both the blue and
red curves for ε̃0.9 and ε̃ EXT

0.9 closely track the black curve
representing ground truth. Beyond this main point, the red
curve deserves special attention—because it is based on
extrapolation from only s0 = 50 features. So, if the user
constructs a “preliminary” kernel approximation with 50
features, they can use Algorithm 1 to “look ahead” and
accurately predict how error will decrease for larger choices
of s, e.g. up to s = 6000. Computationally, this means
Algorithm 1 can be run with a matrix Z that is n×50, rather
than n × 6000 for a non-extrapolated estimate, i.e. two
orders of magnitude reduction. Another important point
is that the number of bootstrap iterations N = 30 is so
small that, with a dozen processors, only a few iterations
are needed per processor. Lastly, the two figures show that
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Figure 2: (Estimation of ε0.9 for ∥K̃− K∥∞.) The top and bottom rows correspond respectively to the Lorenz system and
MNIST datasets. The columns correspond to choices of the kernel bandwidth σ.

ε 0
.9

σ = 0.5 σ = 1.0 σ = 4.0

(L
or

en
z

sy
st

em
)

s

ε 0
.9

s

(M
N

IS
T

)

s

Figure 3: (Estimation of ε0.9 for ∥K̃− K∥op.) The plots are organized analagously to Figure 2.

the error estimates behave reliably across different norms,
datasets, and bandwidths.

5.2 Error estimation for RFF in kernel ridge
regression

Now we turn our attention to estimating how much error is
created by RFF in kernel ridge regression.

Data examples. We used two regression datasets, each con-
sisting of (x, y) pairs in Rd×R with d = 50. Each dataset D
was partitioned as D = Dtrain∪Dtest, with |Dtest| = 3000 and
n = |Dtrain| = 27000. To obtain two different versions of D
with these specifications, we uniformly subsampled 30000
rows and 50 columns from the datasets YearPredictionMSD
and Buzz in social media in the repository (Dua and Graff,

2017). For both versions of D, we applied the standard
normalization function ‘MinMaxScaler’ from scikit-learn to
all the x vectors, and in the case of YearPredictionMSD we
took the square-root of the y values due to their wide range.

Design of experiments. For a kernel k, let ψ(k) denote the
mean-squared test error of the associated ridge regression
function, as defined in (3.5). Also, let δ0.9 denote the 90th
percentile of the random variable ψ(k̃)− ψ(k), which mea-
sures the extra prediction error due to RFF. The experiments
here were organized analogously to those in Section 5.1,
with (δ0.9, δ̃0.9, δ̃ EXT

0.9 ) playing the roles of (ε0.9, ε̃0.9, ε̃ EXT
0.9 ).

Hence, the colored curves and the envelope can be inter-
preted in the same way. Also, as before, we generated 300
realizations of Z and used N = 30 at each value of s. There
are only a few notable details that are specific to the current
setting. First, we computed δ̃ EXT

0.9 by extrapolating from the
initial value s0 = 200, and we always fixed the regression
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Figure 4: (Estimation of δ0.9 for ψ(k̃) − ψ(k).) The top and bottom rows correspond respectively to the two regression
datasets. The columns correspond to the three different kernels.

tuning parameter at λ = 1. Second, all the curves were
multiplied by the number 1/ψ(k) so that they can be more
naturally viewed on a scale relative to the mean-squared test
error of fk. Third, we performed the experiments using three
different kernels: the Gaussian kernel exp(−∥x−x′∥22/10),
the Laplacian kernel exp(−∥x− x′∥1/10), and the Cauchy
kernel

∏d
j=1 1/(1 + ∆2

j/10) where ∆ = x− x′.

Discussion of results. Figure 4 shows that in kernel ridge
regression, the error estimates δ̃0.9 and δ̃ EXT

0.9 perform well,
and with qualitatively similar characteristics to the error
estimates in Section 5.1. However, this setting is more chal-
lenging, since a larger value of s0 = 200 is needed, and
since δ̃ EXT

0.9 shows a slight upward bias for large s. Nev-
ertheless, an upward bias may be preferred as being safer
than a downward bias in the context of error estimation.
In addition, Figure 4 shows that the error estimates largely
maintain their accuracy across different choices of kernels.

6 CONCLUSION

Despite the broad impact that RFF has had in scaling up
kernel methods, a longstanding difficulty for users is that
they do not know the actual errors of RFF approximations.
This paper offers the first systematic approach to numeri-
cally estimate these errors. Our approach also overcomes
practical limitations of analytical worst-case error bounds,
because the error estimates are tailored to the user’s spe-
cific inputs, and are very flexible with respect to different
problem settings and error metrics. Computationally, our
approach leverages both parallelism and extrapolation so
that the additional step of error estimation is affordable
in relation to RFF itself. Also, our approach can enhance
the efficiency of RFF by guiding the user to select s in
a data-adaptive way. From the standpoint of theory, we

have provided a guarantee in the context of kernel matrix
approximation, showing that our error estimates perform
properly under mild assumptions. Furthermore, we have
demonstrated empirically that our error estimates are quite
accurate in a variety of tasks.

Looking ahead to future work, it is important to recognize
that there are many variants and uses of RFF that go be-
yond the setup considered here. For example, our approach
might be adapted to settings involving rotation-invariant ker-
nels (Lyu, 2017; Choromanski et al., 2017), low-precision
and quantized kernel estimators (Zhang et al., 2019; Li and
Li, 2021), or random features that are not independent (Le
et al., 2013; Choromanski and Sindhwani, 2016).
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Supplementary Material

The supplementary material consists of three appendices. Appendix A contains the proof of Theorem 1 from the main text.
Appendix B presents empirical results on estimating the error of RFF in the context of kernel-based hypothesis testing.
Appendix C is a continuation of Section 5.1 from the main text, and presents empirical results for an additional dataset in
the context of kernel matrix approximation.

A Proof of Theorem 1

We begin by defining several distributions functions that will be needed throughout the proof. For any t ∈ R, define

Fs(t) = P
(
∥K̃− K∥∞ ≤ t

)
, (A.1)

F̃s(t) = P
(
ε⋆1 ≤ t

∣∣Z), (A.2)

F̃s,N (t) =
1

N

N∑
j=1

1{ε⋆j ≤ t}, (A.3)

where ε⋆1, . . . , ε
⋆
N are generated as in Algorithm 1, and 1{·} is an indicator function. Note also that F̃s and F̃s,N are random

functions.

Below, we develop two lemmas showing that these distribution functions are uniformly close with high probability. The
uniform approximations are important, because they imply that the quantiles of F̃s,N and Fs behave similarly—which is
exactly what is needed to prove Theorem 1, since the (1− α)-quantiles of F̃s,N and Fs are respectively ε̃1−α and ε1−α.
Lemma A.1. Suppose the conditions of Theorem 1 hold. Then, there is an absolute constant c > 0 such that the event

sup
t∈R

∣∣F̃s,N (t)− F̃s(t)
∣∣ ≤

√
log(N)√

N
(A.4)

holds with probability at least 1− c/N.

Proof. Conditioning on Z, we can view F̃s,N as the empirical distribution function associated with N i.i.d. samples drawn
from F̃s. Consequently, the Dvoretzky-Kiefer-Wolfowitz inequality (van der Vaart, 2000, p.268) gives the following bound
for any real number r,

P
(
sup
t∈R

∣∣F̃s,N (t)− F̃s(t)
∣∣ > r√

N

∣∣∣Z) ≤ 2e−2r2 . (A.5)

Hence, the statement of the lemma follows by taking an expectation over Z and using the choice r =
√
log(N).

Lemma A.2. Suppose the conditions of Theorem 1 hold. Then, there is an absolute constant c > 0 such that the event

sup
t∈R

∣∣F̃s(t)− Fs(t)
∣∣ ≤

(
c log(2sn)5

s

)1/4

(A.6)

holds with probability at least 1− c(1/s+
√
log(sn)3/s).



Proof. For each i = 1, . . . , s, define a random matrix Y(i) ∈ Rn×n whose (j, j′) entry is

Yjj′(i) = Zi(xj)Zi(xj′) − E[Zi(xj)Zi(xj′)], (A.7)

and let Ȳ = 1
s

∑s
i=1 Y(i). Since the expectation of Zi(xj)Zi(xj′) is equal to k(xj , x′j), we have

∥K̃− K∥∞ = max
1≤j,j′≤n

∣∣Ȳjj′
∣∣. (A.8)

Next, let Y⋆(1), . . . ,Y⋆(s) be i.i.d. samples with replacement from (Y(1), . . . ,Y(s)). Based on the definition of the
bootstrap sample ε⋆1 in Algorithm 1, it is straightforward to check that it can be expressed as

ε⋆1 = max
1≤j,j′≤n

∣∣∣ 1s ∑s
i=1 Y

⋆
jj′(i)− Ȳjj′

∣∣∣. (A.9)

Likewise, the left side of (A.6) satisfies

sup
t∈R

∣∣F̃s(t)− Fs(t)
∣∣ = sup

t∈R

∣∣∣∣∣P
(

max
1≤j,j′≤n

∣∣∣ 1s ∑s
i=1 Y

⋆
jj′(i)− Ȳjj′

∣∣∣ ≤ t

∣∣∣∣Z)−P

(
max

1≤j,j′≤n

∣∣Ȳjj′
∣∣ ≤ t

)∣∣∣∣∣.
Due to this representation and the fact that the matrices Y(1), . . . ,Y(s) are i.i.d., the statement (A.6) follows as a consequence
of Lemma 4.5 in (Chernozhuokov et al., 2022), provided that we can verify three conditions: Specifically, it is enough
to show that there exist absolute constants c1, c2, C > 0 such that the following bounds (i), (ii), and (iii) hold for all
j, j′ ∈ {1, . . . , n},

(i) var(Yjj′(1)) ≥ c1,

(ii) E[Y4
jj′(1)] ≤ C2c2,

(iii) E[exp(|Yjj′(1)|/C)] ≤ 2.

As a first step toward verifying these conditions, note that the bound |Z1(xj)| ≤
√
2 holds almost surely for all

j ∈ {1, . . . , n} by construction. This implies |Yjj′(1)| ≤ 4 holds almost surely for all j, j′, and so the existence of
the two absolute constants c2, C > 0 satisfying (ii) and (iii) is clear.

The only remaining item to address is the lower bound in condition (i). For this purpose, we begin by noting that

var(Yjj′(1)) = var(Z1(xj)Z1(xj′))

= E
[(
Z1(xj)Z1(x

′
j)
)2] − k(xj , xj′)

2.
(A.10)

To handle the second moment in the last line, observe that the sum-of-angles identity cos(a) cos(b) = 1
2 cos(a − b) +

1
2 cos(a+ b) yields

E
[(
Z1(xj)Z1(x

′
j)
)2]

= E

[(
2 cos

(
⟨W1, xj⟩+ U1

)
cos

(
⟨W1, xj′⟩+ U1

))2
]

= E

[(
cos

(
⟨W1, xj − xj′⟩

)
+ cos

(
⟨W1, xj + xj′⟩+ 2U1

))2
]

= I + II + III,

(A.11)

where we let

I = E
[
cos

(
⟨W1, xj − xj′⟩

)2]
II = E

[
2 cos

(
⟨W1, xj − xj′⟩

)
cos

(
⟨W1, xj + xj′⟩+ 2U1

)]
III = E

[
cos

(
⟨W1, xj + xj′⟩+ 2U1

)2]
.



For the term I, we apply Jensen’s inequality, followed by the formula (1.1) from Bochner’s Theorem to obtain

I ≥ E
[
cos(⟨W1, xj − xj′⟩)

]2
= k(xj , xj′)

2.
(A.12)

Next, the term II turns out to vanish. This is because we can apply the sum-of-angles identity again to obtain

II = E
[
cos(⟨W1,−2xj′⟩ − 2U1)

]
+ E

[
cos(⟨W1, 2xj⟩+ 2U1)

]
= 0,

(A.13)

where the last step uses the facts that W1 and U1 are independent and that for any fixed r ∈ R, we have

E[cos(r ± 2U1)] = Re
(

e
√

−1r

2π

∫ 2π

0

e±
√
−1(2u)du

)
= 0.

Lastly, for the term III, we apply the sum-of-angles formula with a = b to get

III = 1
2 + 1

2 E
[
cos

(
⟨W1, 2(xj + xj′)⟩+ 4U1

)]
= 1

2 ,

(A.14)

where the expectation on the right vanishes due to the same reasoning that was used in (A.13). Altogether, we see that
I + II + III ≥ 1/2 + k(xj , xj′)

2, and combining this with equations (A.10) and (A.11) gives the lower bound

var(Yjj′(1)) ≥ 1
2 . (A.15)

Hence, the condition (i) is satisfied with c1 = 1/2, which completes the proof.

Concluding the proof of Theorem 1. Combining Lemmas A.1 and A.2 with the triangle inequality shows there is an
absolute constant c > 0 such that the bound

sup
t∈R

∣∣F̃s,N (t)− Fs(t)
∣∣ ≤

√
log(N)√

N
+

(
c log(2sn)5

s

)1/4

(A.16)

holds with probability at least 1− c(1/s+
√
log(sn)3/s+ 1/N). Due to this uniform approximation, classical arguments

can be used to show that the quantiles of F̃s,N and Fs behave similarly, implying that the event ∥K̃− K∥∞ ≤ ε̃1−α holds
with probability close to 1− α. For example, the arguments in the proof of Theorem 2.5 in Chernozhuokov et al. (2022) or
the proof of Lemma 10.4 in Lopes (2022) can be used to show that (A.16) implies∣∣∣∣P(

∥K̃− K∥∞ ≤ ε̃1−α

)
− (1− α)

∣∣∣∣ ≤ c
√

log(N)√
N

+
(

c log(2sn)5

s

)1/4

(A.17)

for some absolute constant c > 0. Finally, as n→ ∞, the assumptions of Theorem 1 ensure that the terms on the right side
of (A.17) approach 0, which completes the proof.

B Error estimation for RFF in hypothesis testing

This section looks at using δ̃1−α to estimate the error arising from RFF in the context of kernel-based hypothesis testing.

MMD statistic. Let Dx = {x1, . . . , xn} and Dy = {y1, . . . , yn} denote two datasets in Rd, and consider the problem of
testing the null hypothesis that both Dx and Dy were drawn in an i.i.d. manner from the same distribution. A well-known
approach for solving this problem is based on the notion of Maximum Mean Discrepancy (MMD), which is a statistical
distance that can be formulated in terms of kernels (Gretton et al., 2012).

For a given kernel k, an MMD test statistic can be defined as

T =
1

n(n− 1)

n∑
i ̸=i′

k(xi, xi′)−
2

n2

n∑
i,j=1

k(xi, yj) +
1

n(n− 1)

n∑
j ̸=j′

k(yj , yj′), (B.1)



which is referred to as MMD2
u in the paper (Gretton et al., 2012). Alternatively, we may view T as a functional of the kernel,

say T = ψ(k).

In order to compute an approximation to T via RFF, one may use a corresponding statistic defined as T̃ = ψ(k̃) with the
approximate kernel k̃. In particular, we have

T̃ =
1

n(n− 1)

n∑
i ̸=i′

k̃(xi, xi′)−
2

n2

n∑
i,j=1

k̃(xi, yj) +
1

n(n− 1)

n∑
j ̸=j′

k̃(yj , yj′). (B.2)

It is also worth noting that T̃ can be obtained in an equivalent but computationally more efficient way. For this purpose, let
z(·) = 1√

s
(Z1(·), . . . , Zs(·)), with the functions Z1(·), . . . , Zs(·) defined as in Section 1.1, and let

z̄x =
1

n

n∑
j=1

z(xj) and z̄y =
1

n

n∑
j=1

z(yj),

which are both vectors in Rs. Then, the statistic T̃ is expressible as

T̃ = n2

n2−n

(
∥z̄x∥22 − 1

n2

∑n
j=1 ∥z(xj)∥22

)
− 2

〈
z̄x, z̄y

〉
+ n2

n2−n

(
∥z̄y∥22 − 1

n2

∑n
j=1 ∥z(yj)∥22

)
,

which has the advantage that it can be computed with a cost that is linear n, rather than quadratic in n (as in (B.2)).

To assess the error of the RFF approximation using the framework developed in Sections 1 and 2, we estimate the 90% and
99% quantiles δ0.9 and δ0.99 of the error variable |ψ(k̃)− ψ(k)| = |T̃ − T | using Algorithm 1.

Data examples. We constructed three different versions of the pair (Dx,Dy). Each version was constructed so that
|Dx| = |Dy| = 25000 and d = 10. The first version of (Dx,Dy) was obtained by uniformly subsampling 25000 rows
and 10 columns from the datasets YearPredictionMSD (MSD) and Buzz in social media (Buzz), and the second version of
(Dx,Dy) was obtained in the same way from the datasets SGEMM GPU kernel performance (GPU) and Gas Turbine CO
and NOx Emission (Emission). (The four named datasets are available in the repository (Dua and Graff, 2017).) In addition,
the third version of (Dx,Dy) was constructed with synthetic data by sampling 25000 points from the two multivariate
Gaussian distributions N(0, 1

10 · I10), and N(0, ( 1
10 + η) · I10), where η > 0 was chosen small enough so that detecting a

difference with T was relatively challenging. More specifically, we selected η = .0933 so that the p-value derived from T
(as in Corollary 11 of (Gretton et al., 2012)) was nearly equal to 5%.

Design of experiments. Our experiments in this section were organized analogously to those in Section 5.2. In particular,
for a grid of s values ranging from 30 to 600, we generated 300 realizations of the approximate kernel k̃, and we
applied Algorithm 1 to each such realization with N = 30 bootstrap iterations. The results for these experiments are
displayed in Figures B.1 and B.2, where the three colored curves for (δ 0.9, δ̃0.9, δ̃ EXT

0.9 ) and (δ 0.99, δ̃0.99, δ̃
EXT
0.99) have the same

interpretations as the corresponding curves in Figure 4. In the current context, all the curves were multiplied by the relevant
value of 1/T , so that they can be viewed on a more natural scale. Also, the curves for the extrapolated estimates δ̃ EXT

0.9 and
δ̃ EXT
0.99 are based on a starting point of s0 = 50. Lastly, the experiments were performed with three different kernels: the

Gaussian kernel exp(−∥x−x′∥22/2), the Laplacian kernel exp(−∥x−x′∥1/2), and the Cauchy kernel
∏10

j=1 1/(1+∆2
j/2)

where ∆ = x− x′.

Discussion of results. Figure B.1 shows that the estimates δ̃1−α and δ̃ EXT
1−α agree well with δ1−α across different choices of

kernels and datasets when 1 − α = 90%. The same pattern also appears in Figure B.2 for the case when 1 − α = 99%,
which is especially encouraging because the choice of 1 − α = 99% makes the estimation problem more challenging.
Furthermore, it is notable that the same inexpensive choice s0 = 50 leads to high-quality extrapolations for both choices of
α.
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Figure B.1: (Estimation of δ0.9 for |ψ(k̃)− ψ(k)| = |T̃ − T |.) The rows correspond to different pairs of datasets, and the
columns correspond to different kernels.
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Figure B.2: (Estimation of δ0.99 for |ψ(k̃)− ψ(k)| = |T̃ − T |.) The rows correspond to different pairs of datasets, and the
columns correspond to different kernels.



C Additional results on error estimation for RFF in kernel matrix approximation

This appendix is a continuation of Section 5.1 from the main text, in which we present additional results for data that reside
on the well-known 3-dimensional “Swiss roll” structure. Specifically, we used code provided by Marsland (2011) to generate
n = 20000 data points. Apart from the choice of the dataset, the experiments here followed the same design and settings as
in Section 5.1.

Figure C.1 displays the performance of ε̃0.9 and ε̃ EXT
0.9 in the task of estimating ε0.9. The top and bottom rows of Figure C.1

correspond respectively to the cases when matrix approximation error is measured through the operator norm ∥K̃− K∥op

and the ℓ∞-norm ∥K̃−K∥∞. All the plots within Figure C.1 show that the estimates enjoy the same high degree of accuracy
that was observed for the other datasets considered in Section 5.1 of the main text.
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Figure C.1: (Estimation of ε0.9 for ∥K̃ − K∥op and ∥K̃ − K∥∞). All plots are based on the Swiss roll dataset. The rows
correspond to choices of matrix norm, and the columns correspond to choices of the kernel bandwidth σ.
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