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Abstract

A seminal work by Moulin (1980) shows that the
median voting scheme fully characterizes (deter-
ministic) strategy-proof facility location mecha-
nism for single-peaked preferences. In this sim-
ple setting, median also achieves the optimal so-
cial cost. In d dimensions, strategy-proof mech-
anism is characterized by coordinate-wise me-
dian, which is known to have a large

√
d ap-

proximation ratio of the social cost in the Eu-
clidean space, whereas the socially optimal mech-
anism fails at being strategy-proof. In light of the
negative results in the classic, worst-case setting,
we initiate the study of Bayesian mechanism de-
sign for strategy-proof facility location for multi-
dimensional Euclidean preferences, where the
agents’ preferences are drawn from a distribu-
tion. We approach the problem via connections
to algorithmic high-dimensional robust statistics.
Specially, our contributions are the following:

(i) We provide a general reduction from any
robust estimation scheme to Bayesian ap-
proximately strategy-proof mechanism. This
leads to new strategy-proof mechanisms for
Gaussian and bounded moment distributions,
by leveraging recent advances in robust
statistics.

(ii) We show that the Lugosi-Mendelson me-
dian arising from heavy-tailed statistics
can be used to obtain Bayesian approxi-
mately strategy-proof single-facility mecha-
nism with asymptotically optimal social cost,
under mild distributional assumptions.

(iii) We provide Bayesian approximately
strategy-proof multi-facility mechanisms
for Gaussian mixture distributions with
nearly optimal social cost.
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1 INTRODUCTION

Facility location with strategic agents is a fundamental prob-
lem in Mechanism Design without money (Moulin, 1980;
Procaccia and Tennenholtz, 2013; Feldman et al., 2016). In
the facility location game of n agents, each agent reports a
location, and the mechanism chooses a set of m facility lo-
cations. The cost of an agent is the distance from their true
location to the closest facility location. The agents are strate-
gic and seek to minimize their individual cost. We study the
problem of designing strategy-proof mechanisms, where an
agent cannot be better off by misreporting their location. In
addition, we aim to design mechanisms with minimal social
cost, the sum of individual costs over all agents.

Identifying truthful mechanisms with small social cost turns
out to be a challenging problem, even in simple settings. In a
seminal work, Moulin (1980) first provides a complete char-
acterization of strategy-proof single-facility mechanisms
on the real line, known as the (generalized) median voter
schemes. As a special case, the result of Moulin implies
that taking the median of the location profile is strategy-
proof. Border and Jordan (1983) extend the result to multi-
dimensional Euclidean space and shows that it is strategy-
proof to apply the median voter schemes in each dimension
separately. This natural coordinate-wise median approach,
however, does not lead to socially desirable outcome. In-
deed, Meir (2019) shows that it achieves only a

√
d approxi-

mation factor for the social cost, in d-dimensional Euclidean
space. Such approximation quality can be unacceptable in
high dimensional settings. On the other hand, the socially
optimal mechanism—taking the geometric median that min-
imizes the total distance—violates the strategy-proof prop-
erty (Goel and Hann-Caruthers, 2020). Hence, the negative
results suggest a dilemma that single-facility mechanisms
cannot attain strategy-proofness and optimal social cost si-
multaneously. Fundamental work has also been done for
placing a single facility in other metric spaces as well (Feld-
man and Wilf, 2013).

The problem of placing multiple facilities is significantly
harder as the existing literature suggests. Procaccia and Ten-
nenholtz (2013) introduce the framework of mechanism de-
sign without money and initiates the study of m-facility
strategy-proof mechanisms. For m = 2 and the line met-
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ric, they show that placing one facility at the leftmost peak
and the other at the rightmost is strategy-proof, but the
scheme only achieves an (n − 2)-approximation for the
social cost. Fotakis and Tzamos (2014) further prove that
this approximation is tight for any deterministic mecha-
nism. Though the approximation factor can be improved
to 4 using a randomized P R O P O R T I O N mechanism, it is
observed that P R O P O R T I O N fails to be strategy-proof for
more than two facilities (Lu et al., 2010). Moreover, the ap-
proximation ratio becomes unbounded for m > 2 facilities
and anonymous, strategy-proof mechanisms (Fotakis and
Tzamos, 2014).

In light of the negative results in the classic, worst-case set-
tings, we initiate the study of Bayesian strategy-proof mech-
anisms for facility location in multi-dimensions, where the
location profile is drawn from a distribution. Our work seeks
to break the tension between incentive-compatibility and so-
cial cost, for both single- and multi-facility mechanisms. In
particular, we ask:

Can we achieve strong social cost guarantees and
maintain strategy-proofness simultaneously in Bayesian

facility location mechanisms design?

1.1 Our Contributions

We provide a mostly positive answer to the main question.
Our approach is inspired by an intimate connection between
strategy-proof mechanisms and robust statistics—the study
of statistics in presence of data outliers—regarding the use
of medians. On one hand, median voting schemes is the
only class of deterministic strategy-proof mechanisms on
the real line (Moulin, 1980). On the other, one-dimensional
median is known to be resilient to outliers Huber (1973)
and commonly used as a robust location estimator.

Our work can be seen as an extension of this connection to
high dimensions and exploit high-dimensional median con-
structions. Recent literature on algorithmic robust statistics
proposed new high-dimensional medians for outlier-robust
parameter estimation. In particular, we first study the perfor-
mance of Lugosi-Mendelson (LM) median, a notion of high-
dimensional median for mean estimation with heavy-tailed
data, due to Lugosi and Mendelson (2019a). Concretely, a
LM r-median is a point close to the median of the data un-
der any one-dimensional projection, up an additive factor
of r; see Definition 2.7 for a formal definition. We consider
applying LM median for single-facility mechanism.

Single-facility mechanism. One naı̈ve hope may be that
the LM median is a strategy-proof single-facility mech-
anism for multi-dimensional Euclidean preferences, even
in classic, non-Bayesian setting.1 Unfortunately, as a neg-
ative result, we prove that this is not true. Indeed, Peters

1Here, we consider a slight variant of the original LM median,
in order to guarantee existence and uniqueness. We give a natural

et. al. show that any strategy-proof, Pareto-optimal, and
anonymous mechanism must be a coordinate-wise median
scheme. As LM median satisfies Pareto-optimality and
anonymity, it must fail at being truthful. We formalize this
argument in Theorem 3.1.

Given this result, we move on to study (approximately)
strategy-proof mechanisms in Bayesian settings. We say
that a mechanism is Bayesian (ε, k)-group strategy-proof if
no agent in a group of k can be better off by ε in expecta-
tion, by collectively misreporting their true preferences. To
achieve Bayesian strategy-proofness, we give a general con-
nection to the robust statistics. We say that an algorithm is
(r, k)-robust if its output does not change by r, in Euclidean
norm, if k input points are adversarial and others are i.i.d.
Roughly speaking, we show as a general reduction:

Theorem 1.1 (Informal; see Theorem 4.5). Any (r, k)-
robust algorithm can be used as a Bayesian (O(r), O(k))-
group strategy-proof mechanism.

This allows us to exploit a wide range of results in the re-
cent literature on algorithmic robust statistics (Diakonikolas
and Kane, 2019), and to immediately obtain approximately
strategy-proof mechanisms for various distributions, includ-
ing Gaussian and bounded-moment distributions.

As an interesting special case, we again consider LM me-
dian, originally used for mean estimation under heavy-tailed
distributions. Lugosi and Mendelson show that with proba-
bility at least 1−2−Ω(k), a LM r-median exists forn random
vectors i.i.d. from a distribution with variance bounded by
O(1) at every direction, for r = O(

√
d/n +

√
k/n). Fur-

ther, an r-median µ̂ satisfies that ∥µ̂ − µ∥ ≤ r, where µ
is the mean of the distribution. Note that for fixed k and
d, the bound tends to 0 as n → ∞. Moreover, subsequent
work (Lei et al., 2020; Depersin and Lecué, 2019) prove that
this guarantee holds even when k/100 of the input points
are arbitrary, and they give polynomial-time algorithms for
finding a LM r-median. This shows that the LM r-median
is (O(r), O(k))-robust, around mean µ. The property al-
lows us to apply the reduction (Theorem 1.1) and obtain
Bayesian approximately strategy-proof mechanism as a re-
sult.

On the other hand, another objective in facility location
mechanism design is to achieve socially desirable outcome.
For (centrally) symmetric distributions, we show that the
LM r-median achieves asymptotically optimal social cost.
Combining this with the strategy-proof property, we get:

Theorem 1.2 (Informal; see Theorem 5.2). For any symmet-
ric distribution with bounded covariance, the LM r-median
(1) obtains asymptotically optimal social cost, as n → ∞,
and (2) is (ε,O(k))-group strategy-proof with ε → 0 as
n → ∞.

definition of such “unique LM median” (see Definition 2.8)
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Multiple facility mechanism. We also study multi-
facility mechanisms, focusing on Gaussian and Gaussian
mixtures. We consider the practical case of a small num-
ber of facilities. The intuition here is simple. For high-
dimensional Gaussian, the location profile is sufficiently
well spread-out in all directions. Thus, we do not expect
that a constant number of facilities would dramatically re-
duce the social cost than an optimal 1-facility mechanism.
We formally prove such key lemma in section 7 for spheri-
cal Gaussian and its mixture. The lemma implies that plac-
ing just 1 facility at the mean of the Gaussian (component)
is socially near optimal. On the other hand, Bakshi et al.
(2020) recently established that Gaussian and Gaussian mix-
tures can be learned robustly. Again by exploiting our reduc-
tion to robust statistics, we obtain approximately Bayesian
group strategy-proof mechanisms in these settings. See The-
orem D.2 and Theorem 7.2 for formal statements.

1.2 Related Work

Strategy-proof facility location. Motivated by social
choice theory, classic literature on facility location was
mostly focused on single facility. Moulin Moulin (1980)
proves a full characterization of any strategy-proof deter-
ministic mechanism under single-peaked preferences. The
result was later extended to multidimensional outcome
space by Border and Jordan (1983); Barberà et al. (1993).
The modern era of strategy-proof facility location started
off with Procaccia and Tennenholtz (2013), which studies
multi-facility mechanisms. This leads to a sequence of fol-
lowup work Alon et al. (2010); Lu et al. (2009, 2010); Sui
et al. (2013); Fotakis and Tzamos (2014). See Chan et al.
(2021) for a recent survey of the area.

For single dimensional preferences, Caragiannis et al.
(2016) studies univariate facility location problem. They
show that in the Baeysian setting, the generalized median
schemes still fully characterize the strategy-proof mech-
anisms. Within this class, they provide estimators that
achieve small error. As generalized median mechanisms
suffer high social cost in high dimensions, this motivates us
to relax the exact strategy-proofness requirement.

More closely related to our paper, there has been recent
work on strategy-proof facility location in multi-dimensions,
using other notions of median. In particular, El-Mhamdi
et al. (2021) provides an analysis for geometric median
and Goel and Hann-Caruthers (2020) focuses on the cost of
coordinate-wise median under other social objectives. Nei-
ther considers the Lugosi-Mendelson median or shows a
general connection to robust statistics. Walsh Walsh (2020)
studies the problem in Manhattan space. Finally, we men-
tion that Caragiannis et al. (2016) also considers distribu-
tional settings, though only in one dimension.

Robust statistics. Robust statistics is a classic area, dating
back to the the 1960s Tukey (1960); Huber (1964). There
has been a recent surge of interests in designing computa-
tionally efficient estimation schemes in high dimensions,
for classic problem such as mean estimation. The work
of Lai et al. (2016); Diakonikolas et al. (2021) first gave
polynomial time algorithms for statistically near optimal
robust mean estimation under Gaussian and bounded co-
variance distributions. We leverage their results to provide
approximate Bayesian group strategy-proof mechanisms
when the location profile is drawn i.i.d. from such distri-
butions. These results have since been extended and im-
proved (Balakrishnan et al., 2017; Diakonikolas et al., 2017,
2018a, 2019a; Cheng et al., 2019; Hopkins and Li, 2018;
Dong et al., 2019). See Diakonikolas and Kane (2019) for
a recent survey.

A closely related area is estimation under heavy-tailed distri-
butions, that is, distributions with weak concentration prop-
erties. For bounded second moment distributions, there has
been a long line of work on mean estimation at sub-gaussian
error rate (Minsker, 2015; Devroye et al., 2016; Hsu and
Sabato, 2016; Joly et al., 2017; Lugosi and Mendelson,
2021, 2019b,a; Lee and Valiant, 2022). Most relevant to
us, Lugosi and Mendelson (2019a) proposes a notion of
high-dimensional median that acts as statistically optimal
estimator in this setting. The estimator admits efficient al-
gorithms (Hopkins, 2020; Cherapanamjeri et al., 2019; Lei
et al., 2020; Depersin and Lecué, 2019). We will use some
of its properties to design facility location mechanisms. See
Lugosi and Mendelson (2019c) for a survey of the area
in general. Finally, we mention that Hopkins et al. (2020)
shows the LM median is equivalent of the filter-based esti-
mators arising from robust statistics literature. However, the
latter is not explicitly defined as a generalization of median
to high dimensions.

2 PRELIMINARIES

For a set of reals K ⊆ R, let med(K) be its (left) me-
dian. Let N = {1, 2, · · · , n} be a set of agents who are
located in a metric space (M,d). In this paper, we fo-
cus on M being a (multi-dimensional) real space, and the
metric d the standard Euclidean metric. We use X =
(x1, x2, · · · , xn) ∈ Mn to denote the true location pro-
file of the n agents. A k-facility mechanism is a function
f : Mn → Mk that maps the agents’ profile to k facility
locations. Given a set of facilities, each agent has a cost
c (f(X), xi) = miny∈f(X) d (xi, y). We define the social
cost of a facility profile (with respect to X) as the sum of
individual costs

∑
i∈N c(f(X), xi).

For any X ∈ Mn and K ⊆ N , let xK denote {xi : i ∈ K}
and x−K its complement. We drop the bracket when K is
a singleton set.
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2.1 Mechanism Design

We first recall the standard definition of (group) strategy-
proofness and its variants.
Definition 2.1 (strategy-proofness). We say that a mecha-
nism f is strategy-proof if for all i ∈ N , xi, x

′
i ∈ M and

x−i ∈ Mn−1,

c (f (xi, x−i) , xi) ≤ c (f (x′
i, x−i) , xi) .

In the Bayesian setting, the locations are drawn from a distri-
bution D over M , and we consider the expected individual
costs.
Definition 2.2 (Bayesian strategy-proofness). We say that
a mechanism f is Bayesian strategy-proof if for all i ∈ N ,
xi, x

′
i ∈ M ,

E
x−i∼Dn−1

c (f (xi, x−i) , xi)

≤ E
x−i∼Dn−1

c (f (x′
i, x−i) , xi) .

The most general notion that we will deal with in the paper
is approximate Bayesian group strategy-proofness. We also
consider a variant, where incentive-compatibility holds with
high probability rather than in expectation,
Definition 2.3 (Bayesian (ε, k)-group strategy-proofness).
We say that a mechanism f is Bayesian (ε, k)-group
strategy-proof if for all K ⊆ N with |K| = k, xK , x′

K ∈
Mk, i ∈ K

E
x−K∼Dn−k

c (f (xK , x−K) , xi)

≤ E
x−K∼Dn−k

c (f (x′
K , x−K) , xi) + ε.

Definition 2.4 (Bayesian (ε, δ, k)-group strategy-proof-
ness). We say that a mechanism f is Bayesian (ε, δ, k)-
group strategy-proof if, with probability at least 1− δ over
x−K ∼ Dn−k, for all K ⊆ N with |K| = k, xK , x′

K ∈
Mk, i ∈ K

c (f (xK , x−K) , xi) ≤ c (f (x′
K , x−K) , xi) + ε.

We also define Pareto-optimality and anonymity.
Definition 2.5 (Pareto-optimal). A mechanism f is Pareto
optimal if for no X ∈ Mn, there is a set of facilities F ∈
Mk with c(F,Xi) ≤ c(f(X), Xi) for all i ∈ n such that at
least one of the inequalities is strict.
Definition 2.6 (anonymous). A mechanism is anonymous
if f(σ(X)) = f(X) for any profile X ∈ Mn and any
permutation σ : Mn → Mn.

2.2 High Dimensional Medians

Lugosi-Mendelson median. For any unit-norm v ∈ Rd

and X ⊆ Rd, let Xv = {⟨xi, v⟩}, and for r ∈ R≥0 define

slabr(v;X) = {x ∈ Rd : |⟨x, v⟩ − med(Xv)| ≤ r},

to be the slab around the median under the 1d projection.
Informally, the Lugosi-Mendelson (LM) median Lugosi and
Mendelson (2019a) is any point close to the median of X
under every 1d projection, up to an additive factor of r. (It
can be seen as a relaxation of the classic Tukey median
(Tukey, 1975), which is NP-hard to compute.) Note that it
may not exist (for small r) and it may not be unique either.

Definition 2.7 (Lugosi-Mendelson median). For a point set
X ⊆ Rd, y ∈ Rd and radius r ≥ 0, we say that y is a
Lugosi-Mendelson r-median for X if

y ∈
⋂

v:∥v∥2=1

slabr(v;X).

Observe that one can always take r to be the diameter of X
to guarantee existence. On the other hand, to force unique-
ness, we will also choose the minimum r so that the inter-
section of the slabs are non-empty. This yields the following
definition.

Definition 2.8 (unique Lugosi-Mendelson median). For a
point set X ⊆ Rd, let r ≥ 0 be the minimum value such that⋂

v:∥v∥2=1 slabr(v;X) is non-empty. We say that y ∈ Rd

is the unique Lugosi-Mendelson median if

y =
⋂

v:∥v∥2=1

slabr(v;X).

Geometric median. For X ⊆ Rd, the geometric median
is defined to be a point that minimizes the social cost. That
is, we say that y is the geometric median if

y ∈ argmin
∑
i∈N

d(xi, y). (2.1)

3 LUGOSI-MENDELSON MEDIAN IS
NOT EXACTLY STRATEGY-PROOF

We now prove a negative result, showing that the unique
Lugosi-Mendelson median (Definition 2.8) is not exactly
strategy-proof (in the classic, non-Bayesian setting).

Theorem 3.1 (Non-trufulness of LM median). The unique
Lugosi-Mendelson median is not a strategy-proof mecha-
nism for Euclidean preferences in R2.

We give a proof sketch by a picture and delay the techni-
cal details to Appendix A. A classic result by Peters et al.
(1992) shows that in this setting a mechanism is Pareto-
optimal, anonymous, and strategy-proof if and only if it is
a coordinate-wise median. For 3 points on a plane, their
coordinate-wise medians can be fully characterized alge-
braically. On the the other hand, we make a geometric ob-
servation that for 3 points forming a triangle in R2, the LM
median is simply the incenter of the triangle. However, the
incenter may not be any of the coordinate-wise medians,
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even for, say, an equilateral triangle. It is easy to observe
that the incenter is Pareto-optimal and anonymous. This im-
plies, by the result of Peters et al. (1992), that LM median
cannot be strategyproof.

4 APPROXIMATE BAYESIAN
STRATEGY-PROOFNESS FROM
ROBUSTNESS

We now turn to approximate strategy-proof mechanisms in
Bayesian setting, given that the unique Lugosi-Mendelon
median does not achieve exact strategy-proofness (Sec-
tion 3) and yet coordinate-wise median can be a bad approxi-
mation for the social cost (up to a factor of

√
d) in the classic

setting (Meir, 2019). We provide two results, an approx-
imate strategy-proof analysis for the Lugosi-Mendelson
r-median (Definition 2.7) and a general reduction from
strategy-proofness to robust estimation.

4.1 Strategy-Proofness of Lugosi-Mendelson Median

We show that for an appropriate choice of r, a Lugosi-
Mendelson r-median is approximate group strategy-proof
in a fairly general Bayesian setting. The theorem can be
seen as an example of obtaining group strategy-proofness
from robustness. Subsequently, we will describe such a gen-
eral reduction in Section 4.2.

We focus on a Bayesian setting with n agents, whose lo-
cation profile x1, x2, · · · , xn are drawn i.i.d. from a distri-
bution D over Rd. We assume that D has bounded support
(in particular, ∥X∥2 ≤ β for any X in the support of D)
and has unknown mean µ and a covariance Σ. In practical
applications, we expect that real-world distributions to have
bounded support. For example, agents may claim their de-
sired physical location of a facility, or they may vote in a
budget allocation setting, and these values are bounded.

Under the assumptions, we consider the single-facility
mechanism described by Algorithm 1. The mechanism ap-
plies the Lugosi-Mendelson construction, which is based on
median-of-means, in a straightforward way.

Lugosi and Mendelson (2019a) shows that with the choice
of r given by (4.1), a LM r-median exists with probability
at least 1− e−Ω(k):

Theorem 4.1 (Lugosi and Mendelson (2019a)). Let
X1, X2, · · · , Xn be i.i.d. from a distribution over Rd with
mean µ and (finite) covariance Σ. Let {Zi}ki=1 be the bucket
means of k disjoint buckets that partition X1, · · · , Xn.
Then with probability at least 1− e−Ω(k), an LM r-median
exists, for r defined as in (4.1).

Moreover, our argument for the strategy-proofness requires
an algorithmic and robust version of this result.

Algorithm 1: Mechanism L M - M E D I A N for a Single
Facility Location

Input: Agents’ profile X = (x1, x2, . . . , xn) ∈ Rd,
parameter k

Output: A facility location y ∈ Rd.

1 Partition the input locations X into k (artbitrary)
disjoint buckets B1, B2, · · · , Bk of equal size.

2 Compute the bucket means Zi =
1

|Bi|
∑

j∈Bi
xi.

3 Return the Lugosi-Mendelson r-median µ̂ of {Zi}ki=1

with

r = 120 ·

(√
TrΣ

n
+

√
∥Σ∥k
n

)
. (4.1)

4 If the algorithm fails to find a Lugosi-Mendelson
r-median, return any point in the convex hull of X .

Lemma 4.2 (Depersin and Lecué (2019); Lei et al. (2020);
see also Cherapanamjeri et al. (2019); Hopkins (2020)). Let
X be a partition of I∪O, where (i) points in O are arbitrary
such that |O| ≤ k/300 and (ii) the points in I are drawn
i.i.d. from a distribution D (with mean µ and covariance Σ).
Let r be defined in (4.1). Then there is a polynomial time
algorithm that computes the Lugosi-Mendelson r-median µ̂
of the k bucket means, with probability at least 1− e−Ω(k)

over the input data.

Moreover, ∥µ− µ̂∥ ≤ 100r.2

Our theorem shows that Algorithm 1 achieves Bayesian
(O(r), O(k))-group strategy-proofness, for certain bound
of β. The intuition is that the above lemma guarantees that
the Lugosi-Mendelson median is a robust estimator against
k outliers. It stays close to the true mean under perturbations.
In particular, any group of k agents’ misreporting their loca-
tion would not improve their cost by O(r), since the output
would not change by more than a factor of O(r).

Theorem 4.3 (approximate Bayesian strategy-proofness of
LM median). Let the location profile X be i.i.d. from a
distribution with covariance Σ and (unknown) mean µ and
support bounded by β. For any β ≤ ek ·O(r), Algorithm 1
achieves Bayesian (O(r), O(k))-group strategy-proofness.

Note that for constant TrΣ = O(1) and n ≪ poly(d), we
can take k = C log d for a sufficiently large C, and our
theorem gives a Bayesian (O(r), O(log d))-group strategy-
proof mechanism for any bounded distribution whose sup-
port is bounded by poly(d).

Proof. Let Θ ⊆ Rd denote the support of D and K ⊆ N be
a subset of ⌊k/300⌋ agents. Let X,X ′ ∈ Mn be two loca-
tion profiles such that x−K = x′

−K are drawn from Dn−k

2We remark that, as in prior work, we make no efforts in opti-
mizing any of the constants here.
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and xK , x′
K ∈ Θk are both arbitrary. Then by construc-

tion, X,X ′ can be partitioned into the outlier set O = K
and inlier set I = N \K. Let µ̂, µ̂′ be the output of L M -
M E D I A N(X, k), L M - M E D I A N(X ′, k), respectively.

Now applying Lemma 4.2 and triangle inequality, we have
that with probability at least 1− e−Ω(k), ∥µ̂− µ̂′∥ ≤ 200r.
In this case, we obtain that for all i ∈ K

c(L M - M E D I A N(X, k), xi)

≤ c(L M - M E D I A N(X ′, k), xi) + 200r.

On the other hand, if this guarantee fails, which occurs with
probability at most e−Ω(k), we get that for all i ∈ K

c(L M - M E D I A N(X, k), xi)

≤ c(L M - M E D I A N(X ′, k), xi) + β,

since the algorithm would output some point in the convex
hull of X . Finally, combining the facts above and taking
expectations completes the proof.

We observe that one can drop the boundedness assumption
and obtain Bayesian (ε, δ, k)-group strategy-proofness in-
stead:

Theorem 4.4 (approximate Bayesian strategy-proofness of
LM median). Let the location profile X be i.i.d. from a dis-
tribution with covariance Σ and (unknown) mean µ. Then
Algorithm 1 achieves Bayesian (O(r), e−Ω(k), O(k))-group
strategy-proofness.

The proof of the theorem is analogous of that of Theo-
rem 4.3.

4.2 Strategy-Proofness from Robust Estimation

We now generalize the analysis of Lugosi-Mendelson me-
dian to any robust estimator. Suppose we have an access to
a robust algorithm A whose output does not change by a
factor of g(k) (in ℓ2 norm), against k outliers. Then we can
immediately obtain a Bayesian (2g(k), k)-group strategy-
proof mechanism by feeding the location profile into A and
return its output.

For simplicity, we focus on robust mean estimators. We re-
mark that the result applies to general normed space beyond
Euclidean, though in the literature most robust mean esti-
mators attain ℓ2 error guarantees.

Theorem 4.5 (robust estimator to Bayesian strategy-proof
mechanism). Let X be a partition of I∪O, where (i) points
in O are arbitrary such that |O| ≤ k and (ii) the points in I
are drawn i.i.d. from a distribution D over M with unknown
mean µ. Suppose there is an algorithm A that given input
X , outputs µ̂ such that ∥µ̂ − µ∥ ≤ g(k). Then there is
a Bayesian (2g(k), k)-group strategy-proof single-facility
mechanism.

The proof is similar to that of Theorem 4.3 and can be found
in Appendix B.

Many estimation algorithm provided by the recent flurry of
work on robust statistics are randomized procedures. They
typically succeed with high probability. Hence, we also
consider (ε, δ, k)-group strategy-proofness (Definition 2.4).
The proof of the following theorem is analogous to that of
Theorem 4.5, and we omit the details.

Theorem 4.6 (robust estimator to Bayesian strategy-proof
mechanism, high probability). Let X be a partition of I∪O,
where (i) points in O are arbitrary such that |O| ≤ k
and (ii) the points in I are drawn i.i.d. from a distri-
bution D over M with unknown mean µ. Suppose there
is an algorithm A that given input X , outputs µ̂ such
that ∥µ̂ − µ∥ ≤ g(k) with probability at least 1 − δ.
Then there is a Bayesian (2g(k), δ, k)-group strategy-proof
single-facility mechanism.

Let α = k/n. We name a few computationally efficient
robust estimation schemes that achieve the conditions of
Theorem 4.6.

• Algorithms for robust estimation of multidimen-
sional Gaussian N (µ,Σ), with error g(k) =

O
(
α
√
log 1/α

)
(Lai et al., 2016; Diakonikolas et al.,

2019b, 2018b).

• Algorithms for robust estimation of bounded second
moment distributions, with error g(k) = O(

√
α) (Lai

et al., 2016; Diakonikolas et al., 2019b).

All the algorithms run in time polynomial in d, n, 1/α and
log(1/δ). For the two canonical settings above, near-linear
time algorithms also exist (Cheng et al., 2019; Dong et al.,
2019; Hopkins et al., 2020).

5 SOCIAL COST ANALYSIS FOR
LUGOSI-MENDELSON MEDIAN

In addition to incentive-compatibility, another key objective
in designing facility location mechanism is to achieve small
social cost. In this section, we continue to study the high
dimensional Bayesian setting. We further assume that the
input location profile is drawn from a centrally symmetric
distribution.

Definition 5.1 (central symmetry). For a distribution D
with mean µ and density p(·), we say that it is centrally
symmetric (or symmetric for short) if p(x− µ) = p(x− µ)
for any x in the support of D.

Recall that the geometric median obtains the optimal social
cost. We first observe that the geometric median converges
to the mean µ, under the symmetry condition.
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Lemma 5.1. Let X ∼ Dn. Then for any symmetric distri-
bution D over Rd with mean µ, the geometric median of X
converges to µ as n → ∞.

We delay the proof of the lemma to Appendix C.

Now we observe that the LM r-median, if it exists, con-
verges to the mean. It follows that the LM median obtains
asymptotically optimal social cost.

Theorem 5.2 (social cost analysis for LM median). Sup-
pose that the LM r median exists for the k bucket means.
For fixed k and any Σ such that TrΣ = o(n), the mech-
anism L M - M E D I A N (Algorithm 1) achieves asymptoti-
cally optimal social cost as n → ∞.

Proof. For fixed k and Σ such that TrΣ = o(n), we note
that r → 0 as n → ∞. Let µ̂ be the LM r-median, the
output of Algorithm 1. Then we have that ∥µ̂− µ∥ → 0 as
n → ∞. Applying Lemma 5.1 shows that µ̂ converges to
the geometric median of X .

Finally, we observe that our argument implies that the robust
mean estimator yields an approximate strategy-proof mech-
anism, as long as the distribution has its geometric median
converging to the mean. Symmetry is one condition that
ensures this, but is not necessary. The general question of
what distributions have this property is purely statistical in
nature and remains an interesting direction for future work.

6 MULTIPLE FACILITIES FOR A
SINGLE GAUSSIAN

We now turn to multi-facility mechanisms in Bayesian set-
ting, focusing on a single multi-dimensional Gaussian.

We first show that having 2 facilities offers negligible im-
provement on the expected social cost, when the location
profile are drawn from normal N (µ, Id). Therefore, it is an
nearly optimal choice to set up facilities at the mean.

Lemma 6.1. Let

C = min
w,z

E
X∼N (µ,Id)

min{∥X − w∥, ∥X − z∥}

be the minimum expected social cost for any 2-facility mech-
anism. Then we have

C ≥ (1− o(1))
√
d.

Proof. Let

(w, z) ∈ argmin
w,z

E
X∼N (µ,Id)

min{∥X − w∥, ∥X − z∥}

be the optimal 2-facility locations, in terms of the expected
social cost. Assume without loss of generality that wi =
zi = 0 for any i > 2. Furthermore, by rotation symmetry

of the standard Gaussian distribution, we can also assume
that w1 = −z1, w2 = z2 = 0. Now we can write

C = min
w1

E
Y∼χ2

d−1

E
X∼N (µ1,1)

min
{√

(X − w1)2 + Y ,
√
(X − z1)2 + Y

}
,

where χ2
d−1 denotes the Chi-squared distribution with d− 1

degrees of freedom. By standard concentration of Chi-
squared random variable (Laurent and Massart, 2000; Wain-
wright, 2019), we have for any t > 0

Pr
Y∼χ2

d−1

(
Y ≥ d− 1− 2

√
(d− 1)t

)
≥ 1− e−t.

By taking t = 100 log d, we conclude that C ≥ (1 −
o(1))

√
d.

On the other hand, we note that taking the mean as a single-
facility achieves a expected social cost of at most

√
d, since

EX∼N (0,Id) ∥X∥2 ≤
√
d. Given the robust estimation pro-

cedure for mean of a Gaussian, we have:

Theorem 6.2. Let d, n > 0, k ≤ n/10, and α =
k/n. There exists a Bayesian (O(α

√
log 1/α), δ, k)-group

strategy-proof 2-facility mechanism for standard Gaussian
location profile in Rd over n agents. Furthermore,

• the mechanism achieves 1+o(1) approximation of the
expecpted social cost;

• the mechanism runs in time polynomial in n, d, 1/α
and log(1/δ).

Proof. To ensure strategy-proofness and runtime, we appeal
to our general reduction Theorem 4.6 and any known esti-
mation procedure for mean of Gaussian (e.g., Diakonikolas
et al. (2018b)). Lemma 6.1 provides the social cost guaran-
tee when setting both facilities at the mean.

We also consider general m-facility mechanisms and give
analogous results. See Appendix D.

7 MULTIPLE FACILITIES FOR A
MIXTURE OF GAUSSIAN

We consider m-facility mechanisms for a mixture of m
spherical Gaussians in Rd. Our result is a natural one: set-
ting the m facilities at the mean of each component of
the mixture achieves nearly optimal expected social cost
(for constant m). This allows us to apply known robust
estimation procedures for Gaussian mixture and appeal to
the general reduction (Theorem 4.6) to obtain approximate
Bayesian group strategy-proof mechanisms.

For µ ∈ Rd×m and w, σ ∈ Rm, let N (m,w, σ, µ) =∑m
i=1 wiN (µi, σ

2
i Id) denote a mixture of m spherical
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Gaussians in Rd, where the ith component has weight wi,
mean µi and covariance σ2

i I .

Lemma 7.1. Let m be a positive integer, µ ∈ Rd×m and
w, σ ∈ Rm such that wi ≥ 0 and

∑
i wi = 1. Let Cm =

minα EX∼N (m,w,σ,µ) mini∈[m] ∥αi−X∥2, where the outer
min is over a set of m facility locations {αi}mi=1 ∈ Rd. Then
we have

Cm ≥ (1− o(1))
√
d−m

m∑
i=1

wiσi. (7.1)

Proof. By using definition of the Gaussian mixture and
pushing the outer minimum over the facilities inside, we
can rewrite

Cm = min
α

E
X∼N (m,w,σ,µ)

min
i∈[m]

∥αi −X∥2

= min
α

m∑
i=1

wi E
X∼N (µi,σ2

i )
min
i∈[m]

∥αi −X∥2

≥
m∑
i=1

wi min
α

E
X∼N (µi,σ2

i )
min
i∈[m]

∥αi −X∥2

≥ (1− o(1))
√
d−m

m∑
i=1

wiσi,

where in the last step we used Lemma D.1.

On the other hand, observe that setting m facilities at µi

gets a social cost of (1 + o(1))
√
d
∑m

i=1 wiσi. Lemma 7.1
shows that this is essentially optimal for small m. It remains
to achieve strategy-proofness.

For m = O(1), Bakshi et al. (2020) gives a polynomial-
time algorithm for robust estimation of Gaussian mixture,
under a constant fraction of outliers. Applying their result
(Theorem 1.6 of Bakshi et al. (2020)) and the general reduc-
tion Definition 2.4, we get:

Theorem 7.2 (multi-facility mechanism for Gaussian mix-
ture). Let d, n > 0, m = O(1), k < n/10, and α =
k/n. There exists a Bayesian (O(poly(1/α)), δ, k)-group
strategy-proof m-facility mechanism for a mixture of m
spherical Gaussian location profile in Rd over n agents.
Furthermore,

• the mechanism achieves 1+o(1) approximation of the
expected social cost; and

• the mechanism runs in time polynomial in n, d, 1/α
and log(1/δ).

8 CONCLUSION

Motivated by the classic results under worst-case assump-
tions, we initiate the study of strategy-proof facility mech-
anisms in Bayesian settings. Our work provides a wide

class of approximately strategy-proof mechanisms. The key
conceptual contribution is an explicit connection between
strategy-proof facilities and algorithmic high-dimensional
statistics. We show that robust estimators yield, in an almost
black-box fashion, approximately strategy-proof mecha-
nisms. We also provide social cost guarantees of mecha-
nisms arising from this connection.

We conclude by pointing out three future directions.

• First, recall that we assume that the agents’ true loca-
tions are identically distributed. We acknowledge that
this may be somewhat restrictive for certain applica-
tions. An exciting future direction is to relax this con-
dition and identify strategy-proof mechanisms when
each agent’s location is drawn from a distinct distribu-
tion.

• Second, our social cost analysis works under a natural
though not fully general assumption of symmetry. We
observe, however, that the proof holds if the distribu-
tion has its geometric median converging to the mean.
It is an interesting theoretical question to understand
what distributions have this property.

• Third, there has been a spate of work on connecting pri-
vate and robust statistics (Alabi et al., 2022; Hopkins
et al., 2022; Georgiev and Hopkins, 2022). At a high
level, bridging strategy-proof estimation with these ar-
eas would a conceptually intriguing direction.
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A Proof of Theorem 3.1

We start by recalling a classic result that fully characterizes the strategy-proof facility in this setting.
Lemma A.1 (Peters et al. (1992)). In the Euclidean metric space R2 with odd number of agents, a mechanism is Pareto-
optimal, anonymous, and strategy-proof if, and only if, it is a coordinate-wise median.

Figure 1: A proof by picture for Theorem 3.1. The red points are the coordinate-wise medians of the three vertices, and the
central blue point is the incenter.

The following lemma characterizes the unique Lugosi-Mendelson median in case of three points on a plane.
Lemma A.2. The unique Lugosi-Mendelson median of any three points forming a triangle is the incenter of the triangle.

Proof. Recall that the incenter is the center point of the inscribed circle of the triangle. Now let r ≥ 0 be the minimum
value such that

⋂
v:∥v∥2=1 slabr(v;X) is non-empty, where X is the three vertex points of the triangle.

Suppose y is a unique LM median. We first consider the three one-dimensional projects along the direction of the three
sides of the triangle. The median along each projection is simply one of the vertex points, and the slab centers around the
corresponding side. Observe that the minimum value of r for the three slabs to meet is the radius of the inscribed circle of
the triangle.

Further, we claim that this choice of r suffices for the slabs of all other projection directions to contain the incenter. Indeed,
for each direction, we can associate it with a ray with the initial point being one vertex point. Observe that the (orthogonal)
distance of the ray to the incenter is at most that of one of the sides to the incenter. Moreover, the slab is precisely centered
around the ray, and this ensures that the slab contains the incenter.

We show that the unique Lugosi-Mendelson median is not strategy-proof for two-dimensional Euclidean preferences. A
simple proof by picture is given in Figure 1.
Theorem A.3 (Restatement of Theorem 3.1). The unique Lugosi-Mendelson median is not a strategy-proof mechanism for
Euclidean preferences in R2.

Proof. First, by its definition, the unique LM median is anonymous. Moreover, it is Pareto optimal, since it lies within the
convex hull of the input points. Let X ∈ (R2)3 be three points forming an equilateral triangle. By Lemma A.1, it suffices
to show that it is not any coordinate-wise median of the three vertices of X , under any coordinate system of R2. Now for
simplicity, let’s take X = {(0, 0), (1, 0), (1/2,

√
3/2)}. For any angle θ ∈ [0, π), let

R(θ) =

[
cos θ − sin θ
sin θ cos θ

]
be the standard rotation matrix. Then any coordinate-wise median of X can be written as

R(θ)⊤ ·
(

med(0, cos θ, 1/2 cos θ +
√
3 sin θ/2),med(0,− sin θ,− sin θ/2 +

√
3 cos θ/2)

)⊤
(A.1)

by rotation of axes. On the other hand, the incenter of the triangle formed by X is (1/2, 1/2
√
3). It is a straightforward

calculation to verify that this point is not a solution to (A.1). Hence, the unique LM median is not a coordinate-wise median
mechanism. By Lemma A.1 and Lemma A.2, it is not strategy-proof.
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B Proof of Theorem 4.5

Proof of Theorem 4.5. Let Θ ⊆ Rd denote the support of D and K ⊆ N be a subset of k agents. Let X,X ′ ∈ Mn be two
location profiles such that x−K = x′

−K are drawn from Dn−k and xK , x′
K ∈ Θk are both arbitrary. Then by construction,

X,X ′ can be partitioned into the outlier set O = K and inlier set I = N \K. Let µ̂, µ̂′ be the output of A(X, k), A(X ′, k),
respectively.

Now applying the guarantee of algorithm A and triangle inequality, we have that ∥µ̂ − µ̂′∥ ≤ 2g(k). Therefore, for all
i ∈ K

c(A(X, k), xi) ≤ c(A(X ′, k), xi) + 2g(k). (B.1)

This finishes the proof.

C Proof of Lemma 5.1

Proof of Lemma 5.1. Given a set of n points in Rd, the geometric median y minimizes the objective of

F (y) =
n∑

i=1

∥y − xi∥2. (C.1)

First, observe by direct calculation that the gradient of f(x) = ∥x∥2 is simply ∇f(x) = x/∥x∥2. Applying chain rule, we
get that

∇F (y) =

n∑
i=1

y − xi

∥y − xi∥2
. (C.2)

Intuitively, this means that each data point exerts a unit force pulling the geometric median towards it. A point is the
geometric median if all the unit forces cancel out; that is, ∇F (y) = 0 so that the point is stable with respect to the pulls.
Now suppose that xi’s are drawn i.i.d. from D with density p(x). Then setting the gradient (C.2) to 0, we get that in
population

E
X∼D

[∇F (y)] = E
y −X

∥y −X∥2
=

∫
Rd

y −X

∥y −X∥2
p(x) dx = 0.

Setting y = µ solves the equation by definition of symmetry. It follows that as n → ∞, the empirical gradient (C.2) tends
0. This completes the proof.

D General Multi-Facilities Mechanisms for a Single Gaussian

We now consider m-facility mechanism for any spherical Gaussian in d dimensions. For standard Gaussian, our result
implies again that having m facilities offers no significant social cost improvement, unless m grows with the dimension.

Lemma D.1. Let Cm = minEX∼N (µ,σ2I) mini∈[m] ∥wi −X∥2, where the outer min is over a set of m facility locations
{wi}mi=1 ∈ Rd. Then we have Cm ≥ (1− o(1))σ

√
d−m.

Proof. By considering the subspace spanned by the m facilities and using the rotation symmetry of spherical Gaussian, we
have

Cm ≥ min E
Y∼σ2χ2

d−m

E
X∼N(µ[m],Ik)

min
i∈[m]

√√√√ m∑
i=1

(wi −Xi)2 + Y ,

where we assume without loss of generality that the coordinates of wi are 0, except at the first k indices, and µ[m] denotes
µ projected to the subspace spanned by the k facilities. By concentration of Chi-squared random variable (Laurent and
Massart, 2000; Wainwright, 2019), we have for any t > 0

Pr
Y∼σ2χ2

d−m

(
Y

σ2
≥ d−m− 2

√
(d−m)t

)
≥ 1− e−t.

By taking t = 100 log d, we conclude that Ck ≥ (1− o(1))σ
√
d−m.
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The lemma shows that it is nearly optimal to simply set up all facilities at the mean. The proof of the following theorem is
analogous to that of Theorem 6.2, so we omit it.

Theorem D.2 (multi-facility mechanism for Gaussian). Let d, n > 0, k ≤ n/10, and α = k/n. There exists a Bayesian
(O(α

√
log 1/α), δ, k)-group strategy-proof m-facility mechanism for a spherical Gaussian location profile in Rd over n

agents. Furthermore,

• the mechanism achieves 1 + o(1) approximation of the expected social cost for any constant m; and

• the mechanism runs in time polynomial in n, d, 1/α and log(1/δ).
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