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Abstract

Adversarial example, which is usually generated
by adding imperceptible adversarial noise to a
clean sample, is ubiquitous for neural networks.
In this paper we unveil a surprising property of
adversarial noises when they are put together, i.e.,
adversarial noises crafted by one-step gradient
methods are linearly separable if equipped with
the corresponding labels. We theoretically prove
this property for a two-layer network with ran-
domly initialized entries and the neural tangent
kernel setup where the parameters are not far from
initialization. The proof idea is to show the la-
bel information can be efficiently backpropagated
to the input while keeping the linear separabil-
ity. Our theory and experimental evidence further
show that the linear classifier trained with the
adversarial noises of the training data can well
classify the adversarial noises of the test data,
indicating that adversarial noises actually inject
a distributional perturbation to the original data
distribution. Furthermore, we empirically demon-
strate that the adversarial noises may become less
linearly separable when the above conditions are
compromised while they are still much easier to
classify than original features.

1 INTRODUCTION

Modern deep learning models have achieved great accuracy
on vast intelligence tasks. However at the same time, they
have been demonstrated vulnerable to adversarial examples,
i.e., imperceptible perturbations can significantly change
the output of a neural network at test time. This hinders the
applicability of deep learning model on safety-critical tasks
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Figure 1: Comparison between the T-SNEs of clean CIFAR-
10 images and those of adversarial noises. Points with the
same color are from the same class. Adversarial noises from
the same class are well clustered. Adversarial noises are
generated with a random initialized ResNet-18 model.

(Biggio et al., 2013; Szegedy et al., 2014).

Adversarial example is usually generated via finding a per-
turbed sample that maximizes the loss (untargeted attack
Carlini et al. (2019)), i.e.,

argmax
x′∈B(x,ϵ)

ℓ(x′, y; θ). (1)

Usually the above objective is solved by projected gradient
descent (PGD) methods Goodfellow et al. (2014) for every
sample pair (x, y). Therefore, the adversarial noise x′ −
x is sample (x, y) specific and model (θ) specific. Most
existing theoretical and empirical studies are mainly about
this setting except the universal attacks (Moosavi-Dezfooli
et al., 2017; Akhtar et al., 2018; Zhang et al., 2021).

In this paper, we study the adversarial noises from a popula-
tion’s perspective and ask

“What property do the adversarial noises exhibit when they
are put together?”

Due to the complicated procedure of generating adversarial
noises, one might think they must be scattered quite casu-
ally and disorderly. However, surprisingly, we observe that
adversarial noises are well clustered with regards to the la-
bels of the original samples. This is illustrated in Figure 1
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where the adversarial noises of samples from three classes
are projected into two-dimensional space via t-distributed
Stochastic Neighbor Embedding (t-SNE) (Hinton & Roweis,
2002).

More specifically, in this paper we argue that under some
assumption adversarial noises are almost linearly sepa-
rable if they are equipped with the labels of the corre-
sponding original samples, i.e., a new constructed dataset
{(adversarial noise i, label i)}i∈[n] is linearly separable (as
shown in Figure 2). This new property is important for us
to better understand the behavior of adversarial noises.

We first study why such phenomenon happens. Specifi-
cally, we consider the adversarial noises generated by the
single-step Projected Gradient Descent (PGD) algorithm
(Goodfellow et al., 2014), i.e.1,

xadv = x+ η∇xℓ(x, y; θ) (2)

with a suitable step size η. We theoretically prove that
for a randomly-initialized two-layer neural network, the
adversarial noises are linearly separable. We further prove
that the linear separability also holds for the neural tangent
kernel (NTK) regime where the weights are trained to fit the
data while staying in a neighborhood of the initialization.
The proof idea is to show the label information or the error
of last layer, which are separable initially, can be efficiently
back-propagated to the input and then a linear classifier is
conceived to classify these adversarial noises perfectly. We
deal with the correlation between forward and backward
process via the Gaussian conditioning technique (Bayati
& Montanari, 2011; Yang, 2020; Montanari & Wu, 2022).
Throughout the proofs, we spend much effort to obtain high
probability bounds. Such high probability bounds are not
only stronger than expectation bounds but also critical to
make the linear separability claim valid for all adversarial
noises of the whole dataset. This is in contrast with previous
studies (Bubeck et al., 2019; Montanari & Wu, 2022) that
are to understand example-specific property of adversarial
noises, e.g. why an adversarial noise is imperceptible but
able to attack successfully.

The theory indicates that the linear separability of adversar-
ial noises actually are generalizable to the test set, which is
also verified in Figure 2. That is, a linear classifier trained
on the adversarial noises of the training data points can
well classify the adversarial noises of the test data points as
long as they follow the same procedure of generation. This
means the generation of adversarial noises actually inject a
distributional perturbation to the original data distribution.

We also empirically explore the property of adversarial
noises beyond the theoretical regime, especially for the case
where the neural network is trained with a large learning rate,
the case of other adversarial noise generation algorithms,

1Here we consider the corresponding constraint in Equation 1
is l2 ball and then the projection can be absorbed in the step size.

Figure 2: Training and test accuracy of linear models on
adversarial noises, which are generated with ResNet-18 on
CIFAR-10 over a standard training process of SGD with
lr = 0.001.

and the case of adversarially trained models. Although the
adversarial noises are not perfectly linearly separable in
these wild scenarios, a consistent message is that they are
much easier to fit than original features, i.e., a linear classi-
fier on adversarial noises can achieve much higher accuracy
than the best linear classifier on the original dataset.

Overall, our contribution can be summarized as follows.

• We unveil and theoretically prove a surprising phe-
nomenon that adversarial noises are almost linearly
separable for (nearly) random two-layer networks.

• We show that the linear separability of adversarial
noises may be compromised when going beyond the
theoretical regime, but they are still much easier to
classify than original features.

1.1 Related work

There are some explanations why adversarial examples ex-
ist, e.g., the deep network classifiers being too linear locally
because of ReLU like activations (Goodfellow et al., 2014),
the boundary tilting hypothesis that the classification bound-
ary is close to the submanifold of the training data (Tanay
& Griffin, 2016), the isoperimery argument (Fawzi et al.,
2018; Shafahi et al., 2019) and the dimpled manifold model
(Shamir et al., 2021). There are also theoretical researches
on the difficulty of adversarial learning difficulty, e.g., ro-
bust classifier requiring much more training data (Schmidt
et al., 2018) and the computational intractability of building
robust classifiers (Bubeck et al., 2019).

Specifically, (Ilyas et al., 2019) did an informative experi-
ment showing that adversarial noises can create predictive
signals. Beyond (Ilyas et al., 2019), our work first gives
rigorous proof why this happens in theory, and then argues
the prediction ability is so strong that the adversarial noises
are as simple as being linear separable.

One related concept is the label leakage (Kurakin et al.,
2017) that adversarial examples are crafted by using true
label information in the single-step gradient methods and
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hence may be easier to classify. Our results greatly ex-
tend/verify this concept by showing the adversarial noises
are linearly separable.

Recent works explain why single-step PGD is able to attack
deep models theoretically (Montanari & Wu, 2022; Bartlett
et al., 2021; Bubeck et al., 2021; Daniely & Schacham,
2020). They show that for random neural networks, the
output is roughly linear around the input sample. Then the
high-dimensional statistics tell that a random weight vector
has small inner product with a given input while at the same
time a small perturbation can sufficiently change the output.
Instead of the example-wise point of view, we unveil the
population property of adversarial noises.

Our finding is also related with the concept shortcut learning
(Beery et al., 2018; Niven & Kao, 2019; Geirhos et al., 2020)
that deep models may rely on shortcuts to make predictions.
Shortcuts are spurious features that are correlated with the
label but not in a causal way. In this work, we show the
linear separability makes adversarial noises perfect shortcut,
which may hinder the classifier learns true features in the
adversarial training. Our study is inspired by the finding that
the data poisoning for availability attack is adding simple
features (Yu et al., 2021) to the training data. We focus on
the adversarial noises and analyze their linear-separability
theoretically.

2 PROBLEM SETUP AND NOTATIONS

We study the distribution of adversarial noises of neural
networks. Although the study is not constrained to spe-
cific networks, we analyze a simplified model to ease the
technical exposure.

Specifically, we consider a two-layer neural network with
input dimension d and width m:

f(x;a,W ) = a⊤σ(Wx), (3)

where σ is the ReLU activation function which is applied
coordinate-wisely, input x ∈ Rd, W ∈ Rm×d, and readout
layer a ∈ Rm. The network parameters are initialized as
follows. Each entry of W is independently generated from
N (0, 1/d), and each entry of a is independently generated
from N (0, 1/m). Moreover, W and a are independent
from each other. We use a new notation θ to represent
the whole trainable parameters in the network, i.e., here
θ = {W ,a}.

We consider binary classification task with a dataset
{(xi, yi)}i∈[n], where xi ∈ Rd and yi ∈ {−1,+1} for
i = 1, ..., n. We use a negative log sigmoid loss, i.e.,

ℓ(x) = − log s(yf(x)), (4)

where s(z) = 1
1+e−z is the sigmoid function.

We consider the one-step gradient method to generate the
adversarial noise, i.e.,

rx =
∂ℓ(x)

∂x
= −(1− s(yf(x)))y∇xf(x), (5)

where ∇xf(x) is the gradient with respect to the input and
we may omit the subscript when it is clear from the context.
For the two-layer neural network (Equation 3), this gradient
is given by

∇f(x) = W⊤Dxa, (6)

where Dx ∈ Rm×m is a diagonal matrix and the diagonal
entries are given by σ′(Wx). The adversarial example is
given by

xadv = x+ ηrx, (7)

where η is step size has magnitude O(1). Here we assume
the ball constraint in Equation 1 is measured in l2 distance
and hence the projection can be removed. It is interesting
and important to extend the analysis to other distances which
are empirically verified in Section 4

We next state the mathematical definition of linear separa-
bility for a binary-label dataset.

Definition 1 (Linearly separable). We say a set {xi, yi}i∈[n]

with yi ∈ {+1,−1} linearly separable if ∃v such that
∀i : ⟨v, yixi⟩ > 0.

Notations. In the sequel, we use ∥x∥ to denote the ℓ2 norm
of a vector x, We use ∥M∥2 and ∥M∥F to denote the
spectral norm and the Frobenius norm of a matrix M , re-
spectively. The learning process is to minimize the average
loss L(θ) =

∑n
i=1 ℓ(θ;xi, yi)/n. We assume ∥xi∥ =

√
d

for all i ∈ [n].

Besides, we also define the following notations to describe
the bounds we derived. We write f(·) = O(g(·)), f(·) =
Ω(g(·)) to denote f(·)/g(·) is upper or lower bounded by
a positive constant. We use f(·) = Θ(g(·)) to denote that
f(·) = Ω(g(·)) and f(·) = O(g(·)).

3 PROVABLE LINEAR SEPARABILITY
OF ADVERSARIAL NOISES

In this section, we show that the adversarial noises ex-
hibit surprising linearly-separable phenomenon when put
together. We first analyze why such phenomenon exists for
randomly initialized network. Then we extend the analysis
to the NTK setting.

3.1 Linear Separability at Initialization

We claim that for a two-layer network at its initialization,
the adversarial noises are linearly separable if equipped with
corresponding labels, i.e., {rxi

, yi}ni=1 is linearly separable.
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Theorem 3.1. For the two-layer network given by Equa-
tion 3 and the adversarial noises {rxi}ni=1 generated by
Equation 5, there exists v such that ∀i ∈ [n], ⟨v, yirxi

⟩ > 0
with high probability. Specifically v = −W⊤a serves this
purpose with probability at least 1− 3Cn(e−c1d + e−c2m)
where C, c1, c2 are some constants.

The adversarial noise in Equation 5 is rxi
= −(1 −

s(yf(x)))yi∇f(xi), where 1 − s(yf(x)) > 0 because
of the sigmoid function. Hence it is sufficient to show that
⟨−v,∇f(xi)⟩ > 0 holds for all i. Next we give a proof
outline and the full derivation is deferred to Appendix 6.

Proof Outline. To give an intuitive idea why the claim is
probably true, for a generic input x and v = −W⊤a, we
calculate the expectation and the variance of ⟨−v,∇f(x)⟩
for a simplified case: Dx is random and independent from
all others {W ,a,x}. We are safe to ignore the subscript in
Dx for this case.

Because of the property of ReLU activation, we further
assume that the diagonal entries of D are independently and
randomly sampled from {0, 1} with equal probability, i.e.,
for all k ∈ [m]

D(k, k) =

{
0, with probability 0.5,

1, with probability 0.5.

Then we can compute E⟨−v,∇f(x)⟩ and
Var⟨−v,∇f(x)⟩ as follows,

E⟨−v,∇f(x)⟩
= E[a⊤WW⊤Da]

= E
[
Tr(aa⊤WW⊤D)

]
= Tr

(
E[aa⊤]E[WW⊤]E[D]

)
= Tr

(
1

m
Im×m · Im×m ·

1

2
Im×m

)
=

1

2
, (8)

and

Var⟨−v,∇f(x)⟩

= E
[(
a⊤WW⊤Da

)2]− (E[a⊤WW⊤Da]
)2

=

(
1

4
+

5

4m
+

1

d
+

2

md

)
− 1

4

=
5

4m
+

1

d
+

2

md
(9)

We note that the computation of E
(
a⊤WW⊤Da

)2
is

quite complicated and heavily relies on the property of
a,W being Gaussian and the independence between a,W
and D. By Chebyshev inequality, we can show that
⟨−v,∇f(x)⟩ > 1

2 − δ with probability at least 1 − 2
δ2d

assuming that m > 1.2d + 2. Taking the union bound,
we can prove the claim holds with probability 1 − n 2

δ2d .
Thus, it requires d ≫ n to claim that the theorem holds
with high probability. To obtain a tighter bound, it requires
more elaborate concentration inequality, which is deferred
to Appendix 6.

Next we consider the case where Dx is exactly σ′(Wx).

This makes the analysis a bit harder as the W ,W⊤ and
Dx are correlated. We prove the claim via the technique of
probability concentration and Gaussian conditioning (Yang,
2020; Montanari & Wu, 2022), where we use a lemma as
follows.

Lemma 3.2 (Lemma 3.1 in (Montanari & Wu, 2022)).
Let X ∈ Rm×d which has i.i.d. standard Gaussian
entries, and A1 ∈ Rk1×m,A2 ∈ Rd×k2 . Let Y =
h1(A1X,XA2,Z1) with Z1 independent of X , A2 =
h2(A1X,Z2) with Z2 independent of X . We assume
that (A1,Z1,Z2) is independent of X . Then there exists
X̃ ∈ Rm×d which has the same distribution with X and is
independent of Y , such that

X =Π⊥
A1

X̃Π⊥
A2

+Π⊥
A1

XΠA2

+ΠA1XΠ⊥
A2

+ΠA1XΠA2 ,

where ΠA1 ∈ Rm×m is the projection operator projecting
onto the subspace spanned by the rows of A1, ΠA2 ∈ Rd×d
is the projection operator projecting onto the subspace
spanned by the columns of A2, and Π⊥

A1
:= Im − ΠA1

,
Π⊥

A2
:= Id −ΠA2

.

The proof of Lemma 3.2 is in Appendix A.1 of Montanari
& Wu (2022). By using Lemma 3.2, where plugging in
X ← W , A1 ← 0,A2 ← x, Y ← Dx = σ′(Wx) and
Πx = 1

dxx
⊤, we have

W = W̃Π⊥
x +WΠx, (10)

where W̃ has the same marginal distribution as W and is
independent of Dx. Consequently we have

a⊤WW⊤Dxa

=
1

d
a⊤Wxx⊤W⊤Dxa+ a⊤W̃Π⊥

x W̃
⊤Dxa

=
1

d
a⊤Wxx⊤W⊤Dxa+ a⊤W̄W̄⊤Dxa, (11)

where W̄ ∈ Rm×(d−1) has Gaussian entries with mean 0
and variance 1

d , independent of Dx,a.

For the first term in Equation 11, let h = Wx, then
with high probability ∥h∥ ≈

√
m and ∥Dxh∥ ≈

√
m/2.

Given h, we have a⊤h ∼ N (0, ∥h∥2 /m) and h⊤Dxa ∼
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N (0, ∥Dxh∥2 /m). Then we have

1

d

∣∣a⊤Wxx⊤W⊤Dxa
∣∣

=
1

d

∣∣a⊤hh⊤Dxa
∣∣

=
1

d

∣∣a⊤h| · |h⊤Dxa
∣∣ . (12)

We can bound the right hand side of Equation 12 with high
probability by using the following two lemmas.

Lemma 3.3. Suppose ∥x∥ =
√
d and W is a Gaussian

matrix with entry variance 1/d. Let h = Wx, then we
have

P{∥h∥2 < 2m} > 1− em/7. (13)

The proof of this lemma is based on the tail bound of χ2

distribution.

Lemma 3.4. Suppose ∥x∥ =
√
d, W is a Gaussian matrix

with entry variance 1/d and a is a Gaussian vector with
entry variance 1/m. Let h = Wx and Dx = σ′(Wx).
Then with probability at least 1 − e−m/7 − 4e−c2d/4, we
have

|a⊤h| <
√
c2d, |a⊤Dxh| <

√
c2d, (14)

where c2 is some constant.

Thus if choosing c2 < 1/64, we prove that the Equation 12
smaller than 1/64 with probability at least 1− n(e−m/7 +
e−d/256).

For the second term in Equation 11, we can use the result
for the case where Dx is indepdent of Wx,a and have a
lower bound for it. Combining these two parts together, we
prove the Theorem 3.1 with high probability.

We have shown that the linear separability of adversarial
noises for network at its random initialization. Then one
question is whether the adversarial examples are linearly
separable, i.e., if there exists one v′ such that ⟨v′, yix

adv
i ⟩ >

0 for all i ∈ [n]. This is true if the input dimension and the
network width are much larger than the number of input
samples. In this case we can find a linear classifier that lives
in a subspace perpendicular to the linear space spanned by
{xi}ni=1.

Corollary 3.4.1. For the two-layer network defined in Equa-
tion 3 and the adversarial samples given by xadvi = xi+ηri,
if d > poly(n) there exists v′ = −Π⊥

XW⊤a such that
∀i : ⟨v′,xadvi ⟩ > 0 with high probability.

Proof. The idea is that we can make the classifier staying
in the orthogonal subspace of XX⊤ while can still linearly
separates the adversarial samples.

We note that ⟨v′,xadv⟩ = ⟨v′,x⟩ + ⟨v′,−η(1 −
p)∇f(x)⟩ = ⟨v′,−η(1 − p)∇f(x)⟩. We next prove with
high probability

a⊤WΠ⊥
XW⊤Dxa > 0. (15)

The above is indeed true because we can use Gaussian con-
ditioning, i.e.,

a⊤WΠ⊥
XW⊤Dxa = a⊤W̄W̄⊤Dxa, (16)

where W̄ ∈ Rm×(d−n) with i.i.d. Gaussian entries with
mean 0 and variance 1/d. Then following the argument in
the proof of Theorem 3.1, we complete the proof.

Remark 1. If d is not larger than n, then there may not
exist a valid v′ in Corollary 3.4.1.

In this setting, there is not enough randomness in W to
exploit. One possible choice is to increase the energy of the
adversarial signal (by increasing the step size of Equation 7)
to overcome the effect of the original input x. By choosing
η = d1/4, the adversarial noise is still small compared

with the original signal, i.e., ∥x
adv−x∥
∥x∥ = O(d−1/4) but

the effect of the adversarial noise overweighs that of the
original signal, i.e., |⟨−W⊤a,xadv−x⟩|

|⟨−W⊤a,x⟩| = O(d1/4). Thus
the adversarial examples may still be linearly separable in
this case.

3.2 Linear Separability in NTK Regime

We have established the linear separability of adversarial
noises for two-layer networks at initialization. In this sec-
tion, we study the behavior of the adversarial noises when
the network is slightly trained, i.e., the weights are not far
from initialization. By the convergence theory of training
neural network in Neural Tangent Kernel (NTK) regime, the
network parameter can fit the training data perfectly even
in a small neighborhood around initialization as long as the
width of the network is large enough (Jacot et al., 2018;
Allen-Zhu et al., 2018; Du et al., 2019; Chizat & Bach,
2018; Zou et al., 2018; Zhang et al., 2019). A typical result
reads as follows, which we adapt to our notations.
Lemma 3.5 (Theorem 1 in (Allen-Zhu et al., 2018)). Sup-
pose a two-layer neural network defined by Equation 3 and
a distinguishable dataset with n data points. If the network
width m ≥ Ω(poly(n) · d), starting from random initializa-
tion θ, with probability at least 1− eΩ(log2m), then gradi-
ent descent with learning rate Θ

(
d

poly(n)

)
finds {W ∗,a∗}

such that L(W ∗,a∗) ≤ ϵ and ∥W ∗ −W ∥2 ≤
1√
m

and
∥a∗ − a∥ ≤ 1√

m
.

Based on this result of NTK convergence, we can see that
when the loss is minimized, the learned parameters are
still very close to the initialization especially as the width
becomes large. Thus, it is possible for us to show that the
adversarial noises at the NTK solution are linear separable.
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Theorem 3.6. For the two-layer network defined in Equa-
tion 3, the NTK solution {W ∗,a∗} satisfying Lemma 3.5,
and the adversarial noises {ri}ni=1 given by Equation 5,
there exists v such that ∀i : ⟨v, yiri⟩ > 0. Specifically
v = −W⊤a serves this purpose with high probability at
least 1− Cne−Ω(m/ log2m)−cd for some constants C, c.

Proof Outline. The proof relies on that the NTK solution is
very close to the initialization. We ignore the 1− s(yf(x))
term and only calculate

⟨W⊤a,∇xf(x;W ∗,a∗)⟩
= a⊤WW ∗⊤D∗

xa
∗

= a⊤WW⊤Dxa+ a⊤W (∆W )⊤Dxa

+ a⊤WW⊤(∆Dx)a+ a⊤WW⊤Dx(∆a)

+ a⊤W (∆W⊤∆Dxa+∆W⊤Dx∆a

+W⊤∆Dx∆a+∆W⊤∆Dx∆a) (17)

where ∆W = W ∗ −W ,∆a = a∗ − a and ∆Dx =
D∗
x −Dx.

For the first term of Equation 17, by Theorem 3.1 we have
with high probability

a⊤WW⊤Dxa > 1/32. (18)

For the second term of Equation 17, we note that with
high probability ∥Dxa∥ ∈ ( 12 − δ, 1

2 + δ) and
∥∥a⊤W

∥∥ ∈
(1− δ, 1 + δ), and hence

|a⊤W (∆W )⊤Dxa| ≤ O(
1√
m
). (19)

We next bound the third term of Equation 17. From the
convergence proof in the NTK regime, we have ∥∆Dx∥0 <
m

log2m
with probability at least 1 -e−Ω(m/ log2m) (Allen-

Zhu et al., 2018, Lemma 8.2). Hence with high probability
∥(∆Dx)a∥ ≤ 1

logm . We need the following lemma to get
an overall high probability bound.

Lemma 3.7 (Lemma 7.3 in (Allen-Zhu et al., 2018)). For
all sparse vectors u with ∥u∥0 ≤ O( m

log2m
), we have with

probability at least 1− e−Ω(m),

|a⊤WW⊤u| ≤ 2 ∥u∥ . (20)

Thus, we have

|a⊤WW⊤(∆Dxa)| ≤
1

logm
. (21)

We next bound the fourth term of Equation 17

|a⊤WW⊤Dx(∆a)|
≤
∥∥a⊤W

∥∥ · ∥∥W⊤∥∥
2
· ∥Dx(∆a)∥

≤ 2 ·
√

m

d
· 1√

m

= O(
1√
d
). (22)

For the higher order terms in Equation 17, we can similarly
bound them one by one.

Hence by combining bounds in (18), (19), (21) and (22)
together and taking the union bound, we complete the proof.

Beyond the NTK setting, we discuss the possible exten-
sions here. First it is possible to extend the current results
to the multi-layer neural network setting, as it has been
demonstrated that a multi-layer neural network near its ini-
tialization also behaves like linear function with respect
to the input (Allen-Zhu et al., 2018; Bubeck et al., 2021;
Montanari & Wu, 2022). Second, it is desirable if one can
extend the result to the PGD with respect to the l∞ con-
straint. The extension towards this direction is not easy
based on current technique. One main difficulty is that the
sign operation in PGD would break the Gaussian property
of the adversarial noises. One can hardly exploit the Gaus-
sian conditioning to give a proof. Nonetheless, We will do
empirical experiments and verify the distributional property
of the adversarial noises for all these settings.

4 VERIFY LINEAR SEPARABILITY OF
ADVERSARIAL NOISES IN PRACTICE

In this section, we empirically verify the linear separability
of adversarial noises. Specifically, we will first verify our
theories’ prediction that the adversarial noises are indeed
linearly separable for neural network at/near its random
initialization. Then we go beyond the theoretical regime and
explore the case where the networks are sufficiently trained
and the case where the adversarial noises are generated with
multiple-step PGD. We next describe the general setup of
our experiments.

4.1 General Setup of Experiments

The target model architecture is the ResNet-18 model (He
et al., 2016b) or a two-layer convolutional neural net-
work. We train the target models on the CIFAR-10 dataset
(Krizhevsky & Hinton, 2009) with standard random crop-
ping and flipping as data augmentation. All models are
trained for 100 epochs with a batchsize of 128.

To test the linear separability of adversarial noises, we train
linear models that use the generated adversarial noises as
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input and the labels of corresponding original examples
as their labels. All perturbations are flattened into one-
dimensional vectors. The higher the training accuracy of
linear model, the better the linear separability. All linear
models are trained for 50 steps with the L-BFGS optimizer
(Liu & Nocedal, 1989). All the experiments are run with
one single Tesla V100 GPU.

4.2 Adversarial Noises Within Theoretical Regime

We first verify our theoretical findings. For the initialization
setup, we use random Gaussian (Kaiming initialization (He
et al., 2016a)) to initialize the neural network and test the
linear separability of its adversarial noises.

We do not directly work with the neural tangent kernel. In-
stead we use a small constant learning rate to mimic the
case that the model is close to initialization across train-
ing. We take a snapshot of the model every 10 epochs of
training. We generate the adversarial noises with respect
to each snapshot and then train a linear classifier on them
accordingly.

All adversarial noises are generated with single-step PGD.
In addition to the training accuracy of linear models, we
also report how well these linear models “generalize” to
the adversarial noises on test data points, the so-called test
accuracy of the linear models on adversarial noises.

Verification with two-layer networks. We conduct ex-
periments to exactly show how two-layer networks behave
with varying widths. Specifically, we use two-layer ReLU
convolutional networks with width 4, 16, 64, 128, 256 to
classify the CIFAR-10 dataset. We train all networks with
learning rate 0.01 for 50 epochs. From Figure 3 we can
see that although the two-layer CNN can only give 80%
accuracy on the original data set, the adversarial noises are
very easy to classify. The linear separability of adversar-
ial noises is almost perfect for all widths across the whole
training procedure. Therefore, our theory predicts empirical
observations well and in practice the width requirement can
be very weak to observe such phenomenon.

Verification with ResNet18 models. We plot the result
of ResNet18 with CIFAR-10 classification in Figure 2. As
the model is trained, the ResNet’s accuracy on the original
training data increases to 100% steadily. We see that a
linear model cannot fit the original training data well but
a linear model can fit the adversarial noises perfectly from
the initialization to the end of the training. This finding
confirms that our theoretical findings do hold in practical
networks.

We also observe that the ability of the linear classifier gen-
eralizes to the “test data”, i.e., the linear model trained on
adversarial noises of the training data performs well on the
adversarial noises of the test data. This finding implies that

Figure 3: Training and test accuracy of linear models on
adversarial noises. The noises are generated by using a
two-layer ReLU convolutional neural networks with varying
widths {4, 16, 64, 128, 256}. The networks are trained with
lr=0.01 on CIFAR-10 task.

Figure 4: Training and test accuracy of linear models on
targeted adversarial noises. The noises are generated by
single-step PGD for targeted attack. The network is trained
with lr=0.001 on CIFAR-10 task.

although the adversarial noises are designed with respect to
specific samples, they actually introduce a new distribution
on (x; y) to perturb the original data distribution. This new
perspective may inspire new ways to defend against the
adversarial noises.

Besides the above untargeted attacks, we also verify the
linear separability of adversarial noises of the targeted at-
tacks for comprehensiveness. Specifically, the adversarial
noises are generated to make the network output a target
label. We use (original label + 1)%10 as the target label
and use (adversarial noise, target label) as the inputs for the
linear models. From Figure 4, we have similar observation
as the the case of untargeted attacks.

4.3 Adversarial Noises Beyond Theoretical Regime

In this section, we go beyond the theoretical regime and see
how the adversarial noises behave in the wild.

If using large learning rate, though not perfectly linearly
separable, adversarial noises are still easy features. We
first test the linear separability of adversarial noises for
network that is sufficiently trained with a large learning rate.
Specifically for the same ResNet-18 and CIFAR-10, we use
learning rate lr = 0.1 instead of 0.001 in previous subsection
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so that the model is no longer close to initialization after
training. Similarly, we take a snapshot of the model every 10
epochs of training. We generate the adversarial noises with
respect to each snapshot and then train a linear classifier
on them accordingly. We plot the result in Figure 5. We
can see that indeed, for this setting, the model is trained
with a large learning rate, which goes beyond the regime
of theoretical characterization, and gets further and further
from the initialization with iterations. The linear separability
becomes compromised as the training proceeds.

Apart from the reason that the weights move far away from
initialization, we identify that the errors at the last layer
become less separable as the training loss becomes small. At
initialization, all the output activation is random and the only
signal in the last layer gradient is the label. After training,
we gradually learn label’s information which makes the
signal in the last layer gradient is not that informative and
separable. We can alleviate this effect by tuning the softmax
temperature of generating adversarial noises as shown in
Figure 5. We note that the temperatures of softmax are only
used for generating adversarial noises while not affecting the
training of ResNet models. The larger T , the more uniform
the softmax output.

Even though the adversarial noises are not perfectly linearly
separable, they are still easy features, much easier than
original features, e.g., the accuracy of linear classifier on
adversarial noises are higher than that on original features
(see Figure 5). Moreover, if we replace the linear classifier
with a two-layer neural network, the adversarial noises can
still be perfectly fit.

Similar phenomenon also holds for multi-step PGD and
adversarially trained models. In this part, we consider
the adversarial noises generated by the final models trained
either standardly or adversarially. For adversarial training,
we adopt the setup in Madry et al. (2018) that uses 7 steps
of PGD with a stepsize of 2/255 and the CIFAR-10 dataset.

For generating the adversarial noises, we test PGD with 5,
10, and 100 steps, where ϵ is set as usual 8/255. We also
plot the linear separability of clean data for a comparison.
The results are in Figure 6.

Moreover, as another verification, we run adversarial train-
ing with the same step size and ϵ as that used to generate
adversarial noise, i.e., L∞ bound 8/255. We plot the linear
separability of adversarial noises along the training trajecto-
ries in Figure 7 and observe similar phenomenon as before.

We can see that the number of PGD steps does not affect the
linear separability much. The adversarial noises are easier
to fit than the original data for both standardly-trained and
adversarially-trained models. Moreover, the adversarially
trained model has substantially better linear separability
than the standardly trained model. We speculate that the
adversarially trained model has larger training losses and

Figure 5: Training and test accuracy of linear models on
adversarial noises. The noises are generated by using ResNet-
18 models trained with lr=0.1 on CIFAR-10 task and using
two softmax temperatures T = 1 and T = 10.

Figure 6: Training accuracy of linear models on adversarial
noises generated with standardly/adversarially trained models.
The blue line is training accuracy on original data.

Figure 7: Training and test accuracy of linear models on adver-
sarial noises with L∞ bound 8/255. The noises are generated
with ResNet-18. We use the adversarial training setup in
Madry et al. (2018) to train the target model. To evaluate the
accuracy of linear models, we use the same setup as that in
adversarial training to generate adversarial noises.
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hence larger error at the last layer, which shares similar
effect to tuning the temperature as shown in Figure 5.

Although the adversarial noises may not be perfectly linearly
separable for these wild scenarios, one consistent message
is that the adversarial noises are still much easier to fit
than original data. The linear classifier still generalizes to
the adversarial noises on test data to some extend, which
indicates adversarial noises inject distributional perturbation
to the original data distribution.

More experiments We add experiments with L2 norm con-
straint in Appendix 7, which demonstrates similar behaviors
of adversarial noises to that in Figure 4. We also present
more experiments on VGG11 and wide ResNet (WRN28-
4) in Appendix 7. The behaviors of adversarial noises for
different architectures are similar to that shown in Figure 4.
This implies that the linear separability of adversarial noises
is an essential property that holds universally for different
architectures.

5 CONCLUSION AND LIMITATION

In this paper, we unveil a phenomenon that adversarial
noises are almost linearly separable for nearly random neu-
ral network. We theoretically prove why this happens. One
key message is that the adversarial noises are easy to fit for
no matter nearly random network or fully trained network.
We think that such a distributional perspective of adversar-
ial noises is a novel and important view to understand the
behavior of adversarial examples. One thing left to explore
is whether such phenomenon still exists for more network
architectures Bortolussi et al. (2022).

One limitation of the work is that we do not have a straight-
forward way to exploit such phenomenon to improve the
adversarial attack or defense. One future direction could
be designing more powerful universal attacks based on our
finding that the adversarial noise is rarely related to the in-
put sample. Another direction is to understand the robust
generalization gap. We argue that the easy-to-fit property
of adversarial noises make them strong disruptive signals
during adversarial training. Hence the neural network may
fit these adversarial noises rather than the true features. This
may partially answer why adversarial training is not that
efficient for learning original features, which usually leads
to deteriorated performance on clean test data.
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6 Some Proofs in Theorem 3.1

6.1 The Independent Case

We first prove the high probability bound for the case: Dx is random and independent from all others {W ,a,x}, which is
restated as the following lemma.
Lemma 6.1. Suppose that W ∈ Rm×d whose entries are i.i.d. sampled from N (0, 1/d), a ∈ Rm whose entries are i.i.d.
sampled fromN (0, 1/m), D is a diagonal matrix whose diagonal entries are i.i.d., sampled from Bernoulli( 12 ). We further
assume that a,W and D are mutually independent. Then we have with probability at least 1− 3Cn(e−c1d+ e−c2m) where
C, c1, c2 are some constants,

a⊤WW⊤Da >
1

32
. (23)

Proof. We note that

a⊤WW⊤Da = a⊤DWW⊤Da+ a⊤(I −D)WW⊤Da. (24)

For the first term, a⊤DWW⊤Da =
∥∥W⊤Da

∥∥2. Given Da, we have W⊤Da ∼ N
(
0, ∥Da∥2

d Id×d

)
and hence∥∥W⊤Da

∥∥2 d
= ∥Da∥2

d χ2
d.

We need a bound on the tail probability of χ2
d.

Lemma 6.2. Suppose X ∼ χ2
d, i.e., chi square distribution with freedom d. Then we have

P{X < zd} ≤ (ze1−z)d/2, for z < 1, (25)

P{X > zd} ≤ (ze1−z)d/2, for z > 1. (26)

Hence

P

{∥∥W⊤Da
∥∥2 >

∥Da∥2

d
· d
2

}
≥ 1−

(
e1/2

2

)d/2
> 1− e−m/11. (27)

We note that ∥a∥2 ∼ 1
mχ2

m. Hence P{∥a∥2 < z} ≤ (ze1−z)m/2 for z < 1 and P{∥a∥2 > z} ≤ (ze1−z)m/2 for z > 1.

The diagonal entries of D are Bernoulli random variables, and hence Tr(D) is a Binomial random variable with parameter
(m, 1

2 ). Due to the Hoeffding-type tail bound of Binomial random variable, we have for z < 1/2

P{Tr(D) < zm} < exp

(
−2m

(
1

2
− z

)2
)
. (28)

Define an event E1 := {Tr(D) > 1
4m} and then its probability is at least 1 − e−m/8. On event E1, we can show

P{∥Da∥2 > 1/8} > 1 − e−(log
√
2− 1

4 )m > 1 − e−m/11. Then define another event E2 := {∥Da∥2 > 1/8} whose
probability is at least 1− e−m/8 − e−m/11.

Hence for the first term we have with probability at least 1− e−m/8 − 2e−m/11

a⊤DWW⊤Da >
1

16
. (29)

For the second term, let D denote the set of index j that Dj,j = 1, D̄ denote the set of index j that Dj,j = 0 and wk denote
the vector of the k-th column of W . Given {D,a} we have

a⊤(I −D)WW⊤Da =

d∑
k=1

(w⊤
k,D̄aD̄)(w

⊤
k,DaD) (30)

We note that w⊤
k,D̄

aD̄ ∼ N (0, ∥aD̄∥2

d ) and w⊤
k,DaD ∼ N (0, ∥aD∥2

d ). They are independent from each other and their

product is a sub-exponential random variable, with sub-exponential norm K = 2∥aD̄∥∥aD∥
πd .
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Definition 2. The sub-exponential norm of X is defined to be

∥X∥ψ1
= sup

p≥1
p−1(E|X|p)1/p. (31)

For the sum of sub-exponential random variables, we have the following Bernstein-type bound.

Lemma 6.3 (Corollary 5.17 in (Vershynin, 2010)). Let X1, ..., XN be independent centered sub-exponential random
variables, and let K = maxi ∥Xi∥ψ1

. Then, for every ϵ ≥ 0, we have

P

{∣∣∣∣∣
N∑
i=1

Xi

∣∣∣∣∣ ≥ ϵN

}
≤ 2 exp

[
−cmin

(
ϵ2

K2
,
ϵ

K

)
N

]
(32)

where c > 0 is an absolute constant.

Using the sub-exponential Bernstein inequality, we have

P

{∣∣∣∣∣
d∑
k=1

(w⊤
k,D̄aD̄)(w

⊤
k,DaD)

∣∣∣∣∣ ≥ ϵd

}
≤ 2 exp

[
−cmin

(
ϵ2

K2
,
ϵ

K

)
d

]
. (33)

Define an event E3 := {∥a∥2 < 2} whose probability is at least 1− e−(0.5−log
√
2)m > 1− e−m/7.

On the intersection of E2 and E3, we have ∥aD∥2 ≥ ∥a∥2

16 and hence ∥aD∥2

∥aD̄∥2 ≥ 1
15 , whose probability is at least

1− e−m/8 − e−m/11 − e−m/7 > 1− 3e−m/7.

On the event of E2 ∩ E3 and taking ϵ = ∥Da∥2

4d , the probability in Equation 33 is smaller than 2 exp
[
−cπ

2d
960

]
.

Hence for the second term, we have with probability at least 1− 3e−m/7 − 2e−cπ
2d/960,

|a⊤(I −D)WW⊤Da| ≤ 1

32
. (34)

Hence combining with the bound on the first term, we have that a⊤WW⊤Da ≥ 1
32 holds with probability at least

1− e−m/8 − 2e−m/11 − 3e−m/7 − 2e−cπ
2d/960. By taking the union bound over the training sample n, we complete the

proof.

6.2 Proof of Lemma 3.4

Proof. We note that h ∼ N (0, Im). Hence because of the tail bound of the χ2
m, we have

P{∥h∥2 ≤ 2m} > 1− (2e−1)m/2 > 1− e−m/7. (35)

Given h, we have a⊤h ∼ N (0, ∥h∥2 /m). On the event of {∥h∥2 ≤ 2m}, for some constant c2, P{|a⊤h| <
√
c2d} >

1− 2Φ(−
√

c2d/2) > 1− 2e−c2d/4. Hence we have

|a⊤h| <
√
c2d (36)

holds with probability at least 1− e−m/7 − 2e−c2d/4.

On the event of {∥h∥2 ≤ 2m}, we have that P{∥Dxh∥2 ≤ 2m} = 1 and P{|a⊤Dxh| <
√
c2d} > 1− 2e−c2d/4.

Combining the above two terms together, we complete the proof.

7 More Experiments
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Figure 8: Training and test accuracy of linear models on adversarial noises with L∞ bound 8/255. The noises are generated
with VGG11 (Simonyan & Zisserman, 2015) and Wide ResNet28-4 (Zagoruyko & Komodakis, 2016). We use a standard
training process of SGD with lr = 0.001.

Figure 9: Training and test accuracy of linear models on adversarial noises with a L2 norm bound 0.5. The noises are
generated with ResNet-18. We use a standard training process of SGD with lr = 0.001.
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