
Fair Representation Learning with Unreliable Labels

Yixuan Zhang†, Feng Zhou‡∗, Zhidong Li†, Yang Wang†, Fang Chen†

†Data Science Institute, University of Technology Sydney, Australia
‡Center for Applied Statistics and School of Statistics, Renmin University of China, China

{yixuan.zhang, zhidong.li, yang.wang, fang.chen}@uts.edu.au, feng.zhou@ruc.edu.cn

Abstract

In learning with fairness, for every instance, its
label can be systematically flipped to another
class due to the practitioner’s prejudice, namely,
label bias. The existing well-studied fair rep-
resentation learning methods focus on removing
the dependency between the sensitive factors and
the input data, but do not address how the rep-
resentations retain useful information when the
labels are unreliable. In fact, we find that the
learned representations become random or de-
generated when the instance is contaminated by
label bias. To alleviate this issue, we inves-
tigate the problem of learning fair representa-
tions that are independent of the sensitive fac-
tors while retaining the task-relevant informa-
tion given only access to unreliable labels. Our
model disentangles the dependency between fair
representations and sensitive factors in the latent
space. To remove the reliance between the labels
and sensitive factors, we incorporate an addi-
tional penalty based on mutual information. The
learned purged fair representations can then be
used in any downstream processing. We demon-
strate the superiority of our method over previous
works through multiple experiments on both syn-
thetic and real-world datasets.

1 Introduction

The recent success of deploying machine learning algo-
rithms in different high-stake application areas has in-
creased the concerns for ethics. Due to human prejudice
intervening in the labeling process, the training data col-
lected always contains discrimination towards certain de-
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Figure 1: Principal component analysis (PCA) on the
learned representations. We performed a PCA analysis
between the learned representation and label for a binary
classification problem on the synthetic dataset. Red points
represent the positive class, while blue points represent the
negative class. We compare the ideal labels (left) with unre-
liable labels (right): the learned representation has a strong
correlation with the ideal label (obviously divided into two
clusters) but a weak correlation with the unreliable label
(two clusters mixed together).

mographic groups (Lin et al., 2020; Bertrand and Mul-
lainathan, 2004; Michelle, 2012). When decisions are
made algorithmically with such unreliable labels, it affects
both accuracy and fairness negatively, and further brings
harm to both society and individuals (Khandani et al., 2010;
Kim et al., 2015; Brennan et al., 2009). Therefore, as one
critical ethical aspect, fairness-aware learning has recently
experienced a surge of advances.

Existing works on fairness extensively studied discrimi-
nation removal strategies in different training stages, i.e.,
pre-processing (Louizos et al., 2015a; Zemel et al., 2013;
Calmon et al., 2017; Lum and Johndrow, 2016), in-
processing (Bilal Zafar et al., 2015, 2016; Calders et al.,
2009; Agarwal et al., 2018; Kamishima et al., 2012) and
post-processing (Hardt et al., 2016). Among all these meth-
ods, fair representation learning (Louizos et al., 2015b;
Creager et al., 2019; Zemel et al., 2013; Calmon et al.,
2017) as a pre-processing method has gained significant
attention because it is compatible with any learning algo-
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rithms for downstream tasks.

In fair representation learning, one tries to learn latent rep-
resentations that are informative for a particular task while
removing all sensitive factors (e.g., gender or race) con-
tained in the input data. Since the learned representations
are required to preserve useful task information, an essen-
tial measure criterion, such as predictiveness, is usually
applied, and this process heavily relies on the quality of
labels. In the biased dataset, the label can be systemati-
cally flipped to another class due to the practitioner’s prej-
udice, which causes the predictiveness to be improperly
measured. Existing methods do not address how the rep-
resentations remain useful when the given labels are unre-
liable. In fact, when the instance is contaminated by label
bias, the learned representations by existing methods be-
come random or degenerated (See Fig. 1 for illustration).
To this end, we explore the following question in this paper:
Can we learn the representations predictable to the ideal
labels (generated from fair decisions and not impacted by
sensitive information) when we only have access to unreli-
able labels?

To overcome the above issue, we introduce a novel model
based on deep variational autoencoders (VAE) and mutual
information techniques. Different from previous works,
which do not care about the learning of sensitive informa-
tion, our work utilizes both informative latent dimensions
(fair representations) and latent nuisance dimensions (re-
taining sensitive information) to help us learn with unreli-
able labels. We require the learned fair representations to
retain as much information about the data as possible while
minimally informative about the sensitive factors. Further-
more, we require the learned representations to be repre-
sentative and predictable of the latent labels that are not
affected by the sensitive information, which we call ideal
labels. Conclusively, we consider incorporating the infor-
mation bottleneck principle (Tishby et al., 2000) into the
variational autoencoders to lead the learning process to-
ward ideal labels from two aspects. The first is that we ap-
ply the mutual information to disentangle the learned rep-
resentations into sensitive and fair parts. Second, we utilize
both sensitive and fair representations to recognize which
instance is likely to be discriminated by the label bias and
obtain the ideal labels by optimizing the difference between
the mutual information. Intuitively, if the sensitive repre-
sentation can predict an instance’s label well, we regard
this instance with a higher chance of being discriminated
against and vice versa.

The major contributions of our work are summarized as
follows: (1) As far as we know, for the problem with unre-
liable labels, we propose the first fair representation learn-
ing method attempting to recover the ideal labels. (2) We
present a flexible end-to-end framework that is applicable
to both group-dependent and individual label bias. (3) We
empirically demonstrate that biased labels are adverse to

both accuracy and fairness, even when the learned rep-
resentations remove the bias encoded in input attributes.
With unreliable labels, our experimental results on both
synthetic and real data demonstrate that our framework ef-
fectively learns fair representations towards ideal labels.

2 Related Work

We formulate fair representation learning using the varia-
tional information bottleneck (VIB) principle in variational
autoencoders. The information bottleneck (IB) technique
is introduced by Tishby et al. (2000), and the VIB (Alemi
et al., 2019) parametrizes IB via a variational lower bound.
It has been used in a wide range of domains such as
regularization (Alemi et al., 2019), understanding of β-
VAE (Burgess et al., 2018) and compression for deep neu-
ral networks (Dai et al., 2018). Several recent works incor-
porate maximization of the mutual information in the varia-
tional autoencoders. For example, Dieng et al. (2019) uses
skip connections to force dependency between the latent
representations and observations implicitly. Kim and Mnih
(2018) proposes maximizing the mutual information be-
tween learned latent representations and input data. How-
ever, the computation of mutual information is expensive.
Then Zhao et al. (2019) proposed to minimize the Maxi-
mum Mean Discrepancy between the marginal of the pos-
terior and the prior to increase the maximization of the mu-
tual information contained in the model.

Given the general fair representation learning (FRL) frame-
work, we can relate it to other similar approaches. Dwork
et al. (2011) proposed an initial FRL framework. How-
ever, this method cannot be formulated as a generalization
task due to the limitation of only working with given data.
Zemel et al. (2013) then proposed an improved framework
but still has limitations on representation since it uses clus-
tering for probabilistic representation mapping. Besides,
the information of sensitive attributes still risks leakage in
this method. Based on Zemel et al. (2013), Louizos et al.
(2015b) proposed a method to tackle these issues by using
the framework of VAE (Kingma and Welling, 2014) and
they injected label information to control the information
leakage with observed labels. Nevertheless, all the above
methods focused on the binary sensitive attribute. To fur-
ther disentangle the learned representation from sensitive
information, Creager et al. (2019) proposed a factorized
structure in the aggregate latent labels by using the dis-
entanglement VAE (Burgess et al., 2018; Kim and Mnih,
2019; Chen et al., 2019). Different from the work by Crea-
ger et al. (2019), for multiple sensitive attributes, we do
not additionally require the corresponding dimension of s
can represent each dimension of a since we do not need
to modify the biased representations in the test time. We
only focus on disentangling the sensitive information from
z and keep z as fair as possible. Based on that, we utilize
the mutual information strategy to help impute the biased
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labels and learn fair representation directly from the model.

Regarding the related works of noisy label learning in fair-
ness, most recent works use the loss correction method to
derive a new fairness-aware objective under the corrupted
distribution with different fairness notions. The group peer
loss (Wang et al., 2021) applied the group-dependent la-
bel noise and derived fairness constraints on corrupted data
with the biased label. Lamy et al. (2019) proposed a noise-
tolerant fair classification method, which assumes that the
sensitive attributes may contain the noises and are unreli-
able. Unlike the above works, our method does not require
predefined fairness constraints.

3 Method

We wish to learn an invariant fair representation with un-
reliable labels. In learning with fairness, we observe two
distinct variables: x and a, which denote non-sensitive at-
tributes and sensitive factors, respectively. Our goal is to
remove the undesired information that is related to a in the
latent space. In this work, apart from learning the fair repre-
sentation z, we try to learn another latent representation s,
preserving all sensitive information from x that can infer a.
To simplify the notations throughout the paper, we do not
specify the format of sensitive attribute a, which can be ei-
ther binary or multi-attribute (e.g., race v.s. race∧gender).

3.1 Fair Representation Learning with VAE

Traditionally, learning fair representations can be easily
formulated as a general probabilistic model, where we can
express the posterior as p(z, s | x). Therefore, the aim to
find an invariant representation z and a variant representa-
tion s can be cast as performing inference on the genera-
tive model. Following the same lines in the literature on
variational inference, we assume the amortized inference
distribution (encoder) is qϕ(z, s | x), which is used to map
the observations x into the latent space. In the meanwhile,
we factorize the decoder as pθ(x | z, s)pθ(a | s), which
enables us to return the latent representation to the input
data space. We require z, s can reconstruct x back and s
can reconstruct a. In this way, we can learn both useful in-
formation in the z dimension and s dimension. Then, we
can easily obtain the variational lower bound of the log-
likelihood log p(xi, ai) as follows:

N∑
i=1

log p(xi, ai)

≥
N∑
i=1

Eqϕ(zi,si|xi)[log pθ(xi | zi, si) + log pθ(ai | si)]

− KL[qϕ(zi, si | xi) || pθ(zi, si))] = F(ϕ, θ;xi, ai),
(1)

where qϕ(zi, si | xi) = N (zi, si | µi = fϕ(xi), σi =
efϕ(xi)), pθ(xi | zi, si) = fθ(zi, si), pθ(ai | si) = fθ(si)
and the expectation Eqϕ(z,s|x) is empirically approximated
via Monte Carlo by reparameterization trick. It is worth
noting that we exclude a in the variational distribution as
we require all sensitive information to be learned from x. In
this way, we can extract the correlated sensitive information
of a remaining in x.
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Figure 2: Framework for fair representation learning. The
upper dashed rectangle is the process for the unsupervised
model (i.e., existing fair representation learning frame-
work), where we have two distinct sources: a and x. The
bottom rectangle colored in orange is the learning process
with unreliable labels. To characterize the bias, we assume
the observed biased labels ỹ are conditioned on sensitive
information s and ideal labels y.

Naturally, qϕ(z, s | x) is called the encoder, while pθ(x |
z, s) and pθ(a | s) refers to the decoders. The model pa-
rameter (θ) and variational parameter (ϕ) are jointly opti-
mized with the stochastic gradient variational Bayes algo-
rithm (Kingma and Welling, 2014) according to the lower
bound of the log-likelihood. In addition, this ELBO im-
poses a regularizer over z and s, which is the KL term
in Eq. (1). It encourages the posterior qϕ(z, s | x) to be
matched to the prior p(z, s). Such a method minimizes the
upper bound of the mutual information between represen-
tations z, s and input data x, i.e., I(z, s;x). As a conse-
quence, we can capture most of the salient information of x
in the embedding z and s. In the optimization, the first and
second terms in Eq. (1) are interpreted as reconstruction er-
rors, while the KL term is interpreted as a regularization
term.

Since we wish to remove all the sensitive information from
the fair representation z, we further disentangle zi and si
by encouraging I(zi, si) to be as small as possible with the
prior q(zi, si) = q(zi)q(si). By further requiring the ex-
plicit minimization of the mutual information between the
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two latent dimensions (informative and sensitive informa-
tion), we obtain the objective of the following form:

Lu(ϕ, θ;xi, ai)

= F(ϕ, θ;xi, ai)−
N∑
i=1

αKL[q(zi, si) || q(zi)q(si)],
(2)

where α ≥ 0 is a regularization coefficient for the mu-
tual information, which decides the degree of disentangle-
ment between z and s. To compute KL[qϕ(z, s)||q(z)q(s)],
we use the similar approach in FactorVAE (Kim and Mnih,
2018). This term is estimated by using a discriminator that
distinguishes ‘real samples’ from ‘fake samples’, and then
applying the density-ratio trick for approximation (see Ap-
pendix B for more details).

3.2 Information Bottleneck View of Learning with
Unreliable Labels

As mentioned in Section 1, despite the fact that we have a
model encouraging independence between s and z in the
latent space, we still have information about a leaked into
the posterior when ỹ is correlated with a, which causes the
degeneration of the learned representation. In our method,
with the mild assumption, we model ỹ is systematically bi-
ased against a. This pattern can be found in many practical
examples. For instance, in the recidivism prediction tasks,
when participants are provided with biasing information,
the predicted labels will be systematically biased against
certain racial groups (Lin et al., 2020); In recruitment, the
decisions are usually in favor of particular demographic
groups. (Bertrand and Mullainathan, 2004). To avoid such
undesirable sensitive information leakage, we instead try
to maximize a penalized lower bound. In the following, we
describe one way to achieve such kind of regularization by
combining Eq. (2) with mutual information. A sketch of
the framework is shown in Fig. 2.

We introduce y to represent the ideal labels and ỹ to rep-
resent the observed unreliable labels. We assume ỹ is con-
ditioned on both the sensitive information s and the ideal
labels y. To avoid the fair representation z being contam-
inated again by the sensitive information leaked in ỹ, we
inject both the label information y and biased information
s. We formulate this by using information theoretic con-
cepts. The idea is to learn s and a latent label encoding of z
(i.e., y), which are highly informative for predicting ỹ. To
avoid the latent label y just simply memorizing z, we add
a complexity penalty to learn a more compressive encod-
ing of z, i.e., relevant information from z for predicting ỹ.
The penalty term is the mutual information between z and
z (i.e., I(y, z)) we want to minimize, and this term tries to
introduce some independence between z and y so that we
can further remove undesired nuisance information when
encoding the latent ideal label y from z.

Therefore, the IB objective is I(y, ỹ)+βI(s, ỹ)−γI(y, z),

where β ≥ 0 and γ ≥ 0 are two hyperparameters control-
ling the regularization impacts. For I(s, ỹ), we use the de-
coder parameter θ, so we can easily obtain the lower bound
by dropping the constant of H(ỹ) (it does not depend on
ϕ and θ). For the IB objective I(y, ỹ) − γI(y, z), we will
construct a lower bound as follows.

According to the definition of the mutual informa-
tion (Shannon, 1948), both I(y, ỹ) and I(y, z) can be ex-
panded as:

I(y, ỹ) = Eqϕ(y,ỹ)[log
qϕ(ỹ | y)
p(ỹ)

],

I(y, z) = Eqϕ(y,z)[log
qϕ(y | z)
qϕ(y)

].

(3)

Since in I(y, ỹ), the KL term involves the computation
of the data distribution p(ỹ) which causes the IB is in-
tractable. To overcome this issues, we then introduce a
decoder pθ(ỹ | y) to approximate qϕ(y, ỹ). Similarly,
I(y, z) requires the computation of p(z), so we instead use
pθ(y) to approximate qϕ(y). Following the standard vari-
ational bounds derivation on the mutual information dis-
cussed by Barber and Agakov (2003), we obtain the lower
bound of I(y, ỹ) and the upper bound of I(y, z):

I(y, ỹ) ≥ Eqϕ(y,ỹ)[log pθ(ỹ | y)] +H(ỹ),

I(y, z) ≤ Eqϕ(z,y)[log
qϕ(y | z)
pθ(y)

].
(4)

Then, by dropping the constant entropy H(ỹ) and assum-
ing the joint distribution factorizes as qϕ(y, z, ỹ) = qϕ(y |
z)p(z, ỹ), we construct the following lower bound to pro-
vide a tractable objective (see Appendix A for the detailed
derivation):

F(θ, ϕ; yi, zi, si) =

N∑
i=1

Eqϕ(yi|zi)[log pθ(ỹi | yi)− γKL(qϕ(yi | zi) || pθ(yi))]

+ β

N∑
i=1

Epθ(ỹ|s) log pθ(ỹ | s),

(5)
where qϕ(yi | zi) = pCat(yi | πi = softmax(fϕ(zi)),
pθ(ỹi | yi) = pCat(ỹi | πi = softmax(fθ(yi)) and
pθ(ỹi | si) = pCat(ỹi | πi = softmax(fθ(si)), pCat indi-
cates the categorical distribution.

Combing Eqs. (2) and (5), the final objective function is:

FFrep(ϕ, θ;xi, ai, si, yi, ỹi)

= Lu(θ, ϕ;xi, ai) + F(θ, ϕ; yi, zi, si).
(6)

Instead of training each layer of stochastic variables sepa-
rately, we optimize the model jointly. Through this method,
we utilize both unreliable label ỹ and the sensitive informa-
tion s to guide the learning of y and obtain a better feature
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extraction that remains the most useful information. Be-
sides, optimizing the model jointly enforces the disentan-
glement between the unreliable label ỹ and the sensitive
attribute a, which avoids creating the degenerated repre-
sentation with respect to the ideal label y.

4 Experiment

In the following sections, we introduce our experi-
mental setting including datasets, baselines and eval-
uation metrics. The implementation code is pub-
licly available at https://github.com/co234/
frl-with-unreliable-label.

4.1 Datasets and Setup

We conduct experiments on one synthetic dataset and two
real-world datasets, Adult and Compas. The statistics of
all datasets are shown in Table 1. We list the number of
instances, the specified protected and privileged groups,
as well as their corresponding number of instances. The
detailed description for each dataset can be found in Ap-
pendix D. We use accuracy to measure the performance and
∆DP = |E(ŷ = 1 | a = 1)− E(ŷ = 1 | a = 0)| to measure
the fairness violation. It is worth noting that other statis-
tical fairness notions can also be applied, and we list the
results under different fairness notions in Appendix E.2. A
lower ∆DP indicates a minor fairness violation. We split
the data into 90% train and 10% test and report the results
of ten-fold experiments with random splits.

Table 1: The statistics of the synthetic, Adult and Com-
pas datasets. We list the number of instances for the whole
dataset, the number of instances in the protected and privi-
leged groups and the fairness violation.

Dataset
# of

Instances
Protected/Privileged

Groups
# of

Instances ∆∗
DP

Synthetic 10,800 a=1/a=0 5150/5650 0.02

Adult 30,717 female/male 10,067/20,650 0.20
female & black / rest 1943/28,774 0.19

Compas 5,554 black/white 2,874/2,680 0.15
black & male / rest 2,848/2,706 0.14

We conduct experiments under different types of label bias:
group-dependent and instance-dependent. In the group-
dependent label bias setting, following Wick et al. (2019),
we artificially flip the labels based on the true labels and de-
mographic groups. For the instance-dependent setting, we
flip instances inversely proportional to their distance to the
decision boundary (i.e., the samples closer to the decision
boundary have a higher chance of being labeled wrongly.)

4.2 Baseline Methods and Model Architectures

To evaluate the effectiveness and robustness of the pro-
posed method, we compare our method with several VAE-
based models, including the vanilla VAE (Kingma and
Welling, 2014), Flexibly Fair Variational Autoendoer (FF-
VAE) (Creager et al., 2019) and Variational Fair Autoen-
coder (VFAE) (Louizos et al., 2015b). Regarding the label
noisy learning methods, we compare two related noisy la-
bel learning methods: CORES2 (Cheng et al., 2021) and
Group Peer Loss (GPL) (Wang et al., 2021). For a fair
comparison, we fix the autoencoder structure among the
above models. The details of implementation can be found
in Appendix B.

4.3 Results

Case 1: Binary sensitive attribute with group-
dependent label bias. The results are shown in Table 2.
The prediction performance of our method generally out-
performs other baselines w.r.t. both effectiveness and ro-
bustness when we increase the ratio of label bias. Over-
all, when the bias ratio increases to above 20%, the accu-
racy of other VAE-related methods starts to drop dramat-
ically, and the fairness violation starts to increase, which
demonstrates that no matter how fair the learned z is, if
we let z be predictable to the biased label ỹ, we still ob-
tain the biased output. This conclusion can also be ob-
tained by comparing our method using y directly (ours+D)
to our method using z (ours+LR). In the meantime, two
noisy label learning methods have more steady accuracy
when we increase the amount of label bias. However, since
CORES2 does not take fairness into consideration, it has
an overall higher fairness violation compared to GPL. GPL
deploys derived fairness constraints under corrupted distri-
bution, so it has overall lower fairness violation compared
to CORES2. Though the performance and fairness viola-
tion of ours+LR is generally better than other baselines,
it is still worse than ours+D. We obtain the same trend
in all three datasets. For the synthetic dataset, we find
ours+D has the overall highest accuracy with ∆DP close
to the ∆∗

DP under clean distribution. Also, we find the re-
sults of ours+LR are very close to ours+D while ours+LR
has a slightly higher fairness violation and lower accuracy.
Other baselines work well when the bias amount is small,
but when we increase the bias impact, they are not robust
to the change of bias amount. For the Adult dataset, the
accuracy of ours+D is the highest among all other base-
lines, and at the same time, ours+D has the closest ∆DP to
the ∆∗

DP. When the label bias amount increases, the accu-
racy of ours+D decreases slightly, but the performance of
ours+D is the most steady one compared to other baselines.
For the Compas dataset, ours+D has the highest accuracy.
Though GPL has the lowest ∆DP, if we combine it with
the accuracy, we can find the reason that ∆DP is low is the
weak predictiveness provided by GPL. When the corrup-

https://github.com/co234/frl-with-unreliable-label
https://github.com/co234/frl-with-unreliable-label
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Table 2: Test accuracy (%) and fairness violation on the synthetic, Adult and Compas dataset of binary sensitive features
under various corruption ratios from 10% to 40% with group-dependent label bias. We use ‘ours+LR’ and ‘ours+D’ to
denote the measurement of our method using a downstream classifier on the learned representation z and the learned latent
label y, respectively. We report the results in the format of mean ± standard deviation.

Method r-10% r-20% r-30% r- 40%
ACC ∆DP ACC ∆DP ACC ∆DP ACC ∆DP

Dataset: Synthetic
FFVAE 85.9±1.1 0.08±0.01 84.1±1.2 0.13±0.03 81.9±1.0 0.17±0.02 80.0±2.0 0.23±0.05
VFAE 81.8±2.0 0.15±0.03 82.2±1.8 0.18±0.04 81.0±2.3 0.22±0.03 79.1±1.9 0.25±0.09
VAE 85.8±1.0 0.03±0.01 85.2±0.9 0.07±0.02 82.8±1.7 0.16±0.05 79.7±1.2 0.23±0.04

CORES2 85.5±2.3 0.01±0.01 85.6±1.1 0.07±0.01 85.5±2.1 0.06±0.00 85.3±1.1 0.08±0.01
GPL 85.5±1.1 0.01±0.00 85.2±1.4 0.06±0.02 84.5±1.3 0.07±0.01 83.4±1.5 0.04±0.01

Ours+LR 85.5±1.0 0.03±0.01 85.4±0.9 0.06±0.02 85.8±1.3 0.05±0.03 84.6±0.8 0.05±0.03
Ours+D 86.3±0.9 0.02±0.01 86.3±1.3 0.04±0.00 86.0±1.6 0.04±0.01 85.7±1.2 0.03±0.01

Dataset: Adult, a = gender
FFVAE 82.7±2.4 0.18±0.03 82.2±1.5 0.26±0.04 79.9±1.4 0.21±0.05 76.3±1.3 0.37±0.09
VFAE 82.5±1.8 0.19±0.04 81.6±1.2 0.39±0.09 78.3±1.8 0.22±0.07 77.7±2.9 0.49±0.12
VAE 81.7±1.2 0.20±0.05 82.5±1.1 0.24±0.07 79.7±1.5 0.34±0.10 75.4±2.2 0.42±0.07

CORES2 78.2±1.7 0.18±0.01 78.1±3.8 0.18±0.01 79.8±2.7 0.17±0.01 79.4±1.4 0.20±0.02
GPL 80.7±1.6 0.17±0.02 76.5±4.0 0.19±0.01 75.8±0.9 0.20±0.00 74.3±3.3 0.20±0.01

Ours+LR 82.5±1.1 0.18±0.01 83.2±0.9 0.20±0.02 80.1±1.9 0.19±0.03 74.8±2.8 0.33±0.06
Ours+D 82.7±1.6 0.17±0.02 83.1±0.8 0.19±0.02 81.1±1.8 0.17±0.01 80.9±1.2 0.19±0.02

Dataset: Compas, a = Race
FFVAE 67.5±2.1 0.22±0.03 68.1±1.9 0.24±0.05 67.2±3.1 0.21±0.06 66.3±2.4 0.22±0.04
VFAE 65.9±1.8 0.18±0.05 65.4±3.7 0.24±0.06 65.2±3.5 0.19±0.05 63.6±2.2 0.24±0.04
VAE 66.8±3.4 0.25±0.04 66.9±1.4 0.27±0.02 65.4±2.1 0.26±0.04 65.7±3.7 0.23±0.04

CORES2 66.0±2.3 0.17±0.03 66.7±2.9 0.18±0.04 66.9±2.5 0.17±0.01 66.3±3.8 0.18±0.09
GPL 63.6±2.9 0.15±0.01 61.2±4.3 0.14±0.02 64.1±3.3 0.15±0.02 56.8±3.2 0.09±0.05

Ours+LR 67.0±1.1 0.24±0.16 67.2±3.7 0.22±0.04 68.0±1.3 0.20±0.03 65.9±1.7 0.23±0.02
Ours+D 68.5±1.2 0.24±0.03 68.6±1.3 0.24±0.02 69.1±2.6 0.21±0.04 66.5±1.6 0.22±0.03

tion ratio is 40%, we can see GPL is the only method with
an accuracy below 60%.

Case 2: Multiple sensitive attributes with group-
dependent label bias. In this section, we conduct ex-
periments on Adult and Compas datasets under the setting
that we have 2-dimensional sensitive attributes, which are
specified in Table 1. The results are shown in Table 3. For
the Adult dataset, the task becomes more difficult than in
the binary-sensitive attribute setting since the number of in-
stances among the protected and privileged groups is more
imbalanced than in the binary-sensitive attribute setting.
We can clearly see that the accuracy and fairness of the
Adult dataset for all baselines perform worse than the bi-
nary setting. Even so, ours+D still has the highest accu-
racy compared to the other baselines. Also, ∆DP of ours+D
is the lowest and closest to ∆∗

DP. Compared to the VAE-
related methods, the two noisy learning methods perform
better regarding both accuracy and fairness violation, sim-
ilar to the binary-sensitive attribute setting. We notice that
the accuracy of ours+LR is close to ours+D but with higher
fairness violations. For the Compas dataset, the number
of instances for the protected and privileged groups is bal-

anced as in the binary sensitive attribute case. In this case,
ours+D has the highest accuracy, and the performance of
ours+LR is very close to ours+D. It is worth noting that, for
the Compas dataset, similar to the binary-sensitive attribute
setting, though GPL still has the lowest ∆DP, it has the low-
est accuracy at the same time, which means the ∆DP is low
because the predictions are not good. We do not find any
obvious superiority for fairness baselines over the vanilla
VAE when the corruption ratio is less than 20%.

Case 3: Instance-dependent label bias. To mimic a com-
pelling and realistic scenario, in this section, we conduct
experiments on the Adult dataset to demonstrate the re-
sults under the setting that we flip the labels randomly with
the probability proportional to the reciprocal of the dis-
tance to the decision boundary under different corruption
levels from 10% to 40%. We list the results of different
methods in Table 4. In Table 4, we can see our method
can still handle this complex setting, and the results show
that both ‘ours+LR’ and ‘ours+D’ are robust to the differ-
ent levels of corruption ratio from 10% to 40% w.r.t. the
steady change in both accuracy and fairness violation. An
interesting finding is that the results of all the baselines
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Table 3: Test accuracy (%) and fairness violation on the Adult and Compas dataset of multi-sensitive features under
various corruption ratios from 10% to 40% with group-dependent label bias. We use ‘ours+LR’ and ‘ours+D’ to denote
the measurement of our method using a downstream classifier on the learned representation z and the learned latent label
y, respectively. We report the results in the format of mean ± standard deviation.

Method r-10% r-20% r-30% r- 40%
ACC ∆DP ACC ∆DP ACC ∆DP ACC ∆DP

Dataset: Adult, a = Race, Gender
FFVAE 80.2±1.3 0.19±0.04 79.4±2.4 0.20±0.05 75.6±1.9 0.17±0.03 66.4±2.5 0.23±0.07
VFAE 83.1±1.2 0.23±0.05 78.1±1.4 0.38±0.10 76.7±2.5 0.39±0.08 70.9±1.1 0.46±0.14
VAE 83.0±0.9 0.17±0.05 81.1±1.2 0.22±0.09 76.1±2.9 0.31±0.13 66.9±3.1 0.34±0.11

CORES2 80.5±1.6 0.17±0.01 79.5±2.4 0.17±0.01 78.4±2.6 0.17±0.01 77.9±1.9 0.20±0.01
GPL 78.7±3.3 0.17±0.02 80.4±1.7 0.17±0.01 79.2±3.0 0.18±0.01 76.6±2.4 0.21±0.01

Ours+LR 83.5±1.3 0.18±0.04 81.0±2.4 0.22±0.03 78.6±1.2 0.21±0.07 78.5±1.9 0.23±0.11
Ours+D 83.7±0.8 0.15±0.02 83.4±1.4 0.21±0.03 80.6±2.3 0.19±0.06 80.0±2.1 0.20±0.01

Dataset: Compas, a = Race, Gender
FFVAE 69.6±2.4 0.26±0.07 69.26±2.5 0.25±0.06 70.3±1.4 0.25±0.09 66.7±1.5 0.22±0.07
VFAE 67.0±1.4 0.26±0.05 66.2±0.5 0.23±0.07 65.2±1.8 0.17±0.03 62.0±2.8 0.16±0.02
VAE 71.2±1.2 0.27±0.05 69.6±2.3 0.25±0.04 69.6±1.3 0.21±0.05 67.6±2.4 0.19±0.02

CORES2 66.5±0.7 0.20±0.01 66.6±0.4 0.20±0.03 66.4±0.4 0.19±0.01 66.6±0.4 0.21±0.01
GPL 67.1±2.1 0.20±0.01 65.3±0.8 0.20±0.01 66.1±0.7 0.19±0.01 65.8±1.3 0.20±0.01

Ours+LR 70.4±1.1 0.27±0.03 69.4±1.3 0.25±0.05 69.4±2.3 0.21±0.05 68.9±1.4 0.19±0.01
Ours+D 71.2±1.1 0.26±0.02 70.2±2.2 0.23±0.02 70.6±1.3 0.21±0.03 70.0±1.2 0.20±0.02

Table 4: Test accuracy (%) and fairness violation on the Adult dataset of binary-sensitive features under various corruption
ratios from 10% to 40% with instance-dependent label bias. We use ‘ours+LR’ and ‘ours+D’ to denote the measurement
of our method using a downstream classifier on the learned representation z and the learned latent label y, respectively. We
report the results in the format of mean ± standard deviation.

Method r-10% r-20% r-30% r- 40%
ACC ∆DP ACC ∆DP ACC ∆DP ACC ∆DP

Dataset: Adult, a = Gender
FFVAE 80.7±0.2 0.17±0.05 80.5±0.1 0.18±0.05 80.0±0.2 0.17±0.01 79.9±0.2 0.20±0.05
VFAE 79.9±0.2 0.13±0.02 75.2±0.2 0.23±0.06 74.2±1.1 0.22±0.06 75.1±1.3 0.23±0.07
VAE 81.7±1.0 0.16±0.01 80.8±1.0 0.16±0.01 80.6±1.1 0.15±0.02 79.6±1.0 0.16±0.01

CORES2 80.1±1.1 0.18±0.01 80.9±0.4 0.17±0.01 79.6±2.9 0.18±0.01 79.1±2.9 0.18±0.01
GPL 80.2±2.0 0.18±0.01 79.3±3.9 0.18±0.02 77.2±3.2 0.18±0.01 76.4±5.7 0.17±0.02

Ours+LR 82.9±0.2 0.16±0.01 82.7±0.2 0.17±0.01 81.8±0.2 0.16±0.02 80.9±0.3 0.12±0.03
Ours+D 83.5±0.1 0.15±0.02 83.1±0.2 0.16±0.01 82.7±0.2 0.14±0.01 81.2±0.1 0.16±0.02

are better than the label-dependent situation, especially for
the VAE-related methods. Similar to the group-dependent
label bias setting, when checking the performance of two
noisy label learning methods, we notice that the accuracy
for GPL drops dramatically compared to the other noisy
label learning method CORES2 since GPL only considers
group-dependent label bias while CORES2 can handle with
the instance-dependent bias. Regarding the several VAE-
based methods, the performance has a similar trend to the
group-dependent label bias. However, VFAE has the low-
est accuracy and higher fairness violation compared to FF-
VAE and VAE due to the injection of observed labels into
the learning process. This indicates that when the labels are
unreliable, introducing label injection into the model might

bring more risk to learning fair representations.

4.4 Ablation Studies

We use the Adult dataset to examine the effectiveness of the
objective function with group-dependent label bias under a
high corruption ratio (40%). The results are shown in Ta-
ble 5. We compare the accuracy and fairness violation with
different combinations of components in Eq. (6). Based
on the results, we can see that without the mutual infor-
mation regularization terms Iϕ(y, ỹ), Iϕ(s, ỹ) and Iϕ(y, z),
we have a higher fairness violation compared to the results
from optimizing Eq. (6), which aligns with our expecta-
tion. Then, if we remove the regularization terms on y and
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z with only Iϕ(s, ỹ) left, we can achieve a lower fairness
violation but a lower accuracy as well. On the contrary, if
we remove the regularization term on s, we can obtain a
higher accuracy but also a higher fairness violation.

Table 5: Ablation analysis on the objective function on
the Adult dataset with high corruption ratio (40%). We
test with the unsupervised model Eq. (2), the full de-
biased model Eq. (1), the full de-biased model without
Iϕ(y, ỹ) − βIϕ(y, z) and the full de-biased model without
Iϕ(s, ỹ). We report test accuracy (%) and fairness violation
in the format of mean ± standard deviation.

Objective Function ACC (%) ∆DP

FFrep(θ, ϕ;xi, ai, si, yi, ỹi) 83.8±1.1 0.2±0.0

Lu(θ, ϕ;xi, ai) 80.5±1.3 0.3±0.0

Lu(θ, ϕ;xi, ai) + Iϕ(y, ỹ)− βIϕ(y, z) 79.2±1.5 0.3±0.1

Lu(θ, ϕ;xi, ai) + βIϕ(s, ỹ) 78.5±0.7 0.1±0.0

4.5 Analysis on Learned Representations

We also conduct the analysis of the learned representations
on the Adult dataset, which is shown in Fig. 3. We set the
corruption ratio as 40% and test it on both unsupervised
and de-biased models. We first plot the learned representa-
tion z (after applying Kernel PCA) using the unsupervised
model with objective function Eq. (2) w.r.t. two demo-
graphic groups. We can see the locations of data points in
different demographic groups have a clear pattern (where
the protected group locates in the upper right). From the
results, we can see that when the observed labels correlate
with sensitive factors, z still contains discriminative infor-
mation without incorporating the latent label information.
Then, in the upper right plot, we visualize z (after applying
Kernel PCA) by optimizing Eq. (6) w.r.t. two demographic
groups. The visualization results show that by properly in-
jecting the label information with maximizing the mutual
information in the variational encoders, the learned z can
successfully reduce the discrimination (we can see the two
clusters now mix together, which indicates the z cannot
distinguish the demographic information). Meanwhile, we
also visualize z (after Kernel PCA) w.r.t. the latent label y
and biased label ỹ in the two bottom plots. The right bot-
tom graph shows that though z has an ambiguous pattern
to distinguish ỹ, it still contains some randomness towards
ỹ which we have discussed in Section 1, but z can still be
divided into two clusters. While in the left bottom graph,
z can be clearly divided into two clusters w.r.t. the latent
label y.

4.6 Hyperparameters

We conduct experiments on different values of α, β and
γ. We first test different combinations of the two hyper-
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Figure 3: Representation analysis. The upper two plots
depict the visualization of z v.s. a (unsupervised model),
z v.s. a (optimizing Eq. (6) after applying kernel PCA.
We use two colors to denote different demographic groups.
The blue color denotes the protected group, and the red
color denotes the privileged group. The bottom two plots
visualize the learned representation z (optimizing Eq. (6))
w.r.t. the learned latent label y and observed biased label ỹ.

Table 6: Test accuracy (%) and fairness violation on the
Adult dataset with high corruption ratio (40%) under dif-
ferent value of β from 0.1 to 0.7 with fixed value of γ = 0.5
and α = 1

β 0.1 0.3 0.5 0.7

ACC 78.7±0.1 79.2±0.2 80.8±0.4 80.9±0.1

DP 0.22±0.01 0.19±0.02 0.18±0.01 0.19±0.02

parameters β and γ, which control the impact of Iϕ(y, z)
and Iϕ(s, ỹ) respectively. We find that the value of γ
does not impact the results much, so we fix the value
to 0.5 in the experiments. However, we find different β
will impact the results differently. To see this, we choose
β ∈ {0.1, 0.3, 0.5, 0.7}, while we fix α = 1 and γ = 0.5.
The results are listed in Table 6. We experiment with a
large amount of label bias (corruption ratio of 40%), so in
such a scenario, if we increase the value of β with a fixed
value of γ, the model will add more attention to correct y
from the discriminated samples. We also conduct experi-
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ments over different values of the hyperparameter α in the
compression term. However, we do not observe any pat-
terns that the change of α will greatly affect the accuracy
and fairness.

5 Conclusions

In this work, we demonstrate that when the labels are un-
reliable, we can still learn fair representations and latent
ideal labels by introducing maximization of the mutual in-
formation in the variational autoencoders. We design our
method based on two aspects: (1) learn both fair and sensi-
tive representations in the latent space and disentangle the
sensitive information from the fair dimension, and (2) con-
struct the variational information bottleneck lower bound
to discourage the latent fair labels from being similar to
observed biased ones for unfair samples. We derive a novel
tractable objective function for optimizing the variational
lower bound. In experiments, we empirically demonstrate
the superiority of our method to baselines w.r.t. effective-
ness and robustness under different amounts of label bias.
In addition, we show that when the observed labels are un-
reliable, the learned fair representations are still discrim-
inated against the particular demographic group since the
prediction in downstream tasks is still measured with unre-
liable labels. In our method, we rely on the prediction from
latent nuisance (sensitive) information to observed biased
labels to measure how unfair the sample is. This paper uses
VAE as one possible solution, a possible research track in
the future is to extend method in a general framework.
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A Formulation of VIB Objective

According to Barber and Agakov (2003), we obtain the following variational bounds on the mutual information. We first
derive the lower bound for I(y, ỹ) as follows:

I(y, ỹ) =

∫
qϕ(y, ỹ) log

qϕ(ỹ | y)pθ(ỹ | y)
qϕ(ỹ)pθ(ỹ | y)

dydỹ

=

∫
qϕ(y, ỹ) log

pθ(ỹ | y)
qϕ(ỹ)

dydỹ +

∫
qϕ(y)KL[qϕ(ỹ | y) || pθ(ỹ | y)]dy

≥
∫

qϕ(y, ỹ) log
pθ(ỹ | y)
qϕ(ỹ)

dydỹ

=

∫
qϕ(y, ỹ) log pθ(ỹ | y)dydỹ +H(ỹ).

(7)

Similar to the above derivation, we then obtain the upper bound for I(z, y):

I(z, y) =

∫
qϕ(z, y) log

qϕ(y | z)
qϕ(y)

dydz

=

∫
qϕ(z, y) log

qϕ(y | z)pθ(y)
qϕ(y)pθ(y)

dydz

=

∫
qϕ(z, y) log

qϕ(y | z)
pθ(y)

dydz − KL[qϕ(y) || pθ(y)]dz

≤
∫

qϕ(z, y) log
qϕ(y | z)
pθ(y)

dzdy.

(8)

By dropping H(ỹ) and using qϕ(y, z, ỹ) = qϕ(y | z)p(z, ỹ) we can get:

I(y, ỹ)− γI(z, y) ≥
∫

qϕ(y, ỹ) log pθ(ỹ | y)dydỹ +H(ỹ)− γ

∫
qϕ(z, y) log

qϕ(y | z)
pθ(y)

dzdy

≥
∫

qϕ(y | z) log pθ(ỹ | y)dy − γ

∫
qϕ(y | z) log qϕ(y | z)

pθ(y)
dzdy

= Eqϕ(y|z)[log pθ(ỹ | y)− γKL[qϕ(y | z) || pθ(y)]].

(9)

B Implementation Details

We implement one layer encoder and decoder with the ‘ReLu’ activation function. For all the baseline models, we fix
the encoder and decoder structures. For FFVAE, VFAE and VAE, which require downstream classifiers for the learned
representations, we all use the same prediction classifier (Logistic Regression). To approximate KL[q(z, s | x)||p(z, s)],
we use the same method in FactorVAE (Kim and Mnih, 2018). We train a discriminator to distinguish the fake samples
drawn from p(z)p(s) = N (0, I)Uniform(0, 1) and ‘real’ samples obtained from the encoder. Then, we can use

Eqϕ(z,s)[log d(u = 1 | z, s)− log d(u = 0 | z, s)]

to approximate KL[q(z | x)||p(z)], where d is the discriminator, and we use u = 1 to denote ‘real’ samples and we use
u = 0 to denote ‘fake’ samples.

C Generation of Synthetic Data

We generate two multivariate Gaussian distributions for each label class. For the positive class, we have µ = (2, 2) and
Cov = [[5, 1], [1, 5]]. For the negative class, we have µ = (−2,−2) and Cov = [[10, 1], [1, 3]]. Then we assign the sensitive
attribute from a Bernoulli distribution where p(a = 1) = p(x′|y=1)

p(x′|y=1)+p(x′|y=0) and x′ is a transformed version of x which

can be computed by x′ =

[
cos(ϕ) −sin(ϕ)
sin(ϕ) cos(ϕ)

]
X .
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We totally generate 10800 synthetic samples with 2-dimensional non-sensitive attributes space and 1-d sensitive attribute
space. We require the synthetic data to be as fair as possible. Therefore, the fairness violation on the synthetic data is very
low, which is ∆DP = 0.2.

Table 7: Test accuracy (%) and fairness violation on the synthetic, Adult and Compas dataset of binary-sensitive features
under various corruption ratios from 10% to 40% with instance-dependent label bias. We use ’ours+LR’ and ’ours+D’ to
denote the measurement of our method using a downstream classifier on the learned representation z and the learned latent
label y, respectively. We report the results in the format of mean ± standard deviation.

Method r-10% r-20% r-30% r- 40%
ACC DEO ACC DEO ACC DEO ACC DEO

Dataset: Synthetic
FFVAE 85.9±1.1 0.02±0.00 84.1±1.2 0.04±0.01 81.9±1.0 0.11±0.01 80.0±2.0 0.15±0.02
VFAE 81.8±2.0 0.03±0.00 82.2±1.8 0.12±0.01 81.0±2.3 0.24±0.05 79.1±1.9 0.28±0.04
VAE 85.8±1.0 0.02±0.00 85.2±0.9 0.05±0.01 82.8±1.7 0.11±0.02 79.7±1.2 0.22±0.05

CORES2 85.5±2.3 0.03±0.01 85.6±1.1 0.05±0.02 85.5±2.1 0.06±0.02 85.3±1.1 0.11±0.04
GPL 85.5±1.1 0.03±0.00 85.2±1.4 0.04±0.02 84.5±1.3 0.05±0.02 83.4±1.5 0.12±0.04

Ours+LR 85.5±1.0 0.01±0.00 85.4±0.9 0.04±0.01 85.8±1.3 0.08±0.02 84.6±0.8 0.10±0.05
Ours+D 86.3±0.9 0.01±0.00 86.3±1.3 0.02±0.00 86.0±1.6 0.04±0.01 85.7±1.2 0.06±0.00

Dataset: Adult, a = gender
FFVAE 82.7±2.4 0.20±0.05 82.2±1.5 0.24±0.03 79.9±1.4 0.22±0.06 76.3±1.3 0.28±0.05
VFAE 82.5±1.8 0.07±0.02 81.6±1.2 0.14±0.04 78.3±1.8 0.07±0.02 77.7±2.9 0.18±0.07
VAE 81.7±1.2 0.13±0.02 82.5±1.1 0.28±0.03 79.7±1.5 0.29±0.09 75.4±2.2 0.47±0.19

CORES2 78.2±1.7 0.10±0.03 78.1±3.8 0.12±0.04 79.8±2.7 0.19±0.03 79.4±1.4 0.20±0.09
GPL 80.7±1.6 0.17±0.05 76.5±4.0 0.12±0.03 75.8±0.9 0.13±0.05 74.3±3.3 0.12±0.03

Ours+LR 82.5±1.1 0.08±0.02 83.2±0.9 0.10±0.03 80.1±1.9 0.13±0.05 74.8±2.8 0.18±0.04
Ours+D 82.7±1.6 0.02±0.00 83.1±0.8 0.03±0.01 81.1±1.8 0.08±0.02 80.9±1.2 0.10±0.01

Dataset: Compas, a = Race
FFVAE 67.5±2.1 0.21±0.05 68.1±1.9 0.22±0.07 67.2±3.1 0.17±0.02 66.3±2.4 0.14±0.02
VFAE 65.9±1.8 0.15±0.03 65.4±3.7 0.12±0.02 65.2±3.5 0.13±0.02 63.6±2.2 0.13±0.01
VAE 66.8±3.4 0.21±0.07 66.9±1.4 0.23±0.11 65.4±2.1 0.21±0.08 65.7±3.7 0.26±0.09

CORES2 66.0±2.3 0.15±0.07 66.7±2.9 0.15±0.06 66.9±2.5 0.16±0.06 66.3±3.8 0.14±0.05
GPL 63.6±2.9 0.18±0.09 61.2±4.3 0.15±0.06 64.1±3.3 0.16±0.05 56.8±3.2 0.15±0.05

Ours+LR 67.0±1.1 0.19±0.03 67.2±3.7 0.21±0.06 68.0±1.3 0.21±0.09 65.9±1.7 0.20±0.09
Ours+D 68.5±1.2 0.19±0.06 68.6±1.3 0.17±0.08 69.1±2.6 0.18±0.07 66.5±1.6 0.19±0.06

D Datasets Description

Synthetic Dataset: We use the same synthetic data generation approach mentioned in fairness constraint method (Bilal
Zafar et al., 2016). We generate two multivariate Gaussian distributions for each label class. Then we randomly assign the
sensitive attribute to each sample. For the synthetic data, we control the data to be fair by enforcing ∆DP close to 0. For
illustration, we only consider the binary sensitive attribute in synthetic data.

Adult Dataset1: The target value is whether an individual’s annual income is over $50k. The original feature dimension in
this dataset is 13. After feature aggregation and encoding, the feature dimension is expanded to 35. The sensitive attributes
are ‘Gender’ and ‘Race’. In the binary sensitive attribute setting, we define ‘Gender’ as our interested sensitive attribute
and ‘Gender = Female’ as the protected group. In the multi-attribute setting, we define ‘Gender’ and ‘Race’ as sensitive
attributes and ‘Gender = Female’ combined with ‘Race = Black’ as the protected group.

Compas Dataset2: This data is from COMPAS, which is a tool used by judges, probation and parole officers to assess the
risk of a criminal to re-offend. We focus on the prediction of ‘Risk of Recidivism’ (Arrest). The Compas system is found to
be biased in favor of white and female defendants over a two-year follow-up period. In the binary sensitive attribute setting,
we define ‘Race’ to be the target attribute and ‘Race = Black’ as the protected group. In the multi-attributes setting, we

1http://archive.ics.uci.edu/ml/datasets/Adult
2www.propublica.org/article/how-we-analyzed-the-compasrecidivism-algorithm
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define both ‘Race’ and ‘Gender’ as the sensitive attributes and ‘Race=Black’ and ‘Gender=Male’ as the protected group.
After feature aggregation and encoding, the feature dimension is reduced to 11.

E Additional Experiments

E.1 Evaluate Our Methods on Clean Data

We also directly evaluate our method with the same baseline models on the clean data (synthetic data). Even with the clean
dataset, our method outperforms the other baselines w.r.t. accuracy and fairness. Compared with Table 2, we can see the
results under different corruption ratios of our methods are very close to the results on the clean dataset.

Table 8: Test accuracy (%) and fairness violations measured on the clean synthetic dataset. We use ‘ours+LR’ and ‘ours+D’
to denote the measurement of our method using downstream classifier on the learned representation z and the learned latent
label y respectively. We report the results in the format of mean ± standard deviation.

Metric VAE FFVAE VFAE CORES2 GPL ours+LR ours+D
ACC 86.2 ± 1.2 86.0±1.3 83.1±0.9 86.1±1.1 86.5±2.1 86.4±0.7 86.8±1.2
DEO 0.03±0.00 0.0.03±0.01 0.05±0.01 0.01±0.00 0.02±0.00 0.01±0.00 0.01±0.00
∆DP 0.03±0.00 0.08±0.02 0.12±0.03 0.05±0.01 0.05±0.00 0.04±0.01 0.03±0.00

E.2 Other Fairness Measure

In this paper, we emphasize that our method does not need to specify the form of fairness notions in advance. We only report
∆DP in Section 4, but our proposed method can be evaluated using other fairness notions. We also conduct experiments on
the difference of equal opportunity (DEO) (Hardt et al., 2016), which is defined as:

DEO = |E(ŷ = 1 | y = 1, a = 1)− E(ŷ = 1 | y = 1, a = 0)|.

Overall, the performance is similar as measured in ∆DP while both ours+D and ours+LR achieve lower fairness violations.
For Compas Dataset, it is worth noting that, though FVAE has the lowest DEO, it has the lowest accuracy among all the
VAE-related methods at the same time.
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