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Abstract

Quantifying aleatoric uncertainty is a challenging
task in machine learning. It is important for deci-
sion making associated with data-dependent un-
certainty in model outcomes. Recently, many em-
pirical studies in modeling aleatoric uncertainty
under regression settings primarily rely on either
a Gaussian likelihood or moment matching. How-
ever, the performance of these methods varies for
different datasets whereas discussions on their
theoretical guarantees are lacking. In this work,
we investigate the theoretical aspects of these ap-
proaches and establish risk bounds for their esti-
mates. We provide conditions that are sufficient to
guarantee the PAC-learnability of the aleatoric un-
certainty. The study suggests that the likelihood-
and moment matching-based methods enjoy dif-
ferent types of guarantee in their risk bounds, i.e.,
they calibrate different aspects of the uncertainty
and thus exhibit distinct properties in different
regimes of the parameter space. Finally, we con-
duct empirical study which shows promising re-
sults and supports our theorems.

1 INTRODUCTION

Quantifying the aleatoric uncertainty of model predictions
has long been an active problem in various domains (Cook
and Weisberg, 1983; Muller and Stadtmuller, 1987; Long
and Ervin, 2000; Der Kiureghian and Ditlevsen, 2009;
Neverova et al., 2019). In the machine learning literature, un-
certainty typically can be categorized into two types (Der Ki-
ureghian and Ditlevsen, 2009): the epistemic uncertainty
such as model uncertainty and approximation error, incurred
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by a lack of knowledge, and the aleatoric uncertainty, which
is due to the inherent randomness in the data-generating
process (DGP) (Abdar et al., 2021). As data become in-
creasingly accessible, powerful machine learning models
have significantly reduced the uncertainty of the former type
(Seitzer et al., 2022; Bousquet et al., 2003); however, the
latter remains a challenge in a wide range of applications,
such as earthquake prediction, weather forecasting, finance,
and aerospace engineering (Walters et al., 2022; Beyer and
Sendhoff, 2007; Krinitzsky, 2002; Yao et al., 2011). One
reason for such difficulty is that aleatoric uncertainty can
often be a function of the input data (Kendall and Gal, 2017;
Der Kiureghian and Ditlevsen, 2009); as such, its estima-
tion is directly related to the recovery of the data-dependent
uncertainty function in the DGP. However, in the absence
of specific assumptions on the uncertainty function, the task
remains challenging in general.

Recently, the ML community has made several advance-
ments with the quantification of aleatoric uncertainty which,
accompanied by an accurate mean-estimation, has seen
success in various tasks including semantic segmentation
(Kendall and Gal, 2017; Mukhoti et al., 2021), reinforce-
ment learning (Kahn et al., 2017; Chua et al., 2018; Seitzer
et al., 2021) and selective regression (Zaoui et al., 2020).
In the absence of an explicitly stated parametric form for
the variance function, existing methods ubiquitously resort
to modern deep neural network-based methods for the es-
timation of aleatoric uncertainty, with a majority of them
minimizing a Gaussian likelihood-based loss or matching
moments of the empirical variance. These neural networks
are typically over-parameterized, which is necessary to em-
power the uncertainty learner with sufficient capacity; the
potential over-fitting issues can often be empirically miti-
gated with a large sample size. Despite the empirical success
of using these methods, little investigation has been done
on the theoretical aspects of such estimation procedure, in
particular, the PAC-learnability of the variance function, the
sample complexity of different learners, and the forms of
the statistical error.

In this work, we investigate the theoretical aspects of these
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two widely-used methods in modeling/quantifying aleatoric
uncertainty, under general heteroscedastic regression set-
tings. Specifically, we study the following DGP with mean
function µ(·) and data-dependent uncertainty or noise term
ξ(·)1,

Y = µ(X) + ξ(X), X ∈ Rd, Y ∈ R, (1)

where µ(x) ≜ E(Y |X = x), σ2(x) ≜ Var(Y |X = x) is
the data-dependent variance function. Here

This is a general setting from standard heteroscedastic re-
gressions (Goldberg et al., 1997; Le et al., 2005); In par-
ticular, it has been shown (see, e.g. Mohri et al. (2018))
that under regularity conditions, estimators for the mean
using an empirical risk minimization (ERM) procedure pos-
sess PAC-learnable guarantees (Kearns and Vazirani, 1994).
In this work, besides the mean function, we want to pro-
vide theoretical properties of the variance estimators, in
the presence of data-dependent noise. For simplicity, we
obtain the estimators from the ERM procedure, based on
the Gaussian negative log-likelihood (NLL) loss and the
mean-squared-error (MSE) loss, respectively. We find that,
although both estimators recover the ground truth variance
function with a similar PAC-guarantee (i.e., asymptotic rate),
the finite-sample bounds take different forms. In particular,
the PAC-bound based on the NLL loss provides guarantees
on the learnability of the precision function, i.e., 1/σ2(·),
while that based on the MSE loss is on the variance function
σ2(·) directly.

Summary of Contributions. The main contribution of
this work is the theoretical analysis on modeling aleatoric un-
certainty when the noise variance function is data-dependent.
To summarize our contribution,

• We investigate the theoretical properties of empirical
risk minimizers that are based on NLL and MSE losses,
respectively, and provide, to the best of our knowledge,
the first PAC-type finite-sample risk bounds for vari-
ance recovery in this setting;

• The theoretical analysis indicates two estimators pos-
sess different forms of the PAC-type guarantee, which
allows one to identify the potential discrepancy in per-
formance between the two estimators in different re-
gions. In particular, the NLL loss-based estimator
tends to have a lower error in the low variance regime
while the MSE loss-based one tends to have a lower
error in the high variance regime. This is further cor-
roborated by our experiments.

• A novel technical contribution in Lemma 8 and 9 based
on Talagrand contraction lemma. The technical nov-
elty here allows our theorems to hold for a general

1To be specified in Section 3.

calibration procedure of µ, irrespective of whether µ̂
is learned jointly or separately with σ̂2. Standard tech-
niques require either additional assumption (typically
the independence between the estimation of µ̂ and σ̂2,
e.g., via split data) or additional treatment to enable
such flexibility.

2 RELATED WORK

We provide a brief overview of existing approaches to quan-
tify aleatoric uncertainty. These approaches fall into three
major categories: (quasi)-maximum likelihood-based meth-
ods, moment matching, and Gaussian process regression.

2.1 (Quasi)-Maximum Likelihood

The likelihood function provides a full characterization of
the specified density, although often there are only a few
likelihood functions that are easy to work with analytically.
To that end, people typically choose a working likelihood—
with Gaussian being the most popular one, despite that it
does not necessarily conform to the underlying true data
distribution (misspecification). Such misspecification gives
rise to the quasi-maximum likelihood estimation (QMLE)
framework, whose estimators’ properties have been exten-
sively studied in linear settings (e.g., White, 1982; Bollerslev
and Wooldridge, 1992). Nowadays, Gaussian likelihood
has become the workhorse for modeling the data distribu-
tion, with flexible, non-linear functional forms (e.g., neural
networks) considered for the mean and variance specifi-
cation. In summary, a Gaussian negative log-likelihood
(NLL)-based objective is convenient and robust, despite the
potential misspecification issue.

Specifically, the NLL for the regression model posited in (1)
is given by

n∑
i=1

[
log σ2(xi) +

(yi − µ(xi))
2

σ2(xi)

]
+ constant. (2)

In the statistics literature where the mean function is typ-
ically assumed to be linear in x, that is, µ(x) := β⊤x, it
reduces to the traditional MLE which goes back to the 1980s
(e.g., Jobson and Fuller, 1980; Carroll and Ruppert, 1982b),
wherein theoretical properties of the estimators are exten-
sively studied and established (Jobson and Fuller, 1980),
and their robustness also investigated (Carroll and Ruppert,
1982a). However, typically the variance function is not as-
sumed to be data-dependent (i.e., constant σ not dependent
on xi) until recently (e.g., Daye et al. (2012) considers the
high dimensional setting and with the following parametriza-
tion: σ2(x) = σ2

0 exp(α
⊤x)).

The introduction of non-linearity into the specification of the
mean and the variance is advanced by kernel-based meth-
ods, such as Reproducing Kernel Hilbert Space (RKHS)
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regression. In particular, leveraging the representer theorem
(Kimeldorf and Wahba, 1970, 1971), Cawley et al. (2004,
2005) propose heteroscedastic kernel ridge regression to
model heteroscedastic data, where both the mean and the
log standard deviation are modeled through a linear combi-
nation of the mean kernels kµ and variance kernels kσ .

In modern machine learning, attempts to capture aleatoric
uncertainty typically rely on the power of neural networks
(NN) to parameterize the mean and the variance, with NLL
as the loss function (e.g., Kendall and Gal, 2017; Vandal
et al., 2018; Chua et al., 2018; Skafte et al., 2019). For
example, in Lakshminarayanan et al. (2017), the authors
consider the use of adversarial training and ensembles to
improve the estimation of predictive uncertainty, where the
underlying NNs that constitute the ensembles are trained
based on NLL loss. To address optimization issues related
to estimating σ2(·) using MLE, Skafte et al. (2019) also
considers a local NLL framework where mini-batching is
location-aware. Moreover, Seitzer et al. (2022) introduces a
variance-weighting term to the Gaussian NLL loss, which
acts as an adaptive, input-dependent learning rate.

2.2 Moment Matching Methods

Moment matching (MM) methods focus on aligning sam-
ple moments to the population ones dictated by the data
generating process, without characterization of distribution.
Ordinary least square based on MSE loss can be viewed as
the simplest case of the MM estimator. For heteroscedas-
tic linear regression, the generalized method of moments
(GMM) introduced in the seminal work of Hansen (1982)
simultaneously obtains the mean and variance estimates
(Wooldridge, 2001); this is achieved by incorporating ex-
tra moments and minimizing a quadratic form of moment
conditions. However, in practice, one typically adopts a
two-step procedure where the mean and the data-dependent
variance are estimated sequentially, so the moment matching
of variance is based on the squared residual:

min
σ2(·)

1

n

n∑
i=1

(
σ2(xi)−

(
y − µ̂estimated mean(xi)

)2)2
. (3)

In modern ML, MM methods based on Maximum Mean
Discrepancy (MMD) objective have also been used in gener-
ative models (e.g., Li et al., 2015; Ren et al., 2016; Li et al.,
2017). Several recent works on selective regression apply
moment matching-type methods to learn the variance func-
tion (Zaoui et al., 2020; Shah et al., 2022). More recently,
Zaoui et al. (2020) applies a k-nearest neighborhood (kNN)
scheme which aggregates local samples around x ∈ Rd to
estimate the variance using MM. However, the sample com-
plexity provided in Zaoui et al. (2020) has an exponential
dependency on dimension d due to the curse of dimensional-
ity in kNN. We show that for universal approximators, such
as the family of NNs, the exponential sample complexity

can be reduced as a result of the generalization power of
NN-based models.

2.3 Gaussian Process Regression

Under the Bayesian nonparametric framework, a Gaussian
Process prior with mean m(x) and kernel kµ(x,x′; θµ) is
assumed over the mean vector µ obtained by evaluating the
mean function µ(x) on the samples, which then gives rise
to a multivariate Gaussian prior on µ. In the absence of
heteroscedasticity, one can solve for the hyperparameters
θµ by maximizing the marginal log-likelihood.

When the noise variance becomes feature-dependent, ad-
ditional assumptions on σ2(x) is often required, for exam-
ple, Goldberg et al. (1997) assumes σ2(x) = exp{g(x)}
and a GP prior is placed over g(·). Additionally, the
marginal Gaussian likelihood could become analytically
intractable and one needs to resort to either MCMC (Gold-
berg et al., 1997), or to other workarounds such as the EM-
approximation in Kersting et al. (2007) or variational lower
bound (Lázaro-Gredilla and Titsias, 2011). These methods—
without further sparse approximation (e.g., Snelson and
Ghahramani, 2007; Titsias and Lawrence, 2010) or stochas-
tic variational inference (SVI) (Hensman et al., 2013)—can
be computationally expensive and requires O(n3), which
scales in a similar rate to standard GPs.

Despite the flexibility GP offers, it is subject to the limita-
tion of kernel-based methods and does not scale well for
high-dimensional input; in particular, it suffers from the
curse of dimensionality and needs exponentially (relative to
the input dimension) more data to maintain the same error
bound (Bengio et al., 2005). Additionally, as most kernels
are isotropic, GP has difficulty capturing correlated input
dimensions unless one explicitly considers the covariance
structure, which then requires many more hyperparame-
ters. Finally, the cubic-scaled computational cost can often
become a bottleneck for large datasets, and the issue can
only be alleviated to a limited extent through some of the
aforementioned techniques that aim at reducing such cost.

3 PRELIMINARIES

Notation. Vectors are denoted by bold-faced letters and
[x]i denotes the i-th entry of vector x. xTy represents the
inner product of vectors. We use ∥ ·∥p to denote the ℓp norm
of vectors. Let [n] = {1, 2, ..., n} and x1:n = {xi}ni=1.
Random variables are denoted by uppercase letters, e.g., X;
we write X ∼ D when X follows distribution D and let
X1:n ∼ Dn denote n i.i.d. random samples drawn from D.
Let EX∼D denote the expectation taken w.r.t. X under D or
EX for short whenever there is no ambiguity. We use D

= to
denote two random variables being equal in distribution. We
use O(·), the standard big-O notation for upper bounds, and
Õ(·) for the upper bounds omitting the log factor. Finally,
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we use short hand notations a ∨ b = max(a, b) and a ∧ b =
min(a, b).

Problem Setup. Without loss of generality, consider a
regression task in the feature space X (e.g., Rd) with re-
sponse Y taking values in Y ⊆ R. The joint distribution
of Z ≜ (X,Y ) over Z ≜ X × Y is denoted by D̄, with
z1:n = {(xi, yi)}ni=1 denoting n i.i.d. samples drawn from
D̄. In this paper, we postulate the following joint data-
generating process (DGP):

X ∼ D; Y |(X = x)
D
= µ(x) + ξ(x). (4)

In other words, the feature X ∼ D follows some under-
lying distribution on D, and the response Y has feature-
dependent mean and noise structure specified by µ and
ξ. In particular, µ(x) is the conditional mean function
that characterizes E[Y |X = x] and {ξ(x)}x∈X is a fam-
ily of noise distributions on R indexed by X (e.g., Gaus-
sian zero-mean noise with variance σ2(x)), which specifies
P(Y ∈ B|X = x) = P(ξ(x) ∈ B) for Borel sets B ∈ B.
Formally, in this context, both the use of E[·|X = x] and
P[·|X = x] are to be understood as regular conditional
probability (RCP) (Durrett, 2019). In general, regular con-
ditional probability exists on nice probability spaces (e.g.,
polish space with Borel sigma algebra such as Rd with Bd)
and is defined almost surely for X(ω) to provide versions
of P(Y ∈ B|FX)(ω) where FX is the sigma algebra gen-
erated from X . We informally write P[·|X = x], which
can also be taken as a continuous version of RCP (Zabell,
1979).

In addition, we assume −1 ≤ µ ≤ 1, w.o.l.g. Further,
we allow the family of noise distribution {ξ(x)}x∈X to be
general and only specify its first two moments (and assume
the existence of its fourth moment, for moment matching
with variance function). In particular, let R be the space
of random variable distributed on R with finite variance,
then the feature-dependent noise ξ(·) : X → R satisfies
E[ξ(x)] = 0 and variance σ2(x) ≜ Var(ξ(x)). As sug-
gested in the form of (4), we assume an additive noise
structure where ξ(xi) is conditionally independent of ξ(xj)
given Xi = xi, Xj = xj . The DGP model (4) completely
characterizes Z ≜ (X,Y ) ∼ D̄, and allows for the general
form of heteroscedasticity of Y .

Assumption 1. We assume the noise ξ(x) in DGP is
bounded and satisfies |ξ| ≤

√
M for some M > 0. More-

over, let Fµ := {f : X 7→ [−1, 1]} and Fσ2 := {σ2 : X 7→
[m,M ]} with 0 < m < M , be two hypothesis classes with
finite pseudo-dimension dP (Fµ) < ∞, dP (Fσ2) < ∞ that
include the true DGP as dictated in (4):

µ⋆ ∈ Fµ, and (σ2)⋆ ∈ Fσ2 ;

µ⋆(x) = E[Y |x] is the true mean function and (σ2)⋆(x) =
Var(Y |x) is the true feature-dependent variance.

The remainder of this paper is dedicated to theoretical
and empirical analyses on recovering the variance function
(σ2)⋆ using n i.i.d. samples z1:n = {(xi, yi)}ni=1 from the
DGP, respectively based on MSE and NLL loss functions,
under Assumption 1. Concretely, the two loss functions are
defined as follows.

• NLL loss ℓNLL : G × F × Z 7→ R where

ℓNLL(σ
2, µ, z) ≜ log(σ2(x)) +

(y − µ(x))2

σ2(x)
. (5)

• MSE loss ℓMSE : G × F × Z 7→ R where

ℓMSE(σ
2, µ, z) ≜

(
σ2(x)−

(
y − µ(x)

)2)2
. (6)

Note that MSE loss is a MM-type loss that directly
matches the second moment of the residuals.

3.1 Complexity of Function Classes

To derive our main results, we use the Rademacher com-
plexity of a hypothesis class (Bartlett and Mendelson, 2002;
Bartlett et al., 2005) and VC-class Van der Vaart and Wellner
(1996); Vapnik and Chervonenkis (2015). Lemmas in this
section are standard results, reference details are specified
in the Appendix.

Definition 1. Given {x1:n} where xi ∈ X and a hypothesis
class F = {f : X 7→ [l, u]}, the empirical Rademacher
complexity of the hypothesis class F is defined as

R̂n(F ;x1:n) ≜ Eσ1:n∼Dn
σ
[sup
f∈F

1

n

n∑
i=1

σif(xi)], (7)

where σ1:n are i.i.d. Rademacher random variables with
distribution Dσ, i.e., P(σi = 1) = P(σi = −1) = 1/2.
Furthermore, given X ∼ D, the Rademacher average of F
is defined as

Rn(F) ≜ EX1:n∼Dn [R̂n(F ;X1:n)]. (8)

Definition 2 (VC-dimension). The VC-dimension dV C(F)
of a hypothesis class F = {f : X 7→ {1,−1}} is the largest
cardinality of any set S ⊆ X such that ∀S̄ ⊆ S, ∃f ∈ F:

f(x) =

{
1 if x ∈ S̄

−1 if x ∈ S \ S̄
(9)

Definition 3 (Pseudo-dimension). The Pseudo-dimension
dP (F) of a real-valued hypothesis class F = {f : X 7→
[l, u]} is the VC-dimension of the hypothesis class

H = {h : X × R 7→ {−1, 1} |
h(x, t) = sign(f(x)− t), f ∈ F , t ∈ R}.

(10)

Rademacher complexity is extensively used in deriving
bounds for the statistical error; such a bound is intimately
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related to the complexity of the hypothesis class and the sam-
ple size n. To better characterize the relationships among
sample size n, the complexity of a hypothesis class, and the
statistical error, we use the following lemma to explicitly
bound the Rademacher complexity using pseudo-dimension
and sample size. The lemma follows from Dudley’s chain-
ing bound (Dudley, 1967) and the concept of “covering
number” (Pollard, 1982; Rakhlin, 2020) that is built upon
Haussler’s bound and the combinatorial dimension Haussler
(1995); Van der Vaart and Wellner (1996).

Lemma 1. Let F = {f : X 7→ [−M,M ]} with M > 1 be
a hypothesis class with finite pseudo-dimension dP (F) <

∞. Let R̂n(F ;x1:n) be the empirical Rademacher complex-
ity defined in (7), then there exists some universal constant
K1 such that for any x1:n ⊆ X

R̂n(F ;x1:n) ≤ K1

√
dP (F)

n
.

Consequently, we also have Rn(F) ≤ K1

√
dP (F)

n for any
distribution X ∼ D.

The proof of Lemma 1 can be found in (Bartlett et al., 2005;
Rakhlin, 2020).

Note that the complexity of a function class is related to
the efficiency in its sample complexity. To be specific, con-
sider the example of learning a parity variance function, one
can recover the variance function using ERM by fitting a
model within some hypothesis class, or apply local methods
by leveraging the neighborhood information. Let x be a
d-dimensional vector sampled uniformly from the vertices
of a hyper-cube X : {0, 1}d, and let the ground truth vari-
ance function be a d-bit parity function σ2 : X 7→ {0, 1}
with σ2(x) = 1 if and only if 1⊤x is odd. Given training
samples x1:n, the task is to obtain estimates for σ2(·). Local
methods, such as the kNN predictor (Györfi et al., 2002) and
kernel methods that leverage radial basis kernels (Cawley
et al., 2004; Bengio et al., 2005), aggregate information
around the neighborhood and compute the variance accord-
ingly. Since all neighborhood vertices in a hyper-cube have
different parities, to accurately estimate σ2(x), these meth-
ods effectively restrict themselves to the data that are iden-
tical to x, rendering an exponential sample requirement
Ω(2d). This sample complexity is also observed in Zaoui
et al. (2020). On the other hand, if we restrict the com-
plexity of the function class, the ERM-based methods can
improve the sample complexity. For example, note that the
parity function can be represented using a one layer neural
network with O(d2) parameters (Rumelhart et al., 1988),
and it has VC-dimension at most O(d2 log(d)) (Blum et al.,
2020). Such a neural network is PAC-learnable with sam-
ple complexity polynomial in d and hence is much more
sample-efficient than the exponential one. Note the compu-
tational complexity of learning such a neural network can
be intractable in general (Haussler, 1992), but this is beyond

the scope of our discussion. Here we focus on the gain in
sample efficiency by restricting the estimation within a cer-
tain hypothesis class; yet such a class can be flexible enough
(e.g., neural networks) to approximate the ground truth suf-
ficiently well. Additionally, learning the parity variance
function using training data polynomial in d also implies
that the learner is able to generalize well on data not seen
before. Thus, the complexity of function classes is the entry
point of our analysis. In the next section, we rigorously
quantify the generalization power of a hypothesis class in
estimating aleatoric uncertainty.

4 MAIN RESULTS

We first give an overview of our theoretical results. Both
theorems establish that under Assumption 1, the variance
function estimators σ̂2 recover the ground truth variance
(σ2)⋆ with PAC-type guarantee, as long as the estimated
mean function µ̂ is reasonably close to the ground truth
mean µ⋆ in L2, with the latter following from standard
results in ML. The sample complexity is polynomial in the
pseudo dimension of the hypothesis class of the variance
function dP (Fσ2).

A Road Map. Due to space constraints, we only present a
proof sketch, while deferring all lemmas and detailed proofs
to the supplementary material. Since Fµ and Fσ are uni-
formly bounded hypothesis classes, for any σ2 ∈ Fσ2 , µ ∈
Fµ and z, one can obtain uniform bounds for ℓNLL(σ

2, µ, z)
and ℓMSE(σ

2, µ, z). In particular, the statistical error of these
empirical losses—relative to their population counterpart—
can be bounded using McDiarmid inequality, and is charac-
terized using Rademacher complexity in Proposition 1 and
Proposition 2, respectively. Theorem 1 and Theorem 2 pro-
vide a formal statement of the main results, with the sample
size chosen sufficiently large to control the statistical error
of the losses; the latter implies the recovery of the ground
truth variance function.

Proposition 1 (Statistical Error of ℓNLL). Under Assump-
tion 1, given n i.i.d. samples Z1:n drawn from the DGP, the
following holds uniformly for all σ2 ∈ Fσ2 , µ ∈ Fµ:∣∣∣∣EZ

[
ℓNLL(σ

2, µ, Z)
]
− 1

n

n∑
i=1

ℓNLL(σ
2, µ, Zi)

∣∣∣∣
≤O

(
1 +m+M

m2
Rn(Fσ2) + (1 +m−1 +M)Rn(Fµ)

+
(1 +M

m

)√ 1

n
log

(
1

δ

))
, (11)

with probability at least 1− δ.

Proposition 2 (Statistical Error of ℓMSE). Under Assump-
tion 1, given n i.i.d. samples Z1:n from the DGP, the follow-
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ing holds uniformly for all σ2 ∈ Fσ2 , µ ∈ Fµ:∣∣∣∣EZ

[
ℓMSE(σ

2, µ, Z)
]
− 1

n

n∑
i=1

ℓMSE(σ
2, µ, Zi)

∣∣∣∣
≤O

(
(1 +M)Rn(Fσ2) + (1 +M

3
2 )Rn(Fµ)

+ (1 +M2)

√
1

n
log

1

δ

)
, (12)

with probability at least 1− δ.

The analysis in Proposition 1 and Proposition 2 holds for
any µ ∈ Fµ and σ2 ∈ Fσ2 and thus permitting µ and
σ2 to be trained using the same training set. This poses a
major challenge in the proof as one needs to decouple the
Rademacher complexity of class products Rn(Fµ · Fσ2)
into their own respective terms Rn(Fµ) and Rn(Fσ2) (see
proof of Lemmas 5-9 in the supplementary material.

Theorem 1 (Risk Bound of Empirical Risk Minimizer using
ℓNLL). Suppose Assumption 1 holds. For any given µ̂ ∈ F
that satisfies

EX(µ∗(X)− µ̂(X))2 ≤ ε,

let

σ̂2 = argmin
σ2∈Fσ2

1

n

n∑
i=1

ℓNLL(σ
2; µ̂, Zi).

Then for ε < 1
2 , the following holds

EX

∣∣∣∣∣ 1

σ̂2(X)
− 1

(σ2)⋆(X)

∣∣∣∣∣
2

≤ ε (13)

with probability at least 1− δ, provided that n is sufficiently
large

n =O

(
1

min{m6,m4}ε2

(
(
1

m2
+

1

m6
+

M2

m4
)dP (Fσ2)

+ (1 +
1

m2
+M)dP (Fµ) +

1 +M2

m2
log(

2

δ
)

))
.

Theorem 2 (Risk Bound of Empirical Risk Minimizer using
ℓMSE). Suppose Assumption 1 holds. For any given µ̂ ∈ F
that satisfies

EX(µ∗(X)− µ̂(X))2 ≤ ε,

let

σ̂2 = argmin
σ2∈Fσ2

1

n

n∑
i=1

ℓMSE(σ
2; µ̂, Zi).

Then for ε < 1
2 , the following holds with probability at least

1− δ

EX

(
σ∗2(X)− σ̂2(X)

)2
≤ ε,

provided that n is sufficiently

n =O

(
1

ε2

(
(M2 + 1)dP (Fσ2) + (M3 + 1)dP (Fµ)

+ (1 +M4) log(
2

δ
)

))
.

Remark 1. The bounds in Theorems 1 and 2 are in their
most general forms. In most cases, m is typically a universal
constant and M can vary to a large value when compared
to the mean. In practice, typically there are two cases:

• The mean function µ̂ is estimated with different data.
In this case, we can simply pick Fµ = {µ̂} so that
dP (Fµ) = 0. As long as EX(µ∗(X) − µ̂(X))2 ≤ ε,
Theorems 1 and 2 will hold and the dominating term
in sample complexity is O(

M2dP (Fσ2 )

ε2 )

• The mean function µ̂ is estimated with the same
data and jointly with σ̂2. Whether µ̂ is esti-
mated with a different procedure or jointly with
σ̂2 by ERM, note one will always have σ̂2 =
argminσ2∈Fσ2

1
n

∑n
i=1 ℓ(σ

2; µ̂, Zi), regardless how µ̂
is obtained. Thus Theorems 1 and 2 will still hold.

Finally, we briefly comment on the EX(µ∗(X)− µ̂(X))2 ≤
ε condition. This condition can be achieved using standard
ERM, with sample size Õ(dP (Fµ)/ε) under mild assump-
tions (e.g., bounded regression and realizability (Bartlett
et al., 2005; Massart and Nédélec, 2006)).

Remark 2. More importantly, the bound for the ℓNLL-
based estimator has risk bound in the precision, that is,

EX

∣∣∣ 1

σ̂2(X)
− 1

(σ2)⋆(X)

∣∣∣2 ≤ ε which can be equivalently

written in some ratio form EX

[∣∣∣ σ̂2(X)−(σ2)
⋆
(X)

σ̂2(X)(σ2)⋆(X)

∣∣∣2] ≤ ε;

on the other hand, ℓMSE-based empirical risk minimizer
in an additive manner: EX((σ2)⋆(X) − σ̂2(X))2 ≤ ε.
The “ratio” error suggests an advantage of ℓNLL over ℓMSE

when σ̂2(x) and (σ2)⋆(x) are small, i.e., in a low variance
regime, where an “additive” error suggests an advantage
of ℓMSE over ℓNLL when σ̂2(x) and (σ2)⋆(x) are large, i.e.,
a high variance regime. Our empirical study corroborates
these observations. We shall observe this phenomenon in
the experiments section.

5 EXPERIMENTS

We conduct a series of synthetic data experiments to support
our theoretical findings in the previous section. Our exper-
iments consist of two parts: in the first part, we consider
settings S1, S2 and S3 (details to be introduced later) with
the goal of showing that one can use neural networks to
approximate the ground truth variance function by mini-
mize the NLL or MSE loss, when provided with a sufficient
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Figure 1: Visualization for the true µ⋆(x) (blue) and (σ2)⋆(x) (orange) used in synthetic data experiment settings S1:
quadratic in x; S2: σ is parametrized through an rbf network; S3: summation of B-spline bases; S4 and S5: summation of
indicator function bases with different number of knots.

amount of data; in the second part, we consider settings
S4 and S5, aiming to show that the empirical minimizers
using two losses have their respective merit in performance,
depending on the magnitude of underlying true variance.

Part I. We consider a similar setting to those in Skafte
et al. (2019); Seitzer et al. (2022), where the mean func-
tion is a sinusoidal curve and the small additive noise is
heteroscedastic with the magnitude of the variance depend-
ing on the value of x. Concretely, the true data-generating
process is given as follows for some univariate regressor
x ∈ [0, 10] and response y:

y = µ⋆(x) +
√
(σ2)⋆(x)u, E(u) = 0; Var(u) = 1;

(14)
the ground truth mean function is given by µ⋆(x) :=
x sin(x); for the data-dependent noise scale function
(σ2)⋆(x) and u, we consider several different settings where
the complexity of the functional class and the distribution
of u varies:

(S1) (σ2)⋆(x) := 0.09(1 + x2), u ∼ N (0, 1);

(S2) (σ2)⋆(x) := σ̃2(x), where σ̃(x) is parametrized
through a radial basis function (rbf) network, that is,

σ̃(x) :=
∑K

k=1
wk · exp{−βk(x− ck)

2}.

K ≡ 50 is the number of neurons in the hidden layer,
ck is the center and βk is the scale, with the former
randomly generated from Unif(0, 10) and the latter
from Unif(0.01, 0.02); the weights wk’s are generated
in an identical way to Xavier initialization (Glorot and
Bengio, 2010); u ∼ t8, that is, a centered student
t-distribution with degree of freedom being 8;

(S3) (σ2)⋆(x) :=
∑K

k=1(β1,kBk,3(x) + β2,kBk,4(x)), i.e.,
the summation of 3rd and 4th order B-spline (De Boor,
1978) bases with the underlying piecewise polynomi-
als having degree 2 and 3; K ≡ 5 is the number of
knots and β1,k, β2,k are positive coefficients randomly
generated from Unif(0, 5); u ∼ N (0, 1).

Finally, we ensure that the domain of (σ2)⋆(x) is [0.1, 10],
by applying scaling or flooring wherever necessary. Note

that settings (S2) and (S3) are challenging as a result of the
high complexity of the functional class that (σ2)⋆(x) falls
into. A visualization for these settings is given in Figure 1.

We use two feed-forward neural networks (w/ additional
residual connections) to fit µ(x) and σ2(x), respectively.
Model training proceeds in two stages: at Stage I, the mean
function is fitted based on mean-squared-error loss, that is,

µ̂(·) = arg min
µ(·)

ntrain∑
i=1

(
yi − µ(xi)

)2
.

Once the mean network is trained, we obtain the residual
ξ̂i := yi − µ̂(xi) and proceed to Stage II to fit the variance
function, respectively based on the mean-squared-error loss
(or equivalently, moment-matching) and the negative log-
likelihood loss (NLL):

σ̂2
MSE(·) := arg min

σ2(·)

ntrain∑
i=1

(
ξ̂2i − σ2(xi)

)2
,

σ̂2
NLL(·) := arg min

σ2(·)

ntrain∑
i=1

( ξ̂2i
σ2(xi)

+ log σ2(xi)
)
. (15)

For each setting, we fit the model to 10 replicas of the gener-
ated data. Specifically, the networks are trained on sets with
different training sizes {1e3, 3e3, 5e3, 1e4, 3e4}, whose
performance is then evaluated on a test set of fixed size 1e3,
by comparing the estimates against the underlying ground
truth. Table 1 shows the RMSE of the mean estimate µ̂ and
variance estimates σ̂2(x) across different settings, with the
model trained on samples of different sizes. Figure 2 dis-
plays the confidence band from the truth and the estimated
variance within 2 standard deviation.

Based on the results in Table 1 and Figure 2, we observe:
(1) empirically, both moment matching and NLL-based esti-
mators are capable of learning the underlying true variance
function, with their respective performance similar, as mani-
fested by the similar magnitude in RMSE; (2) there is some
degradation in performance for the variance estimate when
the functional class becomes more complicated, whereas the
adverse impact to the mean estimate is somewhat limited.

Part II. To explore what the theoretical bounds in The-
orems 1 and 2 imply in empirical settings—in particular,
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Figure 2: True confidence band and estimated ones. In particular, the black dashed line corresponds to the true mean µ⋆(x)
and the red line corresponds to the estimated one; the ±2σ area based on the truth is shaded in green and that from the
estimated is outlined by the blue line. Black dots corresponds to points that fall outside of the 2σ region.

Figure 3: Setting S4; comparison in RMSE between σ̂2
MSE(x) (in blue) and σ̂2

NLL(x) (in orange) by quartile

Figure 4: Setting S5; comparison in RMSE between σ̂2
MSE(x) (in blue) and σ̂2

NLL(x) (in orange) by quartiles

Table 1: RMSE for µ̂(x) and σ̂2(x) across different settings
and train sizes. The reported number corresponds to the av-
erage across 10 replicas, with the standard deviation report
in parentheses.

train size

1e3 3e3 5e3 1e4 3e4
S1 µ̂ 0.74(.21) 0.58(.16) 0.55(.13) 0.47(.19) 0.48(.10)

σ̂2MSE 0.50(.53) 0.34(.31) 0.40(.24) 0.45(.29) 0.31(.10)
σ̂2NLL 0.89(.65) 0.49(.32) 0.44(.20) 0.42(.45) 0.45(.16)

S2 µ̂ 0.64(.13) 0.62(.18) 0.56(.12) 0.54(.10) 0.44(.12)
σ̂2MSE 1.23(2.29) 0.93(.77) 0.83(.38) 1.00(.32) 0.75(.19)
σ̂2NLL 1.59(.49) 1.49(.58) 0.94(.51) 0.70(.46) 0.74(.21)

S3 µ̂ 0.58(.17) 0.58(.15) 0.55(.12) 0.70(.19) 0.56(.21)
σ̂2MSE 1.22(.21) 1.21(.25) 1.16(.25) 1.34(.31) 0.98(.45)
σ̂2NLL 1.44(.33) 1.02(.30) 0.95(.20) 1.22(.32) 1.18(.35)

in terms of how estimates based on the two losses would
compare in different value regions—we consider the follow-
ing special setup. Data is still generated according to (14),
with µ⋆(x) := x sin(x). The variance function (σ⋆)2(x) is
parameterized through the sum of indicator functions, that
is

(σ2)⋆(x) =
∑K

k=1
βkBk,1(x),

where Bk,1(x)’s are B-spline basis function with order 1
that are effectively indicator functions, and βk’s are positive
coefficients. The specific values for K and the noise distri-
bution are given below, with the settings marked as S4 and

Table 2: RMSE for σ̂2(x) in different bins based on quartiles
of (σ2)⋆(x), across different settings and sample sizes

bin by quartile

0-25% 25-50% 50-75% 75-100%
S4 1e3 σ̂2MSE 1.39(.49) 1.84(.38) 1.39(.37) 2.78(.48)

σ̂2NLL 1.11(.34) 1.85(.60) 2.19(.66) 3.12(.43)
3e3 σ̂2MSE 1.40(.25) 1.71(.29) 1.03(.27) 2.37(.31)

σ̂2NLL 0.99(.13) 1.67(.32) 1.59(.32) 2.69(.19)
5e3 σ̂2MSE 1.30(.28) 1.67(.20) 0.94(.19) 2.40(.25)

σ̂2NLL 0.99(.21) 1.68(.29) 1.50(.28) 2.72(.22)
1e4 σ̂2MSE 1.29(.24) 1.66(.17) 0.88(.24) 2.40(.29)

σ̂2NLL 1.04(.17) 1.71(.26) 1.50(.38) 2.67(.25)

S5 1e3 σ̂2MSE 2.24(.58) 2.87(1.20) 2.60(.42) 3.64(1.02)
σ̂2NLL 1.87(.43) 3.31(1.38) 3.18(.67) 3.93(1.05)

3e3 σ̂2MSE 1.97(.33) 2.03(.43) 1.81(.29) 2.49(.31)
σ̂2NLL 1.70(.25) 2.02(.45) 1.99(.27) 2.74(.29)

5e3 σ̂2MSE 1.92(.25) 1.80(.28) 1.57(.16) 2.20(.15)
σ̂2NLL 1.62(.17) 1.76(.34) 1.82(.18) 2.61(.28)

1e4 σ̂2MSE 1.94(.13) 1.82(.19) 1.32(.10) 1.82(.19)
σ̂2NLL 1.61(.14) 1.76(.23) 1.58(.09) 2.23(.31)

S5; the latter corresponds to a functional class with a higher
complexity, as a result of using more knots/bases.

(S4) K = 20, u ∼ N (0, 1);

(S5) K = 50, u ∼ t8, where t8 is the Student-t distribution
with 8 degrees of freedom
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To directly compare the performance of variance estimation,
we let the ground truth mean function be given and we are
only estimating the variance function. Further, instead of
parameterizing the variance function through a neural net-
work and optimizing for the weights, we directly provide
a set of basis functions whose span include the underlying
true variance function, so that we can solve for the weights
through deterministic optimizers. This allows one to largely
circumvent empirical instability in the training of neural net-
works and make the comparison more robust. The specific
choice of choosing indicator functions as basis function is
not only due to its flexibility, but also due to optimization
consideration; specifically, we note that the objective func-
tion in (15) is convex in 1

σ2 and having indicator functions
as basis enables one to directly parameterize 1

σ2(·) and keep-
ing the optimization error small. The model is trained on
samples of sizes 1e3, 3e3, 5e3, and 10e3 and applied to a
test set of size 1e3.

Table 2 (see also Figures 3 and 4 for visualization) com-
pare the RMSE between σ̂2

MSE(x) and σ̂2
NLL(x) in differ-

ent value regions, as separated based on the quartiles of
(σ2)⋆(x), i.e., 25%, 50%, 75%. Across both settings and
all sample sizes considered, we again observe that σ̂2

NLL(x)

outperforms σ̂2
MSE(x) in the low-value region (as mani-

fested by a lower RMSE) , while vice versa in the high-value
one. This is consistent with the discussion in Remark 2, that
based on the bounds in Theorems 1 and 2, one expects
σ̂2

NLL(x) to underperform in the case where σ⋆(x) has a
large value, due to the ratio form in the risk bound estab-
lished.2

6 CONCLUSION & FUTURE WORKS

In this paper, we provide theoretical analysis for the estima-
tion of variance based on MSE and NLL losses, respectively,
and show that their respective PAC-type risk bounds have
distinct behavior under different regimes that are dictated
by the magnitude of uncertainty. A pertinent future research
direction is how to devise estimation procedures that lever-
age the aforementioned results, where one could potentially
combine two loss functions in an adaptive fashion, to pro-
vide robust and accurate uncertainty estimation across the
entire domain. It is also worth investigating the connection
between our approach and those in the nuisance parame-
ters literature (e.g. Foster and Syrgkanis, 2019), since our
analysis circumvents using sample splitting for estimating
µ, which is required by the latter line of literature and poses
some limitation (in this context µ can be regarded as a nui-
sance parameter).

2See https://github.com/morganstanley/MSML/
tree/main/papers/Risk_Bounds_Aleatoric_
Uncertainty to replicate the settings and runs adopted.
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A PRELIMINARIES

Notation. Vectors are denoted by bold-faced letters and [x]i denotes the i-th entry of vector x. xTy represents the inner
product vectors. We use ∥ · ∥p to denote the ℓp norm of vectors. Let [n] = {1, 2, ..., n} and x1:n = {xi}ni=1. Denote
uppercase letter X to be random variable. Write X ∼ D when X follows distribution D and let X1:n ∼ Dn denote n i.i.d.
samples from D. Let EX∼D denote the expectation taken w.r.t. X under D or simply EX when D is clear. We use D

= to
denote two random variables are equal in distribution. Finally, we use short hand a ∨ b = max(a, b) and a ∧ b = min(a, b).

Problem Setup. Without loss of generality, consider a regression task in feature space X (typically Rd) with response
Y taking value in Y ⊆ R. The joint underlying distribution of Z ≜ (X,Y ) over Z ≜ X × Y is denoted by D̄ (i.e.,
z1:n = {(xi, yi)}ni=1 denote n i.i.d. samples drawn from D̄). In this paper, we use the following joint data generative
process (DGP) to model the heteroscedasticity:

X ∼D

Y |X=x
D
=µ(x) + ξ(x), (16)

where the feature X ∼ D follows some underlying distribution D, and the response Y has feature-dependent mean and
noise structure specified by µ and ξ. Here, µ(x) is the mean function that characterizes E[Y |X = x], which we henceforth
assume −1 ≤ µ ≤ 1, w.o.l.g. More importantly, {ξ(x)}x∈X is a family of noise distribution on R indexed by X . We allow
this family of distribution to be general and we only specify its first two moments (and assume its existence). In particular,
let R be the space of random variable distributed on R with finite variance, then the feature-dependent noise ξ(·) : X → R
satisfies E[ξ(x)] = 0 and variance σ2(x) ≜ Var(ξ(x)). As suggested in the addition sign in (16), we assume an additive
noise structure where ξ(xi) is conditional independent of ξ(xj) given Xi, Xj . The DGP model (4) completely characterizes
Z ≜ (X,Y ) ∼ D̄, and allows for general form of heteroscedasticity on Y .

Next, we give definitions for the terms used in the ensuing technical development.

Definition 4. Given x1:n ⊆ X and a hypothesis class F = {f : X → [l, u]}. The empirical Rademacher complexity of the
hypothesis class F is defined to be

R̂n(F ;x1:n) ≜ Eσ1:n∼Dn
σ
[sup
f∈F

1

n

n∑
i=1

σif(xi)], (17)

where σ1:n follows from i.i.d. Rademacher distribution Dσ, i.e., P(σi = 1) = P(σi = −1) = 1
2 . Furthermore, given

X ∼ D, the Rademacher average of F is defined as

Rn(F) ≜ EX1:n∼Dn [R̂n(F ;X1:n)]. (18)

In general, the Rademacher complexity is difficult to calculate (NP-hardness, see (Kääriäinen, 2004)). However, VC-
dimension typically can provide a simple bound.

Definition 5 (VC-dimension). The VC-dimension dV C(F) of a hypothesis class F = {f : X → {1,−1}} is the largest
cardinality of any set S ⊆ X such that ∀S̄ ⊆ S, ∃f ∈ F:

f(x) =

{
1 if x ∈ S̄

−1 if x ∈ S \ S̄
(19)

Definition 6 (Pseudo-dimension). The Pseudo-dimension dP (F) of a real-valued hypothesis class F = {f : X → [l, u]}
is the VC-dimension of the hypothesis class

H = {h : X × R → {−1, 1} | h(x, t) = sign(f(x)− t), f ∈ F , t ∈ R}.

B TECHNICAL LEMMAS

The following lemma follows from Dudley’s chaining bound (Dudley, 1967) and concepts of ”covering number” Pollard
(1982); Rakhlin (2020) built upon Haussler’s bound and combinatorial dimension Haussler (1995); Van der Vaart and Wellner
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(1996), one can bound the Rademacher complexity with VC-dimension. We note an alternative to bound Rademacher
complexity is using Sauer’s lemma Sauer (1972) and Massart lemma Shalev-Shwartz and Ben-David (2014). Compared to
the first method, these methods can achieve upper bounds of the same order, up to a logarithmic factor.

Lemma 2. Let F = {f : X → [−M,M ]} be a bounded (i.e. by M > 0) hypothesis class with finite Pseudo-dimension
dP (F) < ∞. Let R̂n(F ;x1:n) be the empirical Rademacher complexity defined in (17), then there exists some universal
constant K1 (depending only on M and X ) such that

R̂n(F ;x1:n) ≤ K1

√
dP (F)

n

for any x1:n ⊆ X . Consequently, we also have Rn(F) ≤ K1

√
dP (F)

n for any distribution X ∼ D.

Lemma 3. Let G = {g : X → [m,M ]} be a hypothesis class of positive functions from X to [m,M ], M ≥ m > 0. Then,
if we define the class

G−1 ≜

{
h : X → [

1

M
,
1

m
], h =

1

g
for g ∈ G

}
,

we have:

Rn(G−1) ≤ 1

m2
Rn(G) (20)

Proof. For Φ(t) = 1
t , defined for t ∈ [m,M ], we first show that Φ is 1

m2 -Lipschitz for t, s ∈ [m,M ]:∣∣∣∣1t − 1

s

∣∣∣∣ = ∣∣∣∣ t− s

ts

∣∣∣∣ ≤ 1

m2
|t− s| (21)

Now if we define, for some Φ : R → R, the function class

Φ ◦ G ≜ {h : h = Φ(g) for g ∈ G},

we clearly have
G−1 = Φ ◦ G

since g ∈ [m,M ]. Thus, we can invoke standard Talagrand Contraction Lemma Ledoux and Talagrand (1991) to directly
obtain the conclusion. See also Lemma 5.7 in Mohri et al. (2018) or Lemma 8 in Mohri and Medina (2014).

Lemma 4. Let G = {g : X → [m,M ]} be a hypothesis class of positive functions from X to [m,M ], M > m > 0. Then
we define the class

log ◦G ≜

{
h : X → R, h = log(g) for g ∈ G

}
,

we can show:

Rn(log ◦G) ≤
1

m
Rn(G). (22)

Proof. In the domain t, s ∈ [m,M ], we have log is 1
m -Lipschitz:∣∣∣∣ log(t)− log(s)

∣∣∣∣ ≤ 1

m
|t− s|, (23)

The rest follows in the same way as lemma 3, a proof could also be found in DeSalvo et al. (2015).

Lemma 5. Let G = {g : X → [−M,M ]} be a hypothesis class of functions for X to [−M,M ]. Then we define the class

G2 ≜

{
h : X → R, h = g2 for g ∈ G

}
,

we can show:
Rn(G2) ≤ 2MRn(G). (24)
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Proof. In the domain t, s ∈ [−M,M ], we have t2 is 2M -Lipschitz:

|t2 − s2| = |t− s||t+ s| ≤ 2M |t− s|.

The rest follows in the same way as lemma 3.

Lemma 6. (Rademacher Complexity for Class Sum) Let F and G be two classes of function mappings from X to R and
define the classes

G + F ≜{h : X → R, h = f + g, f ∈ F , g ∈ G}
G − F ≜{h : X → R, h = f − g, f ∈ F , g ∈ G}.

Then, the Rademacher average defined in (18) satisfies

Rn(F + G) ≤Rn(F) +Rn(G)
Rn(F − G) ≤Rn(F) +Rn(G).

Proof. It follows from (18) that

Rn(F + G) =Eσ1:n,X1:n [ sup
h∈F+G

1

n

n∑
i=1

σih(Xi)]

=Eσ1:n,X1:n [ sup
f∈F,g∈G

1

n

n∑
i=1

σi(f(Xi) + g(Xi))]

≤Eσ1:n,X1:n
[sup
f∈F

1

n

n∑
i=1

σif(Xi) + sup
g∈G

1

n

n∑
i=1

σig(Xi)]

=Rn(F) +Rn(G)

Similarly,

Rn(F − G) =Eσ1:n,X1:n [ sup
f∈F−G

1

n

n∑
i=1

σih(Xi)]

=Eσ1:n,X1:n
[ sup
f∈F,g∈G

1

n

n∑
i=1

σi(f(Xi)− g(Xi))]

≤Eσ1:n,X1:n
[sup
f∈F

1

n

n∑
i=1

σif(Xi) + sup
g∈G

1

n

n∑
i=1

−σig(Xi)]

=Rn(F) +Rn(G)

where the last equality follows from the fact the Rademacher distribution is symmetric, i.e., −σ ∼ Dσ if σ ∼ Dσ .

Lemma 7 (Rademacher Complexity for class product). Let F and G be two classes of function mappings from X to R and
define the class

F · G ≜{h : X → R, h = f · g, f ∈ F , g ∈ G}.

Suppose F and G are bounded, in the sense that there exists a constant |f(·)| < B1, g(·) < B2. Then if we let B = B1+B2,
the Rademacher average defined in (18) satisfies

Rn(F × G) ≤ 2B ·
(
Rn(F) +Rn(G)

)
.

Proof. Define F + G and F − G as in lemma 6 and define ϕ(·) : R → R as ϕ(x) = (|x|∧2B)2

4 . It can be checked that ϕ is
B-Lipschitz and

xy =
(x+ y)2

4
− (x− y)2

4
= ϕ(x+ y)− ϕ(x− y)



Zhang, Lin, Li, Adler, Rasul, Schneider, Nevmyvaka

for any |x| ≤ B, |y| ≤ B. Thus, it follows from 6 and Talagrand’s contraction inequality that

Rn(F · G) ≤Rn(ϕ ◦ (F + G)) +Rn(ϕ ◦ (F − G))
≤BRn(F + G) +BRn(F − G)

≤2B
(
Rn(F) +Rn(G)

)
,

which concludes the proof.

Lemma 8. Let F = {f : X → [−1, 1]} be a hypothesis class of functions from X to [−1, 1]. Then we define the class

LS ◦ F ≜

{
h : Z → R, h(z) = (y − f(x))2, f ∈ F

}
,

Assuming Y ⊆ {y : |y| ≤ 1 +
√
M} and recall Rn(LS ◦ F) ≜ EZ1:n∼D̄n [R̂n(LS ◦ F ;Z1:n)], one can show:

Rn(LS ◦ F) ≤ (4 + 2
√
M)Rn(F) (25)

Proof. Since |y − f(x)| ≤ 2 +
√
M for all z , by Lemma 5 we have

Rn(LS ◦ F) ≤(4 + 2
√
M)EZ1:n

[
Eσ1:n

[
sup
f∈F

1

n

n∑
i=1

σi(Yi − f(Xi))

]]

=(4 + 2
√
M)EX1:n

[
Eσ1:n

[
sup
f∈F

1

n

n∑
i=1

σif(Xi)

]]
=(4 + 2

√
M)Rn(F).

Lemma 9 (Rademacher Complexity for NLL loss). Let F = {f : X → [−1, 1]} a be hypothesis class of real-valued
functions from X to [−1, 1]. Let G = {g : X → [m,M ]} a be hypothesis class of positive functions from X to [m,M ].
Define

LNLL ◦ (F × G) ≜ {ℓ : Z → R , ℓ(z) = log(g(x)) +
(y − f(x))2

g(x)
, f ∈ F , g ∈ G}.

Assume Y ⊆ {y : |y| ≤ 1 +
√
M} and recall Rn(LNLL ◦ F) ≜ EZ1:n∼D̄n [R̂n(LNLL ◦ F ;Z1:n)], one can show:

Rn(LNLL ◦ (F × G)) ≤ (
1

m
+

8 + 8
√
M + 2M

m2
+

6

m3
)Rn(G) + 4(2 +

2

m
+

√
M)Rn(F). (26)

Proof. Note we have that

Rn(LNLL ◦ (F × G))

=EZ1:n

[
Eσ1:n

[
sup
f,g

1

n

n∑
i=1

σi

(
log(g(Xi)) +

(Yi − f(Xi))
2

g(Xi)

)]]

=EZ1:n

[
Eσ1:n

[
sup
f,g

1

n

n∑
i=1

σi

(
log(g(Xi)) +

Y 2
i

g(Xi)
− 2Yif(Xi)

g(Xi)
+

f2(Xi)

g(Xi)

)]]

≤EX1:n
Eσ1:n

[
sup
g

1

n

n∑
i=1

σi log(g(Xi))

]
︸ ︷︷ ︸

≤ 1
mRn(G), by Lemma 4

+ EZ1:n
Eσ1:n

[
sup
g

1

n

n∑
i=1

σi
Y 2
i

g(Xi)

]
︸ ︷︷ ︸

≤ (2+2M+4
√

M)

m2 Rn(G), by Lemma 3 and Lemma 7

+ EZ1:n
Eσ1:n

[
sup
f,g

n∑
i=1

σi
2Yif(Xi)

g(Xi)

]
︸ ︷︷ ︸

≤4(1+
√
M+ 1

m )( 1
m2 Rn(G)+Rn(F)), by Lemma 3 and Lemma 7

+ EX1:n
Eσ1:n

[
sup
f,g

n∑
i=1

σi
f2(Xi)

g(Xi)

]
︸ ︷︷ ︸

2(1+ 1
m )( 1

m2 Rn(G)+2Rn(F)), by Lemma 3, Lemma 5 and Lemma 7

≤(
1

m
+

8 + 8
√
M + 2M

m2
+

6

m3
)Rn(G) + 4(2 +

2

m
+

√
M)Rn(F)
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Lemma 10 (Rademacher Complexity for MSE loss). Let F = {f : X → [−1, 1]} a be hypothesis class of real-valued
functions from X to [−1, 1]. Let G = {g : X → [m,M ]} a be hypothesis class of positive functions from X to [m,M ].
Define

LMSE ◦ (F × G) ≜ {ℓ : Z → R , ℓ(z) =
(
g(x)− (y − f(x))2

)2
, f ∈ F , g ∈ G}.

Assume Y ⊆ {y : |y| ≤ 1 +
√
M} and recall Rn(LMSE ◦ F) ≜ EZ1:n∼D̄n [R̂n(LMSE ◦ F ;Z1:n)], one can show

Rn(ℓMSE ◦ (F × G)) ≤ (16 + 16
√
M + 6M)Rn(G) + 8(8 + 12

√
M + 6M +M

3
2 )Rn(F) (27)

Proof. Since |y| ≤ 1 +
√
M , we have |y − f(x)|2 ≤ 4 + 4

√
M +M . Then we have that

Rn(ℓMSE ◦ (F × G))

=EZ1:nEσ1:n

[
sup
f,g

1

n

n∑
i=1

σi

(
g(Xi)−

(
Yi − f(Xi)

)2)2]

=EZ1:nEσ1:n

[
sup
f,g

1

n

n∑
i=1

σi

(
g2(Xi)− 2g(Xi)

(
Yi − f(Xi)

)2
+ (Yi − f(Xi)

)4)]

≤EX1:nEσ1:n

[
sup
g

1

n

n∑
i=1

σig
2(xi)

]
︸ ︷︷ ︸

≤2MRn(G), by Lemma 5

+ EZ1:nEσ1:n

[
sup
f,g

n∑
i=1

σi2g(Xi)
(
Yi − f(Xi)

)2]
︸ ︷︷ ︸

≤4(4+4
√
M+M)(Rn(G)+(2+

√
M)Rn(F)), by Lemma 7 and Lemma 8

+ EZ1:n
Eσ1:n

[
sup
f

n∑
i=1

σi(Yi − f(Xi)
)4]

︸ ︷︷ ︸
4(8+12

√
M+6M+M

3
2 )Rn(F), by Lemma 5 and Lemma 8

≤(16 + 16
√
M + 6M)Rn(G) + 8(8 + 12

√
M + 6M +M

3
2 )Rn(F)

(28)

C MISSING PROOF FOR MAIN RESULTS

Assumption 2. We assume the noise ξ(x) in DGP satisfies |ξ| ≤
√
M , almost surely. Moreover, let Fµ = {f : X →

[−1, 1]} and Fσ2 = {σ2 : X → [m,M ]} for some 0 < m < M be two hypothesis classes with finite Pseucdo-dimension
dP (F) < ∞, dP (G) < ∞. We assume that the DGP further satisfies:

µ⋆ ∈ Fµ, and (σ2)⋆ ∈ Fσ2

where µ⋆(x) = E[Y |x] is the mean function and (σ2)⋆(x) = Var[Y |x] is the feature-dependent variance.

Proposition 3. Under Assumption 2, given n i.i.d. samples Z1:n from the DGP, we have:

sup
µ∈Fµ,σ2∈Fσ2

∣∣∣∣EZ

[
ℓNLL(σ

2, µ, Z)
]
− 1

n

n∑
i=1

ℓNLL(σ
2, µ, Zi)

∣∣∣∣
≤2(

1

m
+

8 + 8
√
M + 2M

m2
+

6

m3
)Rn(G) + 8(2 +

2

m
+

√
M)Rn(F) +

3 + 8M

m
·
√

1

2n
log

2

δ
(29)

with probability at least 1− δ.

Proof. First, let Z(−1)
1:n be any sample that differs from Z1:n by exactly one point, e.g., Z(−1)

1 ̸= Z1 but Zi = Z
(−1)
i for
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2 ≤ i ≤ n. First, note we have

∣∣∣∣ 1n
n∑

i=1

ℓNLL(σ
2, µ, Zi)−

1

n

n∑
i=1

ℓNLL(σ
2, µ, Z ′

i)

∣∣∣∣ (30)

≤ 1

n

∣∣∣∣ log( σ2(X1)

σ2(X
(−1)
1 )

)
+

(Y1 − µ(X1))
2

σ2(X1)
− (Y

(−1)
1 − µ(X

(−1)
1 ))2

σ2(X
(−1)
1 )

∣∣∣∣
≤ 1

n

(∣∣∣∣ log( σ2(X1)

σ2(X
(−1)
1 )

)∣∣∣∣+ ∣∣∣∣ (Y1 − µ(X1))
2

σ2(X1)
− (Y

(−1)
1 − µ(X

(−1)
1 )2)

σ2(X
(−1)
1 )

∣∣∣∣)
≤ 1

n

(∣∣∣∣ log( σ2(X1)

σ2(X
(−1)
1 )

)∣∣∣∣+ max
Z∈{Z1,Z

(−1)
1 }

(y − µ(X))2

σ2(X)

)
≤ 1

n

(
log

M

m
+

8 + 2M

m

)
≤ 8 + 3M

nm
. (31)

where the last line follows from the assumption |ξ| ≤
√
M , m ≤ σ2 ≤ M and elementary inequality (a+ b)2 ≤ 2a2 + 2b2.

On the other hand, define the random variable

∆Fσ2 ,Fµ(Z1:n) ≜ sup
σ2∈Fσ2 ,µ∈Fµ

(
EZ [ℓNLL(σ

2, µ, Z)]− 1

n

N∑
i=1

ℓNLL(σ
2, µ, Zi)

)
, (32)

we must have

EZ [ℓNLL(σ
2, µ, Z)]− 1

n

N∑
i=1

ℓNLL(σ
2, µ, Zi) ≤ ∆Fσ2 ,Fµ(Z1:n).

To analyze the quantity ∆Fσ2 ,Fµ(Z1:n), one can check that

∆Fσ2 ,Fµ(Z1:n)−∆Fσ2 ,Fµ(Z
(−1)
1:n ) ≤ sup

σ2∈Fσ2 ,µ∈Fµ

(
1

n

N∑
i=1

ℓNLL(σ
2, µ, Z

(−1)
i )− 1

n

N∑
i=1

ℓNLL(σ
2, µ, Zi)

)
=
1

n
sup

σ2∈Fσ2 ,µ∈Fµ

(
ℓNLL(σ

2, µ, Z
(−1)
1 )− ℓNLL(σ

2, µ, Z1))

)
≤3 + 8M

nm
,

where the last inequality follows from (30). Similarly, we can show

∆Fσ2 ,Fµ(Z
(−1)
1:n )−∆Fσ2 ,Fµ(Z1:n) ≤

3 + 8M

nm

which gives

|∆Fσ2 ,Fµ(Z
(−1)
1:n )−∆Fσ2 ,Fµ(Z1:n)| ≤

3 + 8M

nm
. (33)

Thus, using McDiarmid’s inequality, we can show that

∆Fσ2 ,Fµ(Z1:n) ≤ EZ1:n
[∆Fσ2 ,Fµ(Z1:n)] +

3 + 8M

m
·
√

1

2n
log

2

δ
(34)
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with probability at least 1− δ
2 . Now, to bound E[∆Fσ2 ,Fµ(Z1:n)], let Z1:n and Z ′

1:n be two i.i.d. samples of size n, we have

E[∆Fσ2 ,Fµ(Z1:n)]

=EZ1:n

[
sup

σ2∈Fσ2 ,µ∈Fµ

(
EZ [ℓNLL(σ

2, µ, Z)]− 1

n

N∑
i=1

ℓNLL(σ
2, µ, Zi)

)]

=EZ1:n

[
sup

σ2∈Fσ2 ,µ∈Fµ

(
EZ′

1:n

[
1

n

N∑
i=1

ℓNLL(σ
2, µ, Z ′

i)

]
− 1

n

N∑
i=1

ℓNLL(σ
2, µ, Zi)

)]

≤EZ1:n,Z′
1:n

[
sup

σ2∈Fσ2 ,µ∈Fµ

1

n

n∑
i=1

(
ℓNLL(σ

2, µ, Zi)− ℓNLL(σ
2, µ, Z ′

i)
)]

=EZ1:n,Z′
1:n,σ1:n

[
sup

σ2∈Fσ2 ,µ∈Fµ

1

n

n∑
i=1

σi

(
ℓNLL(σ

2, µ, Zi)− ℓNLL(σ
2, µ, Z ′

i)
)]

≤EZ1:n,σ1:n

[
sup

σ2∈Fσ2 ,µ∈Fµ

1

n

n∑
i=1

σiℓNLL(σ
2, µ, Zi)

]
+ EZ′

1:n,σ1:n

[
sup

σ2∈Fσ2 ,µ∈Fµ

1

n

n∑
i=1

−σiℓNLL(σ
2, µ, Z ′

i)

]

=2EZ1:n,σ1:n

[
sup

σ2∈Fσ2 ,µ∈Fµ

1

n

n∑
i=1

σiℓNLL(σ
2, µ, Zi)

]

≤2(
1

m
+

8 + 8
√
M + 2M

m2
+

6

m3
)Rn(G) + 8(2 +

2

m
+

√
M)Rn(F), (35)

where σ is the Radamacher random variable and the last line follows from Lemma 9. The other direction of equation 29 can
be proved similarly, which concludes the proof.

Proposition 4. Under Assumption 2, given n i.i.d. samples Z1:n from the DGP, we have:

sup
µ∈Fµ,σ2∈Fσ2

∣∣∣∣EZ

[
ℓMSE(σ

2, µ, Z)
]
− 1

n

n∑
i=1

ℓMSE(σ
2, µ, Zi)

∣∣∣∣
≤2(16 + 16

√
M + 6M)Rn(G) + 16(8 + 12

√
M + 6M +M

3
2 )Rn(F) + 4(M2 + 8M + 16) ·

√
1

2n
log

2

δ
(36)

with probability at least 1− δ.

Proof. The proof is similar to the proof in Proposition 3. First, let Z(−1)
1:n be any sample that differs from Z1:n by exactly

one point, e.g., Z(−1)
1 ̸= Z1 but Zi = Z

(−1)
i for 2 ≤ i ≤ n. First, note we have

∣∣∣ 1
n

n∑
i=1

ℓMSE(σ
2, µ, Zi)−

1

n

n∑
i=1

ℓMSE(σ
2, µ, Z

(−1)
i )

∣∣∣
=
1

n

∣∣∣ (σ2(X1)− (Y − µ(X1))
2
)2 − (σ2(X

(−1)
1 )− (Y (−1) − µ(X

(−1)
1 ))2

)2 ∣∣∣
≤ 1

n
sup
Z∈Z

(
σ2(X)− (Y − µ(X))2

)2 ≤ 4(M2 + 8M + 16)

n
, (37)

where the last line follows from σ2 ≤ M, (Y − f(X))2 ≤ 8 + 2M . Then, similarly as the proof in Proposition 3, we can
define:

∆Fσ2 ,Fµ(Z1:n) ≜ sup
σ2∈Fσ2 ,Fµ

(
EZ [ℓMSE(σ

2, µ, Z)]− 1

n

n∑
i=1

ℓMSE(σ
2, µ, Zi)

)
(38)

and use McDiarmid’s inequality to show

∆Fσ2 ,Fµ(Z1:n) ≤ EZ1:n [∆
Fσ2 ,Fµ(Z1:n)] + 4(M2 + 8M + 16) ·

√
1

2n
log

2

δ
(39)
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with probability at least 1− δ
2 . Then, using the argument similar to Equation 35, one can show

EZ

[
∆Fσ2 ,Fµ(Z1:n)

]
≤2EZ1:n,σ1:n

[
sup

σ2∈Fσ2 ,µ∈Fµ

1

n

n∑
i=1

σiℓMSE(σ
2, µ, Zi)

]
≤2(16 + 16

√
M + 6M)Rn(G) + 16(8 + 12

√
M + 6M +M

3
2 )Rn(F)

where the last inequality follows from Lemma 10. The other direction of equation 36 can be proved in a similar way, which
concludes the proof.

The other direction of equation 36 can be proved in a similar way.

Theorem 3. Suppose Assumption 2 holds, given µ̂ ∈ F satisfied that

EX

[
(µ∗(X)− µ̂(X))2

]
≤ ε,

and let

σ̂2 = argmin
σ2∈Fσ2

1

n

n∑
i=1

ℓNLL(σ
2; µ̂, Zi).

Then for ε < 1
2 , as long as n is large enough

n = O

(
1

min{m6,m4}ε2

(
(
1

m2
+

1

m6
+

M2

m4
)dP (Fσ2) + (1 +

1

m2
+M)dP (Fµ) +

1 +M2

m2
log(

2

δ
)

))
,

we have

EX

∣∣∣∣∣ 1

σ̂2(X)
− 1

(σ2)⋆(X)

∣∣∣∣∣
2
 ≤ ε (40)

with probability at least 1− δ.

Proof. By Proposition 3 and Lemma 2, we have with probability at least 1− δ, that uniformly for all σ2 ∈ Fσ2 , µ ∈ Fµ,∣∣∣∣EZ

[
ℓNLL(σ

2, µ, Z)
]
− 1

n

n∑
i=1

ℓNLL(σ
2, µ, Zi)

∣∣∣∣
≤2K1(

1

m
+

8 + 8
√
M + 2M

m2
+

6

m3
)

√
dP (Fσ2)

n
+ 8K1(2 +

2

m
+
√
M)

√
dP (Fµ)

n
+

3 + 8M

m
·
√

1

2n
log

2

δ

Then for

n ≥ 1

ε2
max{(36K2

1 (
1

m
+

8 + 8
√
M + 2M

m2
+

6

m3
)2dP (Fσ2), 242K2

1 (2 +
2

m
+

√
M)2dP (Fµ),

9(3 + 8M)2

2m2
log(

2

δ
)},

we have with probability at least 1− δ:

1

n

n∑
i=1

ℓNLL((σ
2)

⋆
, µ̂, Zi) ≤ EZ

[
ℓNLL((σ

2)⋆, µ̂, Z)
]
+ ε

EZ

[
ℓNLL(σ̂2, µ̂, Z)

]
≤ 1

n

n∑
i=1

ℓNLL(σ̂2, µ̂, Zi) + ε (41)

Using fact that σ̂2(x) is the empirical risk minimizer, we have:

1

n

n∑
i=1

ℓNLL(σ̂2; µ̂, Zi) ≤
1

n

n∑
i=1

ℓNLL((σ
2)⋆; µ̂, Zi) (42)
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Combining Equation 41 and Equation 42, with probability 1− δ:

EZ

[
ℓNLL(σ̂2; µ̂, Z)

]
≤ EZ

[
ℓNLL((σ

2)⋆; µ̂, Z)
]
+ 2ε

=⇒ EX,Y

[
(Y − µ̂(X))2

σ̂2(X)
+ log(σ̂2(X))

]
≤ EX,Y

[
(Y − µ̂(X))2

(σ2)
⋆
(X)

+ log((σ2)
⋆
(X))

]
+ 2ε

=⇒ EX

[
(σ2)

⋆
(X)

σ̂2(X)
+

(µ∗(X)− µ̂(X))2

σ̂2(X)
+ log(σ̂2(X))

]
≤ EX

[
1 +

(µ∗(X)− µ̂(X))2

(σ2)
⋆
(X)

+ log((σ2)
⋆
(X))

]
+ 2ε

=⇒ EX

[
(σ2)

⋆
(X)

σ̂2(X)
+ log(σ̂2(X))

]
≤ EX

[
1 + log((σ2)

⋆
(X))

]
+ 2ε+

ε

m

=⇒ EX

[
(σ2)

⋆
(X)

σ̂2(X)
− 1 + log

(
σ̂2(X)

(σ2)
⋆
(X)

)]
≤ 2ε+

ε

m

(43)

Now, it can be checked that

log(
1

t
) ≥ 1− t+

(min(t, t−1)− 1)2

2
, (44)

for all t > 0. Then, (44) and (43) together implies that:

1

2
EX

[(
min { σ̂2(X)

(σ2)
⋆
(X)

,
(σ2)

⋆
(X)

σ̂2(X)
} − 1

)2]
≤ 2ε+

ε

m

=⇒ EX

[
1

{
(σ2)

⋆
(X)

σ̂2(X)
≥ 1

}∣∣∣∣ σ̂2(X)

(σ2)
⋆
(X)

− 1

∣∣∣∣2]+ EX

[
1

{
(σ2)

⋆
(X)

σ̂2(X)
< 1

}∣∣∣∣ (σ2)
⋆
(X)

σ̂2(X)
− 1

∣∣∣∣2] ≤ 4ε+
2ε

m
.

Finally, dividing m2 by both side we have

EX

[
1

{
(σ2)

⋆
(X)

σ̂2(X)
≥ 1

}∣∣∣∣ 1

(σ2)⋆(X)
− 1

σ̂2(X)

∣∣∣∣2 (σ̂2)2(X)

m2

]
+EX

[
1

{
(σ2)

⋆
(X)

σ̂2(X)
< 1

}∣∣∣∣ 1

(σ2)⋆(X)
− 1

σ̂2(X)

∣∣∣∣2 ((σ2)⋆(X))2

m2

]
≤ 4ε

m2
+

2ε

m3
.

which, since (σ2) ≥ m, implies

EX

[∣∣∣∣ 1

(σ2)⋆(X)
− 1

σ̂2(X)

∣∣∣∣2] ≤ 4ε

m2
+

2ε

m3
,

with probability 1− δ.

Theorem 4. Suppose Assumption 2 holds, given µ̂ ∈ F satisfied that

EX

[
(µ∗(X)− µ̂(X))2

]
≤ ε,

and let

σ̂2 = argmin
σ2∈Fσ2

1

n

n∑
i=1

ℓMSE(σ
2; µ̂, Zi).

Then for ε < 1
2 , as long as n is large enough

n = O

(
1

ε2

(
(M2 + 1)dP (Fσ2) + (M3 + 1)dP (Fµ) + (1 +M4) log(

2

δ
)

))
,
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we have

EX

(
(σ2)⋆(X)− σ̂2(X)

)2

≤ ε

with probability at least 1− δ.

Proof. By Proposition 4 and Lemma 2, we have with probability at least 1− δ, that uniformly for all σ2 ∈ Fσ2 , µ ∈ Fµ,

∣∣∣∣EZ

[
ℓMSE(σ

2, µ, Z)
]
− 1

n

n∑
i=1

ℓMSE(σ
2, µ, Zi)

∣∣∣∣
≤2K1(16 + 16

√
M + 6M)

√
dP (Fσ2)

n
+ 16K1(8 + 12

√
M + 6M +M

3
2 )

√
dP (Fµ)

n

+4(M2 + 8M + 16) ·
√

1

2n
log

2

δ

Then for

n ≥ 1

ε2
max

{
(36K2

1 (16 + 16
√
M + 6M)2dP (Fσ2),

482K2
1 (8 + 12

√
M + 6M +M

3
2 )2dP (Fµ),

122(M2 + 8M + 16)2

2m2
log(

2

δ
)

}
,

we have with probability at least 1− δ:

1

n

n∑
i=1

ℓMSE(σ
∗2, µ̂, Zi) ≤ EZ

[
ℓMSE(σ

∗2, µ̂, Z)
]
+ ε

EZ

[
ℓMSE(σ̂2, µ̂, Z)

]
≤ 1

n

n∑
i=1

ℓMSE(σ̂2, µ̂, Zi) + ε (45)

Using fact that σ̂2(x) is the empirical risk minimizer, we have:

1

n

n∑
i=1

ℓMSE(σ̂2; µ̂, Zi) ≤
1

n

n∑
i=1

ℓMSE((σ
2)⋆; µ̂, Zi) (46)

Combining Equation 45 and Equation 46:
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EZ

[
ℓMSE(σ̂2; µ̂, Z)

]
≤ EZ

[
ℓMSE((σ

2)⋆; µ̂, Z)
]
+ 2ε

=⇒ EX,Y

[(
σ̂2(X)− (Y − µ̂(X))2

)2]
≤ EX,Y

[(
(σ2)⋆(X)− (Y − µ̂(X))2

)2]
+ 2ε

=⇒ EX,Y

[(
σ̂2(X)− (σ2)⋆(X)

)2
+ 2

(
σ̂2(X)− (σ2)⋆(X)

)(
(σ2)⋆(X)− (Y − µ̂(X))

2
)
+
(
(σ2)⋆(X)− (Y − µ̂(X))

2
)2 ]

≤EX,Y

[(
(σ2)⋆(X)− (Y − µ̂(X))

2
)2]

+ 2ε

=⇒ EX,Y

[(
σ̂2(X)− (σ2)⋆(X)

)2
+ 2

(
σ̂2(X)− (σ2)⋆(X)

)(
(σ2)⋆(X)− (Y − µ̂(X))

2
)]

≤ 2ε

=⇒ EX,Y

[
2
(
σ̂2(X)− (σ2)⋆(X)

)(
(σ2)⋆(X)− (µ∗(X)− µ̂(X))

2

)]
−EX,Y

[
2
(
σ̂2(X)− (σ2)⋆(X)

)(
(Y − µ∗(X))

2
+ 2 (Y − µ∗(X)) (µ∗(X)− µ̂(X))

)]
+EX

[(
σ̂2(X)− (σ2)⋆(X)

)2]
≤ 2ε

=⇒ EX

[(
σ̂2(X)− (σ2)⋆(X)

)2

− 2

(
σ̂2(X)− (σ2)⋆(X)

)(
µ∗(X)− µ̂(X)

)2]
≤ 2ε

=⇒ EX

[(
σ̂2(X)− (σ2)⋆(X)

)2

− 4

∣∣∣∣σ̂2(X)− (σ2)⋆(X)

∣∣∣∣∣∣∣∣µ∗(X)− µ̂(X)

∣∣∣∣] ≤ 2ε

=⇒ EX

[(
σ̂2(X)− (σ2)⋆(X)

)2]
− 4

√
EX

[(
σ̂2(X)− (σ2)⋆(X)

)2]
EX

(
µ∗(X)− µ̂(X)

)2

≤ 2ε.

Now, define a ≜ EX

[(
σ̂2(X)− (σ2)⋆(X)

)2]
, since EX

(
µ∗(X)− µ̂(X)

)2

≤ ε, we have

a− 4
√
aε ≤ 2ε,

which implies a ≤ 25ε, or equivalently

EX

[(
σ̂2(X)− (σ2)⋆(X)

)2]
≤ 25ε

with probability 1− δ.
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