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Abstract

Offline reinforcement learning (RL) is a promis-
ing approach for training intelligent medical
agents to learn treatment policies and assist deci-
sion making in many healthcare applications, such
as scheduling clinical visits and assigning dosages
for patients with chronic conditions. In this paper,
we investigate the potential usefulness of Decision
Transformer (Chen et al., 2021)—a new offline
RL paradigm—in medical domains where deci-
sion making in continuous time is desired. As
Decision Transformer only handles discrete-time
(or turn-based) sequential decision making scenar-
ios, we generalize it to Continuous-Time Decision
Transformer that not only considers the past clin-
ical measurements and treatments but also the
timings of previous visits, and learns to suggest
the timings of future visits as well as the treat-
ment plan at each visit. Extensive experiments
on synthetic datasets and simulators motivated by
real-world medical applications demonstrate that
Continuous-Time Decision Transformer is able to
outperform competitors and has clinical utility in
terms of improving patients’ health and prolong-
ing their survival by learning high-performance
policies from logged data generated using policies
of different levels of quality.

1 INTRODUCTION

Sequential decision making in continuous time based on
patients’ disease progression is common in many healthcare
and medical applications. For example, people living with
HIV need to take antiretroviral drugs every day indefinitely
to suppress HIV viral loads since there is no cure for
HIV infection (D’Souza et al., 2019). However, the long
term use of certain antiretroviral drugs could lead to drug
resistance, causing HIV treatments to fail (Pennings, 2013).
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Therefore, physicians need to determine when to switch
treatments if needed. Another example is managing clinical
care for patients with chronic conditions (e.g., kidney
transplantation). Patients after kidney transplantation
need to follow up with physicians frequently, therefore
optimizing their follow-up schedules and prescribing the
right dosage of immunosuppressive drugs (e.g., tacrolimus)
can have a significant impact on patients’ survival (Israni
et al., 2014). To determine the optimal sequential decisions,
the gold standard is to conduct randomized clinical trials.
However, it is usually impractical because data collection
is either expensive due to the requirement of a huge sample
size especially when decisions are made in continuous time,
or unethical (e.g., assigning patients to obviously inferior
or even dangerous treatments). As an alternative, we can
utilize previously-collected observational data to estimate
sequential actions and make decisions; this is known as
offline reinforcement learning (RL).

Related Work Over the last two decades, there has been
growing interest in applying offline RL for medical appli-
cations, including Sepsis (Komorowski et al., 2018; Raghu
et al., 2017; Peng et al., 2018; Fatemi et al., 2021), HIV
(Ernst et al., 2006; Parbhoo et al., 2017), Schizophrenia
(Shortreed et al., 2011), mechanical ventilation (Prasad et al.,
2017), and hypotension (Futoma et al., 2020). We refer the
readers to Gottesman et al. (2019) and Yu et al. (2021) for
guidelines and a thorough review of RL in health care. There
are also extensive studies in statistics using the framework of
potential outcomes to optimize sequential treatment assign-
ments from observational data (Orellana et al., 2010; Zhao
et al., 2015; Clifton & Laber, 2020; Carpenter et al., 2020).
Yet, most of these methods optimize decisions at pre-defined
schedules and do not consider the timing of actions. For
sequential actions in continuous time, we could discretize
time and apply standard offline RL algorithms. However,
such discretization will cause information loss and may not
be feasible when the time horizon is too long (e.g., kidney
transplantation example) or too many decision points are
needed (e.g., the decision of weaning off ventilator for ICU
patients can be made on a minute scale). Previous work has
explored marked temporal point processes (MTPPs) (Aalen
et al., 2008) to model discrete events in continuous time
in the RL framework (Hua et al., 2021), nevertheless, it
relies on strong parametric assumptions and specific model
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structures based on clinical knowledge for the kidney trans-
plantation, making it hard to generalize.

Researchers in the deep learning field have also attempted
deep RL methods that are more flexible to handle continuous
time. Upadhyay et al. (2018) use deep MTPPs to charac-
terize both the agent actions and environment feedbacks.
The development of Neural-ODEs (Chen et al., 2018) has
also inspired a number of model-based continuous-time RL
methods: Du et al. (2020) propose to use Neural-ODEs
to learn the dynamics of semi-Markov decision processes
(MDPs) and partially observable MDPs in continuous time;
Yildiz et al. (2021) utilize Bayesian Neural-ODEs to build
dynamics models that further account for epistemic uncer-
tainty. However, these methods rely on online interactions
and cannot learn solely from logged data in the offline set-
ting. Recently, Fatemi et al. (2022) study value-based offline
RL for healthcare in the semi-MDP framework that extends
the state-of-the-art MDP-based offline algorithms (Fujimoto
et al., 2019). While this work suitably handles irregular
action durations in the offline setting, its sophisticated for-
mulation (using a more convoluted value function definition
and semi-MDP value update rules) and its using state-of-the-
art algorithms as a subroutine brings algorithm complexity,
implementation difficulty, and computational overhead.

In this work, we instead turn our attention to Decision Trans-
former (DT) (Chen et al., 2021), a new offline RL paradigm
that is simple and elegant and has shown promising re-
sults extending the sequence model success with transform-
ers (Vaswani et al., 2017) from language models to offline
RL. DT bypasses value function estimation and policy gra-
dients in traditional RL altogether. Instead, DT directly
predicts actions autoregressively conditioning on desired
returns and observed states via sequence modeling with a
causally masked transformer architecture. Sequence model-
ing is pertinent for medical settings: in dynamic treatment
regimes treatment decisions are tailored for each individual,
as such trajectory modeling is more natural for personal-
ized treatments than transition-based RL methods. Further,
DT does not require the Markov property of the underlying
dynamics, which is a common and essential assumption
for MDP-based RL methods but also an assumption that
is not always met in medical settings. Moreover, with se-
quence modeling DT does not rely on the time homogeneity
of transitions, which adds flexibility for medical applica-
tions. One important limitation of DT, as recently studied
by Brandfonbrener et al. (2022), is that DT relies heavily
on the high quality of the behavior policy. Luckily, the
assumption that offline data contain trajectories logged by
high-quality policies can be met in many medical datasets
since doctors are required to act in the best interests of pa-
tients. It is worth noting that while the sequence model in the
DT framework utilizes the transformer architecture, DT’s
training is in principle agnostic to the model architecture
choice and therefore one may use any other deep autore-

gressive model such as Long Short Term Memory (LSTM)
networks (Hochreiter & Schmidhuber, 1997) or Temporal
Convolutional Networks (TCNs) (Bai et al., 2018). Concur-
rent to DT, Trajectory Transformer (Janner et al., 2021) uses
a similar sequence modeling concept and the transformer
architecture, but also adds model-based planning which fur-
ther requires discretizing states and actions and predicting
future states and returns.

Our Contribution In this paper, we investigate the effec-
tiveness of DT in medical applications, in which the de-
sired return can be an expected mean survival time or a
pre-determined biomarker value. Since DT only handles
discrete-time scenarios, it does not directly apply to medical
applications in which the decisions are made continuously
in time. For example, when physicians determine the next
clinic visitation time for patients after kidney transplantation,
it can be any time ranging from a few days to one year later,
depending on the patient’s historical clinical measurements
and treatments (Hua et al., 2021). To address such chal-
lenges, we propose Continuous-Time Decision Transformer
(CTDT), a generalization of the Decision Transformer, to
handle actions made in continuous time and irregular time
intervals between states. In particular, by putting interval
times into our new trajectory representation, we are able to
learn the interconnections among visit timings, clinical treat-
ments, observed states, and achievable returns; by a careful
treatment of the temporal and type embeddings, we allow
the hidden states of all the elements in our trajectory repre-
sentation vary in time in a continuous manner. We highlight
some notable features of our proposed CTDT framework:

• Our way of breaking the multi-dimensional control (clini-
cal treatments and interval times) into completely separate
tokens to discover their further interdependencies is in line
with the autoregressive dynamics model idea presented in
Zhang et al. (2021) and Janner et al. (2021). However, un-
like those prior works that reach into the model-based RL
domain requiring accuracy of the learnt dynamics model,
our approach remains model-free.

• Building on the original DT, we enjoy all the benefits of
the simplicity of DT. Unlike many other value-based or
model-based offline methods (Kidambi et al., 2020; Yu
et al., 2020; Fujimoto et al., 2019), we do not require any
explicit pessimism design or regularization. Rather, we
are able to jointly learn the optimal clinical treatments as
well as the treatment timings, purely from re-weighting
the behavior policies by the future return distributions
(Brandfonbrener et al., 2022).

• Compared to the semi-MDP algorithms (Du et al., 2020;
Fatemi et al., 2022), our straight-forward continuous-time
treatment brings no significant algorithm complexity, and
therefore maintains an ease of implementation.
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2 PROBLEM FORMULATION

There are numerous medical applications that involve mak-
ing decisions continuously in time. In Section 2 and 3, we
consider one signature application of care management for
patients after kidney transplantation to make our discussion
and notations concrete. We note that the proposed frame-
work also readily adapts to other continuous-time medical
decision making problems. Kidney transplantation is the
most common type of organ transplantation and the primary
therapy for patients with end-stage kidney disease (Arshad
et al., 2019). To prevent graft rejection, patients are required
to have frequent follow-ups at an outpatient center after the
transplantation surgery. At each visit, their clinical measure-
ments such as creatinine (an indicator for kidney function)
are recorded, then they are administered immunosuppres-
sive drugs (e.g., tacrolimus), to keep their immune systems
from attacking and rejecting the new kidney (Kasiske et al.,
2010). Based on the patient’s clinical measurements and the
assigned dosages of immunosuppressive drugs, physicians
then determine the patient’s next follow-up time, which can
be anytime ranging from few days to one year from now.
Our goal is to optimize clinical decisions including schedul-
ing a patient’s follow-up visitations and prescribing dosages
to maximize the patient’ health outcome.

2.1 Inference Objective

We aim to improve patients’ health conditions by optimizing
their clinic visit schedules and treatments at each visit. Tech-
nically, each patient has a stream of time-stamped clinic vis-
its {(ti,mi, ci, si)}Ii=1: for the ith visit, ti is its time, mi is
the list of clinical measurements (e.g., creatinine) collected
for that patient, ci is the list of treatments (e.g., tacrolimus)
the doctor assigns to that patient, and si is the future sched-
ule which the doctor plans for that patient. Particularly, si is
the elapsed time for which the patient has to wait until they
come back to the clinic for the next visit: i.e., ti+1 = ti+si.

Suppose the instantaneous health condition of a patient
at time t is given by h(t), which possibly depends on the
entire treatment history. Then we aim to maximize their
total health condition

∫∞
0

h(t)dt. That is, we aim to learn
a policy π from which the right clinical treatments ci and
future schedule si can be chosen at each hospital visit i so
as to maximize the expected total health condition which
we refer to as the total return:

max
π

E
π

∫ ∞

0

h(t)dt = max
π

∞∑
i=1

E
ci,si∼π

∫ ti+1

ti

h(t)dt. (1)

It is an offline RL problem: medical applications are safety-
critical so we can not afford to learn from try-and-trial;
instead, we are only given a corpus of historical data to
learn from without further interacting with patients.

2.2 Offline RL Via Sequence Modeling

We consider an alternative offline RL paradigm called
offline RL via sequence modeling: instead of learning
measurement-treatment pair values and deriving a value-
guided policy or optimize a policy with policy gradients,
we wish to undeviatingly map rewards to treatments by dis-
covering the underlying interdependence among rewards,
treatments, and measurements. As such, an RL problem
in this paradigm gets cast into a supervised learning (more
specifically, sequence modeling) problem.

To facilitate easier discussion, we transform our notation
system from the previously introduced {(ti,mi, ci, si)}Ii=1

to {(oi,ai)}Ii=1, where o is for observables or observa-
tions containing m and t, and a is for actions containing
c and s. We treat inter-visit rewards ri :=

∫ ti+1

ti
h(t)dt,

observations, and actions as a simple stream of data:
(r1,o1,a1, . . . , ri,oi,ai, . . .), and build a sequence model
parameterized by θ to model such data trajectories; by look-
ing at and conditioning on the rewards ri, the current obser-
vation oi, and all past history H(i−1) := {(rj ,oj ,aj)}i−1

j=1,
appropriate treatment decisions can be obtained autoregres-
sively with the sequence model. As such, the training objec-
tive naturally becomes a density maximization problem:

max
θ

I∏
i=1

fθ(ai|ri,oi,H(i− 1)). (2)

In the case of discrete actions, the densities in the objective
Equation (2) simply gets replaced by probability masses,
making this RL paradigm easily transfer between discrete
and continuous action regimes. The most notable exam-
ple of RL via sequence modeling algorithm is Decision
Transformer proposed by Chen et al. (2021), where they
use the powerful transformer architecture (Vaswani et al.,
2017) and utilize its large memory capacity to model the
reward-observation-action data trajectory.

2.3 Time Distortion

The shortcoming of directly applying the vanilla Decision
Transformer to the continuous-time medical settings that
we consider now becomes apparent: in contrast with clas-
sical RL tasks such as Mujoco or Atari games where ac-
tions happen in a turn-based fashion, i.e., at discrete and
evenly-spaced times, in the continuous-time medical set-
tings actions take place at irregularly spaced times, and dur-
ing those time intervals observations evolve continuously in
time. Therefore, by directly treating the timestamps as just
another dimension of the observation o (i.e., concatenating
time with mi to form oi), the sequence model only gets
to look at the discrete-time decision process embedded in
the underlying true continuous-time decision process, cut-
ting the direct connection between states/actions and time
and turning the continuously-evolving process back into
a turn-based process. While this modeling approach may
get away when time intervals are roughly similar in size
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(making the discrete-time approximation accurate), it can
be severely weakened when the differences in time intervals
are significant since the irregular time distortion is being
ignored. Another approach is to discretize continuous-time
into discrete time buckets, but this approach is also not fea-
sible when the task horizon is long and loss of information
due to low temporal resolution becomes severe. Thus, a
more proper way to handle the time distortion is to establish
the interaction between actions/observations and time by al-
lowing the actions and observations to change continuously
in time; in terms of the transformer structure, this entails
allowing the action and state embeddings and the attentions
paid to them evolve continuously in time. In essence, we
aim to change the modeling philosophy from “observation
oi is medical measurement mi and time ti” to “observation
oi is medical measurement m(t) @ time ti”.

3 METHODOLOGY

In this section, we generalize Decision Transformer into
a Continuous-Time Decision Transformer (CTDT), which
elegantly handles temporal information and flexibly cap-
tures the continuous-time process. As a result, our CTDT
is a natural fit for learning clinical policies from the offline
electronic health record (EHR) data. In the following sub-
sections, we will first sketch how a continuous-time Trans-
former learns a return-conditioned policy from offline data
(Section 3.1), then elaborate the details of the model archi-
tecture (Section 3.2), and finally give the training objective
and some key implementation choices (Section 3.3).

3.1 CTDT For Medical Sequences

We begin introducing our method by recalling the
continuous-time offline medical RL objective Equation (1):
at each clinic visitation i, the goal is to find a policy π that
maximizes the subsequent tail return/ cumulative health con-
dition, which following standard text for discrete-time RL
we also refer to as the return-to-go R̂π

i :

∞∑
j=i

E
ci,si∼π

∫ tj+1

tj

h(t)dt =:

∞∑
j=i

E
ci,si∼π

rj =: R̂π
i .

In the discrete-time setting with even time spaces, rather
than directly seeking a policy argmaxπ R̂

π
i , the original de-

cision transformer aims to discover the the interconnections
among the return-to-go’s R̂i, observations mi, and actions
ci by modeling them as a sequence of data with trajectory
representation τ =

(
R̂1,m1, c1, . . . , R̂I ,mI , cI

)
. Condi-

tioning on an initial desired return R̂input, the induced policy
at each stage i is the output ĉi obtained by autoregressing
on the trajectory data starting from

(
R̂input,m1

)
.

To extend the DT paradigm to the continuous-time setting,
we need to address two main questions: 1) how would we
undertake the learning task for the interval times si such
that the interval times ŝi output by CTDT indeed lead to

achieving the desired R̂input? 2) since interval times are
irregular and the position indices no longer accurately reflect
the temporal distances among elements in the data trajectory,
how should we adjust the attention mechanism of DT such
that the attention of an element paid to previous elements
can vary in accordance with the actual temporal distances?

To tackle the first question, we propose to model the in-
terval times si as not only another dimension of the clin-
ical decision, but also give them their separate tokens so
that the complex interdependency among clinical measure-
ments, treatments, cumulative health conditions and interval
times can be better captured by the sequence model. In
the signature kidney transplantation survival problem, doc-
tors typically schedule the next visit based on the clinical
measurements and dosages from the current visit, therefore,
we choose to model si having a dependence on the current
treatment decision ci. To this end, it is natural that we con-
sider a trajectory representation composed of (return-to-go,
measurement, decision, interval time) tuples of each visit:

τCTDT =
(
R̂t1 ,mt1 , ct1 , st1 , . . . , R̂tI ,mtI , ctI , stI

)
. (3)

In accordance with the above proposed trajectory represen-
tation, we factorize the training objective Equation (2) as∏I

i=1 fθ(ci|ri,oi,H(i− 1))× fθ(si|ci, ri,oi,H(i− 1)).
Note that such trajectory representation is by choice and
specific to our application; the dependence of treatment de-
cisions on interval times can be easily modeled by simply
swapping the order of ci and si if desired.

Now, to address the second question, we make necessary
and intuitive modifications to the decision transformer archi-
tecture, which we present with details in the next subsection.

3.2 CTDT Model Architecture

To account for the irregular temporal distances between
clinic visits, we adopt a temporal position embedding for
the decision transformer that is able to vary continuously
in time. Denoting each element in our trajectory τCTDT
Equation (3) of total length 4I (4 elements at each visit i)
having value y (could be scalar, e.g., dosage amount; or
vector valued, e.g., multidimensional health states) at time t
and type e ∈ {R̂,m, c, s} by ye(t). For each yej (tj) with
j ∈ {1, ..., 4I}, we tokenize by separately embedding its
temporal information tj , value yj , and type ej . Follow-
ing Zuo et al. (2020) and Yang et al. (2022), we use the
sinusoidal temporal embedding t such that tk is

sin

(
t

C
k

dtime

)
for even k or cos

(
t

C
k−1
dtime

)
for odd k

where C = 10000 and k ∈ {1, . . . , dtime} is the kth
temporal embedding dimension. We obtain both the ini-
tial value embeddings yj and type embeddings ej by
linear transformations. Rather than adding up, we con-
catenate the temporal embeddings, type embeddings, and
value embeddings to form the base layer input tokens
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Emb(0)j := [yj ; tj ; ej ], allowing more direct access to
the temporal information. Subsequently, at each atten-
tion layer l, the key, query, and value are obtained by
ω

(l)
j = Ω(l)(Emb(l−1)

j ), with ω ∈ {k, q,v} and their cor-
responding linear transformations Ω ∈ {K,Q, V }. We
apply a causal mask to our transformer such that each el-
ement yej (tj) ∈ τCTDT with order index j only attends to
elements that precede it in order and itself {yen(tn)}

j
n=1,

with (unnormalized) attention weight paid to element
yen(tn) given by α(yej (tj), yen(tn))

(l) := q
(l)
j · k(l)

n . Fi-

nally, to get the layer-level embeddings Emb(l)j , we com-
pute

∑j
n=1 softmax

(
{α(yej (tj), yen′ (tn′))(l)}jn′=1

)
n
·

v
(l)
n followed by layer normalization (Ba et al., 2016), feed-

forward connection, and residual connection.

3.3 Training Objective And Implementation Choices

At the training stage, we compute each R̂i =
∑I

k=i rk and
si = ti+1 − ti from the offline data and prepare trajectories
in the form of Equation (3) to feed into our continuous-time
transformer. In this work, we choose to deterministically
predict both the treatments and interval times, and as such,
we directly output point estimates: following the last layer
of the transformer, we apply additional layers of fully con-
nected networks to the last layer embeddings of ci and si to
either a) directly output both the treatments ĉi and interval
times ŝi when treatments are continuous (e.g., drug dosage);
or b) output the treatment weights and apply argmax
for discrete treatments (e.g., drug combinations). Conse-
quently, the likelihood training objective also gets replaced
by deterministic supervised learning losses: we train our
continuous-time RL sequence model with mean squared er-
ror Ltrain = 1

I

∑I
i=1(ĉi−ci)

2 for continuous treatments and
cross-entropy loss Ltrain =

∑I
i=1

∑treatment #
k=1 − logP(ĉi =

k)1ci=k for discrete treatments, and in both cases the con-
tinuous interval times are trained with mean squared error.
Rather than predicting deterministically, the treatment deci-
sions and interval times can also be sampled stochastically
by e.g. a marked temporal point process, and we would
instead learn the mark distribution and temporal intensity.
We leave the exploration in that direction to future work.

At the evaluation step, the initial conditioning return-to-go
R̂1 is a user-specified desired return. Similar to Chen et al.
(2021), we find the largest return in the offline dataset to be a
reasonably good starting place. Each subsequent condition-
ing return is obtained by R̂i = R̂i−1 − ri−1, the previous
conditioning return subtracting the actual obtained reward
at each visit. The treatment is obtained autoregressively
conditioning on all the trajectory history, together with the
conditioning return-to-go and the measurement at the cur-
rent visit, and the interval time is further conditioned on the
current assigned treatment.

We base our transformer implementation on the GPT
model (Radford et al., 2018), and refer the readers to the

original paper for more details on the GPT architecture.

4 EXPERIMENTAL RESULTS

We evaluate the proposed CTDT on three datasets, includ-
ing one simple synthetic dataset and two medical datasets
on kidney transplantation and HIV, respectively. On each
dataset, we train our method and evaluate it by an in-domain
simulator; we hope the trained agent could help improve
the simulated patients’ health outcomes and prolong their
survival. For online evaluation, we use the same custom sim-
ulator used for data generation for our synthetic data study;
for the kidney transplantation dataset, we implement a cus-
tom python simulator inspired by the stochastic longitudinal
model proposed in Hua et al. (2021); for the HIV dataset,
we use the simulator provided by Du et al. (2020). The latter
two simulators are meaningful since their structures were
designed by medical domain experts and their parameters
were learned from real-world data. The in-depth description
of the three envrionments is given in Appendix A, and the
model hyperparameters and training details of all algorithms
used in the experiments are given in Appendix B.

4.1 Synthetic Data Study

We design a simple survival experiment that serves a two-
fold purpose: 1) we aim to use it as a proof-of-concept for
applying CTDT to continuous-time medical settings, and as
a clear evaluation tool to compare against the discrete-time
counterpart original DT and other baselines; 2) as a simpli-
fied version of the signature kidney transplantation applica-
tion, this survival experiment shares many of its key features
and prepares us before moving on to the main experiment.
To this end, we design three groups of experiments hoping to
answer the following questions. How would CTDT perform
when the offline dataset was logged with a single policy
vs. a mixture of policies? Instead of the optimal policy,
how would suboptimal policies and policies with bias in
treatment decisions affect CTDT’s performance? How does
a conservative visit schedule affect the treatment outcome?

Environment Description This simple yet illustrative envi-
ronment is motivated by medical applications with survival
outcomes. We assume that each patient has an unobservable
underlying health condition h(t) which linearly decreases
with time t if no medical interventions are provided. If the
health condition drops to a threshold the patient dies and the
episode is terminated. At each visitation, a medical agent
takes a measurement m(t) for the patient which is based
on the underlying h(t) with added noise. Then, based on
the measurement m(t) the agent assigns a dosage c(m(t)).
For each h(t), there exists an optimal dosage coptimal,t, and
the dosage effect is a piece-wise linear function: the health
benefit is proportional to the dosage amount, peaks at the
optimal dosage coptimal,t, then drops down for larger dosage,
and eventually the overly large dosage becomes harmful.
At the ith visit, the agent then decides the next visitation
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timing ti+1. As our goal is to prolong the patient’s survival
time, we choose the death indicator 1alive at t as the reward
rate function. As such, the episodic return is the total sur-
vival time. Due to limited medical resources, we assume
that there is a cap L for the number of visitations. Thus,
to achieve high total returns, the agent should schedule the
next visitation time that is not too far away in case the pa-
tient dies before the next visitation time, or not too close
to waste medical resources. We choose the limit for the
number of visitations to be L = 20, and the theoretical
maximum achievable return is 500. We defer the details of
the environment to Appendix A.1.

Baselines We compare with DT, which we adapt to this
continuous-time setting by putting logged data timestamps
into discretized time buckets (days), and at test time DT
assigns interval times s in days. We also consider behavior
cloning (BC) as a baseline, which utilizes a simple MLP
architecture and performs likelihood based imitation learn-
ing. Similar to CTDT, we let BC assign both dosages and
interval times continuously, and train the two-dimensional
policy with a supervised loss. A detailed description of BC
can be found in Chen et al. (2021). We also compare to
two state-of-the-art model-free offline RL methods called
Batch-Constrained deep Q-learning (BCQ) (Fujimoto et al.,
2019) and Conservative Q-Learning (CQL) (Kumar et al.,
2020), which use Deep Deterministic Policy Gradient (Lil-
licrap et al., 2015) and Soft Actor-Critic (Haarnoja et al.,
2018) , respectively, as a subroutine for continuous action
settings. For BCQ and CQL, we set the action space to be
two-dimensional composed of dosage and interval times.

Single Behavioral Policy We begin by considering logged
datasets generated by a single behavioral policy. We con-
sider low dosage, optimal dosage, and high dosage settings
with dosage c(t) at each visit sampled independently from
N (µ(·), 1

2), with µlow = coptimal,t − 2, µopt = coptimal,t, and
µhigh = coptimal,t + 2. At each visit, given c(t) the interval
time is sampled dependently from N (soptimal,t, 5

2), with the
optimal interval time soptimal,t being a function of the as-
signed dosage c(t) as well as the noisy measurement m(t)
(see Appendix A.1). For each of the three settings, we sam-
ple 10000 trajectories as logged data. Average returns over
100 episodes of online environment interactions are reported
in Table 1.

Single Policy With Biased Timing We now consider logged
datasets each containing 10000 trajectories generated by a
single policy, but the visitation timings are systematically
biased to be conservative. We take three dosage sampling
policies identical to the previous set of experiments, and
sample the interval times dependently given the dosages as
N (sbiased,t, 5

2)), with mean interval times biased towards
lower values compared to the optimal interval times given
by sbiased,t = soptimal,t − 3. The average returns over 100
episodes are summarized in Table 2.

Table 1: Single Behavior Policy

Low
dosage

Optimal
dosage

High
dosage

CTDT 358.4 ± 20.3 435.2± 9.1 358.9± 4.8
DT 345.3± 61.3 397.9± 40.2 188.0±114.5
BC 20.0± 0.7 23.9±0.6 304.0±15.6
BCQ 135.4± 6.7 192.8± 6.5 263.2±79.8
CQL 164.6 ± 12.6 154.3 ± 22.7 151.7 ± 12.3

Table 2: Single Behavior Policy With Biased Timing

Low
dosage

Optimal
dosage

High
dosage

CTDT 356.7 ± 1.3 379.4± 0.1 328.0± 11.7
DT 331.4 ± 42.5 382.5±38.5 325.1±5.8
BC 27.1± 11.2 375.5±67.8 318.8±32.3
BCQ 96.1± 6.0 182.2± 5.7 239.9±89.4
CQL 159.7± 24.5 160.2± 11.5 155.1±24.4

Suboptimal Policy And Mixture Of Policies Logged data
collected with suboptimal policies that are performing rea-
sonably well but not optimal or mixtures of high- and low-
performance policies are prevalent in medical data. In this
setting, we consider six scenarios. First, we sample a logged
dataset of 10000 trajectories with a suboptimal behavioral
policy, where the dosage is sampled from N (csub,t, 1

2) with
csub,t = coptimal,t − 0.5, and interval times are sampled de-
pendently from N (soptimal,t, 5

2). Second, using the same
suboptimal policy to generate another 5000 trajectories, we
mix with 5000 trajectories sampled with a low performance
policy where dosage is sampled with µlow as defined in sce-
nario 1. Third, we sample 5000 trajectories with the same
low dosage policy mixed with 5000 trajectories sampled
with the optimal dosage policy. Finally, for the last three
experiments, we consider again data logged with mixture
policies, but this time with the conservatively biased timing
described in scenario 2 – we consider mixtures of subopti-
mal dosage policy and low dosage policy, optimal and low
dosage policy, and high and low dosage policy, respectively,
and in each setting the interval timing has mean sbias(c(t))
for both behavior policies in the mixture. Evaluation results
over 100 episodes are reported in Table 3 for the first three
experiments, and in Table 4 for the last three experiments.

Performance And Generalization

In all 12 experiments, CTDT performs at least comparably
with or better than all three baseline algorithms in terms of
averaged return over 100 episodes. In many cases, CTDT
signifcantly outperforms the baselines algorithms. Notably,
in the mixture settings where the overall logged data qual-
ity is dragged down by a low performance behavior policy,
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Table 3: Single Suboptimal Policy and Mixture Policies

Suboptimal
dosage

Sub-low
dos. mixture

Opt-low
dos. mixture

CTDT 416.9 ± 1.2 427.0± 3.1 410.3± 0.6
DT 393.7± 25.1 361.9± 102.9 302.4±104.8
BC 23.3± 0.4 20.6±0.6 20.2±0.5
BCQ 166.1± 6.5 155.1± 3.4 195.1±8.6
CQL 158.6 ± 20.4 164.2 ± 11.4 159.3 ± 16.9

Table 4: Mixture policies With Biased Timing

Sub-low
dos. mixture

Opt-low
dos. mixture

High-low
dos. mixture

CTDT 383.0 ± 3.9 383.7± 1.1 332.3± 0.7
DT 361.9± 53.9 355.2± 6.5 317.5±15.9
BC 191.9± 43.4 59.6±30.3 348.1±80.7
BCQ 167.2± 11.5 185.9± 23.4 157.6±2.7
CQL 162.9± 32.7 159.8± 12.0 151.3±9.0
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Figure 1: Obtained Return vs. Desired Return

CTDT remains a high performance that is comparable with
learning from a single optimal behavior policy. Further-
more, CTDT not only attains high mean returns across all
12 experiments, it does so while achieving much lower vari-
ances compared to the baselines, which showscases the high
precision in performance afforded by the continuous-time
sequence modeling approach. In many cases out of the suite
of experiments, BC and BCQ have inferior performances
compared to the two return-conditioned sequence modeling
methods: whereas BCQ suffers from poor value function
approximation and distributional shift resulting from the
stochastic behavior policies and environment, BC perfor-
mance is impeded by the fact that it always simply mimics
the ensemble average policy present in the logged data that

is not optimal in this survival setting. In most cases, the
original DT comes as a close second and outperforms the
other two baselines. However, since DT is subject to tem-
poral rounding off errors (due to temporal discretization)
and lacks the ability to capture the stage-wise dependence
of interval times on clinical treatments, it still lags behind
CTDT considerably in overall performance.

Chen et al. (2021) found that by varying the conditional
desired returns over a range there was a high correlation
between desired target returns and DT’s obtained returns on
discrete-time offline RL benchmarks. We perform a similar
investigation on all 12 experiments presented above, with
the first 6 exhibited in Figure 1 and the rest in Appendix C.1.
We find that on all of the experiments the survival outcomes
are even more strongly correlated with the desired survival
time at least up through the maximum return present in the
offline training data; in many cases, the correlation trend
remains well above the maximum return. This illustrates
CTDT’s ability to not only accurately map returns to appro-
priate sequential visitation schedules as well as dosages at
visitations, but also generalizes beyond the behavior policy
present in the logged data.

4.2 Application On Kidney Transplantation

Problem Description We now turn our attention to the sig-
nature kidney transplantation application mentioned in Sec-
tion 2. Large-scale kidney transplantation databases, such as
French computerized and validated data in transplantation
(DIVAT), provide us opportunities to determine the optimal
follow-up schedules and tacrolimus dosages. DIVAT is a
database which monitors medical records for kidney trans-
plantations in several French hospitals (e.g., Nantes, Paris
Necker). Data are collected from the date of transplanta-
tion until the graft failure. At each scheduled follow-up
visit, patients’ creatinine levels, an important biomarker
for measuring kidney function, and tacrolimus levels are
collected longitudinally to investigate therapeutic strategies
and determine the next follow-up time by clinicians.

Due to the data privacy of DIVAT, we use a simulated dataset
that closely mimics the DIVAT data as our training data
(Hua et al., 2021). The dataset composes of longitudinal
creatinine measurements, follow-up schedules, tacrolimus
dosages, and survival time for N = 4000 patients, with
2000 patients treated with a low-variance behavioral policy
and 2000 with a policy whose assigned dosage is slightly
biased and has a higher variance. Three baseline covariates
are considered, including donor age, delayed graft func-
tion, and body mass index. Patients’ longitudinal creatinine
levels are generated from a linear-mixed effects model, in
which the fixed and random effects include the time since
transplantation, tacrolimus dosage, and baseline covariates.
Patients’ survival times are generated from a Cox propor-
tional hazards model with a Weibull baseline hazard, which
can be affected by patients’ creatinine levels, dosage effects,



Continuous-Time Decision Transformer for Healthcare Applications

and times since transplantation. For ease of interpretation,
we do not consider censoring times for this experiment. Fi-
nally, patients’ follow-up schedules and tacrolimus dosages
in the behavior policies are generated with linear models
that take the baseline covariates, the creatinine measure-
ments, and times since transplantation into account, such
that patients with a higher hazard rate receives increased
dosages and more frequent clinical visits. We defer more
details of this environment and the behavioral policies de-
scription to Appendix A.2 and Appendix C.2, respectively.

Table 5: Kidney Transplantation Application Performance

Median survival time Median visit number

CTDT 2645.8 ± 2595.1 11.0±9.0
DT 1792.5±1774.7 6.0±4.0
BC 1267.1 ± 1263.3 15.75± 13.75
BCQ 376.5± 376.3 2.0 ± 0
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Figure 2: Median Survival Times For 10 Random Patients

Results We consider BC, BCQ (with necessary modification
described in Appendix B.1), and DT (with time discretized
into days similar to Section 4.1) as baselines for this exper-
iment, and drop CQL due to its constant low performance
in the previous synthetic data study. For all algorithms
the states include the creatinine measurement and the three
baselines. We train CTDT and the three baselines on the
kidney dataset logged with the mixture behavior policy and
evaluate them using 50 patients with new baseline covari-
ates and random effects. Due to the high variance nature
of the survival model, we use median survival time as the
evaluation metric for this experiment. For each patient, we
use 100 Monte Carlo online evaluations to estimate the me-
dian survival time. The overall performance taken as the
median over all 50 test patients is summarized in Table 5.
An accompanying box plot for the survival times from all
100 evaluations for 10 randomly selected patients is given

in Figure 2, and the box plot for all 50 patients are given
in Appendix C.2. In this experiment, CTDT greatly outper-
forms all three baselines, in the sense that compared with
the baselines patients can achieve longer expected survival
times following the treatment decisions assigned by CTDT.
Besides a high metric score, CTDT also assigns clinically
meaningful decisions: CTDT achieves longer survival times
without much more frequent clinical visits. In fact, akin
to the behavior policies, when the patients have stable cre-
atinine levels CTDT tends to assign longer interval times
than the baselines (BC in particular, as already indicated by
having even more number of visits in spite of the shorter
median survival times).

We now zoom into the trajectory-level performance to
closely examine the 4 algorithms. In Figure 3, we plot the
creatinine level measurement and assigned dosage amount
at each visit for a random Monte Carlo trajectory of a ran-
domly sampled patient. Among all 4 algorithms BC clearly
assigns the most frequent clinical visits. This is not surpris-
ing, as the simple behavior cloning algorithm does not fully
capture the time-dependent interval time schedule of the
behavioral policies. In contrast, CTDT inherits the more
clinically meaningful visit schedule from the behavioral
policies: when the creatinine level is stable at the early
stages, CTDT gives long interval times; towards the end
when creatinine measurements rise up, CTDT assigns more
frequent schedules. In terms of visit timing, the baseline DT
behaves similarly to CTDT. It is also worth noting that the
distributional shift and value function misfit issues of BCQ
are apparent in Figure 3: due to the high-variance nature
of this survival experiment, as soon as BCQ encounters a
less seen measurement value (at the second visit), the as-
signed dosage, guided by the poorly estimated Q function,
quickly becomes unreasonably large; as a result, BCQ per-
formance is considerably inferior compared to the other 3
likelihood-based algorithms in this experiment.
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Figure 3: Clinical Measurement And Dosage At Each Visit

4.3 Application On HIV

Problem Description We further consider applying CTDT
to adjusting HIV drug combinations in continuous time.
How human immunodeficiency virus (HIV) interacts with
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the body immune system and drugs was mathematically
modeled in Adams et al. (2004). Ernst et al. (2006) first
approached optimizing HIV drug combinations in an offline
RL setting under this dynamics system where the clinical
visitation schedule was fixed. In their setting, the treatment
decision was made based on six-dimensional observable
states corresponding to 6 clinical measurements: uninfected
type i cells Ti, i ∈ {1, 2}, infected type i cells T ∗

i , free
virus V , and immune effectors E, and their dynamics were
described by a system of ordinary differential equations.
There were 4 discrete actions, corresponding to the on-off
combination of two HIV drugs. In Du et al. (2020), the
HIV RL problem was generalized to an irregularly spaced
visit schedule setting, where patients would pay less fre-
quent clinical visits (though still in integer days) once their
immune systems became more stable, with the maximum
interval being 14 days. Here, we too consider irregularly
spaced visits, except that for our algorithm we allow visits
to be scheduled continuously in time.

From visit j to the next, the obtained reward takes a different
form and scale from the previous two survival settings:

rj =

∫ tj+1

tj

(−0.1V (t)− f(cj) + 1000E(t)) dt,

where f(cj) is a value that depends on the drug combination.
The HIV environment is detailed in Appendix A.3.

Baselines And Logged Data For this problem, we compare
to 1) the discrete version of BCQ, which builds on Deep
Q-Network (Mnih et al., 2015); 2) BC, which assigns in-
terval times in continuous time; and 3) due to the weaker
dependence of the interval times on the treatments in the
logged dataset and the maximum interval being only 14
days, CTDT has a stronger resemblance to DT in this set-
ting than the previous survival studies, thus we replace DT
with an online Neural-ODE based RL (Du et al., 2020) that
has been previously applied to the HIV setting, and we adapt
it to the offline RL setting by training their dynamics model
from only the logged data and giving them the oracle reward
function. The ODE RL has a built-in interval time selection
function to choose from discrete visit times in days. We use
the ODE RL’s online pre-trained dynamics model to train an
RL agent to convergence, and use the trained agent as a high
performance behavioral policy to sample 200 trajectories.
Due to the simpler discrete action setting, we lower the high
performance trajectories ratio and mix the good trajectories
with 800 trajectories sampled with uniformly random drug
assignments. Each episode finishes running after a total
observation period of 1000 days. A detailed description of
the logged data is provided in Appendix C.3.

Results We summarize the online evaluation total returns
averaged over 100 episodes in Table 6. Due to the deter-
ministic nature of both the environment and all algorithms
except the Neural-ODE RL which softens their policy with
ϵ = 0.05, only the ODE RL has variations in the total re-

turns. We outperform all baselines in this mixture behavioral
policy experiment by a large margin. Notably, BCQ fails
to learn in this setting, but the purely imitation-based BC
performs surprisingly well. Besides total achieved returns,
we also compare the total number of visits over the 1000
days to check if the temporal relationship can be correctly
picked up by the agents. Using Neural-ODE RL’s interval
time selection function, it very often greedily selects the
highest possible interval time (14 days) to obtain maximum
per visit reward. In comparison, CTDT achieves the best
balance between total returns and the number of visits.

Table 6: HIV Mean Performance

Mean return Mean visit number

CTDT 5.5E10 202
Neural-ODE (2.1±0.7)E10 122.1±26.8
BC 5.1E10 168
BCQ 4.5E7 316

5 DISCUSSION AND CONCLUSION

We extend Decision Transformer (DT) to Continuous-Time
Decision Transformer (CTDT) in the context of offline re-
inforcement learning to estimate and optimize sequential
decisions in continuous time, and show its effectiveness in
the healthcare/medical domain. Through extensive numeri-
cal studies, we demonstrate that the proposed CTDT is able
to achieve high returns by correctly estimating the optimal
medical decisions in continuous time, and outperform com-
petitors. The analyses of the HIV and kidney datasets yield
clinically meaningful and interpretable results, showing that
the proposed method has the clinical utility to assist physi-
cians’ decisions and improve patients’ health outcomes.

The proposed framework has several possible extensions.
First, we only consider one type of treatment (e.g.,
tacrolimus in the kidney example) in this paper. However, in
clinical practice, patients may receive other treatments such
as mycophenolate mofetil after kidney transplantation, caus-
ing potential interaction effects with tacrolimus when used
in combination. The proposed CTDT can be extended to
allow for multiple treatments and model potential drug-drug
interactions. Second, our framework can be easily extended
to incorporate stochastic sampling for interval times, which
may be more appropriate than the deterministic counterpart
in situations (e.g. the future visitation timings are subject
to compliance issues). Lastly, both the logged data and the
online evaluation environments considered in this work are
based on simulations inspired by the real-world medical
applications, but they are in no way an accurate surrogate
for the actual medical problems; we can benefit from more
sophisticated models, while also looking into off-policy eval-
uations which avoid the need for online evaluation entirely.
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A ENVIRONMENTS DETAILS

In this section, we detail the three environments used in the experiments in Section 4.

A.1 Synthetic Data Study

For the survival experiment in Section 4.1, We assume that each patient’s underlying health condition is h(t), which linearly
decreases with time t if no medical interventions are provided: h(t) = h0 − d ∗ t, where h0 is the initial health condition,
and d is a constant decline rate. Each patient’s health condition is assumed to be upper bounded by hmax and the patient dies
at time t if the health condition h(t) drops to 0. We denote m(t) to be a noisy clinical measurement of the health condition:
m(t) ∼ N (h(t), σ2

m).

At each visitation, a medical agent assigns a dosage c(m(t)) based on the clinical measurement m(t). We suppress the
measurement dependence in c(m(t)) and use c(t) instead for notation simplicity. The assigned dosage gives an instant surge
to the patient’s health condition by f(h(t), c(t)), which is a piece-wise linear function given by

f(h(t), c(t)) =

{
c(t) if c(t) ≤ coptimal,t,

2coptimal,t − c(t) if c(t) > coptimal,t,

where coptimal,t is the optimal dosage for patient to achieve the state with the maximum health condition hmax. Such a design
makes the dosage effect on health condition increase first when the dosage increases from 0, peak at the dosage of coptimal,t,
then decrease when the dosage continues to increase, and eventually become harmful (negative value) when the dosage is
higher than 2coptimal,t. We choose coptimal,t to be a simple health condition dependent function that is unknown to the agent
but known to the behavior policy: coptimal,t := hmax − h(t).

Denoting the current visit index by i, the agent then decides the next visitation timing ti+1. As our goal is to prolong the
patient’s survival time, we choose the death indicator function 1alive at t as the reward rate function. As such, the reward from
visit i to visit i+ 1 is ti+1 − ti if the patient survives until ti+1; if the patient dies at time g ∈ (ti, ti+1), the reward is g− ti.
Due to limited medical resources, we assume that there is a cap L for the number of visitations. Thus, to achieve high total
returns, the agent should schedule the next visitation time that is not too far away in case the patient dies before the next
visitation time, or not too close to waste medical resources. Given dosage c(t) and noisy measurement m(t), the optimal
interval time based on the noisy observation m(t) is computed as

soptimal,t =


(

hmax−m(t)
coptimal,t

· c(t) +m(t)
)
/d if c(t) ≤ coptimal,t,(

hmax−m(t)
coptimal,t

· (2coptimal,t − c(t)) +m(t)
)
/d if c(t) > coptimal,t.

The theoretical maximum achievable return is bounded by L · hmax/d. We choose the limit for the number of visitations to
be L = 20, death rate d = 0.5, maximum health condition hmax = 12.5, the initial health condition h0 = 0.5, measurement
variance σ2

m = 0.52. The maximum achievable return for this episodic problem is therefore upper bounded by 500.

A.2 Application On Kidney Transplantation

Environment Description Considered in Section 4.2, the French computerized and validated data in transplantation (=
Données Informatisées et VAlidées en Transplantation, or DIVAT) database (www.divat.fr) provides patients medical
records collected from the date of kidney transplantation until their death, graft failure, or being censored. Hua et al. (2021)
designed a probabilistic model with structures suggested by medical domain experts to generate data that closely mimic
the DIVAT data. They jointly modeled the clinical decisions (dosages and treatment timings) and observations (clinical
measurements and patient survival). For our experiment in Section 4.2, we modify and implement their observations
submodel in Python as our online evaluation environment.

In the observations submodel, each patient has three baseline covariates: donor age (AgeD), body mass index (BMI), and
delayed graft function (DGF), i.e., x = (AgeD,BMI,DGF). The logarithm of creatinine clinical measurement is modeled
by a linear mixed effects model:

m(t) ∼ N (m∗(t), σ2
l ), (4)

with the unobserved true creatinine process m∗(t) = z(t)βl + r(t)b, where βl is the fixed effect, and the random effect
b ∼ N (0,Σb). The covariate vectors z(t) and r(t) corresponding to fixed and random effects respectively are given by

z(t) = (1, c(t),x, t, t2) and r(t) = (1, c(t), t),

with the interval dosage defined as c(t) = cj for t ∈ [tj , tj+1). The dependence of z(t) and r(t) on dosage c(t) reflects the
tacrolimus dosage effect on the creatinine level exhibited in the real DIVAT data. Next, the graft failure/death event time is
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modeled by a time-to-event model. Specifically, a Weibull proportional hazards model that depends on clinical decisions
and the true creatinine process m∗(t) is used, with the hazard function λ(t) given by

λ(t) = exp
(
− (βs1m

∗(t)2 + βs2c(t) + λ0)
)
ωtω−1, (5)

where in the above βs1m
∗(t)2 is the longitudinal creatinine effect, βs2c(t) the instantaneous dosage effect, λ0 the baseline

hazard, and ω the shape parameter. With such a model, the dosage effect is initially beneficial, but for overly large amount
the dosage effect then becomes harmful.

The reward function is the same survival reward described in the previous synthetic data study, namely,

rj =

∫ tj+1

tj

1{the patient is alive at time t}dt.

Parameter Specification The model parameters are chosen such that the model fits well to the real DIVAT data. For
each patient, AgeD and BMI are sampled from N (52.5, 15.82) and N (24.3, 4.52), respectively, and then standardized, and
DGF ∼ Bernoulli(0.4).For the linear mixed effects model Equation (4), we set βl = (4, 0.5, 0.3, 0.4, 0.25,−1× 10−4, 3×
10−8)T , σ2

l = 0.12, and Σb is a diagonal matrix with diagonal entries (0.04, 0.0049, 10−8). For the parameters in the
hazard function Equation (5), we set βs1 = −0.67, βs2 = 4.2,h0 = 18.5, and ω = 1.25. Each patient’s initial logarithm of
creatinine level m(0) ∼ N (5, 0.12).

A.3 Application On HIV

Environment Description For the experiments in Section 4.3, we use the ordinary differential equations (ODEs) rep-
resentation of the human immunodeficiency virus (HIV) infection dynamics described in Adams et al. (2004), which is
a well-studied RL benchmark (Ernst et al., 2006; Killian et al., 2017; Yu et al., 2019; Du et al., 2020). The Python
implementation is available at github.com/dtak/mbrl-smdp-ode. At each visit, 6 measurements are available:
uninfected type i cells Ti, i ∈ {1, 2}, infected type i cells T ∗

i , free virus V , and immune effectors E. The system of ODEs
describing their dynamics is:

Ṫ1 = λ1 − d1T1 − (1− ϵ1)k1V T1,

Ṫ2 = λ2 − d2T2 − (1− fϵ1)k2V T2,

Ṫ ∗
1 = (1− ϵ1)k1V T1 − δT ∗

1 −m1ET ∗
1 ,

Ṫ ∗
2 = (1− fϵ1)k2V T2 − δT ∗

2 −m2ET ∗
2 ,

V̇ = (1− ϵ2)NT δ(T
∗
1 + T ∗

2 )− cV − ((1− ϵ1)ρ1k1T1 + (1− fϵ1)ρ2k2T2)V,

Ė = λE +
bE(T

∗
1 + T ∗

2 )

(T ∗
1 + T ∗

2 ) +Kb
E − dE(T

∗
1 + T ∗

2 )

(T ∗
1 + T ∗

2 ) +Kd
E − δEE,

where ϵ1 = 0.7 (resp., 0) if type 1 drug is on (resp., off), and ϵ2 = 0.3 (resp., 0) if type 2 drug is on (resp., off). We modify
the reward definition to be suitable for our continuous-time generalization: we turn the discrete reward into a reward rate
function, and integrate over interval times to obtain the interval reward:

rj =

∫ tj+1

tj

(−0.1V (t)− 20000ϵ21(t)− 2000ϵ22(t) + 1000E(t))dt.

Since we do not assume access to the intermediate states, we linearly approximate the integration above with the trapezoid
rule using the two end-point states. The observation period for each patient ends after 1000 days.

Parameter specification The initial condition of each patient at t = 0 is set to be a non-healthy state:
(T1, T2, T

∗
1 , T

∗
2 , V, E)(0) = (163573, 5, 11945, 46, 63919, 24). The dynamics model parameters in the ODEs are cho-

sen according to Table 1 in Adams et al. (2004).

B EXPERIMENTAL DETAILS

In this section, we first present the necessary modifications to the baseline algorithms that we make to adapt them to the
continuous-time offline RL setting. Then, we report the training details, hyperparameters, and computing information for all
algorithms used in Section 4.
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B.1 Baseline Modifications

To adapt the baseline algorithms to our experimental settings, we perform the following necessary modifications.

DT We implement DT based on github.com/kzl/decision-transformer. For both experiments in Section 4.1
and Section 4.2, we put the logged data timestamps into discretized time buckets (days), and at test time DT assigns interval
times s in days.

BCQ We implement BCQ based on github.com/sfujim/BCQ. For the continuous-action settings in Section 4.1 and
Section 4.2, we treat the dosage assignment and the interval time as a two-dimensional action. Due to the mismatched scales
of dosages and interval times (with interval times typically much larger than dosages) in the Section 4.2 DIVAT kidney
experiment, we perform a standardization transformation on the logged actions for BCQ training, and reverse transform
the output actions for evaluation. Doing so introduces an extra tunable hyperparameter amax, the maximum action value
(in terms of standard deviations), which we set to 3 for Section 4.2. For the discrete-action setting in Section 4.3, the drug
combination and interval time are encoded into one single action, with the total number of possible actions now being
4× 14 = 56 (4 drug combinations, integer interval days 1 through 14).

CQL We implement CQL based on github.com/BY571/CQL. Similar to BCQ, for CQL we treat the dosage assignment
and the interval time as a two-dimensional action. Since the action range in Section 4.1 is no longer bounded in [−1, 1], we
remove the final tanh(·) operation for the actor, and change the actor update rule accordingly.

Neural-ODE MBRL We implement the MBRL algorithm based on github.com/dtak/mbrl-smdp-ode. The
MBRL algorithm is an online algorithm, and the discrete-action version of the algorithm learns world models (Ha &
Schmidhuber, 2018) to output learnt policies after having trained a dynamics model via online interactions. Therefore,
we adapt the MBRL algorithm to the offline learning setting by forbidding online interactions at the dynamics model
training stage and instead training solely with logged data; afterwards, we allow access to the oracle reward function at the
world model learning stage to complete policy training, which is slightly advantageous compared to the full offline training
procedure (without access to the oracle reward function) of the other algorithms. A further modification is that, since the
MBRL only anticipates the interval time distributions but does not actively set the interval times, we use the output of the
interval time optimization algorithm (Algorithm 1 in Du et al. (2020)) as the interval time assignment, with again access to
the oracle reward function during both policy training and evaluation.

B.2 Training Details

Early Stopping We perform early stopping for training of all algorithms in Section 4 to prevent overfitting: after at most
every 10% of the total number of training steps, each algorithm is validated over 100 online episodes, and the validation
scores are obtained by averaging the total returns of all the evaluation episodes.

Model Hyperparameters And Optimizer For CTDT, we use the AdamW optimizer (Loshchilov & Hutter, 2017). The
first 10% training steps are warmup steps (Popel & Bojar, 2018) with much smaller learning rates. The CTDT model
hyperparameters are summarized in Table 7.

Table 7: CTDT Hyperparameters

Synthetic Data Kidney HIV
Training Steps 1E5 1E5 7500
Batch Size 64 64 4
Value Embedding y Dimension 128 128 96
Type embedding e Dimension 64 64 32
Temporal Embedding t Dimension 64 64 32
Number Of Layers 3 3 4
Number Of Attention Heads 1 1 4
Learning Rate 0.0001 0.0001 0.006
Attention Window Size 20 20 unlimited

BC and DT both have the same number of layers, hidden dimensions, and number of attention heads (DT) as CTDT
for each experiment. For BCQ, CQL, and Neural-ODE MBRL, we use the respective codebase’s default/recommended
hyperparameters.

Computing Information All algorithms used in the experiments in Section 4 are trained on a single A100 GPU. With the
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hyperparameters stated in Table 7, the training time for CTDT is less than an hour for the synthetic data experiments, less
than an hour for the DIVAT kidney experiment, and less than 1.5 hours for the HIV experiment.

C ADDITIONAL EXPERIMANTAL RESULTS

In this section, we detail the behavior policies for the experiments in Section 4.2 and Section 4.3, and give the logged data
statistics for all three experiments in Section 4. We also provide supplementary results for Section 4.1 and Section 4.2.

C.1 Synthetic Data Study

Chen et al. (2021) found that by varying the input desired returns over a range there was a high correlation between desired
target returns and DT’s obtained returns on discrete-time offline RL benchmarks. We perform a similar investigation on all
12 experiments presented in Section 4.1, varying R̂input ∈ [25, 50, 100, 200, 300, 400, 450, 500], ranging from the minimum
return in the dataset to the upper bound of achievable returns. The obtained return as a function of the desired return for
all the 12 settings is plotted in Figure 4. In all the settings, the survival outcome obtained by the trained CTDT is strongly
correlated with the desired survival time at least up through the maximum return present in the offline training data (the
logged data statistics for the 12 offline datasets are summarized in Table 8); in many cases, the correlation trend remains
well above the maximum return, showcasing CTDT’s ability to generalize beyond the best performing trajectories for this
survival experiment. For the definitions of e.g. the low dosage policy and biased timing in Figure 4 and Table 8, please refer
to Section 4.1.

Table 8: Synthetic Data Study Logged Data Statistics

Min Return Mean Return Max Return Std.
Low Dosage 13.8 37.8 266.3 23.7
Optimal Dosage 17.8 42.8 296.0 27.0
High Dosage 14.2 37.9 262.9 23.9
Low Dosage, Biased Timing 13.6 62.4 345.5 48.3
Optimal dosage, Biased Timing 17.6 71.4 397.9 55.7
High dosage, Biased Timing 14.3 62.4 354.4 48.1
Suboptimal Dosage 16.8 42.4 292.2 26.8
Mixture Of Optimal And
Low Dosage Policies 13.8 40.4 296.0 25.7
Mixture Of Suboptimal And
Low Dosage Policies 13.8 40.2 292.2 25.6
Mixture Of Suboptimal And
Low Dosages, Biased Timing 13.6 66.5 392.7 51.8
Mixture Of Optimal And
Low Dosages, Biased Timing 13.6 66.9 396.9 52.3
Mixture Of High And
Low Dosages, Biased Timing 13.6 62.5 354.4 48.2
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Figure 4: Obtained Return vs. Desired Return

C.2 Application On Kidney Transplantation

In this subsection, we begin by detailing the mixture of behavioral policies used to generate the offline dataset for the kidney
transplantation experiment in Section 4.2. Then, we compare the performance of the 4 algorithms in Section 4.2 to the
median performance in the logged data, and present the evaluation statistics on all 50 test patients for the 4 algorithms.

The logged dataset contains trajectories for 4000 simulated patients, with 2000 patients treated with a low-variance behavioral
policy and 2000 with a policy whose assigned dosage is slightly biased and has a higher variance. The two behavioral
policies use linear models to sample the dosage amount and the interval time at each visit. For the low-variance behavioral
policy, the dosages are sampled from N (cmean(t), 0.01

2), with cmean = d(t)βc. The covariate vector d(t) = (1,m(t),x)
consists of the current measurement and the patient’s baseline covariates, and we set βc = (−3, 1.2, 0.15, 0.2, 0.15).
Given the sampled dosage c(t), the interval time is sampled from N (800− τ (t)βs, 5

2), with τ (t) = (c(t), t,m(t)), and
βs = (60, 0.04, 30). For the high-variance policy, the dosages are sampled from N (cbias(t), 1

2), with cbias(t) = cmean(t)−1,
and the interval times are obtained in the same way as the low-variance behavioral policy. We clip the samples such that the
sampled dosages are in the range [1, 10], and the interval times are in [30, 800]. 1

The first quartile survival time, median survival time, third quartile survival time, and median absolute deviation of the
logged dataset are given in Table 9. While BCQ’s population-level evaluation score (377) is much lower than the median
and BC’s (1267) is close to the median, DT (1793) is able to surpass the median performance of the logged dataset. Owing
to the extra temporal precision and dosage-dependent interval time assignment, CTDT (2646) is able to further improve
beyond DT’s performance. In Section 4.2 we used a box plot to show the survival times of all 100 Monte Carlo trajectories

1For the online policy evaluations we perform the same clipping for the interval times, and [0.5, 10] for the dosages.
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for 10 randomly sampled patients. Here, for completeness we plot the survival times obtained by the 4 algorithms for all 50
test patients in groups of 10 in Figure 5. As can be readily seen, CTDT also achieves best or close to best survival outcomes
at the individual patient level.

Table 9: Kidney Transplantation Logged Data Statistics

Q1 Survival Time Median Survival Time Q3 Survival Time Mad.
117.3 1289.1 5388.69 1277.1
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Figure 5: Survival Times For ALL 50 Test Patients
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C.3 Application On HIV

We now describe the generation of the logged dataset in Section 4.3. The logged dataset contains a total of 1000 trajectories,
with 200 trajectories sampled by a high-performance behavioral policy mixed with 800 trajectories sampled by a low-
performance policy. Using a pre-trained dynamics model for the HIV environment provided by Du et al. (2020) at
github.com/dtak/mbrl-smdp-ode, we train a Neural-ODE MBRL policy to obtain the high-performance policy.
With U{a, b} denoting the discrete uniform distribution over support {a, a+1, ..., b− 1, b}, the interval times s are sampled
according to

s ∼



U{11, 14} if (V ≤ 104 and E > 8 · 104) and (no treatment or drug 1),
U{3, 7} if (V ≤ 104 and E > 8 · 104) and (drug 2 or both drugs),
U{3, 7} if (V ≤ 104 and E ≤ 8 · 104) and (any or no treatment),
U{3, 7} if (104 < V ≤ 105) and (no treatment),
U{3, 5} if (104 < V ≤ 105) and (drug 1 or drug 2),
3 if (104 < V ≤ 105) and (both drugs),
3 if (V > 105) and (no treatment),
U{1, 2} if (V > 105) and (any treatment).

(6)

For the low-performance policy, we sample drug combinations uniformly on the 4 combinations, and use the same interval
time schedule given in Equation (6). The dataset statistics are given in Table 10. Since the uniform sampling is a
high-variance behavioral policy, the logged dataset has a high standard deviation in total returns.

In Section 4.3 we already showed that CTDT outperforms all baseline algorithms in this experiment. Now, compared to the
highly noisy logged dataset, we see that the total return achieved by CTDT (5.5E10) is also very close to the maximum
return seen in the logged dataset, in spite of the prevalence of low-performance trajectories.

Table 10: HIV Logged Data Statistics

Min Return Mean Return Max Return Std.
2.6E7 8.1E9 5.7E10 1.7E10
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